Compacting the eukaryotic genome

Compaction by chromosome scaffold / nuclear matrix

Chromatin structural organization has a key role in gene transcription regulation

nucleosomes inhibit accessibility to promoter and binding of transcription factors to regulatory sequences

•Active promoters are generally nucleosomes depleted;

• Gene transcription activation is generally coupled to nucleosome eviction or displacement;

•Nucleosome occupancy in promoters is generally anti-correlated with transcription activity level.

The general idea is that nucleosomes obstacle transcription machinery. Chromatin remodeling, histone modifications and substitutions of canonical histones with variant isoforms are the strategy used to remove the obstacle.

Histone-like proteins exist in bacteria

Nature Reviews | Microbiology

Protein or group of proteins	DNA wrapping	DNA bridging	DNA bending	Binding motif	Molecular mass	Native protomer	Refs
Eukaryotes							
Core histones, H2A, H2B, H3 and H4	Yes	ND	ND	A ~10 bp periodic oscillation of AA/TT/TA elements in-phase with each other and out-of-phase with ~10 bp periodic GCs $$	11–14 kDa	Homodimer	115
Linker histones, H1 and H5	ND	Yes	ND	AT-rich DNA	~21 kDa	Homodimer	116
Smc	ND	Yes	ND	AT-rich DNA able to form secondary structures	~140 kDa	Heterodimer (for example, SMC1–SMC3)	117
Hmg	ND	ND	Yes	AT-tract sites	11-38 kDa	Homodimer or heterodimer (for example, HMG1–HMG2)	118
Euryarchaeota							
Archaeal histones HMfA and HMfB	Yes	ND	ND	(A/T) ₃ NN(G/C) ₃ NN	~7.5 kDa	Homodimer or heterodimer	119
Lrp	Yes	Yes	ND	ND	15-22 kDa	Homodimer	120
Alba	ND	Yes	ND	ND	-10 kDa	Homotetramer	20
MC1	ND	ND	Yes	AT-rich DNA	~10 kDa	Homodimer	121
HU	ND	ND	Yes	ND	~10 kDa	Homodimer	122
SMC	ND	Yes	ND	ND	-135 kDa	Homodimer	123
Crenarchaeota							
Lrp	Yes	Yes	ND	ND	~18 kDa	Homodimer	124
Cren7	ND	ND	Yes	ND	~7 kDa	Monomer	125
Sul7d	ND	ND	Yes	ND	~7 kDa	Monomer	126
Alba	ND	Yes	ND	ND	-10 kDa	Homodimer or homotetramer	127
SMC	ND	Yes	ND	ND	-100 kDa	Homodimer	128
CC1	ND	ND	ND	ND	~6 kDa	Monomer	129
Gram-negative b	acteria						
HU	Yes	ND	Yes	A DNA structural motif in dsDNA joined to either dsDNA or ssDNA, with a mild preference for AT-rich or curved DNA	~9 kDa	Heterodimer (for example, HUα–HUβ)	42, 130
Lrp	Yes	Yes	ND	(T/C)AG(A/T/C)A(A/T)ATT(A/T)T(A/T/G) CT(A/G)	~18 kDa	Homodimer	69
MukB	ND	Yes	ND	ND	~175 kDa	Homodimer	57
Fis	Yes (helically phased sites)	Yes	Yes	$\boldsymbol{A}_{\!_{\boldsymbol{\theta}}}$ tracts and AT tracts	-11 kDa	Homodimer	77,79
H-NS	ND	Yes	ND	AT-rich DNA and TCGATAAATT	~15 kDa	Homodimer or heterodimer (H-NS-StpA)	19
IHF	ND	ND	Yes	(A/T)ATCAANNNNTT(A/G)	~11 kDa	Heterodimer (IHFa-IHFB)	44,45
Dps	ND	ND	ND	ND	-19 kDa	Monomer or dodecamer	94
StpA	ND	Yes	ND	AT-rich DNA	~15 kDa	Homodimer or heterodimer (StpA-H-NS)	29
CbpA	ND	ND	ND	Curved DNA	~33 kDa	Homodimer or heterodimer (CbpA–CbpM)	92
CbpB	ND	ND	ND	Curved DNA	~33 kDa	Monomer	102
EbfC	ND	Suggested	ND	GTNAC	-11 kDa	Homodimer	93
MvaT	ND	Yes	ND	AT-rich DNA		Homodimer	26
Gram-positive ba	cteria						
MukB	ND	Yes	ND	Preference for ssDNA	~130 kDa	Homodimer	131
Lrp	Yes	Yes	ND	ND	-17 kDa	Homodimer	72
HU	ND	ND	Yes	ND	-10 kDa	Homodimer	37
Lsr2	ND	Yes	ND	AT-rich DNA	~12 kDa	Homodimer	24
Hlp	ND	ND	ND	ND	-21 kDa	Monomer	38
MrgA	ND	ND	ND	ND	-17 kDa	Monomer or dodecamer	132

Alba, acetylation lowers binding affinity: CbpA, curved-DNA-binding protein A; CbpB, curved-DNA-binding protein B (also known as Rob); CbpM, chaperone modulatory protein; Dps, DNA protection from starvation; dsDNA, double-stranded DNA; Fis, factor for inversion stimulation; HIp, histone-like protein; Hmg, high mobility group; H-NS, histone-like nucleoid-structuring; IHF, integration host factor; Lrp, leucine-responsive regulatory protein; MrgA, metalloregulation DNA-binding stress protein; ND, not determined; Smc, structural maintenance of chromosome; ssDNA, single-stranded DNA.

Histone-like

Nature Reviews | Microbiology

Nature Reviews | Microbiology

A | An electron micrograph of the mammalian liver nucleus (with an enlarged section shown in part B), showing dense-staining heterochromatin located around the nucleolus and against the nuclear envelope. Nuclear pores open onto lighter-staining open chromatin. C | In budding yeast, heterochromatin binds the nuclear envelope through Esc1 (enhancer of silent chromatin 1; labelled green), which forms distinct foci alternating with nuclear pores (visualized in red through labelling of Nup49 (nucleoporin 49)). D | An electron micrograph showing Esc1 at non-pore sites along the yeast inner nuclear envelope. An arrow indicates the nuclear pore, and black dots represent the labelling of Myc-epitope-tagged Esc1 using fluoronanogold Alexa⁴⁸⁸ anti-mouse antibody¹⁸. The image in part c is reproduced with permission from EMBO Journal Ref. 18 © (2004) Macmillan Publishers Ltd

In eukaryotic cells, the nuclear compartment is separated from the cytoplasm by the inner and outer nuclear membranes. This membrane bilayer is perforated by nuclear pores, which are constituted by a large multiprotein complex (the nuclear pore complex (NPC)) that is composed of about 30 proteins (reviewed in Ref. 94). This nuclear membrane, together with the pores, is commonly referred as the 'nuclear envelope' (NE). **a** | In yeast nuclei, envelope-associated proteins such as Esc1 (enhancer of silent chromatin 1) are present in foci at the periphery; however, they do not coincide with the pores. Esc1 binds Sir4 (silent information regulator 4), which is an integral component of repressed heterochromatin in yeast^{18, 19, 22}, **b** | In metazoan nuclei, the nuclear envelope is underlaid by a continuous meshwork of lamins and lamin-associated proteins (LAPs), which preferentially associate with inactive chromatin regions^{37, 38}. Increasing evidence implicates interactions of chromatin with various nuclear-envelope components in gene repression as well as gene activation. BAF, barrier to autointegration factor; GCL1, germ-cell-less homologue; RB, retinoblastoma 1.

It is becoming increasingly clear that a number of transcription-coupled processes converge at nuclear pores, and by this virtue nuclear-pore complexes (NPCs) are likely to contribute, directly or indirectly, to transcriptional regulation. Although not all transcriptional activity in the nucleus will be subject to this model. The SAGA chromatin-remodelling complex in yeast has been shown to contain Sus1; this protein is also present in the mRNA-export complex TREX, which interacts with the nucleoporin Nup1 (Refs <u>59</u>, <u>60</u>). Furthermore, Nup2 has been shown to interact with the promoters of active genes<u>16</u>, and the NPC-associated protein Mlp1 (myosin-like protein 1) accumulates at the 3' end of active genes, where it contributes to an RNA surveillance mechanism<u>54</u>, <u>80</u>, <u>95</u>. Studies involving individual loci have shown that optimal activation (resulting in a twofold transcriptional effect) can require both localization of the induced gene at the NPC as well as at the 3' UTR<u>45</u>, <u>47</u>, <u>56</u>. Our model suggests that gene looping, which results from the coincident NPC-tethering of an initiation complex and mRNA-processing complexes that are associated with the 3' UTR, will help to fine-tune the expression of certain gene<u><u>52</u>, <u>63</u>, <u>64</u>, <u>65</u>. NPC factors can facilitate efficient transcriptional initiation, their retention or rapid degradation can provide an immediate signal for the production of additional transcripts. Such a mechanism might be important for genes that require immediate high-level induction, such as heat-shock- or galactose-inducible genes. Finally, the pore protein Nup2 was found to tether genes through a histone variant H2A.Z (Htz1) in yeast<u>55</u>. This could reflect a heritable localization that contributes to forms of epigenetic control. This might be critical during dosage compensation of X-linked genes in male flies, where a twofold upregulation is crucial. Mex67; mRNA export factor 67; Pol II, RNA polymerase II.</u>

Nature Reviews | Genetics

Dosage compensation of the male X chromosome requires approximately twofold transcriptional activation of X-linked genes in comparison with the female X chromosome, a process that is mediated by the male-specific lethal (MSL) complex (reviewed in Refs <u>71-73</u>). The X chromosome is immunostained red with an antibody against MOF (Males on absent first), NPC is immunostained green with an antibody against the nucleoporin Nup153, and DNA is stained blue with Hoechst322. **A** | The nuclei of Schneider (SL-2) cells, when immunostained with antibodies against members of the MSL complex (in this case MOF (Males absent on first)), show a distinct X-chromosomal territory within the nucleus. Using confocal microscopy, parts of this X-chromosomal territory appear juxtaposed at or

Histone Type	Molecular Weight	Number of Amino Acids	Approx. Content of Basic Amino Acids
H1	17,000–28,000	200–265	27% lysine, 2% arginine
H2A	13,900	129–155	11% lysine, 9% arginine
H2B	13,800	121–148	16% lysine, 6% arginine
H3	15,300	135	10% lysine, 15% arginine
H4	11,300	102	11% lysine, 4% arginine

b

Histone octamer assembling

fibra da 10 nm

fibra da 30 nm

Pearl necklace

Chromatin fibers

H1 seals the nucleosome

Pearl necklace vs 30nm fiber

а

a solenoide

b zig-zag

DNA linker

b /

High resolution cristallographic structure

Luger, K., Maeder, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J.

Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251-260 (1997)

viscita entrata

Mechanismsof nucleosome positioning

Replication

DNA/histone interactions

Positioning proteins

•Bboundaries

Chromatin Folding

Histones associate with a great variety of genomic sequences but ...

...different sequences can present the same structural arrangement

Conformational flexibility of sequences families

Their localization in the nucleosomal particle

ROTATIONAL parameters:

Sequences that influence the rotational DNA arrangement on the nucleosome surface. Sequence periodicity is crucial

TRASLATIONAL parameters:

Sequences that influence the translational position of the nucleosomal dyad

They are inter-dependent

ROTATIONAL parameters

10 bp periodicity

Seq d(AA/TT) ROLL angle

propeller twist >

Seq d(GC/CG) ROLL angle Close to O

Large with crossbond

Negative (-20°) opens the major groove

High affinity nucleosomal sequences can be predicted

Rigid sequenceFlexible sequence

426 Travers and Drew

FIGURE 2 Ranges of conformational space occupied by different dinucleotide steps in crystal structures of DNA oligomers. Reproduced with permission from Ref. 5.

1034–1047 Nucleic Acids Research, 2010, Vol. 38, No. 3 doi:10.1093/nar/gkp962

Intrinsic flexibility of B-DNA: the experimental TRX scale

Brahim Heddi^{1,2}, Christophe Oguey³, Christophe Lavelle⁴, Nicolas Foloppe^{5,*} and Brigitte Hartmann^{1,2,*}

¹INSERM UMR S665, INTS, 6 rue Cabanel, 75015 Paris, ²CNRS UPR 9080, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, ³LPTM, CNRS UMR 8089, Université de Cergy-Pontoise, 95031 Cergy-Pontoise, ⁴CNRS USR 3078, IRI, 50 av Halley, 59655 Villeneuve d'Ascq, France and ⁵51 Natal Road, Cambridge CB1 3NY, UK

Received June 10, 2009; Revised and Accepted October 13, 2009

Figure 1. Illustration of the BI (left) and BII (right) phosphate linkage conformations with a CpA dinucleotide. BI and BII backbone conformations differ in the torsion angles ε and ζ which are respectively *trans/g-* in BI ($\varepsilon - \zeta = -90^\circ$) and *g-/trans* in BII ($\varepsilon - \zeta = +90^\circ$).

Figure 2. Influence of the dinucleotide sequences on BII percentages in B-DNA. BII percentages (%BII) of free B-DNA inferred from 8P in solution (black circles, with vertical bars for standard deviations) compiled from data published in the literature (see Supplementary Table S1). The conversion of δP in terms of BII percentage, using a published procedure (48), is detailed in 'Materials and Methods' section. BII percentages in solution are compared with those extracted from X-ray structures (triangles; blue: all structures, red: decamers only).

RESULTS

BI/BII dinucleotide sequence effect in B-DNA

Table 1. Influence of DNA base sequence on the BII percentages in free DNA in solution

	N	%BII	TRX score
CpG•CpG	25	43•43	43
CpA•TpG	28	52.31	42
GpG•CpC	11	47.37	42
GpC•GpC	22	25-25	25
GpA•TpC	25	33-11	22
TpA•TpA	12	14.14	14
ApG•CpT	19	18•0	9
ApA•TpT	17	11.0	5
ApC.GpT	23	8.0	4
ApT•ApT	22	0.0	0

The DNA sequence is expressed in terms of the 10 complementary dinucleotides, of frequency N in the NMR data collected from the literature. The BII percentages (%BII) are given for each partner in a complementary dinucleotide. The average standard deviation of %BII is ± 8 . The TRX scores are the half-sums of the %BII observed for two facing phosphates in a complementary dinucleotide. The %BII and TRX scores higher (in bold) and lower than average (which is 21) correspond to enhanced and restricted flexibilities, respectively. A maximal flexibility on this scale corresponds to a TRX score of 50.

from our data set to BII percentages with an established method (48) (see 'Materials and Methods' section). This analysis shows that (i) the averaged BII percentage in solution is 21% and (ii) 7 out of the 16 dinucleotides exhibit BII populations higher than average. These steps can thus be regarded as BII-rich steps. The maximal flexibility is observed for the phosphates of CpG, CpA and GpG, with a BI/BII ratio close to 1 (50% BI, 50% BII).

Considering the BII propensities of the 10 possible complementary dinucleotide sequences $N_ipN_{i+1} \bullet N_jpN_{j+1}$ (Table 1; N: any base) highlights that the facing phosphates tend to exhibit similar behaviors overall. In a first group containing ApN•NpT and TpA•TpA, the phosphates are very rarely in BII. This group, mainly confined in BI•BI, is thus characterized by a restricted backbone flexibility. In another group of dinucleotide steps (GpG•CpC, CpG•CpG, GpC•GpC and CpA•TpG) the facing phosphates can adopt BI and BII conformations, with a higher-than-average BII percentage. This family exhibits an enhanced backbone flexibility, potentially able to explore the three possible

Figure 4. Influence of BII phosphates on helical descriptors. Inter base pair parameters: Twist (°) and roll (°) plotted versus $(\varepsilon - \zeta)_{av}$, averaged on the two facing phosphates. BI•BI (blue, $(\varepsilon - \zeta)_{av} = -82.5^{\circ}$), BI•BII (green, $(\varepsilon - \zeta)_{av} = -0.5^{\circ}$) and BII•BII (red, $(\varepsilon - \zeta)_{av} = +72^{\circ}$) are the

Figure 5. Relationship between roll and backbone conformations in NCP X-ray structures. Roll (°) profile along the DNA sequence in nucleosome X-ray structure 1KX5. The bars giving the roll values are colored according to the state of the facing phosphates in the complementary dinucleotide steps: blue for BI•BI and red for BI•BII or BII•BII. The grey bar represents an unclassifiable step (BI on strand 1 and $(\epsilon - \zeta) \sim 170^\circ$, i.e. neither BI nor BII, on strand 2). Structures 1KX3 and 1M19 give similar patterns.

Boundaries

Example: protein complex blocking chromatin spreading

Example: cruciform structures

Tridimentional chromatin architecture

Tridimentional folding impone imposes strong costraints to nucleosome positioning...

...and viceversa

Experiments with circular minichromosomes in yeast

1:Simpson RT, Thoma F, Brubaker JM.	Related Articles
Chromatin reconstituted from tandemly repeated cloned DNA fragments and core histones: a model system for study o	f higher order
structure. Cell. 1985 Oct;42(3):799-808. PMID: 2996776 [PubMed - indexed for MEDLINE]	
2:Thoma F. Simpson RT.	Related Articles
Local protein-DNA interactions may determine nucleosome positions on yeast plasmids. Nature. 1985 May 16-22;315(6016):250-2. RMHD: 3889654 [PubMed - indexed for MEDLINE]	

FEBS Lett 2002 Jul 17;523(1-3):7-11
ELSEVITIC SCIENCE FULL-TEXT ARTICLE
What positions nucleosomes?A model.

