Compacting the eukaryotic genome
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An architecture of increasing complexity
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nucleosomes inhibit accessibility to promoter and binding of
transcription factors to regulatory sequences

eActive promoters are generally
nucleosomes depleted;

e Gene transcription activation is
generally coupled to nucleosome
eviction or displacement;

eNucleosome occupancy in
promoters is generally anti-correlated
with transcription activity level.

nucleosoma

The general idea is that nucleosomes obstacle transcription
machinery. Chromatin remodeling, histone modifications and
substitutions of canonical histones with variant isoforms are
the strategy used to remove the obstacle.



Histone-like proteins exist in bacteria

a Exponential phase of growth b Stationary phase of growth

o RMA polymerase

Transcription ,
) () Fis
factories

;

at RNA promoters
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Protein or group DNA

of proteins wrapping
Eukaryotes

Core histones, Yes

HZA H28,H3

and H4

Linker histones,  ND
H1and HS

Smc ND
Hmg ND
Euryarchaeota
Archaeal histones Yes
HMEA and HMfB
Lrp Yes
Alba ND
MC1 ND
HU ND
SMC ND
Crenarchaeota
Lrp Yes
Cren/ 0[]
Sul7d ND
Alba ND
SMC ND
CC1 ND
Gram-negative bacteria
HU Yes
Lrp Yes
MukB ND
Fis Yes
{helically
phased
sites)
H-N5 ND
IHF ND
Dps ND
StpA ND
ChpA ND
ChpB ND
EbFC ND
Mval ND
Gram-positive bacteria
MukB ND
Lrp Yes
HU ND
L2 ND
Hip ND
MrahA ND

Alba, acetylation lowers binding affinity; CbpA, curved-DNA-binding protein A; CbpB, curved DNA-binding protein B {also known as Rob); CbpM, chaperone
modulatory protein; Dps, DNA protection from starvation; dsDNA, double-stranded DNA: Fis, factar for inversion stimulation; Hlp, histane-like pratein: Hmg,

DNA
bridging

ND

Yes
Yes

ND

ND

Yes

ND
ND
Yes
Yes
ND

ND
Yes

Yes
ND

ND

Yes

Yes

ND
ND
Yes

ND

ND
Suggested
Yes

Yes.
Yes
ND
Yes

ND

ND

DNA
bending

ND

ND
ND

Yes

ND

ND
ND

Yes
ND

ND
Yes
Yes
ND

ND
ND

Yes

ND

ND
Yes

NE

Yes

ND
ND

ND

ND
ND
ND

ND
ND
Yes
ND
ND
ND

Binding motif

A~10bp periadic ascillation of AATTITA
elernents in-phase with each otherand
out-of-phase with =10 bp periodic GCs

AT-rich DNA

Al-rich DNA able to form secondary

structures
Al-tract sites

(A/T),NN(G/C),NN

ND
ND

AT-rich DNA
ND

ND.

ND
ND
ND
ND

ND
ND

A DNA, structural motif in dsDNA joined
to either dsDNA or ssDNA, with a mild
preference for AT-rich or curved DNA

(TVOAGIAT/CIMAMATTIAMTIATIC)
CTA/G)

ND
A, tracts and AT tracts

Al-rich DNA and TCGATAAATT

(A/TIATCAANNNNTT(A/G)
ND
AT rich DNA

Curved DNA

Curved DNA
GTNAC
AT-rich DNA

Preference for ssDINA
ND

ND

AT-rich DNA

ND

ND

Molecular Native protomer

11-14kDa

~21kDa
~140kDa

11-38 kDa

~7.5kDa

15-22 kDa
~10 kDa
=10kDa
~10 kDa
~135kDa

~18 kDa
~7 kDa
~7 kDa
~10 kDa

~100kDa
~6kDa

~9kDa

~18 kDa

~175kDa
~11kDa

~15kDa

~11kDa
=19 kDa
~15kDa

-33kDa

~33kDa
~11 kDa

~130kDa
=17 kDa
~10kDa
~12 kDa
-_Zl kDa
=17 kDa

Homodimer

Homodimer

Heterodimer (for example,
SMC1-5MC3)

Homaodimer ar heterodimer
{for example, HMG1-HMG2)

Homaodimer or heterodimer

Homodimer
Homatetramer
Homodimer
Homadimer
Homadimer

Homadimer
Monomer
Menomer

Homodimer or
homotetramer

Homadimer
Monomer

Heterodimer {for example,

HUa-HUB)
Homodimer

Homadimer

Homaodimer

Homadimer or heterodimer
(H-N5-StpA)

Heterodimer {IHFa- IHF@)
Monomer or dodecamer
Homaodimer or heterodimer
(StpA-H-NS)

Homodimer or heterodimer
(ChpA-ChpM)

Monomer

Homadimer

Homadimer

Homodimer

Homodimer

Homadimer

Homodimer

Maonomer

Monomer or dodecamer

Refs

115

116
117

118

119

120

20
121
122
123

124
125
126
127

128
129

42,
130

69

57
77.79

19

4445
94
2y

92

102
93
26

131
72
37
24
33

132

high mebility group; H-N5, histone-like nucleoid-structuring: IHF, integration host factor; Lep. leucine-respansive regulatory protein; MrgA, metalloregulation
DNA-binding stress protein: ND, not determined; Smc, structural maintenance of chromosome; ssONA, single-stranded DNA,



Histone-like

Binding site for
protein antagonist

DNA bridging s DNA coating

.

DNA wrapping DNA bending

H-NS displaced

H-NS displaced
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Lag phase—log phase  Log phase—stationary
transition phase transition

Dps

Log cell number
Protein concentration
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A | An electron micrograph of the mammalian liver nucleus (with an enlarged section shown in part B), showing dense-staining heterochromatin located around
the nucleolus and against the nuclear envelope. Muclear pores open onto lighter-staining open chromatin. € | In budding yveast, heterochromatin binds the
nuclear envelope through Escl (enhancer of silent chromatin 1; labelled green), which forms distinct foci alternating with nuclear pores (visualized in red

through labelling of Nup42 (nucleoporin 49)1). D | An electron micrograph showing Escl at non-pore sites alang the yveast inner nuclear envelope. An arrow

indicates the nuclear pore, and black dots represent the labelling of Myc-epitope-tagged Escl using fluoronanogold Alexa*®® anti-mouse antibodyi2, The image
im mark - e rareadiicad with rarmiecian Framm EMEO Tacenal Daf 12 & 02004 Maemillzan Dohlichaee 1RA



Cytoplasm

Nucleus

b Metazoan ) MPC Cytoplasm

Mature Reviews | Genetics

In sukaryotic cells, the nuclear compartment is separated from the cytoplasm by the inner and outer nuclear membranes. This membrane bilayer is perforated
by nuclear pores, which are constituted by a large multiprotein complex (the nuclear pore complex (NPC)) that is composed of about 30 proteins (reviewed in
Ref. 24). This nuclear membrane, together with the pores, is commaonly referred as the 'nuclear envelope' (NE). a | In yeast nuclei, envelope-associated
proteins such as Escl (enhancer of silent chromatin 1) are present in foci at the periphery; however, they do not coincide with the pores. Escl binds Sird (silent
information regulator 4), which is an integral component of repressed heterochromatin in yeastt2:25:22 b | In metazoan nuclei, the nuclear envelope is
underlaid by a continuous meshwork of lamins and lamin-associated proteins (LAPs), which preferentially associate with inactive chromatin regions3Z-38,
Increasing evidence implicates interactions of chromatin with various nuclear-envelope components in gene repression as well as gene activation. BAF, barrier

to autointegration factor; GCL1, germ-cell-less homologue; RB, retinoblastoma 1.
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It is becoming increasingly clear that @ number of transcription-coupled processes converge at nuclear pores, and by this virtue nuclear-pore complexes (MPCs)
are likely to contribute, directly or indirectly, to transcriptional regulation. Althouah naot all transcriptional activity in the nucleus will be subject to this mode of
regulation, the budding veast NPC seems to work together with transcriptional activation mechanisms to fine-tune gene activity, as proposed in this model, The
SAGA chromatin-remodelling complex in veast has been shown to contain Susl; this protein is also present in the mRMNA-export complex TREX, which interacts
with the nucleoporin Mupl (Refs 59, 60). Furthermore, Nup2 has been shown to interact with the promoters of active genes2®, and the NPC-associated protein

Mlp1l (myosin-like protein 1) accumulates at the 3' end of active genes, where it contributes to an RMA surveillance mechanis

m22 8095 gridies involving

individual loci have shown that optimal activation (resulting in a twofold transcriptional effect) can require both localization of the induced gene at the NPC as
well as at the 3' UTR2E:22. 35, Gur model suggests that gene looping, which results from the coincident MPC-tethering of an initiation complex and mRMA-

processing complexes that are associated with the 3' UTR, will help to fine-tune the expression of certain genes22:83. 82,63 NPT factors can facilitate efficient
transcription elongation and/or efficient mREMNA-processing events, or the coordination of the two. If aberrantly processed mRENAs are near the site of
transcriptional initiation, their retention or rapid degradation can provide an immediate signal for the production of additional transcripts. Such a mechanism

might be important for genes that require immediate high-level induction, such as heat-shock- or galactose-inducible genes. Finally, the pore protein NupZ was

found to tether genes through a histone variant H2A.Z (Htzl) in yveast22. This could reflect a heritable localization that contributes to forms of epigenetic contral.

