ESONERO DI ISTITUZIONI DI MATEMATICA II - GIUGNO 2018

Cognome e nome	Matr.
----------------	-------

- 1) Non è ammesso l'uso di libri, appunti, calcolatrici, cellulari, etc. Soltanto carta e penna!
- 2) Il compito deve essere svolto su questi fogli (utilizzando anche il retro), che sono gli unici ad essere consegnati al docente per la correzione.
- \Diamond Esercizio 1 (Da svolgere nello spazio sottostante ed eventualmente sul retro del foglio) 10 punti. Data la funzione

$$f(x,y) = x^3 + 3x^2y^2 - 6xy - 12x,$$

- trovare e classificare tutti i suoi punti critici;
- determinare tutte le direzioni \mathbf{v} per cui $\frac{\partial f}{\partial \mathbf{v}}(0,1) > 0$.

- \Diamond Esercizio 2 (Da svolgere nello spazio sottostante ed eventualmente sul retro del foglio) 10 punti.
 - Disegnare l'insieme $E = \left\{ (x,y) \in \mathbb{R}^2 \ : \ x^2 \le y \le -2x^2 + 6x \right\},$ e calcolare $\iint\limits_{\mathbb{R}^2} y \, dx \, dy.$
 - Scrivere le formule di riduzione per calcolare l'integrale invertendo l'ordine di integrazione delle variabili (in questo caso non è richiesto di ricalcolare l'integrale).

♦ - Nei seguenti esercizi indicare con una croce la risposta. Verranno assegnati 3 punti alle risposte esatte, 0 a quelle non espresse, -1 a quelle sbagliate

Esercizio 3. Dire per quale valore di α il campo vettoriale

$$\mathbf{F}(x,y) = \left(\frac{\alpha y - 1}{(x+3)^2}, \frac{x}{x+3}\right)$$

è conservativo nel semipiano $\{x > -3\}$.

Risposta:

$$\fbox{A}$$
 $\alpha=-1$ \fbox{B} nessun valore di α \fbox{C} $\alpha=1$ \fbox{D} $\alpha=3$ \fbox{E} nessuna delle altre risposte

Esercizio 4. L'espressione che fornisce l'integrale curvilineo $\int_{\gamma} y \, ds$ lungo la curva γ di equazione $y = e^{-3x}$, $x \in [0,1],$ è data da (non si richiede di calcolare l'integrale):

Risposta:
$$\boxed{A} \int_{0}^{1} \sqrt{1 + 9e^{-6x}} \, dx$$
 $\boxed{B} \int_{0}^{1} e^{-3x} \sqrt{1 + 9e^{-6x}} \, dx$ $\boxed{C} \int_{0}^{1} \sqrt{1 + e^{-6x}} \, dx$

$$\boxed{\mathbf{B}} \int_{0}^{1} e^{-3x} \sqrt{1 + 9e^{-6x}} \, dx$$

$$\boxed{C} \int_{0}^{1} \sqrt{1 + e^{-6x}} \, dx$$

E nessuna delle altre risposte

Esercizio 5. Si consideri la spirale γ di equazioni parametriche

$$\begin{cases} x(t) = t \cos(\pi t), \\ y(t) = t \sin(\pi t). \end{cases}$$

Il versore tangente a
$$\gamma$$
 nel punto $(-1,0)$ è:
Risposta: $\boxed{\mathbf{A}} (-1,-\pi)$ $\boxed{\mathbf{B}} \frac{(-1,-\pi)}{\sqrt{1+\pi^2}}$ $\boxed{\mathbf{C}} \frac{(1,\pi)}{\sqrt{1+\pi^2}}$ $\boxed{\mathbf{D}} (1,\pi)$ $\boxed{\mathbf{E}}$ nessuna delle altre risposte

Esercizio 6. Il piano tangente al grafico della funzione $f(x,y) = x^2y$ nel punto corrispondente a (x_0,y_0) (1, -3) è:

