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INTRODUCTORY REMARKS

How to correct the treatment of binding and of diffusion
in a crowded environment

Where 1deality (dilution) and homogeneity are quite untenable

Nevertheless consider the effectiveness of the free electron model
of metal conductivity...a reductionist approach is not out of scope

See: JT Mika and B Poolman, Macromolecule diffusion and confinement in prokaryotic cells
Current Opinion in Biotechnology 2011, 22:117-126



Current Opinicon in Biotechnology

Crowding in the cytoplasm of bacteria. A snapshot of the E. coli cytoplasm at a macromolecule concentration (275 g/L) approximating in vivo
conditions [2°].With permission from Adrian Elcock.




Just an estimate of relative crowding, e.g. the E. coli membrane

Just as simple estimates on protein concentrations in the cytoplasm
reveal a mean spacing comparable to protein size, similar estimates can
be carried out for the cell membrane as well. To see this, we recall that
the membrane area for a bacterium like E. coli is roughly 6 pm? and
that both the inner and outer membranes are home to roughly 500,000
proteins. This tells us that the area per protein is roughly 10 nm?, or
that the typical distance between two proteins is of the order of 3 nm.
The cell membrane is tightly packed indeed.

Crowding alters chemical equilibria: additional free energy terms
lead to altered reaction constants w.r. to the free case



Three kind of equilibrium reactions displaced by crowding
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by Universita degli Studi di Roma La Sapienza on 05/28/13. For personal use only.

Annu. Rev. Biophys. 2008.37:375-397. Downloaded from www .annualreviews.org

Further remarks

'Equations 1-3 apply equally to changes in Helmholtz or
Gibbs free energies. Simple models used to estimate the
magnitude of AF§ generally assume constant volume and
hence in the strict sense yield estimates of Helmholtz free
energy changes. However, differences between Helmholtz
and Gibbs free energy changes associated with reactions in
the liquid state are not of qualitatve significance.

2 AF$ is formally equivalent to the difference between the
equilibrium average free energy of interaction of X with the
perturbing cosolutes or boundaries and the equilibrium av-
erage free energy of interaction of X with the constituents
of bulk solvent that are replaced by cosolute or boundary.
Thus A F§ implicitly takes into account any energetic con-
sequence of desolvaton that may accompany the transfer.

*The treatment presented here may be readily extended
to a quasi-equilibrium analysis of the effect of crowding
or confinement upon the kinetics of a transiton-state lim-
ited associaton or isomerization reaction, in which case
one must additionally estimate the free energy change as-
sociated with the transfer of the transition state from bulk
to the crowded or confined medium (see for example the
Appendix in Reference 59).



Life 1s made by filamentous structures

400 nm 100 pm 200 nm
Figure 14.1 Physical Biology of the Cell (© Garland Science 2009)

See chap. 10
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Huang B, et al. 2009.
Annu. Rev. Biochem. 78:993-1016

The Diffraction Limit

An optical microscope can be thought of as a lens system that
produces a magnified image of a small object. In this imaging
process, light rays from each point on the object converge to a
single point at the image plane. However, the diffraction of light
prevents exact convergence of the rays, causing a sharp point
on the object to blur into a finite-sized spot in the image. The
three-dimensional (3D) intensity distribution of the image of a
point object is called the point spread function (PSF). The size
of the PSF determines the resolution of the microscope: Two
points closer than the full width at half-maximum (FWHM) of
the PSF will be difficult to resolve because their images overlap
substantially. The FWHM of the PSF in the lateral directions
(the x-y directions perpendicular to the optical axis) can be
approximated as Axy = 0.61A/NA, where A is the wavelength of
the light, and NA is the numerical aperture of the objective
defined as NA = n sina, with n being the refractive index of the
medium and o being the half-cone angle of the focused light
produced by the objective. The axial width of the PSF is about
2-3 times as large as the lateral width for ordinary high NA
objectives. When imaging with visible light (A = 550 nm), the
commonly used oil immersion objective with NA = 1.40 yields a
PSF with a lateral size of 200 nm and an axial size of 500 nm in
a refractive index-matched medium A nnual Reviews