This might be critical during dosage compensation of ¥-linked genes in male flies, where a twofold upregulation is crucial. Mex67; mRMNA export factor 67; Pol 11,
RM& polymerase I1.
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Dosage compensation of the male X chromosome requires approximately twofold transcriptional activation of X-linked genes in comparison with the female X
chromosome, a process that is mediated by the male-specific lethal (MSL) complex (reviewed in Refs 71-73). The ¥ chromosome is immunostained red with an
antibody against MOF (Males on absent first), MPC is immunostained green with an antibody against the nucleoporin Mup153, and DMNA is stained blue with
Hoechst322. A | The nuclei of Schneider (SL-2) cells, when immunostained with antibodies against members of the MSL complex (in this case MOF (Males absent

on first)), show a distinct ¥-chromosaomal territory within the nucleus. Using confocal microscopy, parts of this X-chromosomal territory appear juxtaposed at or
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Linker histone

H2A

H2B

Core histones

H3

H4
N

helix

variable

conserved

Histone Type Molecular Weight

Histones

Highly conserved
small basic proteins

Number of Amino Acids Approx. Content of Basic Amino Acids

H1 17,000-28,000
H2A 13,900
H2B 13,800
H3 15,300
H4 11,300

200-265

129-155

121-148
135
102

27% lysine, 2% arginine
11% lysine, 9% arginine
16% lysine, 6% arginine
10% lysine, 15% arginine
11% lysine, 4% arginine
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High resolution cristallographic structure

Luger, K., Maeder, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J.

Crystal structure of the nucleosome core particle at 2.8 & resolution. Nature 389, 251-260 (1997)
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Mechanismsof nucleosome positioning

‘Replication

‘DNA/histone interactions
‘Positioning proteins
-Bboundaries

‘Chromatin Folding



DNA/Histone interactions

Val. 278, Mo, 87, [ssue of September 14, pp. 35200-35216, 2001
Printed in UL8A.

DNA Sequence Plays a Major Role in Determining Nucleosome
Positions in Y¢last CUPI Chromatin®

Recetved for publication, May 23, 2001, and in revised form, July 17, 2001
Published, JEC Papera in Press, July 18, 2001, DOL 10.1074/be M 104733200

Chang-Hui Shen and David .J. Clark:

Fram the Loborafory of Cellnlar and Developmental Biclogy, NIDDE, Naiional Institufes of Health,
Bethesda, Maoryland 20892

Histones associate with a great variety of genomic sequences but ..

..different sequences can present the same structural arrangement

Conformational flexibility of sequences families

Their localization in the nucleosomal particle




DNA/HIstone inter actions

ROTATIONAL parameters:
Sequences that influence the rotational DNA arrangement on the
nucleosome surface. Sequence periodicity is crucial

TRASLATIONAL parameters:
Sequences that influence the translational position of the nucleosomal
dyad

They are inter-dependent



DNA/HIstone inter actions

ROTATIONAL parameters 10 bp periodicity
b I |
W [V\ .\ l // ’—':.
TWIST ROLL ‘

Seq d(AA/TT) : |
ROLL angle Close to O
propeller twist > Large with crossbond -» : M\/ W\
Seq d(6C/CG) ' |
ROLL angle Negative (-20° ) 2“‘VV\/V"\W/\M v
opens the major groove ' L




DNA/HIstone inter actions

High affinity nucleosomal sequences can be predicted

GCC TG TAACT C66 TG TTA GA

HA®ANAOA

out in out in

O Rigid sequence
[1 Flexible sequence
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FIGURE % Fanges of conformational space cccupied by different dinucleotide steps in crys-
tal structures of DINA oligomers. Reproduced with permission from Ref 3.
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Bl BRIl

Figure 1. lllustmtion of the BI (left) and BIT (right) phosphate linkage
conformations with a CpA  dinucleotide. BI and BIl hackbone
conformations differ in the torsion angles £ and [ which are respectively
rrans/g- in Bl (e—C = —9%") and g-/irans in BII (2= = +90°),

100
90 |
8o |
O A

$i++ g
2| 4f'+++

20

- - i?i?

2Bl

% %20 %% %%%%%%%
Dinucleotide steps

Figure 2. Influence of the dinucleotide sequences on BII percentages in
B-DNA. BlIl percentages (% BII) of free B-DNA inferred from 8P in
solution (black circles, with vertical bars for standard deviations)
compiled from data published in the literature (see Supplementary
Table S1). The conversion of 8P in terms of BIl percentage, using a
published procedure (48), is detniled in ‘Materials and Methods®
section. BIl percentages in solution are compared with those extracted
from X-ray structures (trongles: blue: all structures, red: decamers
only).

RESULTS
BI/BIl dinucleotide sequence effect in B-DNA

Table 1. Influence of DNA base sequence on the BII percentages in
free DNA in solution

N %, BIL TRX score
CpGeCpG 25 43e43 4
CpAeTpG 2% 52431 42
GpGeCpC 1 47037 42
GpCeGpC px) 25025 25
GpAeTpC 25 3311 n
TpAsTpA 12 14e14 14
ApGeCpT 19 180 9
ApAsTpT 17 110 5
ApCeGpT Ek! Seb) 4
ApTsApT 2 Oa) 0

The DNA sequence is expressed in terms of the 10 complementary
dinucleatides, of frequency N in the NMR data collected from the
literature. The BII percentages (% BII) are given for each partner in a
complementary dinucleotide. The average standard deviation of % BII
is = 4. The TRX scores are the half-sums of the % Bl observed for two
facing phosphates in a complementary dinucleotide. The % BIl and
TRX scores higher (in bold) and lower than average (which is 21)
correspond  to enhanced and restricted flexihilities, respectively.
A maximal flexibility on this scale corresponds to a TRX score of 3.

from our data set to BII percentages with an established
method (48) (see ‘Matenals and Methods™ section). This
analysis shows that (i) the averaged BII percentage in
solution 1s 21% and (1) 7 out of the 16 dinucleotides
exhibit BII populations higher than average. These steps
can thus be regarded as Bll-rich steps. The maximal flex-
ibility is observed flor the phosphates of CpG. CpA and
GpG, with a BI/BII ratio close to 1 {50% BI, 50% BII).

Considering the BII propensities of the 10 possible com-
plementary dinucleotide sequences NipN; . jeNpN; +
(Table 1; N: any base) highlights that the facing
phosphates tend to exhibit similar behaviors overall. In
a first group containing ApNeNpT and TpAeTpA. the
phosphates are very rarely in BIl. This group. manly
confined in BleBl. is thus characterized by a restricted
backbone flexibility. In another group of dinucleotide
steps  (GpGeCpC, CpGeCpG. GpCeGpC  and
CpAeTpG) the facing phosphates can adopt BI and BI1
conformations, with a higher-than-average BIl per-
centage. This family exhibits an enhanced backbone flex-
ibility, potentially able to explore the three possible



15 +¢
10+
- 5-
& ol
45 -
10}
.15 L
-82.5 0.6 720
BI-Bl BII-BI BI1-BI|
551 ' ' '
L]
50 oy
. -
45+ . 'o
= -l
T B A%y of e
F st cNe
-
30+ %
o5} o i
‘*."-
m—
-82.5 05 720
BI-BI Bil-BI BIl-BII
Base pair parameter
1.5 . e
1 L L
05 .
(=%
= .
0 -
% L
05 *s .' .
At .
L]
A5 ¢
0 10 20 30 40

%Bll

Figure 4. Influence of BIl phosphates on helical descriptors. Inter base
pair parameters; Twist (°) and roll (*) plotted versus (£ —{ ).,. averaged
on the two facing phosphates. BleBI (blue, (£ — ), = —82.57), BleBIl
{green, {2 =L}y = —0.5°) and BlleBIl (red, (&= ()., = + 72°) are the

m -
ot
E 0

10k

=20 F o
i A i i i A i
20 40 60 80 100 120 140

Sequence

Figure 5. Relationship between roll and backbone conformations in
NCP Xemy structures. Roll (7) profile along the DNA sequence in
nuclecsome X-ray structure [KXS. The bars giving the roll values
are colored according to the state of the facing phosphates in the com-
plementary dinucleotide steps: blue for BleBl and red for BleBII or
BlleBll The grey bar epresents an unclassifiable step (Bl on strand 1
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Boundaries

Example: protein complex
blocking chromatin spreading
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EFULL-TEXT ARTICLE

Felated Aricles, Links

Nucleosome positioning signals in the DNA sequence of the human and mounse H19 imprinting control

regions.

Davey C, Fraser R, Smolle M, Simmen VW, Allan J.




proteina 1

sito 1
di legame

alle proteine k /
SIS
Nto rar

sito 2
di legame alle proteine

<

proteina 2



130 bp

assemblaggio
del nucleosoma

libero
da nucleosomi

assemblaggio
del nucleosoma

nucleosoma
posizicnato



Tridimentional chromatin architecture

Tridimentional folding impone imposes strong costraints to nucleosome positioning...

