More Differentiation.

With Less Variation. RD

Reduce Variation in
Your Stem Cell Experiments.

Inferential Structure Determination
Wolfgang Rieping et al.

Science 309, 303 (2005);

DOI: 10.1126/science.1110428

AYAAAS

This copy is for your personal, non-commercial use only.

If you wish to distribute this article to others, you can order high-quality copies for your
colleagues, clients, or customers by clicking here.

Permission to republish or repurpose articles or portions of articles can be obtained by
following the guidelines here.

The following resources related to this article are available online at
www.sciencemag.org (this information is current as of March 6, 2013 ):

Updated information and services, including high-resolution figures, can be found in the online
version of this article at:
http://www.sciencemag.org/content/309/5732/303.full.html

Supporting Online Material can be found at:
http://www.sciencemag.org/content/suppl/2005/07/05/309.5732.303.DC1.html

This article cites 21 articles, 2 of which can be accessed free:
http://www.sciencemag.org/content/309/5732/303.full. html#ref-list-1

This article has been cited by 46 article(s) on the ISI Web of Science

This article has been cited by 8 articles hosted by HighWire Press; see:
http://www.sciencemag.org/content/309/5732/303.full.html#related-urls

This article appears in the following subject collections:
Biochemistry
http://www.sciencemag.org/cgi/collection/biochem

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the
American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. Copyright
2005 by the American Association for the Advancement of Science; all rights reserved. The title Science is a

registered trademark of AAAS.

Downloaded from www.sciencemag.org on March 6, 2013


http://oascentral.sciencemag.org/RealMedia/ads/click_lx.ads/sciencemag/cgi/reprint/L22/1791126115/Top1/AAAS/PDF-R-and-D-Systems-Science-130301/RandD_Systems_2013-March.raw/1?x
http://www.sciencemag.org/about/permissions.dtl
http://www.sciencemag.org/about/permissions.dtl
http://www.sciencemag.org/content/309/5732/303.full.html
http://www.sciencemag.org/content/309/5732/303.full.html#ref-list-1
http://www.sciencemag.org/content/309/5732/303.full.html#related-urls
http://www.sciencemag.org/cgi/collection/biochem
http://www.sciencemag.org/

center of its circular swimming path. These
particles move randomly with an apparent
diffusion coefficient of D = 9.0 £ 2.0 um?/s,
measured for isolated spermatozoa. A short-
range pairwise attraction, arising from the
hydrodynamic forces leading to the observed
synchronization (20), and a longer range re-
pulsion, which could be of steric or hydro-
dynamic origin (27), are assumed (Fig. 4D).
Although one cannot describe circular flow by
a potential (22), the important features of the
observed pattern are captured by our model.
Stochastic simulations of this model (SOM
text) also revealed two regimes: a random
distribution of particles at low densities with a
transition toward a hexagonal array of clusters
at a critical particle density (Fig. 4E). Assign-
ing to each particle a spermatozoon circling
around that position, we generated simulated
movies (3) mimicking the experimental obser-
vation (Fig. 4F versus Fig. 1B). Moreover, the
order parameter ¥ computed for different sim-
ulated sperm densities agreed with the exper-
imentally observed dependency (Fig. 4C). Our
numerical results were further supported by a
1D mean-field analysis (SOM text), which in-
dicated the existence of a supercritical pitch-
fork bifurcation at a critical sperm density
(23). This critical density was proportional to
the interaction strength and inversely propor-
tional to the diffusion coefficient, the latter
being associated with the noise in the system.
This analysis demonstrates how the activity of
biological processes can be regulated by crit-
ical points or bifurcations. For example, ciliary

metachronal waves (16, 24) might be switched
on and off by small physiologically controlled
changes of the activity of the individual cilia,
thereby tuning the critical density for the onset
of the metachronal wave.