From 2004 several nucleosome genomic maps have been generated in several cellular systems

Vol 442|17 August 2006|doi:10.1038/nature04979

ARTICLES

A genomic code for nucleosome positioning

Eran Segal¹, Yvonne Fondufe-Mittendorf², Lingyi Chen², AnnChristine Thåström², Yair Field¹, Irene K. Moore², Ji-Ping Z. Wang³ & Jonathan Widom²

Eukaryotic genomes are packaged into nucleosome particles that occlude the DNA from interacting with most DNA binding proteins. Nucleosomes have higher affinity for particular DNA sequences, reflecting the ability of the sequence to bend sharply, as required by the nucleosome structure. However, it is not known whether these sequence preferences have a significant influence on nucleosome position *in vivo*, and thus regulate the access of other proteins to DNA. Here we isolated nucleosome-bound sequences at high resolution from yeast and used these sequences in a new computational approach to construct and validate experimentally a nucleosome-DNA interaction model, and to predict the genome-wide organization of nucleosomes. Our results demonstrate that genomes encode an intrinsic nucleosome organization and that this intrinsic organization can explain \sim 50% of the *in vivo* nucleosome positions. This nucleosome positioning code may facilitate specific chromosome functions including transcription factor binding, transcription initiation, and even remodelling of the nucleosomes themselves.

nature

OPEN O ACCESS Freely available online

PLOS COMPUTATIONAL BIOLOGY

Distinct Modes of Regulation by Chromatin Encoded through Nucleosome Positioning Signals

Yair Field^{1®}, Noam Kaplan^{1®}, Yvonne Fondufe-Mittendorf^{2®}, Irene K. Moore², Eilon Sharon¹, Yaniv Lubling¹, Jonathan Widom^{2*}, Eran Segal^{1,3}*

1 Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel, 2 Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois, United States of America, 3 Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel

Abstract

The detailed positions of nucleosomes profoundly impact gene regulation and are partly encoded by the genomic DNA sequence. However, less is known about the functional consequences of this encoding. Here, we address this question using a genome-wide map of ~380,000 yeast nucleosomes that we sequenced in their entirety. Utilizing the high resolution of our map, we refine our understanding of how nucleosome organizations are encoded by the DNA sequence and demonstrate that the genomic sequence is highly predictive of the in vivo nucleosome organization, even across new nucleosome-bound sequences that we isolated from fly and human. We find that Poly(dA:dT) tracts are an important component of these nucleosome positioning signals and that their nucleosome-disfavoring action results in large nucleosome depletion over them and over their flanking regions and enhances the accessibility of transcription factors to their cognate sites. Our results suggest that the yeast genome may utilize these nucleosome positioning signals to regulate gene expression with different transcriptional noise and activation kinetics and DNA replication with different origin efficiency. These distinct functions may be achieved by encoding both relatively closed (nucleosome-covered) chromatin organizations over some factor binding sites, where factors must compete with nucleosomes for DNA access, and relatively open (nucleosome-depleted) organizations over other factor sites, where factors bind without competition.

Figure 1. Nucleosome organization at two genomic regions. Shown are the raw data measured in this study at two 1000bp-long genomic regions. Every cyan oval represents the genomic location of one nucleosome that we sequenced in its entirety. Also shown is the average nucleosome occupancy per basepair predicted by the sequence-based nucleosome model that we developed here (red), the raw hybridization signal of two microarray-based nucleosome maps [5,10] (green and purple traces), and the locations of nucleosomes that were computationally inferred from these hybridization signals [5,10] (green and purple ovals). Note that although the nucleosome calls from the microarray maps are close to nucleosome locations from our map, the microarray map does not reveal the underlying variability in the detailed nucleosome read locations that we observe in our data. Annotated genes [63], transcription factor binding sites [47], TATA sequences [53], and Poly(dA:dT) elements in the region are site strained from the region are strained from the nucleosome read locations that we observe in our data. Annotated genes [63], transcription factor binding sites [47], TATA sequences [53], and Poly(dA:dT) elements in the region are strained from the region factor binding sites [47], TATA sequences [53], and Poly(dA:dT) elements in the region are strained from the region are strained f

Distinct Modes of Regulation by Chromatin

Relatively low nucleosome depletion over origin of replication Large nucleosome depleted region (500bp) over origin of replication

Nucleosome mapping in the *Saccharomyces cerevisiae* genome shows that gene expression variability and chromatin remodelingcorrelate with nucleosome occupancy at promoters.

Fraction of total genome Number of (total intergenic / total transcribed) Coverage (bp) nucleosomes Array probe coverage 12,068,004 1(1/1)N/A Well-positioned nucleosomes 4,970,908 0.41 (0.36 / 0.42) 40.095 Delocalized (fuzzy) nucleosomes 4,801,292 0.4 (0.17 / 0.45) 30.776 Total nucleosomal DNA 0.81 (0.53 / 0.87) 9,772,200 70,871 Non-nucleosomal ('linker') DNA 2.295.804 0.19 (0.47 / 0.13) 32.4 bp average length

Nucleosome content of the genome

genetics

A high-resolution atlas of nucleosome occupancy in yeast

William Lee^{1,2}, Desiree Tillo³, Nicolas Bray³, Randall H Morse⁴, Ronald W Davis^{1,2}, Timothy R Hughes^{3,5,6} & Corey Nislow^{3,5,6}

Tirosh et al., 2007

A common nucleosome organization is evident in active genes.

Transcription start site (TSS) is generally intrinsically devoid of nucleosomes.

High nucleosome occupancy is associated to high transcriptional plasticity and sensitivity to chromatin remodeling.

Tirosh and Barkai 2008

Regional positioning is important for transcription

Two different patterns of nucleosome positioning in *Saccharomyces cerevisiae*.

Tirosh and Barkai 2008

Tirosh and Barkai 2008

Nucleosome organizations at promoters is evolutionary conserved

¹ The Rockefeller University, New York, NY, 10065, USA
² Department of Physics and Astronomy and BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, NJ 08854, USA

TATA box containing promoters, nucleosome occupancy proximal to TSS and multiple TF binding sitesare extensively regulated and exhibit high plasticity.

They have high capacity of signal integration. Transcriptional plasticity is often coupled to evolutionary plasticity.

Tirosh et al.2009

Figure 1.

A unified framework for nucleosome positioning. Here, we present an illustration of our unified view, in which nucleosome positions are explained by the combined effect of both static, condition-invariant inputs such as nucleosome and TF sequence preferences (d-f), and dynamic, condition-dependent inputs such as the concentrations of histones (not shown) and TFs, the composition of histones, and the methylation status of the genome (a-c). Two different TFs are colored blue and red; different histones are colored yellow (H2A), orange (H2B) or turquoise (H3, H4); histone variants are outlined with a dashed line; PTMs are shown as red triangles; resulting nucleosomes are colored green; methylated CpGs are shown as bule lines through the grey DNA; and an occluded TF-binding site is indicated by a red X. Each input

Trends Genet. Author manuscript; available in PMC 2010 January 23.

-Structural variants

-They exist in all species

-Can be cell type-specific

-Regulated during development

-More common in H2A and H2B than in H3 and H4

-Some form are highly specialized (CENP A and Macro H2A)

Phosphorylation of H2A.X Signals DNA Damage

H2AX ~10-15% total. Long C-terminal tail

Hake, Xiao and Allis 2004 Br J. Cancer 90: 761
Loss of H2A.X Leads to Genomic Instability

Hake, Xiao and Allis 2004 Br J. Cancer 90: 761

H3 and H3.3 are loaded by different mechanisms

Ahmad & Henikoff 2002

Histone variants

Amaldi, Benedetti, Pesole, Plevani Biologia Molecolare Copyright 2011 CEA Casa Editrice Ambrosiana

Histone variants

Ahmad & Henikoff 2002

Histone variants

Histone H3.3:

Only 4 aminoacids modified in comparison with H3

Costitutive expression

Can be positioned in replication-independent mode

Substitution oh H3 with H3.3 can lead to transcription and H3 methylation reprogramming

From: Smith, MM Mol Cell 9, 1158 (2002)

Comparison between H2A and H2A.Z structure

Cell. 2005 Oct 21;123(2):219-31. Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Zhang H, Roberts DN, Cairns BR.

Current Opinion in Genetics & Development

Copyright © 2005 Nature Publishing Group Nature Reviews | Molecular Cell Biology

RVB1

Histone tails

Histone tails

Known and well carachterized Histone tail modifications:

methylation

acethylation

ADP ribosilation

ubiquitination

sumolilation

Phosphorylation

The contemporary occurrence and the possible mutual influence of more than one modification at a time should be considered

Histone modifications

David Allis et al.

Histone Acetylation Contributes to the Control of Gene Expression

•Deacetylase Inhibitors (e.g. sodium butyrate and Trichostatin A)

•Non-random distribution of hyper- and hypo-acetylated chromatin

Mutation acetylation sites in yeast H4

Vincent Allfrey 1960's Michael Grunstein 1980-90's

Why So Many HATs?

	Histone preference	Non-histone target
GCN5	H3 (H4,H2B)	?
PCAF	H3 (H4)	E2F, p53 etc
CBP/p300	All four	p53, TFIIF etc
SRC/p160	H3 &H4	?
TAF ₁₁ 250	H3 (H4)	TFIIE
MYST family	H4 (H3)	?
TFIIIC	H3	?

Many HATs are also FATs

Acetylation is reversible!

Anti-cancer drugs

- Trichostatin A (TSA), Trapoxin, Sodium Butyrate
- Inhibit histone deacetylation
- Alter gene expression (promote expression)
- Cause G1 and G2 cell cycle arrests (checkpoint activation?).
- Promote cellular differentiation

Plenty of Deacetylases As Well!