..and viceversa

Experiments with circular minichromosomes in yeast

1:simpeon BT, Thoma F, Brubaker T, Felated Articles

Chromatin reconstituted from tandemly repeated cloned DA fragments and core histones: a model system for study of higher order
stacture.

Tell. 1985 Ot 4203799203,
S2P06TTE [Publled - indexed for MEDLINE]

2:Thoma F, Simpson BT, Felated Articles

Local protem-DIA mteractions may determimne nucleosome posttions on yveast plasmids.
Hature. 1985 IMay 16-22;21 5(6016):250-2.
. 54 [Publed - indexed for MEDLINE]

FEE: Lett 200

e +

wl 17.523(1-337-11

FULL-TEXT ARTICLE

What positions nucleosomes?--A model.

EKEiyama R, Trifonov EIV.




From2004 several nucleosome genomic maps have been
generated in several cellular systems

b . Genome-wide
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ARTICLES

A genomic code for nucleosome
positioning

Eran Segal', Yvonne Fondufe-Mittendorf, Lingyi Chen®, AnnChristine Thastrdm’, Yair Field', Irene K. Moore®,
Ji-Ping Z. Wang” & Jonathan Widom*

Eukaryotic genomes are packaged into nucleosome particles that occlude the DNA from interacting with most DNA
binding proteins. Mucleosomes have higher affinity for particular DNA sequences, reflecting the ability of the sequence
to bend sharply, as required by the nucleosome structure. However, it is not known whether these sequence preferences
have a significant influence on nucleosome position in vivo, and thus regulate the access of other proteins to DMNA. Here
we isolated nucleosome-bound sequences at high resolution from veast and used these sequences in a new
computational approach to construct and validate experimentally a nucleosome-DNA interaction model, and to predict
the genome-wide organization of nucleosomes. Qur results demonstrate that genomes encode an intrinsic nucleosome
organization and that this intrinsic organization can explain —~50% of the in vivo nucleosome positions. This nucleosome
positioning code may facilitate specific chromosome functions including transcription factor binding, transcription
initiation, and even remodelling of the nucleosomes themselves.
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Distinct Modes of Regulation by Chromatin Encoded
through Nucleosome Positioning Signals

Yair Field'®, Noam Kaplan'®, Yvonne Fondufe-Mittendorf*®, Irene K. Moore?, Eilon Sharon’, Yaniv
Lubling’, Jonathan Widom?®*, Eran Segal’**

1 Depanmeant of Computar Sciance and Appliad Mathematics, Walzmann Institute of Science, Rehovot, lirasl, 2 Department of Biochamistry, Maolacular Biology, and Cell
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Abstract

The detailed positions of nudeosomes profoundly impact gene regulation and are partly encoded by the genomic DNA
sequence. However, less is known about the functional consequences of this encoding. Here, we address this guestion
using a genome-wide map of ~380,000 yeast nucleosomes that we sequenced in their entirety. Utilizing the high resolution
of our map, we refine our understanding of how nucleosome organizations are encoded by the DNA sequence and
demaonstrate that the genomic sequence is highly predictive of the in vivo nucleosome organization, even across new
nucleosome-bound sequences that we isolated from fly and human. We find that Poly(dA:dT) tracts are an important
compaonent of these nuceosome positioning signals and that their nucleosome-disfavoring action results in large
nucleosome depletion over them and over their flanking regions and enhances the accessibility of transcription factors to
their cognate sites. Qur results suggest that the yeast genome may utilize these nucleosome positioning signals to regulate
gene expression with different transcriptional noise and activation kinetics and DNA replication with different origin
efficiency. These distinct functions may be achieved by encoding both relatively closed (nudleosome-covered) chromatin
organizations over some factor binding sites, where factors must compete with nucleosomes for DMA access, and relatively
open (nudeosome-depleted) organizations over other factor sites, where factors bind without competition.
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Figure 1. Nucleosome organization at two genomic regions. Shown are the raw data measured in this study at two 1000bpdong genomic
regions. Every cyan oval represents the genomic location of one nuclacsome that we segquenced in its entirety. Also shown is the average
nucleosome oooupancy per basepair predicted by the sequence-based nucleosome model that we developed here {red}, the raw hybridization signal
of two microarray-based nudeosome maps [5,10] (green and purple traces), and the locations of nudeosomes that were computationally inferred
from these hybridization signals [5,10] {green and purple ovals), Mote that although the nuclecsome calls from the microaray maps are close to
nucleasomea locations from our map, the microarray map does not reveal the underlying variability in the detailed nucleosome read locations that we
ahserve in our data. Annotated genes [63], transcription factar binding sites (47, TATA sequences (53], and Poly(dA:dT) elements in the region are
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Nucleosome mapping in the Saccharomyces cerevisiae genome
shows that gene expression variability and chromatin
remodelingcorrelate with nucleosome occupancy at promoters.

Nucleosome content of the genome

Fraction of total genome Number of
Coverage (bp) (total intergenic / total transcribed) nucleosomes
Array probe coverage 12,068,004 1(1/1) N/A
Well-positioned nucleosomes 4,970,908 0.41 (0.36/0.42) 40,095
Delocalized (fuzzy) nucleosomes 4,801,292 0.4 (0.17 /0.45) 30,776
Total nucleosomal DNA 9,772,200 0.81)(0.53 / 0.87)
Non-nucleosomal (‘linker’) DNA 2,295,804 0.19(0.47 / 0.13) 32.4 bp average length

nature |
genetlcs

A high-resolution atlas of nucleosome occupancy in yeast

William Lee!?, Desiree Tillo?, Nicolas Bray’, Randall H Morse*, Ronald W Davis!?, Timothy R Hughes*>° &
Corey Nislow>>$



Tirosh et al., 2007

A common nucleosome organization is evident in active
genes.
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Transcription start site (TSS) is generally intrinsically
devoid of nucleosomes.

Yeast




High nucleosome occupancy is associated to high
transcriptional plasticity and sensitivity to chromatin
remodeling.

—— MRNA abundance
= Transcriptional plasticity

= Sensitivity to chromatin regulation

0.4}

0.2} ’.'i

-0.2%

-0.4}

Average value
(normalized to mean=0 and std=1)
L |

Nucleosome Occupancy

Tirosh and Barkai 2008
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Regional positioning is important for transcription

Correlation with Nucleosome Occupancy
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Two different patterns of nucleosome positioning
In Saccharomyces cerevisiae.

Enrichment of genes Nucleosome Occupancy
logz{observediexpected)
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Tirosh and Barkai 2008
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Nucleosome organizations at promoters is
evolutionary conserved

spomve —CETTTT>— DD DO —
expressed genes

TRENDS in Genetics

Roviow | Trends in Genetics Vol.26 No.11  Cel]

Gene regulation by nucleosome
positioning

Lu Bai' and Alexandre V. Morozov?

"The Rockefellar University, Mew York, WY, 10065, USA

* Department of Physics end Astronomy and BioMaPS Institute for Quantitative Biology. Rutgers University,
Fiscataway, NJ 08854, USA
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TATA box containing promoters, nucleosome occupancy
proximal to TSS and multiple TF binding sitesare
extensively regulated and exhibit high plasticity.

They have high capacity of signal integration.
Transcriptional plasticity is often coupled to evolutionary
plasticity.

Environmental signals

/ 1\

Signal transduction
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Tirosh et al.2009
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Histone variants

-Structural variants

-They exist in all species

-Can be cell type-specific

-Regulated during development

-More common in H2A and H2B than in H3 and H4

-Some form are highly specialized (CENP A and Macro H2A)



Histone variants .

H2A.Z

Linker histone

Histone Variants

H2A.Z (Htz1)

H2A »  H2AX 10-15%
\ macroH2A
_——*» H33

H3 \‘

CENP-A, Cid



Histone variants

Phosphorylation of H2A.X Signals DNA Damage

—-SQEY--

H2AX ~10-15% total. Long C-terminal tail

Hake, Xiao and Allis 2004 Br J. Cancer 90: 761



Histone variants

Loss of H2A.X Leads to Genomic Instability

H2A.X and p53

arrest
and repalr

apopt051s
.‘_

H2A.X " and p53 "

;D?SB Lﬁa
&

chromosomal
translocations

rg

cancer

Hake, Xiao and Allis 2004 Br J. Cancer 90: 761



Histone variants

H3 and H3.3 are loaded by different mechanisms

(H3-H3.3)

—\._".. lIl_..-'- .I
: f

—

(H3.3-H3.3)

replication transcription

Ahmad & Henikoff 2002



Histone variants

TCACATGATGATATTTGATTTTATTATATTTTTAAAAAAAGTAAARAATARAAAGTAGTTTATTTTTAAAARATAAAATTTAAAATATTTCACAAAATCATTTCCGAR
AGTGTACTACTATAAACTAAAATARTATAARAATTTTTTTCATTTTTTATTTTTCATCAAATAAARATTTTTTATTTTAAATTTTATAAAGTGTTTTACTARAGGCTT

CDE- CDE-II CDE-II
B CDE-I
CDE-Il JEEEEES —
-~ '\\\\ A X N\
i Ctf19
JQHHMcmE‘I
wa Csedp
' ~__Okp1
7\
'

Figura 4.10 Regione CEN del centromero di lievito.
Tale regione & costituita dai domini CDE-l, CDE-ll e CDE-Ill (A) ed & avvolta intorno a un complesso proteico (B).

