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Abstract

Structure determination by NMR is often viewed as less objective than x-ray crystallography. The
major reason for this is the lack of an accepted measure of the quality of an NMR structure, and the
use of empirical rules for deriving geometrical constraints from the experimental data. The Inferential
Structure Determination (ISD) framework can help to alleviate this problem: ISD is an ab initio method
and uses Bayesian inference to process the available experimental data, such as assigned NOEs or RDCs,
in an optimal way. The result is a probability distribution that represents the unknown structure and its
uncertainty. It also determines additional unknowns, such as theory parameters, that previously had to
be chosen empirically. The program uses parallel Markov chain Monte Carlo sampling techniques to ex-
plore the conformational distribution of a target molecule and to search for probable parameter settings.
This manual gives an introduction to the methodology and shows how to setup and analyse a calculation.

Web: http://www.bioc.cam.ac.uk/isd
Discussion: http://groups.google.com/group/isd-discuss
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1 Introduction

In an aqueous environment, most proteins fold into thermodynamically stable three-dimensional
structures. A detailed understanding of the biological function of proteins or DNA requires knowl-
edge of its molecular structure. Structural knowledge is also crucial in applications such as drug
design. High-resolution nuclear magnetic resonance (NMR) spectroscopy has become, along with
X-ray crystallography, a routine method for determining biomolecular structures with atomic res-
olution [1]. In comparison to X-ray crystallography, NMR allows the study of proteins in solution
and does not require ordered crystals. It can also provide a dynamical picture of a molecule. But
NMR structure determination is far from being straightforward: It requires several manual or semi-
automatic preprocessing steps such as spectral analysis, peak picking, and resonance assignment.
In the final step, geometrical constraints are derived which are then used to calculate the molecular
structure.

Each of these stages requires human intervention, which is why structure determination by NMR
is often perceived as being less objective than X-ray crystallography. The major reasons for the
“subjectiveness” of NMR structures are: (1) the lack of a generally accepted measure for assessing
the quality of an NMR structure, (2) the use of heuristics and rules of thumb in the derivation
of geometrical constraints. Strictly speaking, a protein structure determined from experimental
data is only useful if it is accompanied by some measure of reliability. Recent works discussing
errors in published NMR structures [2] highlight the danger of subjective elements in structure
determination procedures.

The aforementioned problems have a common source: Structure determination requires reason-
ing from incomplete information which is why protein structures necessarily remain uncertain to
some degree. Existing methods, however, are based on the concept of structural constraints, and are
therefore incapable of taking this uncertainty into account. In essence, ISD relies on Bayesian prob-
abilistic inference that represents any uncertainty through probabilities which are then combined
according to the rules of probability calculus. The application of this approach is computationally
demanding, and has become feasible only recently due to the development of efficient stochastic
sampling algorithms (Markov chain Monte Carlo methods) and increased computational power
provided by computer clusters.

2 Inferential structure determination

The principal difficulty in structure determination by NMR is the lack of information required to
unambiguously reconstruct a protein structure. Conventional methods view structure determina-
tion as a minimisation problem: A so-called “hybrid energy” function combines a pseudo energy
term that incorporates the experimental constraints with a force field describing the physical in-
teractions between the atoms. Minimising the hybrid energy is then assumed to answer what the
“true” structure of a molecule is. This rule, however, implicitly assumes that there is a unique
answer. Repeating the minimisation procedure multiple times, as is standard practice in conven-
tional approaches, does not adequately represent the ambiguity and makes it difficult to judge the
validity and precision of NMR structures in an objective way.

We have argued that it is a misconception to use structure calculation methods that are only
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Figure 1: Probabilistic ranking and Bayes’ theorem. The experimental data are used to rank every conformation of
a protein in terms of a probability (a), i.e. we do not derive geometrical constraints that would completely rule out
structures. If of two conformations one has higher probability, then it is more supported by the data. The spread
of the probability distribution reflects how well we can determine a structure from the available information. If
only a single conformation has non-zero probability, the data uniquely determine the structure. If the probabilities
are constant, the available data is uninformative with respect to the structure. Realistic cases lie somewhere in
between. Bayes' theorem (b) combines prior information with experimental evidence, represented in terms of a
likelihood function, in a consistent way. The posterior distribution represents everything that can be said about
the molecular structure given the data and our prior knowledge.

appropriate if the objective is to obtain a unique structure. Instead, we view structure determina-
tion as an inference problem [3,4], requiring reasoning from incomplete and uncertain information.
In contrast to conventional methods, we do not convert the data into geometrical constraints, but
use them directly to rank all possible conformations of the molecule. Quantitatively, such a ranking
requires us to assign a probability P; to every protein conformation X; [5] (figure 1la). We demand
the probabilities to be objective in the sense that they should depend only on the data and on
relevant prior information (such as the theoretical models to describe the data or knowledge about
physical interactions). Thus we are dealing with a conditional probability, Pr(X|D, I), quantifying
how likely a certain conformation X is the correct structure given the data “D” and background
information “I”. Any inferential structure determination is solved by exploring this probability
distribution.