	Mammals	Yeast	
Class 1	HDAC1 HDAC2 HDAC3	(yRPD3) (yRPD3)	Deacetilasi attiva a livello globale su tutte le code istoniche
Class 2	HDAC4 HDAC5 HDAC6 HDAC7	(yHDA1)	Deacetilasi attiva a livello globale ma solo sulle code degli istoni H3 e H2B
Class 3	hSir2	(ySir2)	Deacetilasi NADH dipendente
Class 4	Hos Family		Intervengono sui promotori o ORF di geni attivamente trascritti

Acetilation

Creates a new code of gene activation/inactivation

Produces new domains for protein binding

Is crucial in DNA repair process

Regulates chromatin structure

Histone	Site	Histone-modifying Enzymes	Proposed Function	Ref. #
H2A	Lys4 (S. cerevisiae)	Esa1	transcriptional activation	(1)
TIEN	Lys5 (mammals)	Tip60, p300/CBP	transcriptional activation	(2,3)
	Lys7 (S. cerevisiae)	Hat1	unknown	(4)
		Esa1	transcriptional activation	(1)
H2B	Lvs5	p300, ATF2	transcriptional activation	(3,5)
	Lys11 (S. cerevisiae)	Gen5	transcriptional activation	(6)
	Lys12 (mammals)	p300/CBP, ATF2	transcriptional activation	(3,5)
	Lys15 (mammals)	p300/CBP, ATF2	transcriptional activation	(3,5)
	Lys16 (S. cerevisiae)	Gcn5, Esa1	transcriptional activation	(6)
	Lys2D	p300	transcriptional activation	(3)
112	Lys4 (S. cerevisiae)	Esal	transcriptional activation	(1)
THU		Hpa2	unknown	(7)
	Lvs9	unknown	histone deposition	(8)
		Gon5, SRC-1	transcriptional activation	(9,10)
	Lys14	unknown	histone deposition	(8)
		Gon5, PCAF	transcriptional activation	(3,11)
		Esal, Tip60	transcriptional activation	(1,2)
	Contract States		DNA repair	(11,12)
		SRC-1	transcriptional activation	(10)
		Elp3	transcriptional activation (elongation)	(13)
		Hpa2	unknown	(7)
		hTFIIIC90	RNA polymerase III transcription	(14)
		TAF1	RNA polymerase II transcription	(15)
		Sas2	euchromatin	(16)
		Sas3	transcriptional activation (elongation)	(17)
		p300	transcriptional activation	(3)
	Lvs18	Gcn5	transcriptional activation, DNA repair	(9)
		p300/CBP	DNA replication, transcriptional activation	(3,18)
	Lvs23	unknown	histone deposition	(8)
		Gcn5	transcriptional activation, DNA repair	(9)
		Sas3	transcriptional activation (elongation)	(17)
		p300/CBP	transcriptional activation	(3,18)
	Lys27	Gcn5	transcriptional activation	(6)
	Lvs56 (S. cerevisiae)	0.140	transcriptional activation	(19)
	-,,	Spt10	DNA repair	(20)

Lys5	Hat1	histone deposition	(21)
	E. J. TLAD	transcriptional activation	(1,2)
Contraction in the second	ES81, TIP60	DNA repair	(11,12)
	ATF2	transcriptional activation	(5)
	Hpa2	unknown	(7)
	p300	transcriptional activation	(3)
Lys8	Gen5, PCAF	transcriptional activation	(3,22)
	Fool Tingo	transcriptional activation	(1,2)
and the second	Esai, Tipou	DNA repair	(11,12)
	ATF2	transcriptional activation	(5)
	Elp3	transcriptional activation (elongation)	(13)
	p300	transcriptional activation	(3)
Lys12	Hat1	histone deposition	(21)
		telomeric silencing	(23)
	F I T 00	transcriptional activation	(1,2)
	Esal, Tipbu	DNA repair	(11,12)
	Hpa2	unknown	(7)
	p300	transcriptional activation	(3)
Lys16	Gon5	transcriptional activation	(22)
	MOF (D. melanogaster)	transcriptional activation	(24)
	5. J. T. 00	transcriptional activation	(1,2)
	Esal, Tip60	DNA repair	(11,12)
	ATF2	transcriptional activation	(5)
	Sas2	euchromatin	(2,6)
Lys91 (S. cerevisiae)	Hat1/Hal2	chromatin assembly	(25)

Histone Methylation

Metylation

Histone Methyltransferases

НМТ	Histone	Sites	SET domain	Organisms	Chromatin
Set1	H3	K4	+	S. cerevisiae	
Set2	H3	K36	+	S. cerevisiae	
Clr4	H3	K9	+	S. pombe	
G9a	H3	K9, 2	7 +	Human	Eu
Suv39h1,h2	H3	K9	+	Murine	He
Set9	H3	K4	+	Human	Eu
Dot1	H3	K79	-	S. cerevisiae	Eu
PR-Set7	H4	K20	+	Human	He
Ezh2	H3	K27	+	Drosophila	He

References:

Cell, Vol 9, 1201-1213, June 2002

Science. 2003 Apr 4;300(5616):131-5

Demethylases

The first 37 amino acid of the histone H3 tail and lysine residue 79 plus neighbouring amino acids are shown. Lysine residues that undergo methylation are highlighted in green to indicate a function in active transcription, or in red to indicate involvement in transcriptional repression.

Methylation

Histone methylation is reversible !

Figure 2. Reaction mechanisms for the demethylation of lysines at histones. (A) FAD dependent LSD demethylases and (B) Fe(II) and α -KG dependent JmjC demethylases.

Two major classes of HDMs in mammalians

Protein	Systematic name	Domain		Substrate I specificity	nhibitors complexed
SD	KDM1A/ISD1			H3K4me2/me1 H3K9me2/me1	
50	KDM1B/LSD2			H3K4me2/me1	
MIC	KDM10/C502	~		H2K26mo2/mo1	
vide	KDM2A/FDALIIA/JHDMIA				
				H3K36me2/me1, H3K4me3	
	KDM3A/JMJD1A, JHDM2A	2		H3K9me2/me1	
	KDM3B/JMJD1B, JHDM2B			H3K9me2/me1	
	KDM4A/JMJD2A, JHDM3A			H3K9me3/me2 + H3K36me3/me2	31, 38, 46
	KDM4B/JMJD2B			H3K9me3/me2 + H3K36me3/me2	
	KDM4C/JMJD2C, GASC1		00	H3K9me3/me2 + H3K36me3/me2	31
	KDM4D/JMJ2D			H3K9me3/me2/me1 + H3K36me3/m	e2 31
	KDM4E/JMJ2E		1	H3K9me3/2	
	KDM5A/Jarid1A/RBP2			H3K4me3/me2	
	KDM5B/Jarid1B/PLU1	Þ ģ 🛯 🗢 		H3K4me3/me2	
	KDM5C/Jarid1C/SMCX			H3K4me3/me2	
	KDM5D/Jarid1D/SMCY			H3K4me3/me2	
	JARID2		ò _ ∽		
	KDM6A/UTX, MGC141941			H3K27me3/me2	
	KDM6B/JMJD3, KIAA0346	0		H3K27me3/me2	
	PHF8, KIAA1111, ZNF422			H3K9me2/me1 + H4K20me1	31
	KDM7/KIAA1718		>	H3K9me2/me1 + H3K27me2/me1	31
	KDM8/JMJD5, FLJ13798			H3K36me2	

Figure 9. Domain architecture within the human KDM family. Domains for which structural data are available are marked with thick borders. Proteins are named according to the Protein Knowledgebase (UniProtKB).

Please cite this article in press as: Lohse, B.; et al. Bioorg. Med. Chem. (2011), doi:10.1016/j.bmc.2011.01.046

Substrate recognition and demethylation by Histone Lysine Demethylases. Left: Phylogenetic tree of histone lysine demethylases. Right: table reflecting binding and demethylation specificities reported for the different enzymes.

Figure 3

Histone PTMs around TSS region in Human genome according to transcriptional activity (red > green > blue > purple). ChIP-Seq reads highlight the diverse distribution of different PTMs according to both distance from TSS and transcriptional activity: H3K4 methylation level of active genes peaks in the immediate surroundings of the TSS, fading out in a regular fashion (me3 than me2 and finally me1) in both directions; H3K79me3 is only present in correspondence to TSSs; H3K36me3 and H4K20me1 are specifically enriched in the first region of gene bodies of transcriptionally active genes; H3K27me3 anti-correlates with transcriptional activity and its distribution spans over the whole region (up- and downstream of the TSS). From Barski et al., 2007

Figure The family of JARID1/KDM5 proteins in human and its orthologues in drosophila and yeast (left). PHD1 recognises unmethylated Lysine 4 while the trymethylated form is recognised by PHD3 (right). From Klein et al., 2014.

Figure JARID1B/KDM5B cooperates with NuRD complex to remove activating marks (H3K4me3) and remodel chromatin to produce a completely repressed state at the level of promoters (adapted from Klein et al., 2014)

Figure Dynamics of H3K4me3 domains during development: oocyte genome contains large regions marked with low levels of H3K4me3, that are progressively defined and shaped into focused peaks corresponding to the promoters of actively transcribed genes. This process is brought on in parallel with the deposition of methyl groups on H3K27 in complementary (inactive) regions. From Vaquerizas and Torres-Padilla, 2016

Figure The model proposed by Li et al., 2014 (supplemental information): JARID1B/KDM5B is recruited to the site of damage through its parrylation by PARP1 and recognition by macro domain of macroH2A1.1. JARID1B demethylates H3K4me3 facilitating DDR proteins recruitment.

Figure 4 | 'Dashboard' of histone modifications for fine-tuning genomic elements. In addition to enabling annotation, histone modifications may serve as 'dials' or 'switches' for cell type specificity. a | At promoters, they can contribute to fine-tuning of expression levels — from active to poised to inactive — and perhaps even intermediate levels. b | At gene bodies, they discriminate between active and inactive conformations. In addition, exons in active genes have higher nucleosome occupancy and thus more histone H3 lysine 36 trimethylation (H3K36me3) and H3K79me2-modified histones than introns, c | At distal sites, histone marks correlate with levels of enhancer activity. d | On a global scale, they may confer repression of varying stabilities and be associated with different genomic features. For example, lamina-associated domains (LADs) in the case of stable repression and Polycomb (Pc) bodies in the case of context-specific repression. DNAme, DNA methylation; LOCK, large organized chromatin K modification.
Epigenetic control of neural stem/progenitor cell self-renewal and differentiation

E. Cacci, R. Negri, S. Biagioni, G. Lupo

Current Topics in Medicinal Chemistry (CTMC) 2015 under revision

Altered chromatin states in cancer

Figure 1. Chromatin proteins mutated in cancer. A summary of cancer mutations that affect post-translational modifications of the histone H3 N-terminal tail. Protein classes are indicated by the fill color for the ovals ([red] methyltransferase; [green] demethylase; [orange] deacetylase; [blue] histone], whereas mutational status is indicated by the outline color ([gray] loss of function; [purple] overexpressed/hyperactive]. Dashed lines indicate the residue of histone H3 that is expected to be modified due to the indicated cancer mutations.