Amaldi, Benedetti, Pesole, Plevani Biologia Molecolare Copyright 2011 CEA Casa Editrice Ambrosiana



Histone variants

Sitfer by H3 ‘Major histone’

3 amino acids -
> H3.3
‘Replacement histones’

Cid

Mid-S early-S G1or G2

’GFP-H:{S merge

Ahmad & Henikoff 2002
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Histone variants

Histone H3.3:

Only 4 aminoacids
modified in comparison
with H3

Costitutive expression

Can be positioned in
replication-independent
mode

Substitution oh H3 with
H3.3 can lead to
transcription and H3
methylation reprogramming

From: Smith, MM Mol Cell 9, 1158 (2002



Comparison between H2A and

H2A.Z structure




Cell. 2005 Oct 21;123(2):219-31.
Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal
promoters for activation through histone loss.
Zhang H, Roberts DN, Cairns BR.

‘Poised’
repressed/basal
A

Active

el szuuuc

ejection




Yeast MuAd4 HAT complex Yeast SWR1 complex

Doyon and Coté 2004

Human NuA4 HAT complex
Current Opinion in Genelics & Development



Copyright © 2005 MNature Publishing Group
Nature Reviews | Molecular Cell Biology



Histone tails







H2A . H3
EE . H4

core istonico

code
N-terminali
degli istoni
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Histone tails

Known and well carachterized
Histone tail modifications:

ADP ribosilation
ubiquitination
sumolilation

Phosphorylation

The contemporary occurrence and the possible mutual influence
of more than one modification at a time should be considered



Histone modifications

Acetylation

Methylation 1x, 2x, 3x

Lysine (K)

Ubiquitylation
Sumaoylation
Serine (S)
Phosphorylation
Threonine (T)
Arginine (R) Methylation 1x, 2x, 3x
Glutamic Acid (E) ADP-ribosylation

David Allis et al.




Acetilation

Histone Acetylation Contributes to the
Control of Gene Expression

+Deacetylase Inhibitors (e.g. sodium butyrate and Trichostatin A)

*Non-random distribution of hyper- and hypo-acetylated chromatin

«Mutation acetylation sites in yeast H4
Vincent Allfrey 1960's

Michael Grunstein 1980-80's



Acetilation

Why So Many HATs?
Histone Non-histone
preference target

GCN5 H3 (H4,H2B) ?
PCAF H3 (H4) E2F, p53 etc
CBP/p300 All four p53, TFIIF etc
SRC/p160 H3 &H4 ?
TAF,250 H3 (H4) TFIIE
MYST family H4 (H3) ?
TFIHIC H3 ?

Many HATs are also FATs



Acetilation

Acetylation is reversible!

Anti-cancer drugs

- Trichostatin A (TSA), Trapoxin, sodium Butyrate

 Inhibit histone deacetylation
« Alter gene expression (promote expression)
« Cause G1 and G2 cell cycle arrests (checkpoint activation?).

« Promote cellular differentiation



Acetilation

Plenty of Deacetylases As Well!

Mammals
Class 1

HDAC1

HDACZ2

HDAC3
Class 2

HDAC4

HDACS

HDACG

HDACT

Class 3
hSire

Class 4 Hos Family

Yeast
(yRPD3)
(yRPD3)

(yHDAIL)

(ySir2)

Deacetilasi attiva a livello globale
su tutte le code istoniche

Deacetilasi attiva a livello globale
ma solo sulle code degli istoni H3 e H2B

Deacetilasi NADH dipendente

Intervengono sui promotori o ORF
di geni attivamente trascritti



Acetilation

Creates a new code of gene activation/inactivation

Produces new domains for protein binding

Is crucial in DNA repair process

Regulates chromatin structure
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Acetylation

Hislone E Sife

| Histone-madifying Enzymes
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Histone Methylation
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Metylation

Histone Methyltransferases

HMT Histone Sites SET domain  Organisms Chromatin
Setl H3 K4 + S. cerevisiae

Set? H3 K36 + S. cerevisiae

Cird H3 K9 + S. pombe

G9a H3 K9, 27 + Human Eu
Suv39hli, h2 H3 K9 + Murine He
Set9 H3 K4 + Human Eu
Dotl H3 K79 - S. cerevisiae Eu
PR-Set7 H4 K20 + Human He
Ezh2 H3 K27 + Drosophila He

References:

Cell, Vol 9, 1201-1213, June 2002
Science. 2003 Apr 4:300(5616):131-5
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Methyltransferases
SET 1 G9a SET2
SET7/9|| GLP NSD1
MLL1-5|| RIZ1 NSD2
ASH1 || SETDB EZH1-2 SMYD1
SMYD3||SUV39H NSD3 SMYD2| < DOT1L
ARTKQTARKSTGGKAPRKQLATKAARKSAPATGGIKK | FKT
4 9 27 36 79
IVASEN
> (AR5 (PHEZ)

Demethylases
The first 37 amino acid of the histone H3 tail and lysine residue 79 plus neighbouring amino

acids are shown. Lysine residues that undergo methylation are highlighted in green to indicate a
function in active transcription, or in red to indicate involvement in transcriptional repression.
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Figure 2. Reaction mechanisms for the demethylation of lysines at histones. {A)
FAD dependent [SD demethylases and (B) Fe{ll) and =-KG dependent JmjC
demethylases.



Two major classes of HDMs in mammalians

Protein Systematic name Domain Substrate Inhibitors complexed
family [ alias structure specificity with JmjC domain
LSD KOM1A/LSD1 L=t  HiKd4me2/mel, HIKIMel/mel
KDM1B/LSD2 —&— O H3Kdme2/mel
IMIC  KDM2A/FBXL11A/IHDM1A —E>——{H—0-4ll  H3K36me2/mel
KDMZ2B/FEXL10B/IHDM1B —>—{H—0 1l H3K36me2/mel, H3K4me3
KDM3A/IMID1A, JHDM2A O>—  HiK9me2/mel
KDM3B/IMID1B, IHDM2B >—  H3KIme2/mel
KOMAASIMIDZA, IHDM3A o = s 10 1] H3K9med/mel + H3K36me3/mel 31, 38,96
KDMAB/IMID2E Po—R B0 H3Omedfmsed + HIKIEmad /mal
KDMAC/IMIDZC, GASC p—=— BB00 H3KIMed/mel + HIKI6med/mel 31
KDMAD/IMIZD P>—— HIKImed/me2/mel + H3IKI6me3/me2 31
KDMAE/IMIZE N Wi H3KImed/ 2
KDMSA/Jarid1a/RBP2 rO-B——1—8—8 HiKdmed/me2
KOMSR larid18/PLUT B i B c [0l 8 8§ HiWdmel/me?
KOMSC/Jarid1C/SMCX OB H3Kdmed/me?
KDMSD/Jarid1D/SMCY PO Tl-8— H3Kdmed/me2
JARID2 S
KDMBA/UTX, MGC141941 HW————>— HIKZTme3/me2
KDMBGB/IMID3, KIAAD346 >»—  H3K2Z7me3/me2
PHFE, KInA1111, ZNF422 = HiK9me2/mel + HAK20mel 31
KDM7/KIAA1718 B> H3KOme2/mel + H3K2Tme2/mel 31
KOMB/IMIDS, FLI13798 —> H3K36me2

Imjc 2> 2f-CaxC [0

PHO | FBox @ LRR [ Tuder [J Imin P arid @ P [ TR | swien OO Amino oxidase oo

Linker =——— 2f-CW A& [ Fal stroke: structure determined % Structure determined from mus musculus

Figure 9. Domain architecture within the human KDM family. Domains for which structural data are available are marked with thick borders. Proteins are named according
to the Protein Knowledgebase (UniProtkB L

Please cite this article in press as: Lohse, B.; et al. Bioorg. Med. Chem. (2011), doi:10.1016/j.bmc.2011.01.046



Histone lysine demethylase inhibitors Maes et al.

Figure 3
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KOMEA  |UTX
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KON7A JHDMI D H
KDMe  |JMID5

effective substrate replicated in vitro using histone tail peptide

not replicated in vitro with histone tail peptide, only detected in cells

binds this residus, may provoke a switch in substrate specificity
effective substrate replicated in vitro only when using ntact nuclecsomes
weak substrate affinity replicated in vitro using histone tail peptide

Current Opinion in Pharmacology

Substrate recognition and demethylation by Histone Lysine Demethylases. Left: Phylogenetic tree of histone lysine demethylases. Right: table
reflecting binding and demethylation specificities reported for the different enzymes.
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Histone PTMs around TSS region in Human genome according to transcriptional activity (red > green > blue > purple). ChlP-Seq reads highlight the diverse
distribution of different PTMs according to both distance from TSS and transcriptional activity: H3K4 methylation level of active genes peaks in the immediate
surroundings of the TSS, fading out in a regular fashion (me3 than me2 and finally mel) in both directions; H3K79me3 is only present in correspondence to TSSs;
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Figure The family of JARID1/KDMS5 proteins in human and its orthologues in drosophila and yeast (left). PHD1
recognises unmethylated Lysine 4 while the trymethylated form is recognised by PHD3 (right). From Klein et al.,
2014.



demethylation
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active chromatin state repressed chromatin

ATPase
remodeling
activity

Figure JARID1B/KDMS5B cooperates with NURD complex to remove activating marks (H3K4me3) and remodel
chromatin to produce a completely repressed state at the level of promoters (adapted fromKlein et al., 2014)



Oocyte Zygote Late 2-cell embryo 16-cell embryo

H3Kdme3
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DNA

Figure Dynamics of H3K4me3 domains during development: oocyte genome contains large regions marked with low levels of H3K4me3, that are
progressively defined and shaped into focused peaks corresponding to the promoters of actively transcribed genes. This process is brought on in parallel with
the deposition of methyl groups on H3K27 in complementary (inactive) regions. From Vaquerizas and Torres-Padilla, 2016



~——_Gene transcription

Figure The model proposed by Li et al., 2014 (supplemental information): JARID1B/KDMB5B is recruited to the site
of damage through its parrylation by PARP1 and recognition by macro domain of macroH2A1.1. JARID1B
demethylates H3K4me3 facilitating DDR proteins recruitment.