Risposta:

$$\boxed{\mathbf{B}} z = 6x + y + 6$$

$$\overline{|C|} z = 1 + x - 3y$$

$$\boxed{\mathbf{D}} \ z = -3 + x - 3y$$

APPELLO DI ISTITUZIONI DI MATEMATICA II - GIUGNO 2018

Cognome e nome	Matr.
----------------	-------

- 1) Non è ammesso l'uso di libri, appunti, calcolatrici, cellulari, etc. Soltanto carta e penna!
- 2) Il compito deve essere svolto su questi fogli (utilizzando anche il retro), che sono gli unici ad essere consegnati al docente per la correzione.
- ♣ Esercizio 1 (Da svolgere nello spazio sottostante ed eventualmente sul retro del foglio) 10 punti. Data la funzione

$$f(x,y) = y^3 - 6xy + 3x^2y^2 - 3y,$$

- trovare e classificare tutti i suoi punti critici;
- determinare tutte le direzioni \mathbf{v} per cui $\frac{\partial f}{\partial \mathbf{v}}(1,0) > 0$.

- 🜲 Esercizio 2 (Da svolgere nello spazio sottostante ed eventualmente sul retro del foglio) 10 punti.
 - Disegnare l'insieme $E = \left\{ (x,y) \in \mathbb{R}^2 \ : \ 2x^2 6x \le y \le -x^2 \right\},$ e calcolare $\iint_{\mathbb{R}^2} y \, dx \, dy.$
 - Scrivere le formule di riduzione per calcolare l'integrale invertendo l'ordine di integrazione delle variabili (in questo caso non è richiesto di ricalcolare l'integrale).

🌲 - Nei seguenti esercizi indicare con una croce la risposta. Verranno assegnati 3 punti alle risposte esatte, 0 a quelle non espresse, -1 a quelle sbagliate

Esercizio 3. Dire per quale valore di α il campo vettoriale

$$\mathbf{F}(x,y) = \left(\frac{\alpha y^2 - 1}{(x+3)^2}, \frac{x}{x+3}\right)$$

è conservativo nel semipiano $\{x > -3\}$.

Risposta:

 $oxed{A}$ nessun valore di lpha $oxed{B}$ lpha=3 $oxed{C}$ lpha=1 $oxed{D}$ lpha=-1 $oxed{E}$ nessuna delle altre risposte

Esercizio 4. L'espressione che fornisce l'integrale curvilineo $\int_{\gamma} y \, ds$ lungo la curva γ di equazione $y = e^{3x}$, $x \in [0, 2]$, è data da (non si richiede di calcolare l'integrale):

Risposta: $\boxed{A} \int_{0}^{2} \sqrt{1 + e^{6x}} dx$ $\boxed{B} \int_{0}^{2} \sqrt{1 + 9e^{6x}} dx$ $\boxed{C} \int_{0}^{2} e^{3x} \sqrt{1 + 9e^{6x}} dx$

E nessuna delle altre risposte

Esercizio 5. Si consideri la curva γ di equazioni parametriche

$$\begin{cases} x(t) = t^3, \\ y(t) = t e^{2t}. \end{cases}$$

Il versore tangente a γ nel punto (0,0) è: **Risposta:** $\boxed{\mathbf{A}} \frac{(1,2e)}{\sqrt{1+4e^2}} \qquad \boxed{\mathbf{B}} (1,e) \qquad \boxed{\mathbf{C}} \frac{(1,e)}{\sqrt{1+e^2}} \qquad \boxed{\mathbf{D}} (0,1) \qquad \qquad \boxed{\mathbf{E}}$ nessuna delle altre risposte

Esercizio 6. Il piano tangente al grafico della funzione $f(x,y) = \frac{x}{y}$ nel punto corrispondente a $(x_0,y_0) = (2,1)$ è:

Risposta:

$$\boxed{\mathbf{A}} \ z = 2 + 2x + y$$

$$\boxed{\underline{\mathbf{C}}} \ z = x - 2y + 2$$

$$\boxed{\mathbf{D}} z = 1 + 2x + y$$

APPELLO DI ISTITUZIONI DI MATEMATICA II - GIUGNO 2018

Cognome e nome	Matr.
----------------	-------

- 1) Non è ammesso l'uso di libri, appunti, calcolatrici, cellulari, etc. Soltanto carta e penna!
- 2) Il compito deve essere svolto su questi fogli (utilizzando anche il retro), che sono gli unici ad essere consegnati al docente per la correzione.
- \heartsuit Esercizio 1 (Da svolgere nello spazio sottostante ed eventualmente sul retro del foglio) 10 punti. Data la funzione

$$f(x,y) = x^3 - 6xy + 3x^2y^2 - 3x,$$

- trovare e classificare tutti i suoi punti critici;
- determinare tutte le direzioni \mathbf{v} per cui $\frac{\partial f}{\partial \mathbf{v}}(0,1) < 0$.

- \heartsuit Esercizio 2 (Da svolgere nello spazio sottostante ed eventualmente sul retro del foglio) 10 punti.
 - Disegnare l'insieme $E = \left\{ (x,y) \in \mathbb{R}^2 \ : \ 2x^2 + 6x \le y \le -x^2 \right\}$, e calcolare $\iint\limits_{\mathbb{R}^2} y \, dx \, dy$.
 - Scrivere le formule di riduzione per calcolare l'integrale invertendo l'ordine di integrazione delle variabili (in questo caso non è richiesto di ricalcolare l'integrale).

♡ - Nei seguenti esercizi indicare con una croce la risposta. Verranno assegnati 3 punti alle risposte esatte, 0 a quelle non espresse, -1 a quelle sbagliate

Esercizio 3. Dire per quale valore di α il campo vettoriale

$$\mathbf{F}(x,y) = \left(\frac{\alpha y + 1}{(x+2)^2}, \frac{x}{x+2}\right)$$

è conservativo nel semipiano $\{x > -2\}$.

Risposta:

$$\overline{\mathbf{A}}$$
 nessun valore di α

$$|B| \alpha = 2$$

$$C \alpha = -2$$

$$\boxed{\mathrm{D}} \alpha = 1$$

 $oxed{A}$ nessun valore di lpha $oxed{B}$ lpha=2 $oxed{C}$ lpha=-2 $oxed{D}$ lpha=1 $oxed{E}$ nessuna delle altre risposte

Esercizio 4. L'espressione che fornisce l'integrale curvilineo $\int_{\gamma} y \, ds$ lungo la curva γ di equazione $y = \frac{1}{x}$, $x \in [1, 2]$, è data da (non si richiede di calcolare l'integrale):

Risposta:
$$\boxed{A} \int_{-\infty}^{2} \frac{\sqrt{x^2 + 1}}{x^2} dx$$

$$\boxed{\mathbf{B}} \int_{1}^{2} \frac{\sqrt{x^4 + 1}}{x^2} \, dx$$

$$\boxed{\mathbf{B}} \int_{1}^{2} \frac{\sqrt{x^4 + 1}}{x^2} dx \qquad \boxed{\mathbf{C}} \int_{1}^{2} \frac{\sqrt{x^2 + 1}}{x} dx$$

$$\boxed{D} \int_{1}^{2} \frac{\sqrt{x^4 + 1}}{x^3} dx$$

E nessuna delle altre risposte

Esercizio 5. Si consideri la curva γ di equazioni parametriche

$$\begin{cases} x(t) = t e^{2t}, \\ y(t) = t^2. \end{cases}$$

Il versore tangente a γ nel punto (0,0) è:

Risposta:
$$\boxed{A}$$
 $(1,0)$

$$\boxed{\mathbf{B}} \frac{(e,1)}{\sqrt{e^2+1}}$$

$$\boxed{C} \frac{(2e,1)}{\sqrt{4e^2+1}}$$

$$D$$
 (2,0)

Risposta: A (1,0) B $\frac{(e,1)}{\sqrt{e^2+1}}$ C $\frac{(2e,1)}{\sqrt{4e^2+1}}$ D (2,0) E nessuna delle altre risposte

Esercizio 6. Il piano tangente al grafico della funzione $f(x,y) = x^2y^2$ nel punto corrispondente a $(x_0,y_0) =$ (-1,2) è:

Risposta:

$$\boxed{\mathbf{A}} \ z = -1 - x + 2y$$

$$\boxed{\mathbf{B}} z = 8x + 4y - 12$$

$$\overline{|D|} z = 2 - x + 2y$$

APPELLO DI ISTITUZIONI DI MATEMATICA II - GIUGNO 2018

Cognome e nome	Matr.
----------------	-------

- 1) Non è ammesso l'uso di libri, appunti, calcolatrici, cellulari, etc. Soltanto carta e penna!
- 2) Il compito deve essere svolto su questi fogli (utilizzando anche il retro), che sono gli unici ad essere consegnati al docente per la correzione.
- ♠ Esercizio 1 (Da svolgere nello spazio sottostante ed eventualmente sul retro del foglio) 10 punti. Data la funzione

$$f(x,y) = 12y - y^3 - 3x^2y^2 + 6xy,$$

- trovare e classificare tutti i suoi punti critici;
- determinare tutte le direzioni \mathbf{v} per cui $\frac{\partial f}{\partial \mathbf{v}}(1,0) > 0$.

- ♠ Esercizio 2 (Da svolgere nello spazio sottostante ed eventualmente sul retro del foglio) 10 punti.
 - Disegnare l'insieme $E = \left\{ (x,y) \in \mathbb{R}^2 \ : \ x^2 \le y \le -2x^2 6x \right\},$ e calcolare $\iint\limits_{\mathbb{R}^2} y \, dx \, dy.$
 - Scrivere le formule di riduzione per calcolare l'integrale invertendo l'ordine di integrazione delle variabili (in questo caso non è richiesto di ricalcolare l'integrale).

♠ - Nei seguenti esercizi indicare con una croce la risposta. Verranno assegnati 3 punti alle risposte esatte, 0 a quelle non espresse, -1 a quelle sbagliate

Esercizio 3. Dire per quale valore di α il campo vettoriale

$$\mathbf{F}(x,y) = \left(\frac{y+\alpha}{y+3}, \frac{3x-1}{(y+3)^2}\right)$$

è conservativo nel semipiano $\{y > -3\}$.

Risposta:

 $\boxed{{\rm A}}$ nessun valore di α $\boxed{{\rm B}}$ $\alpha=5$ $\boxed{{\rm C}}$ $\alpha=1$ $\boxed{{\rm D}}$ $\alpha=-1$ $\boxed{{\rm E}}$ nessuna delle altre risposte

Esercizio 4. L'espressione che fornisce l'integrale curvilineo $\int_{\gamma} y \, ds$ lungo la curva γ di equazione $y = \sqrt{x}$ $x \in [1,2],$ è data da (non si richiede di calcolare l'integrale):

Risposta: $\boxed{A} \int_{1}^{2} \sqrt{1 + \frac{1}{4x}} dx$ $\boxed{B} \int_{1}^{2} \sqrt{4x + 1} dx$ $\boxed{C} \int_{1}^{2} \sqrt{1 + x} dx$

$$\boxed{D} \int_{1}^{2} \sqrt{x + x^2} \, dx$$

E nessuna delle altre risposte

Esercizio 5.

Si consideri la spirale γ di equazioni parametriche

$$\begin{cases} x(t) = t \cos(\pi t), \\ y(t) = t \sin(\pi t). \end{cases}$$

Il versore tangente a γ nel punto (2,0) è:

Risposta: $\boxed{A} \frac{(1,2\pi)}{\sqrt{1+4\pi^2}} \qquad \boxed{B} (1,2\pi) \qquad \boxed{C} \frac{(-1,-2\pi)}{\sqrt{1+4\pi^2}} \qquad \boxed{D} (-1,-2\pi) \qquad \boxed{E} \text{ nessuna delle altre risposte}$

Esercizio 6. Il piano tangente al grafico della funzione $f(x,y)=x^3y$ nel punto corrispondente a $(x_0,y_0)=$ (1,2) è:

Risposta:

$$\boxed{\mathbf{A}} \ z = 2 + x + 2y$$

$$\boxed{\mathbf{C}} \ z = 1 + x + 2y$$

$$\boxed{\mathbf{D}} \ z = 6x + y - 6$$