The only free parameter in our model was
the ratio of the maximum interaction potential
to the drag coefficient, ¥ /y = 5 um?/s, which
was chosen to match the critical density (Fig.
4C). This allowed us to estimate the interac-
tion force between two spermatozoa F, =
lgrad(V)| = (V/y) x y/R ~ 0.03 pN (using R =
13 um and y = 0.07 uN-s/m from above). This
force is about 1% of the forward propulsion
force of spermatozoa F_~ 5 pN (23). Al-
though this hydrodynamic interaction force is
smaller than typical adhesion forces involved
in sperm cooperation (26), it is evidently large
enough to coordinate the cells and to regulate
large-scale pattern formation in the absence of
chemical signals (27).
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Macromolecular structures calculated from nuclear magnetic resonance data
are not fully determined by experimental data but depend on subjective
choices in data treatment and parameter settings. This makes it difficult to
objectively judge the precision of the structures. We used Bayesian inference
to derive a probability distribution that represents the unknown structure and
its precision. This probability distribution also determines additional un-
knowns, such as theory parameters, that previously had to be chosen empiri-
cally. We implemented this approach by using Markov chain Monte Carlo
techniques. Our method provides an objective figure of merit and improves

structural quality.

A major difficulty in the determination of three-
dimensional macromolecular structures is that
experimental data are indirect. We observe
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physical effects that depend on the atomic ge-
ometry and use a forward model to relate the
observed data to the atomic coordinates. For
example in nuclear magnetic resonance (NMR),
the intensity /, of peaks in nuclear Overhauser
effect spectroscopy (NOESY) data is propor-
tional to the inverse sixth power of the dis-
tance d, of two spins: I, = yd; ® (I). This
isolated spin pair approximation (ISPA) in-
volves an unknown scaling factor y. It seems
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straightforward to obtain the structure in the
example: simply use the observed intensities
to calculate sufficient distances to define the
structure.

In realistic applications, this approach runs
into difficulties. One problem is that the for-
ward model is usually inherently degenerate,
meaning that different conformations can lead
to the same observations and therefore cannot
be distinguished experimentally, and even a
formally invertable forward model is practically
degenerate if the data are incomplete. A further
complication is that there are uncertainties in
both the data and the forward model: Data are
subject to experimental errors, and theories rest
on approximations. Moreover, the forward
model typically involves parameters that are
not measurable. Algorithms for structure calcu-
lation from x-ray reflections, NMR spectra, or
homology-derived restraints should account for
these fundamental difficulties in some way.

Structure determination in general is an ill-
posed inverse problem, meaning that going
from the data to a unique structure is im-
possible. However, the current paradigm in
structure calculation is to attempt an inversion
of the forward model. Most algorithms min-

imize a hybrid energy Eia = Epnys T
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WiawEaa (2), Where a mnonphysical energy
E .., uses the forward model and a restraining
function to assess the agreement between data
and structure. A force field £ | _describes the
physical properties of the macromolecule,
such as bonded and nonbonded interactions
between the atoms, and partially removes the
degeneracy of the problem. The rationale is
that minimization of the hybrid energy ef-
fectively inverts the forward model, yielding
the “true” structure.

This strategy works in the case of many
data of good quality. In less favorable situ-
ations, the ill-posed nature of the inverse prob-
lem becomes apparent. Specifically, it remains
unclear how to choose auxiliary parameters
like the weight w,, . or theory parameters such
as the scaling factor y in the ISPA. Because the
hybrid energy minimization paradigm offers
no principle to settle these issues, such param-
eters need to be determined heuristically.

The principal difficulty in structure deter-
mination by NMR is the lack of information
that is indispensible to reconstruct the struc-
ture unambiguously. By formulating an opti-
mization problem (“search for the minimum
of £, 1:4”) one however implicitly assumes
that there is a unique answer. Repeating the
optimization procedure multiple times to ob-
tain several “unique” solutions hides but does
not solve the ambiguity and makes it difficult
to judge the validity and precision of NMR
structures in an objective way.