Vicky W. Zhou et al., 2011

Promoters

77
||

Figure 4 | ‘Dashboard’ of histone modifications for fine-tuning genomic elements. In addition to enabling
annotation, histone modifications may serve as ‘dials’ or "switches’ for cell type specificity. a | At promoters, they can
contribute to fine-tuning of expression levels —from active to poised to inactive —and perhaps even intermediats levels.
b | At gene bodies. they discriminate between active and inactive conformations. In addition. exons in active genes have
higher nucleosome cccupancy and thus mere histone H3 lysine 36 rimethylation (H3K36me3) and H3K79me2-modified
histones than introns. ¢ | At distal sites, histone marks correlate with levels of enhancer activiny. d | On a global scale,

they may confer repression of varying stabilities and be associated with different genomic features, For example,
lamina-associated domains (LADs) in the case of stable repression and Polycomb (Pc) bodies in the case of context-specific
repression. DNAme, DNA methylation: LOCK, large organized chromatin K medification.
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Epigenetic control of neural stem/progenitor cell self- renewal and
differentiation

E. Cacci, R. Negri, S. Biagioni, G. Lupo

Current Topics in Medicinal Chemistry (CTMC) 2015 under revision
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Mohn et al. 2008 Mol Cell 30: 755-766 Lienert et al.2011
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Frotein type:

. Mathltransferase
. Demethylase
ﬁ Daeacotylase

0 Histane

Mutaticnal status
Loss-pi-function

Nucleosome

Histone H3 tail

Chromatin signatures of cancer Marc A. Morgan and Ali Shilatifard, 2015

Alvered chromatin states in cancer

Figure 1. Chromatin proteins mutated m
cancer. A summary of cancer mutations that
affect post-translational modifications of the
histone H3 N-terminal tail. Protein classes
are indicated by the fill color for the ovals
(lred|] methyloansierase; |green] demeth-
ylase; |orange] deacetylase; [blue] histone],
whereas mutational status is indicated by
the outline color ([gray] loss of function
|purple] overexpressed/hyperactive). Dashed
lines indicate the residue of histone H3 that
is expected to be modified due to the in-
dicated cancer mutations.



* Transcriptional memory
* Telomeric silencing
* rDNA silencing

* DNA repair

» Contrasting cryptic initiation

* RNA Pol Il elongation

 Telomeric silencing
*DNA damage checkpoint

* DNA repair




H3K4 IS TRIMETHYLATED BY COMPASS DURING
TRANSCRIPTIONAL INITIALIZATION, IN CONCERT
WITH PHOSPHORYLATION ON SER5 OF RPB1 CTD
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1.LSD1 FAMILY (KDM1)

2.JMJC FAMILY (KDM2-6):

» 5 MEMBERS IN S.CEREVISIAE » 27 MEMBERS IN H.SAPIENS
Rohl (YERIGOW) 796aa B ——-
Gis] (YDRO96W) 894aa  )—a0 ——{f}
Thd2 (YIRII9C) 7288  p—{—m—
Eem$ (YMRIT6W) 1411sa (g~

Thdl (YEROSIW) 4928  (—m —

PLA2GAB, CPLA2p

FIH, HIF1AN HIF1c:N8o3
—E HSPBAP1, PASS

JMJDS, FLJ13798
L JWID4, FLI12517

JWJDB, PSTOR, KIAAGGSS  H3Rame2HAR3Me2

FEXLI0, JHDM b, KDVZB  Hokdmed HaKGBe2hvet
FBXL11, JHDM1a, KDM2A  H3K36me2/met
KIAA1718, JHDM1D

PHF8, KIAAT111, ZNF422
PHF2, JHOMIE, GRC5
HR, AU, ALUNC
JMJD1B, JHDM2b, KDM3B
JMID1A, JHDM2z, KOM3A
JMID1C, TRIP8, KIAA1380
JWJD3, KDMBB, KIAA0346

UTX, KDMGA, MGC141941 }Wnﬁ@/m

_
h
E UTY, UTY1
JMJD2A, JHDM3A, KDMEA
JMID2C, GASCH, KDM4B | H3KOme3me2
y —E JMJD2B, KDM4C H3K36med/me2
JMID2D, KDM4D

Gk

il OO

}mm1

JARID1B, PLU1, KDMSB

JARIDIC, SMCX, KDMSC
JARIDID, SMCY, KDMSD
JARID1A, RBP2, KDMSA
JARID2, JMJ




Identification of Histone Demethylases in
Saccharomyces cerevisiae™
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Histone |

Methylation

| Histone-modifying Enzymes

Proposed Funclion
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Phosphorylation
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Phosphorylation

La fosforilazione sembra essere un processo importa nte per la capacita di
creare un “concentramento di cariche”.

H2A.X contiene un sito

La fosforilazione delle zone positive che viene fosforilato in
di H1 favorisca la dissociazione di risposta alle DSBs

questo dal DNA
La variante istonica H2A.Z

e sensibile alla fosforilazione
attraverso un meccanismo
ancora poco chiaro



Phosphorylation

Histone t Site

] Histone-maodifying Enzymes

Proposed Funclion

| Ref. #

Ser?7 e transr:rimiongi aclivation, chromatin (48.49)
decondensation
Ser unknown mitosis, chromatin assembly (50)
e e 'lranscriptianal repressmn ............................... o
HE;ME&SW NHK mitosis (52)
Ser122 (S. cerevisiae) unknown DNA repair (53)
Ser129 (S. cerevisiag)  Mec, Tell DNA repair (54,55)
[Srﬁgrgfnamn ionyy TR ATM, DNA-PK DNA repair (56-58)
Ser10 (S. cerevisiae)  Ste20 apoptosis {59)
Sertd (vertebrates) Mt i e e (60)
o e s DNmepalr ...................................................... =
56133 TAF1 transcriptional activation (62)
(D. melanogaster)
Thr3 Haspin/Gsg2 mitosis (63)
Sertd Aurora-B kinase mitosis, meiosis (64,65)
MSHMSKE! .............................. mmedme—earlygeneﬁctwatmn .............................. {65}
m{& ..................................... : fanscrmtmafacivatmn ...................................... {6?]
g e : ranscnptmnaiann T (EBJI
Thr11 (mammals) Dik/Zip mitosis (69)
5128 (mammals)  AuforaBkinase T e, = . 7
MSKI, MSK2 mmediste-early activation (66,71)
Sert unknown milosis, cromatinassemoly, 20)
¢ DNArepair ...................................................... %




Sumolylation

Sumo is an
ubiquitine-like protein

Histone sumolylation
is associated to:
Gene expression
Chromatin structural
changes

-Signal transduction
Genome stability

Substrate: HE lysngne

Associated to gene repression

Ubiquitylation

Ubiquitin

Associated to:

‘DNA repair
-Cell cycle control

- Transcriptional regulation

*Not related to degradation

v

Substrate: H2B lysine 123

Ligase: RAD6




Uhiquitylation

Histone | Sile I Histone-modifying Enzymes Proposed Function
(3 P4 W LysT19 (mammals)  Ring2 spermalogenesis (73)

Lys120 (mammals)  UbcHG meiosis (74)
Lyst23 lranseriotional ativation
5. Cergvisiag) BUGTITOmatin

Radb (75)

Sumoylation
Histunel Site. |Hislune-mud'|hring Enzymes | Proposed Funclion
s P W Lys126 (S, cerevisiae)  Ubed transerigtionzl repression (78
Lys6 or Lys7? i ; ,
m (5. carevisian) Ubcd franscrintianzl reprassion {76)

b-terminal tail

i Ubcd franscriptional repression 77
(E. corsvisiae) : . y (i)

Biotinylation

Hislone | site 1 Histone-modifying Enzymes Proposed Fanction

Hza [ biotnidase kN )
Lys13 biotinidase unknown (78] i
Lysd hiotinidase gene expression (79)
Lys8 biotinidase Ene expression (75
Lys18 biotinidase gene expression (79)

Lys12 biotinidese DNA damage response (82,61)




Osley

Substrate

A:onoub

Substrate

- ©-@-@

R polyub

Substrate

Table 1. Enzymes Involved in H2A and H2ZB Ubiquitin ation/Deubiquitination in Different Organisms