Actin networks and ergodicity breaking
Non homogeneity is dynamically sustained

Cells not only allow filament bundling and superstructural organi-
zation to happen but encourage it with cross-linking proteins that tie
filaments together. Spontaneous alignment alone will give a mixed ori-
entation of polar filaments, but in many of the examples seen in cells the
filaments are all pointing in the same direction. This cannot arise from
entropy alone, but rather emerges from local nucleating of sites to make
sure everything grows in the same direction or from the exploitation of
motor proteins to sort out filaments based on their orientations. This
will be further discussed in Chapter 16. A higher resolution image of
filamentous organization at the leading edge of a motile cell is shown
in Figure 14.2. One of the intriguing features of this organization is
that it varies as a function of distance from the leading edge itself. In

Figure 14.2 Physical Biology of the Cell (© Garland Science 2009)



videomicroscopy

Figure 14.5 Single-molecule
measurements for diffusion of
membrane-associated proteins. (A)
Cells were transfected with a
construct encoding GFP fused to a
membrane protein Lck. In the
fluorescence microscope, the cells
appear to be covered with randomly
distributed spots. (B) In a magnified
view of the region bounded by the
box in (A), individual molecules can
be clearly seen (circles). Their
movements can be tracked over
time by video microscopy. (C) A
series of tracks measured for

individual molecules ranging over
S:3is 1.33s 1.20s total times of about 1-3.5s show
very heterogeneous individual
ﬂ behavior. Some molecules appear to
gorare be trapped and nearly sta_tidnary,
‘ while others travel long distances.

(Adapted from A. D. Douglass and
R. Vale, Cell 121:937, 2005.)
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Figure 14.5 Physical Biology of the Cell (© Garland Science 2009) Inhomogeneity Of Space
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Figure 6.2 Physical Biology of the Cell (© Garland Science 2009)

Statistics out of dynamics:
Ergodicity concepts
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Characteristics and simulations of anomalous diffusion. (#) MSD curves defining normal (Brownian)
diffusion and anomalous subdiffusion (downward curvature) and superdiffusion (upward curvature).

(b) Distribution of displacements for normal and anomalous diffusion. Initial particle position is at the
origin. For normal diffusion, the distribution is Gaussian and gives rise to Brownian motion. The curve
labeled anomalous has long tails and an infinite second moment, resulting in nonlinear MSD plots and
anomalous diffusion. () MSD plots for simulations of crowding in an aqueous phase. Simulations done
for 75-nm-radius spherical particlesina 3 x 3 x 9 pm box for 1 ms using the method of Dix et al. (10).
(d) (Top) MSD distributions for simulation of 75-nm-radius particles for 10 ms at 9% volume exclusion.
The smooth curve is fitted using the expected distribution for normal diffusion. (Bortorz) Difference

between fitted and observed MSD distributions.
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Crowding depresses diffusion
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Figure 14.4 Physical Biology of the Cell (© Garland Science 2009)

Substrate channelling

Figure 14.4 Diffusion constants
in cells. The plot shows the ratio of
the measured cellular diffusion
constant to that for the same
molecule in water for several
different molecules including a
series of DNA molecules of
different size. (Adapted from

A. S. Verkman, Trends Biochem.
Sci. 27:27, 2002.)



SUMMARY POINTS

L.

Crowding can slow the diffusion of solutes in aqueous-phase compartments and in
membranes without leading to anomalous diffusion.

. Large reductions in solute diffusion and/or anomalous diffusion are probably indica-

tors of interactions between the solute and cellular or membrane components, or of
fixed barriers to diffusion.

. Crowding reduces the diffusion of small solutes and many macromolecules in cyto-

plasm by only a few-fold compared to their diffusion in water.

Discrepancies between simulations and experiments on crowding effects on solute
diffusion require further investigation.