H3 LYSINE METHYLATION IN

H3K4 TRIMETHYLATION

H3K4 IS TRIMETHYLATED BY COMPASS DURING TRANSCRIPTIONAL INITIALIZATION, IN CONCERT WITH PHOSPHORYLATION ON SER5 OF RPB1 CTD

IT PEAKS ON 5' OF TRANSCRIBED GENES, PRESENT ON THE FIRST TWO OR THREE NUCLEOSOMES

HISTONE LYSINE 1.LSD1 FAMILY (KDM1) HYLATION

2.JMJC FAMILY (KDM2-6):

➤ 5 MEMBERS IN S.CEREVISIAE

➢ ≥ 27 MEMBERS IN H.SAPIENS

Identification of Histone Demethylases in Saccharomyces cerevisiae*

Received for publication, October 73, 2006, and in revised form, February 15, 2007. Published, JBC Papers in Press, March 16, 2007, DOI 10.1074/jbc.M609900200

Shengjiang Tu⁺¹, Esther M. M. Bulloch⁺¹, Lanhao Yang⁺, Chen Ren⁺, Wei-Chieh Huang⁶, Pang-Hung Hsu^{+*}, Chein-Hung Chen^{*}, Chung-Lin Liao^{*}, Hui-Ming Yu^{*}, Wan-Sheng Lo⁵², Michael A. Freitas⁺³, and Ming-Daw Tsai^{+*}¹⁴ From the Departments of ⁺Chemistry and ^{II}Biochemistry, The Ohio State University, Columbus, Ohio 43210, the ⁶Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan, and ^{*}Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan

ΔJHD2 STRAIN ONLY SLIGHTLY INCREASES ITS AMOUNT OF TRIMETHYL H3K4

istone	Site	Histone-modifying Enzymes	Proposed Function	Ref. #
H1	Lys26	Ezh2	transcriptional silencing	(48,49)
H3	Lys4	Set1 (S. cerevisiae)	permissive euchromatin (di-Me)	(26)
		Set7/9 (vertebrates)	transcriptional activation (tri-Me)	(27)
		MLL, ALL-1	transcriptional activation	(28,29)
		Ash1 (D. melanogaster)	transcriptional activation	(30)
	Arg8	PRMT5	transcriptional repression	(31)
	Lys9	Suv39h,Clr4	transcriptional silencing (tri-Me)	(32,33)
		G9a	transcriptional repression genomic imprinting	(34)
		SETDB1	transcriptional repression (tri-Me)	(35)
		Dim-5 (N.crassa), Kryptonite (A. thaliana)	DNA methylation (tri-Me)	(36,37)
		Ash1 (D. melanogaster)	transcriptional activation	(30)
	Arg17	CARM1	transcriptional activation	(18)
	Lys27	5-60	transcriptional silencing	(38)
		EZN2	X inactivation (tri-Me)	
		G9a	transcriptional silencing	(34)
	Lys36	Set2	transcriptional activation (elongation)	(39)
	Lys79		euchromatin	(40)
		Dot1	transcriptional activation (elongation)	(41)
			checkpoint response	(42)
H4	Arg3	PRMT1	transcriptional activation	(43)
		PRMT5	transcriptional repression	(31)
	Lys20	PR-Set7	transcriptional silencing (mono-Me)	(44)
	a state and	Suv4-20h	heterochromatin (tri-Me)	(45)
	C. La Contra de M	Ash1 (D. melanogaster)	transcriptional activation	(30)
	and and and	Set9 (S. pombe)	checkpoint response	(46)
	Lvs59	unknown	transcriptional silencing	(47)

Phosphorylation

Interphase

Metaphase

Phosphorylation

La fosforilazione sembra essere un processo importante per la capacità di creare un "concentramento di cariche".

La fosforilazione delle zone positive di H1 favorisca la dissociazione di questo dal DNA La variante istonica H2A.Z è sensibile alla fosforilazione attraverso un meccanismo ancora poco chiaro

H2A.X contiene un sito che viene fosforilato in risposta alle DSBs

Phosphorylation

Histone	Site Histone-modifying Enz		Proposed Function	Ref. #	
H1	Ser27	unknown	transcriptional activation, chromatin decondensation	(48,49)	
H2A	Ser1	unknown	mitosis, chromatin assembly	(50)	
and the second	Sector States	MSK1	transcriptional repression	(51)	
	Thr119 (D. melanogaster)	NHK1	mitosis	(52)	
	Ser122 (S. cerevisiae)	unknown	DNA repair	(53)	
	Ser129 (S. cerevisiae)	Mec1, Tel1	DNA repair	(54,55)	
	Ser139 (mammalian H2A.X)	ATR, ATM, DNA-PK	DNA repair	(56-58)	
H2B	Ser10 (S. cerevisiae) Ste20		apoptosis	(59)	
	Ser14 (vertebrates)	Mst1	apoptosis -	(60)	
		unknown	DNA repair	(61)	
	Ser33 (D. melanogaster)	TAF1	transcriptional activation	(62)	
H3	Thr3	Haspin/Gsg2	mitosis	(63)	
AND NO.	Ser10	Aurora-B kinase	mitosis, meiosis	(64,65)	
		MSK1, MSK2	immediate-early gene activation	(66)	
		ΙΚΚ-α	transcriptional activation	(67)	
		Snf1	transcriptional activation	(68)	
	Thr11 (mammals)	Dlk/Zip	mitosis	(69)	
	Ser28 (mammals)	Aurora-B kinase	mitosis	(70)	
		MSK1, MSK2	immediate-early activation	(66,71)	
H4	Ser1	unknown	mitosis, chromatin assembly	(50)	
		CK2	DNA repair	(72)	

Sumolylation

Ubiquitylation

Sumo is an ubiquitine-like protein

Histone sumolylation is associated to:

- •Gene expression
- •Chromatin structural changes
- •Signal transduction
- •Genome stability

Not rel
SUMO-1

Associated to:

- DNA repairCell cycle control
- Transcriptional regulation
- •Not related to degradation

•Not related to degradation Substrate: H4 lysine Associated to gene repression

Substrate: H2B lysine 123

Ligase: RAD6

Ubiquitylation

Histone	Site	Histone-modifying Enzymes	Proposed Function	Ref. #
H2A	Lys119 (mammals)	Ring2	spermalogenesis	(73)
H2B	Lys120 (mammals)	UbcH6	meiosis	(74)
	Lys123 (S. cerevisiae)	Rad6	transcriptional activation euchromatin	(75)

Sumoylation

Histone	Site	Histone-modifying Enzymes	Proposed Function	Ref. #
H2A	Lys126 (S. cerevisiae)	Ubc9	transcriptional repression	(76)
H2B	Lys6 or Lys7 (S. cerevisiae)	Ubc9	transcriptional repression	(76)
H4	N-terminal tail (S. cerevisiae)	Ubc9	transcriptional repression	(77)

Biotinylation

Histone	e Site Histone-modifying Enzy		Proposed Function	Ref. #	
H2A Lys9		biotinidase	unknown	(78)	
	Lys13	biotinidase	unknown	(78)	
H3	Lys4	biotinidase	gene expression	(79)	
	Lys9	biotinidase	gene expression	(79)	
	Lys18	biotinidase	gene expression	(79)	
H4	Lys12	biotinidase	DNA damage response	(80,81)	

Table 1. Enzymes Involved in H2A and H2B Ubiquitination/Deubiquitination in Different Organisms								
	H2B Ubiquitination		H2B Deubiquitination H2		H2A	Ubiquitination	H2A Deubiquitination	
	E2	E3	Transcription	Silencing	E2	E3		
S. cerevisiae	Rad6	Bre1	Ubp8	Ubp10 (Dot4)	-	-	-	
S. pombe	Rhp6	Brl1 (Rfp2/Spcc1919.15) Brl2 (Rfp1/Spcc970.10c)			?			
Drosophila	Dhr6	Bre1 (CG10542)	Nonstop	USP7		dRing (Sce)		
Mouse	mHR6A/mHR6B							
Human	hHR6A/hHR6B UbcH6? Mdm2?	RNF20	USP22 USP3 ?			Ring1B (Ring2/Rnf2) 2A-HUB (hRUL138)	Ubp-M (USP16) 2A-DUB (MYSM1) USP21 USP3 ?	
Arabidopsis		HUB1		SUP32 (UBP26)				

Examples of Crosstalk Between Post-translational Modifications

Regulative cross-talks among histone modification

Histone H3K4 demethylation is negatively regulated by histone H3 acetylation in *Saccharomyces cerevisiae*

Vicki E. Maltby^a, Benjamin J. E. Martin^a, Julie Brind'Amour^{b,1}, Adam T. Chruscicki^{a,1}, Kristina L. McBurney^a, Julia M. Schulze^c, Ian J. Johnson^a, Mark Hills^d, Thomas Hentrich^c, Michael S. Kobor^c, Matthew C. Lorincz^b, and LeAnn J. Howe^{a,2}

Departments of "Biochemistry and Molecular Biology and ^bMedical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada V6T 123; ^cCenter for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC, Canada V5Z 4H4; and ^dTerry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada V5Z 1L3

Lysine Acetylation Controls Local Protein Conformation by Influencing Proline Isomerization

Françoise S. Howe,¹ Ivan Boubriak,¹ Matthew J. Sale,^{1,2} Anitha Nair,¹ David Clynes,^{1,3} Anne Grijzenhout,¹ Struan C. Murray,¹ Ronja Woloszczuk,¹ and Jane Mellor^{1,*}

¹Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK

²Present address: Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK ³Present address: The Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK

*Correspondence: jane.mellor@bioch.ox.ac.uk

http://dx.doi.org/10.1016/i.molcel.2014.07.004

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

Figure 6. K14ac Promotes P16trans

(A) Relative binding ± SEM (n = 2-11) assessed by surface plasmon resonance of purified recombinant Spt7 bromodomain (residues 363-619) to the indicated H3 peptides (11-26).