H2B Ubiquitination H2B Deubiquitinatian H24 Ubiquitination H2A Deubiquitination
E2 E3 Transcription  Silancing E2 E3
5 cereviziae Radf Bral Lbp8 Ubp10 - - -
(Dat4)
& pombe Rhp& Bri i
{Rfp2/Spec1919.15)
Bri2
{Rfp1/SpecadTD 10c)
Orosophila D Bral (CG10542) Manzstap USPT dRing {Sca)
Mauza mHREA'mHREB
Human hHRGAhWHREB  RAMNF20 ISP22 Ring1B (Ring2'Anf2) Ubp-M (USF16)
LUbcHE 7 usFz ? 2A-HUB (hAUL13S)  2A-DUB (MYSM1)
Mdm2 7 USP21 USFP3 7

Ambidapsis HUBA SUP32 {UBP26)




amples of Crosstalk Between Post-translational Modifications
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Regulative cross-talks among histone modification

Saccharomyces cerevisiae
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Histone H3K4 demethylation is negatively regulated by
histone H3 acetylation in Saccharomyces cerevisiae
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Molecular Cell

Lysine Acetylation Controls
Local Protein Conformation
by Influencing Proline Isomerization
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(#) Relative binding + SEM (n =2-11) assessed by surface plasmon resonance of purified recombdnant SptT bromodomain (residues 363-619) to the indicated H3
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(B} Coomassie-stained gel showing a pull-down experiment, quantified relative io the K 18ac peptide, with the indicated H3 peptides and the purified recombinant
SptT bromodomain (n = 3).



The histone code
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The histone code

Allis proposed that the combination of the different aminoacids
modifications on the histone tails formed a real functional code

@ Ac
H2A ﬁ
Ac Ac Ac Ac
|
H2B MNe
K
5 12 5 120
Me
Ac@ Ac Ac Ac
H3 Ne— L L
K S K K K
9 10 14 18 23 2? 28
@Ac Ac Ac Ac
Ha Ne———|
S K K K
1 5 8 12
histone-fold
(A) domain

Figure 4-35 part 1 of 2. Molecular Biology of the Cell, 4th Edition.
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Histone code

The ‘Histone Code’ Hypothesis

N e B

Histone H3



Histone code

The ‘Histone Code’ Hypothesis
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Nucleosome remodeling

* Chromatin remodelers acquire energy through ATP
hydrolysis o remodel chromatin

- Numerous chromatin remodeling complexes exits
* They differ in the core DNA-dependent ATPase subunit

* There is some sharing of factors between complexes and
homologs between species

*There are 3 main classes (more could follow)

SWI/SNF snf2

NURF ~ ——  iswi



Nucleosome remodelin The SWI/SNF complex

SWI (switch)
SNF (sucrose non fermenting)

e 11 subunits
» ~1 MDa
* Snf2 is an ATPase

/Suhun.i.l\ Size (kDa) Function
( SWI2 / SNF2 ) 194 DNA dependent ATPase
Swil 148 AT-rich interaction domain (ARID) for non-specifiinding, Zn-finger protein
@ 103 Assembly and catalytic functions of the complex
SWI3 93
SWp82p ~82
SNF12 / SWP73 64
ARP7 54 Actin-related protein
ARP9 53 Actin-related protein
SNF6 38
ANC1/TFG3 27

SNF11 19 Interacts with the N-terminal D1 region of SWI2




Nucleosome remodelin

The RSC (remodels the s_tructure
of ¢ hromatin) complex

e 12+ subunits
* ~1 MDa
» Sth1 (Snf two homolog) is an ATPase

] Subunits with no known homolog in Swi/Snf

/&munj,\ SWI/SNF homolog Size (kDa) Function

( Sthl ) SWI2 / SNF2 157 DNA dependent ATPase
Rscl 107
Rsc2 102
Rsc3 102
Rsc30 101
Rsc4 72
Rsc8 SWI3 63 Subunit assembly, binds through C-terminal coiledi@omain
Rsc9 65

@ SNF5 49 Assembly and catalytic functions of the complex
Rsc6 SWP73 54
Arp7 ARP7 54 Actin-related protein
Arp9 ARP9 53 Actin-related protein




Nucleosome remOde“nlJ Multiple types of ISWI complexes exits

Drosophila
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WCRF180 PiE :
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Xenopus
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Nucleosome remodelin

How does a chromatin remodeler function?
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Nucleosome remodelin{; SNE
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Alexandra Lusser and James T. Kadonaga 2003 Wiley Periodicals,



A cascade of events
leading to chromatin

opening
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Control of chromatin structure.
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Acetylation
Methylation
Phosphorylation

Ubiquitylation
Sumoyilation —
Poly-ADP-Ribosylation

N-Glicosilation —

Biotinylation
Proline isomerization

DIFFERENT
BIOLOGICAL
OUTCOMES

POST TRANSLATIONAL
HISTONE MODIFICATIONS » CHROMATIN DYNAMICS »



W. Hgjfeldt etal., 2014

The signature on Writer proteins ‘write’ the signature
histones can be ‘read’ on histones, whereas eraser
by reader proteins proteins ‘erase’ the signature

Maodified
histone tail

Compacted chromatin:
transcription repressed

Chromatin
remodelling

Relaxad chromatin: Mucleosome

transcription active _l—» Gene

Figure 1| Readers, writers and erasers. The model shown depicts how epigenetic
information present in the chromatin structure is interpreted and modified. See BOX |
for a more precise explanation of the different parts of the figure.




DNA methylation

Present in Mammalian and other vertebrates (prevalentemently at CpG) and
Plants CpG, CpHpG e siti CoHpH (H=A,CorT)

limited in insects and absent in the yeast S.cerevisiae

NH NH
2 CH3 2

~N methyltransferase ~N

] | /J§
N O
H

LA

N O
H

DNA Methylation

Methylating the cytosine of a CpG
motif silences genes

NH, NH,
”ﬁ DNMT . "ﬁ@
o% SN /-\ -:-"-"I\M
| SA M@ SAH |
H H

Cytosine 5' Methyl-cytosine



Metilazione delle citosine

Mus musculus 7,5%

Arabidopsis 14% (non solo CpG ma anche CpH e CpHpH)

Fungi 0,1-0,5%

(assente in Saccharomyces e Scizosaccharomyces ma 5% in Neurospora)
Drosophila 0,04%

Presente nelle api nelle sequenze codificanti (effe  tto sullo slicing)



DNMT1

DNMT2

DNMT3

TET

Apis mellifera

Bombus terrestris
Lasioglossum albipes
Polistes canadensis
Solenopsis invicta
Pogonomyrmex barbatus
Camponotus floridanus
Harpegnathos saltator
Nasonia vitripennis
Aedes aegypti
Drosophila melanogaster
Bombyx mori

Tribolium castaneurn
Acyrthosiphon pisum
Myzus persicae
Zootermopsis nevadensis
Locusta migratoria

Homo sapiens
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Le principali funzioni della
metilazione sono collegate alla
repressione della trascrizione:

* Difesa contro i trasposoni: la metilazione ¢’
fondamentale per mantenere silenti 1 genomi dei
trasposoni e del retrotrasposoni

* Regolazione genica: la metilazione contribuisce a
stabilire € mantenere uno stato trascrizionalmente
inattivo (eterocromatina)




DNA Cytosine Methylation

O unmethylated

@ Methylated

W |—) Gene Expression

[ CpG Island Gene ]

] CpG Island Gene —

MeBvier, L &t al. Cpclical DNA methyiatson aof a transoriptonally adive prosmoter. Moloe 452 45-50 | 2008



Caantromere!%l_l_l:‘i;_il__i_i 1111 TSG

Hypermethylated d== CpG island
pericentromeric (hypormethylated)
heterochromatin

lHypcmathylation Hypermethylation
Mitotic recombination, Transcriptional repression,
genomic instability loss of TSG expression

El DNA repeat Y
1 Methylated
¥ Unmethylated




b DNA methylation
Cytosine MeC
Histone NH, NH,
octamer
L aE» @
N&n — N&c
Methylated H "
DNA
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DNA methylation
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\ - JNA Methylation

chromatin -

— - binding —___
& “ protein ﬂ

5 position of cytosine

Regulation of gene expression
* Environment effect

¢ Heritable mark i

DNA methylation
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Examples: Methylation sensitive TF: AP-2. E2F NFkS
Methytation insansitive TF: Sp1

plg




Transcription
factor




high embryo

5-meC

low

PGCs

Dynamics of DNA methylation in germ cells and early mouse development
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Bulk genome

===== |mprinted genes
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Introduction

LIMeasuringa DNA Methylation

Unmethylated Methviated

Aoz s CB 0N
- s Bisulfite
Conversion
HH.




a Mosaic DNA methylation
(fungi, for example, Neurospora crassa)

- o S A

b Mosaic DNA methylation
(plants, for example, Arabidopsis thaliana)

T T e T W
— —t

¢ Mosaic DNA methylation
(animals, for example, Ciona intestinalis)

| i— —

d Global DNA methylation
(animals, for example, Homo sapiens)

i

e Global DNA methylation
(plants, for example, Zea mays)

-.;!_.__l_

Mature Reviews | Genetics



e Sodiumbisulfite mapping

Treatment of DNA with sodium bisulfite C—-T

= unmethylated cytosines are converted to uracils mC — C

* methylated cytosines are unaffected

» after PCR amplification, unmethylated cytosines appear as thymines
and methylated cytosines appear as cytosines

bisulfite
/ﬁ g@‘ .rﬂ @ . éﬂ,’)‘g@ @ CUH"J’EFS!:EI_I'I :ﬁ-&g@ fijl U“ .‘;A‘f £® IEEJ.:_E
l Sequencing SequUencing
k 4
ACI G A .C T A C C iy _C. G A '|' A {:; ) & '|'

reconstruct
sequence

ACGACTACGTC



Introduction

LIMeasuringa DNA Methylation

Unmethylated Methviated

Aoz s CB 0N
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Conversion
HH.




