CrispR/Cas technology: the revolution tool

About us

GENE EDITING AND EMBRYOLOGY FACILITY

Based at the EMBL Outstation in ROME, Monterotondo

"In biology, as in mechanics, one of the best ways to figure out how something works is to break it."

Vogel, *Science* (2000) 288, 1160

Genome editing

- To understand the function of a gene or a protein: direct mutation and study of the effects on the organism.
- To understand relation between genes and diseases thus improving available therapeutic approaches (i.e. cancer, heritable diseases).
- Revealing unknown biological procesesses that could be crucial in the establishment of a defined pathology.

How do we make genetically modified mice?

We genetically manipulate the embryos

Transgenic mice

Genetically modified ES cells

Capecchi (2005) Nature Reviews Genetics 6, 507

Genetically modified ES cells

CRISPR-Cas

RESEARCHARTICLE

A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity

Martin Jinek, ^{1,2}* Krzysztof Chylinski, ^{3,4}* Ines Fonfara, ⁴ Michael Hauer, ²† Jennifer A. Doudna, ^{1,2,5,6}‡ Emmanuelle Charpentier⁴‡

CRISPR-Cas: its simple origin

Streptococcus pyogenes

Viruses

Viruses on bacteria

CRISPR-Cas: its simple origin

Bacteria has evolved against viruses..

• RESTRICTION ENZYMES:

DNA-cutting enzymes that recognizes specific sequences. They act as **molecular scissors** of the viral DNA

• IMMUNE SYSTEM:

It is a defense against viruses infection well known in almost 50% of the bacteria, but also present in Archea and Eubacteria.

How does CRISPR work in bacteria?

C: Clustered R: Regularly I: Interspaced S: Short P: Palindromic R: Repeats

How does CRISPR work in bacteria?

Feng Zhang

PROTOCOL

Genome engineering using the CRISPR-Cas9 system

F Ann Ran^{1–5,8}, Patrick D Hsu^{1–5,8}, Jason Wright¹, Vineeta Agarwala^{1,6,7}, David A Scott^{1–4} & Feng Zhang^{1–4}

¹Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA. ²McGovern Institute for Brain Research, Cambridge, Massachusetts, USA. ³Department of Brain and Cognitive Sciences, MIT, Cambridge, Massachusetts, USA. ⁴Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA. ⁵Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA. ⁶Program in Biophysics, Harvard University, MIT, Cambridge, Massachusetts, USA. ⁷Harvard-MIT Division of Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA. ⁸These authors contributed equally to this work. Correspondence should be addressed to F.Z. (zhang@broadinstitute.org).

CRISPR-Cas system works also in eukaryotic cells

Molecular mechanism of the CRISPR-Cas system

Cas9 can cut any target dsDNA: PAM site is crucial!

What happens if a dsDNA break occur?

Versatile nature of CRISPR technology

(a,b) gRNA-directed Cas9 nuclease can induce indel mutations (a) or specific sequence replacement or insertion (b). (c) Pairs of gRNA-directed Cas9 nucleases can stimulate large deletions or genomic rearrangements (e.g., inversions or translocations). (d-f) gRNA-directed dCas9 can be fused to activation domains (d) to mediate upregulation of specific endogenous genes, heterologous effector domains (e) to alter histone modifications or DNA methylation, or fluorescent proteins (f) to enable imaging of specific genomic loci. TSS, transcription start site.

Jeffry et al., 2014 Nature Biotechnology

Cas9 modifications and their applications

Visualisation

CRISPR-Cas: why it is so revolutionary?

✓ Simple: it only requires two components gRNA and protein

✓ Precise: can target any sequence in the genome —base pairing-

✓ Universal: it works in bacteria, plants, animals

✓ Multitasking: ability to target different sites at the same time -use multiple gRNAs-

✓ Broad applicability to both *in vivo* and *ex vivo* systems

CRISPR reagents timeline: super fast !!!!!

Therapeutic applications in humans

- Heritable diseases (*Cystic fibrosis, Duchenne muscular distrophy*)
- Cancer
- Immunological diseases

CRISPR applications in Agriculture

✓ Potential tool for developing virus resistant crop varieties

✓ CRISPR can be used to eradicate unwanted species like herbicide resistant weeds, insect pest

 \checkmark Developing biotic and abiotic resistant traits in plan

CRISPR impact on scientific publications

 700

 600

 500

 400

 300

 200

 100

 0

 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015*

 Source: PubMed

CRISPR Mentions in Scientific Publications Since 2002

Number of CRISPR Publications* 1,600 1,400 Number of Publications ,200 ,000 800 600 400 200 0 2015** 2011 2012 2013 2014 2010 Year

CRISPR... the bad: OFF-TARGETS effects

Off-target predictor:

Chrom	Position	Strand	Sequence
chr07	21812180	-	AGAAGTGAGTTGGGAAACTA AGG
chr02	303653	-	GGAACAGAGTGGGGAAACAA CGG
chr04	24243692	-	AGAAGAGAGT <mark>CTA</mark> GAAACAA CGG
chr06	10813090	+	AGGAGAGACTTGGGAAAAAA TGG
chr01	10114801	-	ACTGGAGTGTTGGGAAACAA TGG
chr03	21759865	-	ATGGGAGAGTTGGCAAACAA TGG
chr03	17285560	-	GGAAGTGAGTTGGGAAAGAA GGG
chr11	20396137	-	GAAGGAGAGTTGGGAACCAA TGG
chr07	17544625	-	AGAAGAGACTTGGCGAAAAA TGG
chr07	16883830	-	AGAAGGGAGTTGGGAACCAT GGG
chr07	19733721	-	AGAAGTGAGTTGGGAAAGAG GGG
chr11	20185223	-	AGATGTGAGTTGGGAAAGAA GGG

Off-score	Gene	Region
0.385		intergenic
0.314		intergenic
0.237	OS04G0485000	three_prime_UTR
0.177	OS06G0294100	three_prime_UTR
0.131	OS01G0283000	CDS
0.104	OS03G0588800	intron
0.095		intergenic
0.093		intergenic
0.081		intergenic
0.076	OS07G0471050	three_prime_UTR
0.073		intergenic
0.061	OS11G0547000	five_prime_UTR

Multiple sites targeting: on target/off-targets effects

Nature, March 2016