(B) Coornassie-stained get showing a pull-down experiment, quantified relative to the K18ac peptide, with the indicated H3 peptides and the purified recombinant Spt7 bromodomain (n = 3).

The histone code

The histone code

Allis proposed that the combination of the different aminoacids modifications on the histone tails formed a real functional code

Figure 4–35 part 1 of 2. Molecular Biology of the Cell, 4th Edition.

Histone code

The 'Histone Code' Hypothesis

Histone H3

Histone code

The 'Histone Code' Hypothesis

 Chromatin remodelers acquire energy through <u>ATP</u> <u>hydrolysis</u> to remodel chromatin

- Numerous chromatin remodeling complexes exits
- They differ in the core DNA-dependent ATPase subunit
- There is some sharing of factors between complexes and homologs between species

•There are 3 main classes (more could follow)

The SWI/SNF complex

SWI (switch) SNF (sucrose non fermenting)

- 11 subunits
- •~1 MDa
- Snf2 is an ATPase

Subunit	Size (kDa)	Function
SWI2 / SNF2	194	DNA dependent ATPase
SWI1	148	AT-rich interaction domain (ARID) for non-specific binding, Zn-finger protein
SNF5	103	Assembly and catalytic functions of the complex
SWI3	93	
SWp82p	~82	
SNF12 / SWP73	64	
ARP7	54	Actin-related protein
ARP9	53	Actin-related protein
SNF6	38	
ANC1 / TFG3	27	
SNF11	19	Interacts with the N-terminal D1 region of SWI2

The RSC (<u>r</u>emodels the <u>s</u>tructure of <u>c</u>hromatin) complex

- 12+ subunits
- •~1 MDa
- Sth1 (<u>S</u>nf <u>t</u>wo <u>h</u>omolog) is an ATPase

Subunits with no known homolog in Swi/Snf

Subunit	SWI/SNF homolog	Size (kDa)	Function
Sth1	SWI2 / SNF2	157	DNA dependent ATPase
Rsc1		107	
Rsc2		102	
Rsc3		102	
Rsc30		101	
Rsc4		72	
Rsc8	SWI3	63	Subunit assembly, binds through C-terminal coiled coil domain
Rsc9		65	
Sfh1	SNF5	49	Assembly and catalytic functions of the complex
Rsc6	SWP73	54	
Arp7	ARP7	54	Actin-related protein
Arp9	ARP9	53	Actin-related protein

Multiple types of ISWI complexes exits

How does a chromatin remodeler function?

Current Opinion in Genetics & Development

SNF

Alexandra Lusser and James T. Kadonaga 2003 Wiley Periodicals,
A cascade of events leading to chromatin opening

HISTONE MODIFICATIONS

Figure 1 | **Readers, writers and erasers.** The model shown depicts how epigenetic information present in the chromatin structure is interpreted and modified. See BOX 1 for a more precise explanation of the different parts of the figure.

DNA methylation

Present in Mammalian and other vertebrates (prevalentemently at CpG) and Plants CpG, CpHpG e siti CpHpH (H = A, C or T) limited in insects and absent in the yeast *S.cerevisiae*

Metilazione delle citosine

Mus musculus 7,5% Arabidopsis 14% (non solo CpG ma anche CpH e CpHpH) Fungi 0,1-0,5% (assente in Saccharomyces e Scizosaccharomyces ma 5% in Neurospora) Drosophila 0,04%

Presente nelle api nelle sequenze codificanti (effetto sullo slicing)

DN	MT1	DNMT2	DNMT3	TET
Apis mellifera	24	23	Σζ-	$\dot{\simeq}$
Bombus terrestris	22	-	52	\lesssim
Lasioglossum albipes	23	23	\$	53
Polistes canadensis	\$	\$	_	53
Solenopsis invicta	Å.	53	\$	$\overrightarrow{\mathbf{x}}$
Pogonomyrmex barbatus	ŝ	$\overrightarrow{\mathbf{x}}$	$\overrightarrow{\Sigma}$	53
Camponotus floridanus	2	ŵ	\$	23
Harpegnathos saltator	2	23	$\overrightarrow{\Sigma}$	23
Nasonia vitripennis 🖧 💈	22	2.5	2.3	\$3
Aedes aegypti	-	_	_	_
Drosophila melanogaster	-	23	_	$\stackrel{\sim}{\simeq}$
Bombyx mori 2	\$	5	_	23
Tribolium castaneum	-	5	_	23
Acyrthosiphon pisum	5	23	53	$\overrightarrow{\mathbf{x}}$
Myzus persicae 🗧	22	_	53	_
Zootermopsis nevadensis	24	$\hat{\Sigma}$	23	\$
Locusta migratoria	~	ŵ	\$	\$3
- Homo sapiens	2	2.3	***	2222

Le principali funzioni della metilazione sono collegate alla repressione della trascrizione:

• <u>Difesa contro i trasposoni</u>: la metilazione e' fondamentale per mantenere silenti i genomi dei trasposoni e dei retrotrasposoni

• <u>Regolazione genica:</u> la metilazione contribuisce a stabilire e mantenere uno stato trascrizionalmente inattivo (eterocromatina)

DNA Cytosine Methylation

. Metivier, R. et al. Cyclical DNA methylation of a transcriptionally active promoter. Nature 452, 45-50 (2008).

a Mosaic DNA methylation

(fungi, for example, Neurospora crassa)

b Mosaic DNA methylation

(plants, for example, Arabidopsis thaliana)

c Mosaic DNA methylation

(animals, for example, Ciona intestinalis)

-	•
1	

d Global DNA methylation

(animals, for example, Homo sapiens)

e Global DNA methylation

(plants, for example, Zea mays)

Nature Reviews | Genetics

• Sodium bisulfite mapping

Treatment of DNA with sodium bisulfite

- · unmethylated cytosines are converted to uracils
- · methylated cytosines are unaffected
- after PCR amplification, unmethylated cytosines appear as thymines and methylated cytosines appear as cytosines

 $C \rightarrow T$

 $mC \rightarrow C$

Whole Genome Bisulfite Sequencing Library Construction

Epigenetics are stable heritable traits (or "phenotypes") that cannot be explained by changes in DNA sequence. The Greek prefix epi- ($\dot{\epsilon}\pi$ I-"over, outside of, around") in epigenetics implies features that are "on top of" or "in addition to" the traditional genetic basis for inheritance.

Grandma's Experiences Leave a Mark on Your Genes

Your ancestors' lousy childhoods or excellent adventures might change your personality, bequeathing anxiety or resilience by altering the epigenetic expressions of genes in the brain.

By Dan Hurley | Thursday, June 25, 2015

RELATED TAGS: GENES & HEALTH

Alison Mackey/DISCOVER

[This article originally appeared in print as "Trait vs. Fate"]

Michael Meaney McGill University

Moshe Szyf McGill University Actually, they ended up doing a series of elaborate experiments. With the assistance of postdoctoral researchers, they began by selecting mother rats who were either highly attentive or highly inattentive. Once a pup had grown up into adulthood, the team examined its hippocampus, a brain region essential for regulating the stress response. In the pups of inattentive mothers, they found that genes regulating the production of glucocorticoid

receptors, which regulate sensitivity to stress hormones, were highly methylated; in the pups of conscientious moms, the genes for the glucocorticoid receptors were rarely methylated.

The Mark Of Cain

The message that a mother's love can make all the difference in a child's life is nothing new. But the ability of epigenetic change to persist across generations remains the subject of debate. Is methylation transmitted directly through the fertilized egg, or is each infant born pure, a methylated virgin, with the attachments of methyl groups slathered on solely by parents after birth?

Neuroscientist Eric Nestler of the Icahn School of Medicine at Mount Sinai in New York has been seeking an answer for years. In one study, he exposed male mice to 10 days of bullying by larger, more aggressive mice. At the end of the experiment, the bullied mice were socially withdrawn.

To test whether such effects could be transmitted to the next generation, Nestler took another group of bullied mice and bred them with females, but kept them from ever meeting their offspring.

Despite having no contact with their depressed fathers, the offspring grew up to be hypersensitive to stress. "It was not a subtle effect; the offspring were dramatically more susceptible to developing signs of depression," he says.

In further testing, Nestler took sperm from defeated males and impregnated females through in vitro fertilization. The offspring did not show most of the behavioral abnormalities, suggesting that epigenetic transmission may not be at the root. Instead, Nestler proposes, "the female might know she had sex with a loser. She knows it's a tainted male she had sex with, so she cares for her pups differently," accounting for the results.