1. Blsulfte cnnv'arsmn uf gDNA

Sample 1 Sample n

mﬂmnfa 111111 U —_—
Regionm[] +---- U —
2. First round PCR with region specific primers
)
Region 1 Ragion m
Sample 1 U ...... B
- . !
Slrr;pll n ET ~~~~~~ U i o f
3. Second round PCR with universal
primers tagged with barcodes

4. Amplicon pooling and SMRT sequencing

5. Data analysis

SR TETRERER

mZ mo mC
Top strand Bottom strand
Bisulfite conversion

»>UCGGUATGTTTARACGUT>> <<GGUCGTACAAATTTGCGA<L
PCR amplification l«
OT >>TCGGTATGTTTAAACGTT>> »>CCAGCATGTTTAAACGCT>» CTOB
CTOT < mﬁ CCATACAAATTTGCAA<< <<GGTCGTACAAATTTGCGA<< OB



Picking a single cell
(Steps 1-9)

|

Single-tube reaction

Mspl digestion
(Steps 10-12)

| !

by ” i // End-repair/dA-tailing

/—E ¥ N adapter ligation

(Steps 13-19)

§ !

. SR . /

/—c c

Bisulfite conversion

U U R (Steps 20-23)

| | !

PCR amplification
(Steps 24-41)

!

High-throughput
sequencing
(Steps 42—-44)




Whole Genome Bisulfite Sequencing
Library Construction

3' End Adar

Purified gDNA
5 mg

date library
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Epigenetics are stable heritable traits (or "phepedy) that cannot be
explained by changes in DNA sequence. The Gredkkmgi- (¢m1-

"over, outside of, around") in epigenetics implieatlires that are "on
top of" or "in addition to" the traditional genetiasis for inheritance.
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J-year-old S50-year-old
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HOW d0eS nUviton, Stress, dvugs, lliness, Ne, - atect my DNA?
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GENETIC INHERITANCE EPIGENETIC INHERITANCE
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Histone
methylation 5-Methylcytosine  5-Hydroxymethylcytosine

H3 Histone
acetylation
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vecchiistoni: [ |H2A [ H28 [ H3 [ H4
nuoviistoni: | |H2A [ JH2B [ |H3 [ |H4

direzione della

replicazione del DNA
> nucleosoma

complesso
per la replicazione
del DNA \_

tetramero H3eH4



vacchiistoni: [ Hza HzE IH: B0

nucwlistoni: [ | H2A [C]HzB [JH3 [C]H4
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vecchi istoni: Hea [ H28 [ H3 [ H4

nuovi istoni: H2A H2B H3 H4

PCNA nucleosomi parentali

replicazione
_—_
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H3eH4
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tetramero H3eH4

PCNA a il bookmark degli strand in attiva replicazon



Grandmas Experiences Leave a Mark on
Your Genes

Your ancestors' lousy childhoods or excellent adventures
might change your personality, bequeathing anxiety or

resilience by altering the epigenetic expressions of genes in
the brain.

By Dan Hurley | Thursday, lune 25, 2015

RELATED TAGS: GEMES & HEALTH

Alison Mackey/DISCOVER

[This article originally appeared in print as "Trait vs. Fate']

Michael Meaney
McGill University

Moshe Szyf
McGill University



Actually, they ended up deing a
series of elaborate experiments.
With the assistance of
postdoctoral researchers, they
began by selecting mother rats
who were either highly attentive
or highly inattentive. Once a
pup had grown up into
adulthood, the team examined
its hippocampus, a brain region
essential for regulating the
stress response. In the pups of
inattentive mothers, they found
that genes regulating the
production of glucocorticoid

receptors, which regulate sensitivity to stress hormones, were highly methylated; in

Good Mothering ""4.,1

A goai 13 mather licky i

and grooms hae pups. She @
[ghves them axbrs space

1% schip ngaingt her

N
- 0

Bad Mothering

A bad raf meothar baroby

ficks hav pugs. and provides
Rom » alimerid ot e tibe Mimotation.

Thinkstock

the pups of conscientions moms, the genes for the glucocorticoid receptors were

rarely methylated.



EXPERIMENT #1

1 Very attentive mothers and very inattentive mothers bred

c'su"' o3

Researchers examine the brains of grown pups
Genes highly methylated




EXPERIMENT #2

1 Very attentive mothers and very inattentive mothers bred

Resesarchers axamine the brains of grown foster pups

Genes rarely methyfated
Hippocampus




EXPERIMENT #3

1 Inattentive mothers bred

I

S ® udd
fnattentive mother
raises bivlogrieal pups

2 Brains of “damaged” pups
traated with trichostatin A, a

drug that removes mathyl groups

3 Epigenetic changes disappear

STRESS
Genes rarely methylated




The Mark Of Cain

The message that a mother’s love can make all the difference in a child’s life is
nothing new. But the ability of epigenetic change to persist across generations
remains the subject of debate. Is methylation transmitted directly through the
tertilized egg, or is each infant born pure, a methvlated virgin, with the
attachments of methyl groups slathered on solely by parents after birth?

Neuroscientist Eric Nestler of the Icahn School of Medicine at Mount Sinai in New
York has been seeking an answer for vears. In one study, he exposed male mice to
10 days of bullying by larger, more aggressive mice. At the end of the experiment,
the bullied mice were socially withdrawn.

To test whether such effects could be transmitted to the next generation, Nestler
took another group of bullied mice and bred them with females, but kept them
from ever meeting their offspring.

Despite having no contact with e
their depressed fathers, the {

R
offspring grew up to be - N 0"
) [* 2

hypersensitive to stress. “It was

not a subtle effect; the offspring —_ i :

- - “‘H (J 3 -
were dramatically more .

susceptible to developing signs . '

of depression,” he says.




In further testing, Nestler tock
sperm from defeated males and
impregnated females through
in vitro fertilization. The
offspring did not show most of
the behavioral abnormalities,
suggesting that epigenetic
transmission may not be at the
root. Instead, Nestler proposes,
“the female might know she
had sex with a loser. She knows
it'’s a tainted male she had sex
with, so she cares for her pups
differently,” accounting for the
results.

Despite his findings, no
consensus has vet emerged. The
latest evidence, published in the

Alison Mackey/DISCOVER

Jan. 25 issue of the journal Science, suggests that epigenetic changes in mice are
usually erased, but not always. The erasure is imperfect, and sometimes the
affected genes may make it through to the next generation, setting the stage for

transmission of the altered traits in descendants as well.

TAT e AT s
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Epigenetic programming by maternal behavior

lan C G Weaver'?, Nadia Cervoni®, Frances A Champagne'”, Ana C D’Alessio’, Shakti Sharma',
Jonathan R Seckl*, Sergiy Dymov®, Moshe Szyf>* & Michael | Meaney '~

Here we report that increased pup licking and grooming (LG) and arched-back nursing (ABMN) by rat mothers altered the offspring
epigenome at a glucocorticoid receptor (GR) gene promoter in the hippocampus. Offspring of mothers that showed high levels of
LG and ABN were found to have differences in DNA methylation, as compared to offspring of *low-LG-ABN' mothers. These
differences emerged over the first week of life, were reversed with cross-fostering, persisted into adulthood and were associated
with altered histone acetylation and transcription factor (NGFI-A) binding to the GR promoter. Central infusion of a histone
deacetylase inhibitor removed the group differences in histone acetylation, DNA methylation, NGFI-A binding, GR expression and
hypothalamic-pituitary-adrenal (HPA) responses to stress, suggesting a causal relation among epigenomic state, GR expression
and the maternal effect on stress responses in the offspring. Thus we show that an epigenomic state of a gene can be established
through behavioral programming, and it is potentially reversible.
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Epigenetic regulation of the glucocorticoid receptor in human
brain associates with childhood abuse

Patrick O McGowan' 2, Aya Sasaki'2, Ana C D'Alessio?, Sergiy Dymov?, Benoit Labonté!4,
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Abstract

Maternal care influences hypothalamic-pituitary-adrenal (HPA) function i the rat through
epigenetic programming of glucocorticond receptor expression. In humans, childhood abuse alters
HPA stress responses and increases the nsk of suicide. We examined epigenetic differences in a
neuron-spectfic glucocorticord receptor ( NRICT) promoter between postmortem hippocampus
obtained from suicide victims with a history of childhood abuse and those from either suicide
victims with no childhood abuse or controls. We found decreased levels of glucocorticond receptor
mEBENA, as well as mRNA transenipts bearing the glucocorticond receptor 1y splice vanant and
increased eytosine methylation of an NR3CT promoter. Patch-methylated NRICT promoter
constructs that mimacked the methylation state in samples from abused swieide vietims showed
decreased NGFI-A transeription factor binding and NGFI-A—inducible gene transeniption. These
findings translate previous results from rat to humans and suggest a common effect of parental
care on the epigenetic regulation of hippocampal glucocorticond receptor expression.
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Abstract

Objective

Gene expression changes have been reported in the brains of suicide completers. More recently,
differences in promoter DNA methylation between suicide completers and comparisen subjects in
specific genes have been associated with these changes in gene expression patterns, implicating DMNA
methylation alteraticns as a plausible component of the pathophysiclogy of suicide. The authors used a
genome-wide approach to investigate the extent of DNA methylation alterations in the brains of
suicide completers.,
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Fig. L. The dynamic and responsive DNA methylation pattern; a model.
A balance of methylation and demethylation reactions determines the
DMNA methylation state. Active chromatin facilitates DNA demethylation
while inactive chromatin facilitates methylation. Different environmental
signals trigger pathways in the cell that activate sequence specific factors
which recruit chromatin modifying enzymes Lo specific loci resulting in
either activation or inactivation of chromatin.