We suggest that it is a misconception to
use structure calculation methods that are
only appropriate if the objective is to obtain
a unique structure. Instead, we view structure
determination as an inference problem, requir-
ing reasoning from incomplete and uncertain
information. We consider the entire confor-
mational space and use the data only to rank
the molecule’s possible conformations. We
assign a number P, to every conformation X,.
IfpP,>P, conformatlon X, is more supported
by the data than X, Cox (3) proved that such
rankings are equlvalent to a probability and
that probability theory is the only consistent
calculus to solve inference problems. The dis-
tribution of the probabilities P, reflects the
information content of the data. If all but one
P, vanish, the data determine the structure
uniquely. If P, are uniform throughout con-
formational space, the data are completely
uninformative with respect to the structure.

Any inferential structure determination
(ISD) is solved by calculating the probabilities
P. We demand the probabilities to be objec-
tive in the sense that they only depend on data
D and on relevant prior information / (such as
the forward model or knowledge about phys-
ical interactions). Thus, P, is a conditional
probability, P, = P(X]|D,I); it is not a fre-
quency of occurence but a quantitative repre-
sentation of our state of knowledge. In the
case of a continuous parametrization of con-

Fig. 1. Replica-exchange

Monte Carlo algorithm.
(A) We generate a
stochastic sample (X®),
y®, o®) from the joint
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YD p (41X 8, 69

consecutively drawn
from their conditional
posterior distributions,
with the values of the

!

other parameters being
fixed to their previously
generated values. Coor-
dinates are updated by
using the hybrid Monte
Carlo method (27). (B)

Coordinates:
Hybrid Monte Carlo

XG+D o p (x| HD, o(+D)

To overcome energy

barriers, we embed this

scheme in a replica-
exchange strategy,
which simulates a se-
quence of heated copies
of the system. Samples
of the target distribu-

. £
exchange B
-1—’:\ > © @ e |

tion are generated in
the low-temperature copy (T,
copies (T, <T, < T,

) and propagate via stochastic exchanges between intermediate
) to the high-temperature system (Thigh

). The temperature Thign 1S chosen

such that ‘the polypep%lde chain can move freely in order to escape local modes of the probability

density.

formations, such as Cartesian coordinates, P,
is a density p(X|D,]).

A direct consequence of probability calcu-
lus is Bayes’ theorem (4), which formally
solves our inference problem. The posterior
density

p(XID,1) o p(DIX.T) p(X|T) (1)

factorizes into two natural components: The
likelihood function p(D|X, I) combines a
forward model and an error distribution and
quantifies the likelihood of observing data D
given a molecular structure X. Because we
model deviations between measurements and
predictions explicitly, the precision of the co-
ordinates depends on the quality of the data
and on the accuracy of the forward model. In
the ideal case of a uniquely invertible model,
the likelihood function is only peaked at the
structure that satisfies the data (i.e., the con-
ventional approach is contained as limiting
case). The prior density p(X|/) takes prior
knowledge about biomolecular structures into
account and is determined by the physical en-
ergy and the temperature of the system (5).
The error distribution and the forward
model typically contain auxiliary parameters
& that are unavailable from the data but nec-
essary in order to describe the problem ade-
quately. In Bayesian theory, such nuisance
parameters are treated in the same way as the
coordinates: They are estimated from the ex-
perimental data by replacing X with (X, &) in
Eq. 1. Assuming independence of X and &, the

joint posterior density for all unknown param-
eters is
P(X.ED,1) < p(DIX,E,1)

p(XII) p(&lI)

(2)

Equation 2 provides a unique rule to deter-
mine any quantity that is not accessible by
experiment.