Despite his findings, no consensus has yet emerged. The latest evidence, published in the

Alison Mackey/DISCOVER

Jan. 25 issue of the journal *Science*, suggests that epigenetic changes in mice are usually erased, but not always. The erasure is imperfect, and sometimes the affected genes may make it through to the next generation, setting the stage for transmission of the altered traits in descendants as well.

What's Nort?

ARTICLES

neuroscience

Epigenetic programming by maternal behavior

Ian C G Weaver^{1,2}, Nadia Cervoni³, Frances A Champagne^{1,2}, Ana C D'Alessio³, Shakti Sharma¹, Jonathan R Seckl⁴, Sergiy Dymov³, Moshe Szyf^{2,3} & Michael J Meaney^{1,2}

Here we report that increased pup licking and grooming (LG) and arched-back nursing (ABN) by rat mothers altered the offspring epigenome at a glucocorticoid receptor (GR) gene promoter in the hippocampus. Offspring of mothers that showed high levels of LG and ABN were found to have differences in DNA methylation, as compared to offspring of 'low-LG-ABN' mothers. These differences emerged over the first week of life, were reversed with cross-fostering, persisted into adulthood and were associated with altered histone acetylation and transcription factor (NGFI-A) binding to the GR promoter. Central infusion of a histone deacetylase inhibitor removed the group differences in histone acetylation, DNA methylation, NGFI-A binding, GR expression and hypothalamic-pituitary-adrenal (HPA) responses to stress, suggesting a causal relation among epigenomic state, GR expression and the maternal effect on stress responses in the offspring. Thus we show that an epigenomic state of a gene can be established through behavioral programming, and it is potentially reversible.

NIH Public Access

Nat Neurosci. Author manuscript, available in PMC 2010 September 23

Published in final edited form as: Nat Neurosci. 2009 March ; 12(3): 342–348. doi:10.1038/nn.2270.

Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse

Patrick O McGowan^{1,2}, Aya Sasaki^{1,2}, Ana C D'Alessio³, Sergiy Dymov³, Benoit Labonté^{1,4}, Moshe Szyf^{2,3}, Gustavo Turecki^{1,4}, and Michael J Meaney^{1,2,5}

¹Douglas Mental Health University Institute, 6875 LaSalle Boulevard, Montreal, Quebec, H4H 1R3, Canada.

²Sackler Program for Epigenetics & Developmental Psychobiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, H3G 1Y6, Canada.

³Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, H3G 1Y6, Canada.

⁴McGill Group for Suicide Studies, 6875 LaSalle Boulevard, Douglas Mental Health University Institute, Montreal, Quebec, H4H 1R3, Canada.

⁵Singapore Institute for Clinical Sciences, Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore 117609.

Abstract

Maternal care influences hypothalamic-pituitary-adrenal (HPA) function in the rat through epigenetic programming of glucocorticoid receptor expression. In humans, childhood abuse alters HPA stress responses and increases the risk of suicide. We examined epigenetic differences in a neuron-specific glucocorticoid receptor (*NR3C1*) promoter between postmortem hippocampus obtained from suicide victims with a history of childhood abuse and those from either suicide victims with no childhood abuse or controls. We found decreased levels of glucocorticoid receptor mRNA, as well as mRNA transcripts bearing the glucocorticoid receptor 1_F splice variant and increased cytosine methylation of an *NR3C1* promoter. Patch-methylated *NR3C1* promoter constructs that mimicked the methylation state in samples from abused suicide victims showed decreased NGFI-A transcription factor binding and NGFI-A-inducible gene transcription. These findings translate previous results from rat to humans and suggest a common effect of parental care on the epigenetic regulation of hippocampal glucocorticoid receptor expression.

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Abstract

Objective

Gene expression changes have been reported in the brains of suicide completers. More recently, differences in promoter DNA methylation between suicide completers and comparison subjects in specific genes have been associated with these changes in gene expression patterns, implicating DNA methylation alterations as a plausible component of the pathophysiology of suicide. The authors used a genome-wide approach to investigate the extent of DNA methylation alterations in the brains of suicide completers.

Environmental and Molecular Mutagenesis. DOI 10.1002/em

Fig. 1. The dynamic and responsive DNA methylation pattern; a model. A balance of methylation and demethylation reactions determines the DNA methylation state, Active chromatin facilitates DNA demethylation while inactive chromatin facilitates methylation. Different environmental signals trigger pathways in the cell that activate sequence specific factors which recruit chromatin modifying enzymes to specific loci resulting in either activation or inactivation of chromatin,

Indeed, in contrast to DNMTs, which are recruited by chromatin silencing enzymes such as SUV39 [Fuks et al., 2003a] and EZH2 [Vire et al., 2006; 2007], demethylation is facilitated by histone acetylation [Cervoni and Szyf, 2001; Cervoni et al., 2002]. Pharmacological acetylation using HDAC inhibitors such as TSA [Cervoni and Szyf, 2001] or valuesia acid [Datich et al., 2002a] triager reali

Fig. 2. Epigenetic reprogramming by maternal care; a model. Maternal licking and grooming in the rat triggers activation of 5HT receptor in the hippocampus leading to increase in intracellular cAMP, activation of the transcription factor NGFIA and recruitment of the HAT CBP to the GR exon 1₇ promoter. Acetylation of histone tails facilitates demethylation. In offspring of Low licking and grooming mothers this process is reduced in comparison with offspring of High licking and grooming mothers leading to differential epigenetic programming of the GR promoter. In the adult rat the epigenetic state is reversible. TSA a HDAC inhibitor increases histone acetylation and facilitates demethylation and epigenetic activation of the gene in the offspring of the Low licking and grooming mothers. Conversely, injection of methionine to adult offspring of the High licking and grooming mothers leads to increased SAM, inhibition of demethylation, increased DNA methylation, and reduced activity of the GR exon 1₇ promoter gene.

Epigenetic differences arise during the lifetime of monozygotic twins

Mario F. Fraga*, Esteban Ballestar*, Maria F. Paz*, Santiago Ropero*, Fernando Setien*, Maria L. Ballestar[†], Damia Heine-Suñer[‡], Juan C. Cigudosa⁵, Miguel Urioste[¶], Javier Benitez[¶], Manuel Boix-Chornet[†], Abel Sanchez-Aguilera[†], Charlotte Ling^{||}, Emma Carlsson^{||}, Pernille Poulsen**, Allan Vaag**, Zarko Stephan^{††}, Tim D. Spector^{††}, Yue-Zhong Wu^{‡‡}, Christoph Plass^{‡‡}, and Manel Esteller^{*55}

Epigenetics, ¹Cytogenetics, and ¹Genetic Laboratories, Spanish National Cancer Centre (CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain; ¹Department of Behavioral Science, University of Valencia, 46010 Valencia, Spain; ¹Molecular Genetics Laboratory, Genetics Department, Son Dureta Hospital, 07014 Palma de Mallorca, Spain; ¹Department of Clinical Sciences, University Hospital Malmö, Lund University, S-205 02 Malmö, Sweden; ^{+}Steno Diabetes Center, 2820 Gentofte, Denmark; ^{*+}Twin Research and Genetic Epidemiology Unit, St. Thomas' Hospital, London SE1 7EH, United Kingdorr; and ^{*+}Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, OH 43210

Edited by Stanley M. Gartler, University of Washington, Seattle, WA, and approved May 23, 2005 (received for review January 17, 2005)

Monozygous twins share a common genotype. However, most monozygotic twin pairs are not identical; several types of phenotypic discordance may be observed, such as differences in susceptibilities to disease and a wide range of anthropomorphic features. There are several possible explanations for these observations, but one is the existence of epigenetic differences. To address this issue, we examined the global and locus-specific differences in DNA methylation and histone acetylation of a large cohort of monozygotic twins. We found that, although twins are epigenetically indistinguishable during the early years of life, older monozygous twins exhibited remarkable differences in their overall content and genomic distribution of 5-methylcytosine DNA and histone acetylation, affecting their gene-expression portrait. These findings indicate how an appreciation of epigenetics is missing from our understanding of how different phenotypes can be originated from the same genotype.

Materials and Methods

Subjects. Eighty volunteer Caucasian twins from Spain were recruited in the study, including 30 male and 50 female subjects. Their mean (\pm SD) age was 30.6 (\pm 14.2) years (range, 3–74 years). Twins studied included monochorionic and dichorionic. All subjects, or in the case of children, the parents, gave their informed written consent to be included in the study. Lymphocyte cells were purified by standard procedures and stored at -80° C. In eight cases, epithelial skin cells were obtained from buccal smears. Muscle biopsy tissues (n = 14) from the vastus lateralis muscle and s.c. abdominal tissue (n = 4) were obtained by needle suction under local anesthesia from volunteer MZ twins from Denmark and the United Kingdom, respectively. Homozygosity was determined by using highly polymorphic short tandem-repeat loci. With five markers, the probability that any twin pair was MZ if all markers were concordant was 99% (5).