Indeed, in contrast to DNMTs, which are recruited by
chromatin silencing enzymes such as SUV39 [Fuks et al.,
2003a] and EZH2 [Vire et al., 2006; 2007], demethylation
is facilitated by histone acetylation [Cervoni and Szyf,
2001; Cervoni et al., 2002]. Pharmacological acetylation
using HDAC inhibitors such as TSA [Cervoni and Szyf,
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Fig. 2. Epigenetic reprogramming by maternal care; a model. Maternal
licking and grooming in the rat triggers activation of SHT receplor in
the hippocampus leading 1o increase in intracellular cAMP, activation of
the transcription factor NGFLA and recruitment of the HAT CBP 1o the
GR exon 15 promoter. Acetvlation of histone tails facilitates demethyla-
tion. In offspring of Low licking and grooming mothers this process is
reduced in comparison with offspring of High licking and grooming
mothers leading o differential epigenetic programming of the GR pro-
moter, In the adult rat the epigenstic state is reversible. TSA a HDAC
inhibitor increases histone acetylation and facilitates demethylation and
epigenetic activation of the gene in the offspring of the Low licking and
grooming mothers. Conversely, injection of methionine to adult offspring
of the High licking and grooming mothers leads to increased SAM, inhi-
hition of demethylation, increased DNA methylation, and reduced activ-
ity of the GR exon 1, proimoler pene.
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Monozygous twins share a common genoctype. However, most
monozygotic twin pairs are not identical; several types of pheno-
typic discordance may be observed, such as differences in suscep-
tibilities to disease and a wide range of anthropomorphic features.
There are several possible explanations for these observations, but
ane is the existence of epigenetic differences. To address this issue,
we examined the global and locus-specific differences in DNA
methylation and histone acetylation of a large cohort of monozy-
gotic twins. We found that, althouwgh twins are epigenetically
indistinguishable during the early years of life, older monozygous
twins exhibited remarkable differences in their overall content and
genomic distribution of 5-methyloytosine DMNA and histone acety-
lation, affecting their gene-expression portrait. These findings
indicate how an appreciation of epigenetics is missing from our
understanding of how different phenotypes can be originated
from the same genotype.

Materiaks and Methods

Subjects. Eighty volunteer Caucasian twins from Spain were fe-
cruiled in the study, including 30 male and 50 female subjects. Ther
mean [ =50) age was 36 (£14.2) years {mnge, 374 years). Twins
studied included monochononic and dichononic. All subjects, orin
the case of children, the parents, gave ther informed wntten
consent 10 be included in the study, Lymphocyte cells were purified
by standard procedures and stored at —S8(FC. In cight cases
epithelial skin cells were obtained from buccal smears. Muscle
biopsy tissues (n = 14) from the vastus lateralis muscle and s.c
abdomunal tssue (n = 4) were obtained by needle suction under
Iocal anesthesia from volunteer M twins from Denmark and the
United Kingdom, respectively. Homozygosity was determined by
using highly palymorphic short tandem-repeat foc. With five
markers, the probahility that any twin pair was MZ if all markers
were concordant was 9% (5).
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Figure 4 | Molecular mechanisms that mediate
environmental effects. A | Levels of
S-adenosylmethionine (SAM) affect global DNA and
histone methylation. In cells. SAM is generated by the
methionine cycle (also known as the one-carbon cycle;
thick black arrows). The cycle incorporates methyl
groups from dietary folate in another multistep cyclic
pathway, called the folate cycle (thick grey arrows). The
folate cycle includes the enzymes serine hydrocymethyl-
transferase (SHMT), methylenetetrahydrofolate
reductase (MTHFR) and S-methyltetrahydrofolate-
homocysteine methyltransferase (MTR). Before its
incorporation into the folate cycle. folic acid (the
synthetic form of natural folate) from dietary
supplements must be converted to dihydrofolate
{DHF) and then to tetrahydrofalate (THF). MTR uses
methyl groups from the folate cycle to convert
homocysteine to methionine. Methionine adenosyl-
transferase (MAT) catalyses the synthesis of SAM

from methionine. SAM is then converted to
S-adenosylhomocysteine (SAH) by DNA- and histone-
methyltransferases (DNMTs and HMTs) that use its
methyl group to methylate DMA and histones. 54H

is hydrolysed ta homocysteine to close the cycle. The
methionine cycle can also incorporate methyl groups
from betaine. Two important cofactors that are
involved in 5AM biosynthesis are vitamins B6 and
B12. Vitamin BG is involved in the conversion of
homocysteine to cysteine, and of THF to

5, 10-methyleneTHE. Vitamin B12 is a cofactor of MTR.
Alcohaol intake can have an effect on $AM production
at least at two different levels: the conversion of
homocysteine to methionine, and the conversion

of homaocysteine to cysteine (by altering the levels of
vitamin Ba) B | Sirtuins remove acetyl groups

from histones and other proteins in a reaction that
consumes NAD®. Sirtuin 1 (SIRT1) specifically targets
H4K16ac and HiK%9ac. Hyper-caloric diets give rise to
a low NAD* /NADH ratio (Ba) and, consequently, low
SIRTY activity. Calorie restriction gives rise ta a high
MALD/MADH ratio (Bb), and can therefore increase the
activity of 5IRT1. Sirtuins have important roles in

the establishment of the adaptive response to calorie
restriction'™. They can be activated in an indirect
manner by dietary phenols such as resveratrol™0,
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Figure 3 | Time windows of environmental susceptibility in mammals.

Epigenetic transitions play crucial roles in development and in the differentiation
of stem cells and primordial germ cells. Concordantly, the regulating enzymes are
generally highly expressed in these pluripotent cells®. For example, the de nove
methyltransferases, DNMT3A and DNMT3E, are highly expressed in the early
embryanic cells in which de nove methylation is acquired. Low amounts of external
methyl donor groups from dietary sources can reduce the concentrations of the
universal methyl donor, 3-adenosylmethionine {34M), and can readily affect de novo
DMNA methylation. Also, aberrant gains of methylation may occur in early embryonic
cells owing to other external triggers. In adult cells, the maintenance of DNA
methylation is performed mainly by the maintenance methyltransferase, DNMT1,
in & process that seems less sensitive to diet-induced changes in the abundance of
methyl donors.
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Abstract

There has been increasing interest in the possibility that behavioral experience—in particu-
lar, exposure to siress—can be passed on to subsequent generations through heritable epi-
genetic modifications. The possibility remains highly controversial, however, reflecting the
lack of standardized definitions of epigenetics and the limited empirical support for potential
mechanisms of transgenerational epigenetic inheritance. Nonetheless, growing evidence
supports a role for epigenetic regulation as a key mechanism underlying lifelong regulation
of gene expression that mediates stress vulnerability. This Perspective provides an over-
view of the multiple meanings of the term epigenetic. discusses the challenges of studying
epigenetic contributions to stress susceptibility—and the expermental evidence for and
against the existence of such mechanisms—and outlines steps required for future
investigations.
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Epigenetic Repregramming in Human Primordial Germ Cells

(A)After fertilization, the paternal (blue) and matemnal (red) genomes undergo global demethylation,
resetting the human epigencme for naive pluripetency at the blastocyst stage. Fellowing a yet-

unc haracterized phase of de novo methylation in the epiblast, human PGCs are specified in the posterior
epiblast (week 2), from where they migrate through the hindgut to the developing genital rdges. During this
migratory phase (weeks 3-5), human PGCs must undergo a first wave of global DNA demethylation,
including significant loss of methylation at imprint control regions. The methylomes and transcriptomes
from human PGCs between 5.5 and 19 weeks of age have now been analyzed. During this phase, DNA
methylation is further erased genome wide, restoring germline potency, whereas only a small number of
evolutionarily young transposable elements and single copy genes are not completely demethylated and
could be potential sites of transgenerational epigenetic inhertance.

(B) The chart summarizes the main transcriptional and epigenetic characteristics of human germ cell
develepment and also highlights key differences between human and mouse PGCs (marked in red).
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Meet the Histones!
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