To demonstrate the practical feasibility of
the ISD approach, we infer the molecular
structure of the Fyn SH3 domain (59 amino
acids length). Experimental distances between
amide protons were derived from a series of
NOESY spectra on a {I5N, 2H} enriched
protein (6). The data set is sparse: It comprises
154 measurements, of which on average only
one per amino acid provides long-range struc-
tural information. The forward model 7, =
vd;%(X) defined by the ISPA does not account
for experimental errors and systematic effects
like spin diffusion (/) and internal dynamics
(7); hence, observed intensities will deviate
from theoretical predictions. A log normal dis-
tribution (5) describes these deviations and in-
troduces a second nuisance parameter ¢ that
quantifies their magnitude. Thus, we have two
nuisance parameters, & = (v,0).

Although given in analytically closed form
(5), it is practically impossible to evaluate the
posterior density p(X,y,c|D,l) over all confor-
mational space. Therefore, in our view, struc-
ture calculation comprises posterior simulation,
which samples only regions that carry a con-
siderable amount of probability mass. We have
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Fig. 2. Structure ensembles. Calculated structures (gray) C
were superimposed onto the x-ray structure of the SH3
domain (black). Superposition and plotting of the structures
was carried out with MOLMOL (24). (A) Backbone traces
(atoms N, C_, and C) of the 20 most likely conformations
obtained with our sampling algorithm. For comparison, two
conventional structure ensembles were calculated by
repeatedly running a standard simulated annealing protocol
(22) with fixed weight w, . We used the program CNS
(23) to calculate 200 conformers for two different
restraining potentials; the panels show the 20 lowest
energy conformations. (B) In the first calculation, distance
bounds and a flat-bottom harmonic-wall potential with
linear asymptotes (25) were used, resulting in an ensemble
with a backbone heavy atom rmsd to the x-ray structure
(70) of 3.07 + 0.53 A for all residues and 1.93 + 0.34 A for
secondary structure elements. (C) In the second calculation,
we used a harmonic restraining potential on the distances
1.~ 178, leading to an overall rmsd of 2.98 + 0.46 A and 2.15 +

0.41 A for secondary structure elements.

developed a Markov chain Monte Carlo
(MCMC) algorithm based on the replica-
exchange method (8) to simulate the joint pos-
terior density of a structure determination
problem (5, 9) (Fig. 1 and fig. S1).

The most pronounced features of the poste-
rior density can be represented in a set of con-
formational samples. Although this looks at first
glance like a conventional structure ensemble,
the rationale behind our approach to obtain
conformational samples is very different. The
uncertainty of atomic positions is directly influ-
enced by the uncertainty of nuisance parameters
and by the quality of the data. Effects not de-
scribed in the ISPA, such as protein dynamics,
tend to increase the deviations between pre-
dicted and measured peak intensities. This is
reflected in an increase of the error ¢ and con-
sequently leads to a loss in structural precision.
However, unless the forward model incorporates
experimental information on protein dynamics,
we cannot discriminate motion from impreci-
sions due to experimental errors or lack of data.

www.sciencemag.org SCIENCE VOL 309 8 JULY 2005

Compared with conventional structure en-
sembles, our conformational samples are much
better defined and systematically closer to the
structure obtained with x-ray crystallography
(10) (Fig. 2). A comparison of the 20 most
probable conformations with the x-ray struc-
ture yields a backbone heavy atom rmsd (root
mean square deviation) of 1.84 + 0.20 A for all
residues and 1.36 + 0.19 A for the secondary
structural elements. This is a considerable im-
provement over conventional techniques used
in (6), where an ensemble with an overall
rmsd of 2.86 + 0.33A and an rmsd of 2.01 +
0.28 A for secondary structure elements was
obtained. This improvement originates in the
calculation of structures by random sam-
pling, which searches conformational space
more exhaustively and suppresses topological-
ly unlikely conformations. Misfolds such as
mirror images can only be realized in a small
number of ways; thus, they are entropically
suppressed and do not show up in a statistical
ensemble. Discriminating such conformations

on the basis of the hybrid energy is more dif-
ficult, in particular if the data are sparse.