Epigenetics and the environment: emerging patterns and implications

Robert Feil¹ and Mario F. Fraga^{2,3}

Epigenetics and the environment: emerging patterns and implications

Robert Feil¹ and Mario F. Fraga^{2,3}

Ba

Hyper-caloric diet Low NAD*/NADH ratio

REVIEWS

Figure 4 | Molecular mechanisms that mediate environmental effects. A | Levels of

S-adenosylmethionine (SAM) affect global DNA and histone methylation. In cells, SAM is generated by the methionine cycle (also known as the one-carbon cycle; thick black arrows). The cycle incorporates methyl groups from dietary folate in another multistep cyclic pathway, called the folate cycle (thick grey arrows). The folate cycle includes the enzymes serine hydroxymethyltransferase (SHMT), methylenetetrahydrofolate reductase (MTHFR) and 5-methyltetrahydrofolatehomocysteine methyltransferase (MTR). Before its incorporation into the folate cycle, folic acid (the synthetic form of natural folate) from dietary supplements must be converted to dihydrofolate (DHF) and then to tetrahydrofolate (THF). MTR uses methyl groups from the folate cycle to convert homocysteine to methionine. Methionine adenosyltransferase (MAT) catalyses the synthesis of SAM from methionine. SAM is then converted to S-adenosylhomocysteine (SAH) by DNA- and histonemethyltransferases (DNMTs and HMTs) that use its methyl group to methylate DNA and histories, SAH is hydrolysed to homocysteine to close the cycle. The methionine cycle can also incorporate methyl groups from betaine. Two important cofactors that are involved in SAM biosynthesis are vitamins B6 and B12. Vitamin B6 is involved in the conversion of homocysteine to cysteine, and of THF to 5.10-methyleneTHF. Vitamin B12 is a cofactor of MTR. Alcohol intake can have an effect on SAM production at least at two different levels: the conversion of homocysteine to methionine, and the conversion of homocysteine to cysteine (by altering the levels of vitamin B6). B | Sirtuins remove acetyl groups from histones and other proteins in a reaction that consumes NAD*. Sirtuin 1 (SIRT1) specifically targets H4K16ac and H3K9ac. Hyper-caloric diets give rise to a low NAD*/NADH ratio (Ba) and, consequently, low SIRT1 activity. Calorie restriction gives rise to a high NAD*/NADH ratio (Bb), and can therefore increase the activity of SIRT1. Sirtuins have important roles in the establishment of the adaptive response to calorie restriction¹⁰⁸. They can be activated in an indirect manner by dietary phenols such as resveratrol^{109,110}

Epigenetics and the environment: emerging patterns and implications

Robert Feil¹ and Mario F. Fraga^{2,3}

REVIEWS

Epigenetic transitions play crucial roles in development and in the differentiation of stem cells and primordial germ cells. Concordantly, the regulating enzymes are generally highly expressed in these pluripotent cells⁶. For example, the *de novo* methyltransferases, DNMT3A and DNMT3B, are highly expressed in the early embryonic cells in which *de novo* methylation is acquired. Low amounts of external methyl donor groups from dietary sources can reduce the concentrations of the universal methyl donor, S-adenosylmethionine (SAM), and can readily affect *de novo* DNA methylation. Also, aberrant gains of methylation may occur in early embryonic cells owing to other external triggers. In adult cells, the maintenance of DNA methylation is performed mainly by the maintenance methyltransferase, DNMT1, in a process that seems less sensitive to diet-induced changes in the abundance of methyl donors.

Vol. 23, No. 15

MOLECULAR AND CELLULAR BIOLOGY, Aug. 2003, p. 5293–5300 0270-7306/03/\$08.00+0 DOI: 10.1128/MCB.23.15.5293–5300.2003 Copyright © 2003, American Society for Microbiology. All Rights Reserved,

Transposable Elements: Targets for Early Nutritional Effects on Epigenetic Gene Regulation

Robert A. Waterland and Randy L. Jirtle*

Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710

Received 7 January 2003/Returned for modification 14 April 2003/Accepted 8 May 2003

Early nutrition affects adult metabolism in humans and other mammals, potentially via persistent alterations in DNA methylation. With viable yellow agouti (A^{ry}) mice, which harbor a transposable element in the *agouti* gene, we tested the hypothesis that the metastable methylation status of specific transposable element insertion sites renders them epigenetically labile to early methyl donor nutrition. Our results show that dietary methyl supplementation of a/a dams with extra folic acid, vitamin B₁₂, choline, and betaine alter the phenotype of their A^{ry}/a offspring via increased CpG methylation at the A^{ry} locus and that the epigenetic metastability which confers this lability is due to the A^{ry} transposable element. These findings suggest that dietary supplementation, long presumed to be purely beneficial, may have unintended deleterious influences on the est lishment of epigenetic gene regulation in humans. A⁴⁹ mice. This not only leads to a yellow coat color, it also antagonizes the melanocortin 4 receptor (MC4R) in the hypothalamus, causing the animals to become obese and develop diabetes and cancer at a high frequency. In contrast, the incidence of these diseases is markedly reduced in pseudoagouti (brown) offspring that develop when this promoter is hypermethylated

B 50

FIG. 2. Maternal distary methyl supplementation and coat color phenotype of A^{ry}/a offspring. (A) logenic 4^{ry}/a mimals representing the five coat color classes used to classify phenotype. The A^{ry} alleles of yellow mice are hypomethylated, allowing maximal ectopic agonti expression. A^{ry} hypermethylation silences ectopic agonti expression in pseudoagonti animals (15), recapitulating the agonti phenotype. (B) Coat color distribution of all A^{ry}/a offspring born to nine unsupplemented dams (30 offspring; shaded bars) and 10 supplemented distribution of solitories that of unsupplemented dispring (b^{*} = 0.008).

TRANSPOSABLE ELEMENTS, EARLY NUTRITION, AND EPIGENETICS 5295

Yellow	Slightly	Mottled	Heavily	Pseudo-
	mottled		mottled	agouti

PERSPECTIVE

Transgenerational Epigenetic Contributions to Stress Responses: Fact or Fiction?

Eric J. Nestler*

Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America

* eric.nestler@mssm.edu

Abstract

There has been increasing interest in the possibility that behavioral experience—in particular, exposure to stress—can be passed on to subsequent generations through heritable epigenetic modifications. The possibility remains highly controversial, however, reflecting the lack of standardized definitions of epigenetics and the limited empirical support for potential mechanisms of transgenerational epigenetic inheritance. Nonetheless, growing evidence supports a role for epigenetic regulation as a key mechanism underlying lifelong regulation of gene expression that mediates stress vulnerability. This Perspective provides an overview of the multiple meanings of the term epigenetic, discusses the challenges of studying epigenetic contributions to stress susceptibility—and the experimental evidence for and against the existence of such mechanisms—and outlines steps required for future investigations.

OPEN ACCESS

Volume 161, Issue 6, 4 June 2015, Pages 1248-1251

Preview

Forget the Parents: Epigenetic Reprogramming in Human Germ Cells

Ferdinand von Meyenn^{1,} 👗 · 🖾, Wolf Reik^{1, 2, 3,} 👗 · 🖾

Show more

doi:10.1016/j.cell.2015.05.039

Get rights and content

Refers To Sofia Gkountela, Kelvin X. Zhang, Tiasha A. Shafiq, Wen-Wei Liao, Joseph Hargan-Calvopiña, Pao-Yang Chen, Amander T. Clark DNA Demethylation Dynamics in the Human Prenatal Germline Cell, Volume 161, Issue 6, 4 June 2015, Pages 1425-1436 The PDF (4472 K) Supplementary content Fan Guo, Liying Yan, Hongshan Guo, Lin Li, Boqiang Hu, Yangyu Zhao, Jun Yong, Yuqiong Hu, Xiaoye Wang, Yuan Wei, Wei Wang, Rong Li, Jie Yan, Xu Zhi, Yan Zhang, Hongyan Jin, Wenxin Zhang, Yu Hou, Ping Zhu, Jingyun Li, Ling Zhang, et al. The Transcriptome and DNA Methylome Landscapes of Human Primordial Germ Cells Cell, Volume 161, Issue 6, 4 June 2015, Pages 1437-1452 The PDF (3316 K) Supplementary content Walfred W.C. Tang, Sabine Dietmann, Naoko Irie, Harry G. Leitch, Vasileios I. Floros, Charles R. Bradshaw, Jamie A. Hackett, Patrick F. Chinnery, M. Azim Surani A Unique Gene Regulatory Network Resets the Human Germline Epigenome for Development Cell, Volume 161, Issue 6, 4 June 2015, Pages 1453-1467 TRANSPORTED FOR THE PDF (11830 K) Supplementary content

Epigenetic reprogramming in the germline resets genomic potential and erases epigenetic memory. Three studies by Gkountela et al., Guo et al., and Tang et al. analyze the transcriptional and epigenetic landscape of human primordial germ cells, revealing a unique transcriptional network and progressive and conserved global erasure of DNA methylation.

Epigenetic Reprogramming in Human Primordial Germ Cells

(A) After fertilization, the paternal (blue) and maternal (red) genomes undergo global demethylation, resetting the human epigenome for naive pluripotency at the blastocyst stage. Following a yetuncharacterized phase of de novo methylation in the epiblast, human PGCs are specified in the posterior epiblast (week 2), from where they migrate through the hindgut to the developing genital ridges. During this migratory phase (weeks 3–5), human PGCs must undergo a first wave of global DNA demethylation, including significant loss of methylation at imprint control regions. The methylomes and transcriptomes from human PGCs between 5.5 and 19 weeks of age have now been analyzed. During this phase, DNA methylation is further erased genome wide, restoring germline potency, whereas only a small number of evolutionarily young transposable elements and single copy genes are not completely demethylated and could be potential sites of transgenerational epigenetic inheritance.

(B) The chart summarizes the main transcriptional and epigenetic characteristics of human germ cell development and also highlights key differences between human and mouse PGCs (marked in red).

THE HISTONE SONG

(Sulla musica dei "Flintstones")

Histones! Meet the Histones! They're a basic protein family. There are Just four subtypes. They're conserved evolutionarily.

Two each Of each histone Do their thing. Forming Just like beads upon a string.

H1

Binds the complex. And it inhibits new transcription And the creation Of new mRNA.