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Statistical mechanics of gene expression

Gene expression can be measured at the mRNA level: Transcriptome
CONTROLED BY TRANSCRIPTION FACTORS

Gene expression can be measured at the protein level: proteome
CONTROLLED By various mechanisms at the ribosome

ribosomes

Figure 3.13 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Figure 3.9 Electron microscopy
image of simultaneous
transcription and transiation. The
image shows bacterial DNA and its
associated mRNA transcripts, each
of which is occupied by ribosomes.
(Adapted from O. L. Miller et al.,
Science 169:392, 1970.)

Figure 6.7 Physical Biology of the Cell, 2ed. (© Garland Science 2013)



Heterogeneity of phenotypes: noise

Pictoresquely, originating from cellular “decisions”
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Figure 2

Transcription process resulting in change in mRNA census between times # and ¢ + At. The schematic histogram
shows thedistribution of the number of mRNA molecules found per cell. We refer to the average number of mRNA at
time ¢ as m(2); it is found by adding up the total number of mRNA over all cells and dividing by the number of cells.
The number of mRNA per cell increases because of transcription and decreases because of mRNA degradation.
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Figure 6.10 Polymerase binding
energies. lllustration of the
difference in binding energy for
RNA polymerase when it is bound
specifically (sgd) and

Figure 6.7 (part 1 of 2) Physical Biology of the Cell, 2ed. (© Garland Science 2013) nonspecifically (egj).
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The Boltzmann genome. (@) Schematic of a bacterial cell showing the complicated internal arrangement of the genome. (b) Abstraction
of the genomic landscape of a bacterium into a one-dimensional lattice of binding sites. (c) There are many microstates [g(E) of them)]
of the P RNA polymerase molecules on the genomic DNA, and this can be evaluated combinatorially by thinking of the genome as

consisting of Ny nonspecific binding sites upon which the P RNA polymerases can be arranged.

Figure 6.9 The RNA polymerase
reservoir. Schematic of the ways in
which RNA polymerase can be
distributed throughout a bacterial
cell. These molecules can be
bound at any of the Nys
nonspecific sites on the DNA, at
promoters, or be distributed
throughout the cytoplasm. Each
microstate corresponds to a
different arrangement of the
polymerase molecules on these
nonspecific binding sites. We
consider a model in which RNA
polymerase is bound exclusively
on the DNA since the cytoplasmic
contribution is negligible.



SCHEME OF STATES AND WEIGHTS
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Figure 6.11 Physical Biology of the Cell, 2ed. (© Garland Science 2013)
This is the total partition function
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Calculation scheme for poound
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Figure 6.12 Physical Biology of the Cell, 2ed. (© Garland Science 2013)
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Phenomenological analysis
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Figure 6.13 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Figure 6.13 Probability of
promoter occupancy as a function
of the number of RNA polymerase
molecules. pyoung 1S computed
using values for the specific and
honspecific binding obtained in
vitro and corresponding to the /ac
promoter (solid line), and the Al
promoter from the phage T7.

Agpg = —2.9kgT. EColi lacpromoter

Aepg = —8.1kgT