A probabilistic structure ensemble is exclu-
sively determined by the data and the working
hypotheses that enter the analysis (which are
in the presented example the ISPA, the log-
normal error distribution, and our choice of
the force field). Modifications will, of course,
lead to changes in the structures. The atom
positions, for example, are sensitive to the pa-
rameters and the functional form of the force
field used in the conformational prior density.
This also holds for conventional approaches,
which are based on analogous assumptions.
However, in addition, conventional methods
require empirical rules to treat nuisance pa-
rameters, because they cannot be determined
from the hybrid energy alone. Cross-validation
(11, 12) and maximum likelihood methods (/3),
for example, have successfully been applied
in NMR and crystallographic refinement to
determine certain nuisance parameters such
as the weight w . The ISD approach goes
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beyond these techniques. Once the working
hypotheses are made, Eq. 2 provides definite
rules to determine any nuisance parameter, in-
cluding its uncertainty, directly from the data
(Fig. 3). Therefore heuristics and other sub-
jective elements are superfluous.

Because conventional structure ensembles
depend on user-specific parameter settings and
on the minimization protocol, it is difficult if
not impossible to assign statistically meaning-
ful error bars to atomic coordinates. In con-
trast, stochastic samples drawn from the joint
posterior density p(X, v, o|D,/) are statisti-
cally well defined and can directly be used to
calculate estimates of mean values and stan-
dard deviations (/4). As a special case, we
can derive an average structure with atom-

wise error bars and are thus able to define an
objective figure of merit for NMR structures
(Fig. 4).

Bayesian and maximum likelihood ap-
proaches have already proven useful for data
analysis and partial aspects of structure refine-
ment in NMR spectroscopy and x-ray crystal-
lography (15, 16, 13, 17). Our results suggest
that structure determination can be solved en-
tirely in a probabilistic framework.

It is straightforward to apply our approach
to other NMR parameters. In case of three-
bond scalar coupling constants, for example,
an appropriate forward model is the Karplus
curve (18) involving three coefficients that are
treated as nuisance parameters. However, our
method is not restricted to NMR data and can

T T T 4 T T T T
A ] B
151 .
I ]
5, _
2 Sot -
e ©
[eN [e N
51 - i ]
1 1 1 0 1 1 1 1
0.85 0.9 0.95 1 0.8 1 1.2 1.4 1.6

y-1/6

9

Fig. 3. Estimation of nuisance parameters. Posterior histograms compiled from MCMC samples for the
scaling factor y in the ISPA and for the width ¢ of the log normal error distribution. (A) Posterior
histogram p(y~"/¢|D,J) for the inverse sixth power of y. This factor corrects interproton distances to
match the experimental distances best. (B) Posterior histogram p(c|D,/) for the error . In conventional
approaches, this analog to the weight (w,,. ¢ ¢72) can only be estimated via cross-validation or

must be set empirically.

Fig. 4. Conformational un-
certainty. MOLMOL “sau-
sage” plot of the mean
structure with atom-wise
error bars indicated by the
thickness of the sausage.
The 20 most probable con-
formations (also shown in
Fig. 2A) from the simula-
tion of the joint posterior
distribution p(X,y,0|D,/)
were used to calculate the
average structure and its
precision. The local preci-
sion ranges from 0.6 A for
secondary structure ele-
ments to 46 A for loop
regions (bottom and right-
hand side) and termini
(top). The average preci-
sion is 1.07 A. The average
precision of the structure
ensembles calculated with
CNS is 4.93 A for the flat-
bottom harmonic-wall po-
tential and 5.04 A for the
harmonic potential.

be applied to other structure determination
problems. Besides theoretical coherence, a rig-
orous probabilistic approach has decisive prac-
tical advantages. It has no free parameter and is
stable for many more than the two nuisance
parameters used in the example (/9). Hence,
tedious and time-consuming searches for op-
timal values are no longer necessary. Once
the forward model to describe the data has
been chosen, probability calculus uniquely
determines the posterior distribution for all
unknowns. It is then only a computational
issue to generate posterior samples. Further
intervention is not required, and structure de-
termination attains objectivity.
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