Counting the states: number of way of arranging
indistinguishable objects over boxes...lattice models
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Crowded variant of the lattice model
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Zsol(L, C) = e ALl e~ ACE!,

Given this model of the solution, we now ask about the probability
that the receptor in solution will be bound by a ligand and how this prob-
ability depends upon the concentration of both ligand and crowding
molecules. The receptor can be in one of two states: either it has the lig-

and bound, or not. The weights of these two states are Z,,;(L — 1, C)e‘ﬁslk.’
and Z,; (L, C), respectively; sf is the energy of the ligand bound to the
protein. The probability that the ligand will be bound to the protein is
therefore,

Zoo(L—1,Cyepel
Zeo(L -1, C)e_ﬁgf + Zgoi (L, C)

Pbound = (14.2)

1
Pbound = 1+(Q—-L— C/L)eﬁAsL ’
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Crowding enhances ligand binding
(static property)
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Figure 14.3 ATPase rate
associated with T4 DNA
replication. The different curves
measure the ATPase rate as a
function of the g44/62 protein
concentration as measured using

different concentrations of
0 100 200 300 400 500 polyethylene glycol as a crowding

concentration of g44/62p complexes (nM) agent. The concentration of
polyethylene glycol going from the
bottom to the top curve are 0, 2.5,
5 and 7.5 weight percent.
(Adapted from T. C. Jarvis et al.,

J. Biol. Chem. 265:15160, 1990.)
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Figure 14.3 Physical Biology of the Cell (© Garland Science 2009)



Effects of crowding agents on dissociation constants
Renormalized theory
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Figure 14.8 Dissociation
constant as a function of crowding.
Comparison of theory (full line)
and experiment (filled circles) for
binding in the presence of
crowding agents. Measured values
of the dissociation constant for
gp44/62 and gp45 components of
T4 DNA replication complex as a
function of polyethylene glycol
concentration measured in percent
volume fraction. The theoretical
curve was obtained by fitting

eqn 14.6 for the effective size ratio
r of the protein components to the
polyethylene glycol 12000
molecules. (Adapted from

T. C. Jarvis et al., J. Biol. Chem.
265:15160, 1990.)



Osmotic pressure in crowded environments: non linear effects
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400 Figure 14.11 Osmotic pressure of -

a concentrated solution of

350 hemoglobin at 0°C. Filled circles are
S 300 the experimental data points. The
T dashed lines are predictions of the
£ 250 lattice gas, while the full line is the
E pressure of a gas of hard spheres,
@ 200 each sphere having volume VvV
5 . :
@ corresponding to a diameter of
v 150 5.8 nm. The labels on the curves
Q indicate the volume of a single box
100 in the lattice model. (Adapted from
P. D. Ross and A. P. Minton, J. Mol.
50 Biol. 112:437, 1977.)
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Figure 14.11 Physical Biology of the Cell (© Garland Science 2009)



Thermodynamics of Crowded Proteins
in Solution

Collaborator: Dr. Ravi Datta
Alumni: Dr. Mohammed Yousef

We are interested in modeling the
behavior of concentrated multicomponent
protein (crowded) solutions. Crowded
protein solutions are found naturally in
cells and have tremendous impact on

cellular function.

We have modeled the osmotic pressure of

both single and binary crowded protein

Hydrated H,0 from x Data (Molecules)

solutions using a novel approach that

recognizes that the nonlinear behavior is
0 10000 20000 30000 40000 50000 60000 70000

coupled to hydration and ion binding. This ‘
Protein Solvert Accessitie Surface Area (Angstroms’)

model suggested that the solvent-solute

contributions, are substantially more significant in describing osmotic pressure than that
assumed by virial expansion models based on McMillan-Mayer theory. When applying the model
to single crowded protein solutions in physiological solutions, it was discovered that all of the
protein nonideal behavior was coupled to the protein hydration which was directly related to the
protein solvent accessible surface area. Interestingly, this significant hydration was always a
monolayer of water (see figure). When these factors were taken into account, the solution

behaved ideally with respect to the free water (water not interacting with the protein)

Applying the more general form of this model to binary proteins also results in an improved
representation of measured osmotic pressure. Our current research investigates the additional
contributions of interaction including protein aggregation that can affect osmotic pressure for

binary protein systems
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Depletion Interactions

(A) large molecule (B)

small molecule surface
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Figure 14.12 Physical Biology of the Cell (© Garland Science 2009)
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