But how can we set up Pr(X|D, I) for a concrete structure determination problem? The answer
comes from Bayes’ theorem [6] which states that the solution to any structure determination prob-
lem is proportional to the product of the likelihood of the data given a structure, Pr(D|X, I), and
the prior probability Pr(X|I) (figure 1b). That is, once we are able to write down the likelihood
and the prior distribution for a particular structure determination problem, we simply use Bayes’
theorem to obtain a relative probability for every conformation of the protein, and thus solve the
ranking problem. At first glance this seems to complicate things even further, but it turns out that
Pr(D|X,I) and Pr(X|I) are relatively easy to set up.

An example Let us consider a concrete example. The most informative class of NMR observations
are based on the Nuclear Overhauser Effect (NOE) [7]. The NOE is a relaxation effect that
leads to an NMR signal with an intensity I roughly proportional to the inverse sixth power of



the distance d between two nuclear spins. However, the model I « d~% neglects dynamics [8],
indirect magnetisation transfer via spin diffusion [9], and other effects. Due to these theoretical
limitations and experimental noise, observed NOE intensities can never be predicted with certainty
from a protein structure. In order to deal with deviations between observations and predictions, we
introduce an error parameter ¢ that quantifies how closely our predictions match the observations.
Since intensities and distances are positive quantities, we model their deviations with a log-normal
distribution [10]. If we have a whole set of intensities I; with corresponding distances d; the
likelihood of the data is a product of log-normal distributions:

1 1 612
Pr(D|X,«a,0,1) = H W exp {_W {log I; — log(ad; 6)} } (1)

where « is the unknown proportionality factor, and the distances depend on the protein conforma-
tion, i.e. d; = d;(X).

This example illustrates two points: First, it is straightforward to write down the likelihood
function. Second, one typically needs to introduce auxiliary parameters, such as ¢ and «. Both
are required to describe the measurements, but cannot be determined experimentally. In standard
methods, such parameters need to be set empirically, which can bias the results, and adds to the
problem of structure validation [11,12]. In Bayesian theory, such nuisance parameters are treated
in the same way as the coordinates: They are estimated from the data by applying Bayes’ theorem
on the joint parameter space.

Bayes’ theorem requires that we assign prior probabilities for the conformational degrees of
freedom and the nuisance parameters. Using arguments from statistical physics, it turns out that
Pr(X|I) is the canonical ensemble:

Pr(X|I) oc exp {-BE(X)} (2)

where F(X) is a molecular force field encoding chemical information on bond lengths, bond angles,
etc.; (0 is the inverse temperature. In the simplest case, the prior probabilities for the nuisance
parameters are uniform distributions, and the posterior distribution for all unknowns is:

Pr(X,a,0|D, ) o a~ o~ "+ exp{—ﬁE(X) _ 2*12 S log I; 1og(ad;6)]2}_ 3)
(2 X

Hence, probability calculus formally solves our structure determination problem from NOE data
given in the example: The posterior probability distribution represents the complete information
on the possible conformations of the molecule, as well as on the values of our nuisance parameters,
«a and o in this case.

ISD enables users to infer the 3D coordinates of proteins along with its structural uncertainty
using various types of experimental NMR data, such as assigned NOEs or RDCs. To this end, the
program sets up the posterior distribution for all unknowns in a similar way as shown above and
uses Markov chain Monte Carlo techniques to explore that distribution starting from an extended
conformation.
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Figure 2: Gibbs sampling scheme used to generate samples from the posterior probability for protein conformation
X and nuisance parameters a and o. Gibbs sampling is an iterative scheme that, upon convergence, produces
samples from the full posterior distribution. The nuisance parameters can directly be drawn from their posterior
probabilities. To update the conformational degrees of freedom we employ the HMC algorithm. This algorithm
uses molecular dynamics [14] to generate a candidate conformation which is accepted according to the Metropolis
criterion [15]. The molecular dynamics is defined by the negative log-posterior probability with fixed nuisance
parameters.

3 Algorithm

For realistic problems, the posterior probability is a very complex mathematical function. It is
defined over a space of typically several hundred dimensions, which makes it impossible to either
visualise the probability directly or to analyse it analytically. Therefore, we need to employ numer-
ical methods to analyse the posterior probability. A conceptually simple way to investigate a high
dimensional probability is to draw samples from it in such a way that the distribution of samples
follows this probability. The samples can then be used to calculate most likely values of parame-
ters, averages, variances, etc. [13]. Therefore in the ISD framework, structure calculation amounts
to the generation of random samples of the 3D coordinates and auxiliary parameters from the
joint posterior probability, Pr(X, a,o|D, I) in the example above. This differs fundamentally from
conventional structure calculation algorithms because the uncertainty of the structure is explicitly
taken into account, and nuisance parameters are not kept fixed.

The stochastic sampling scheme

We generate posterior samples (X &) k), a(k)) by using a hierarchical “Gibbs sampling” scheme
that combines several Markov chain Monte Carlo strategies. The Gibbs sampling procedure [16]
facilitates a split-up of the sampling problem into several steps. Each parameter class, X, a, and
o, is sampled sequentially conditioned on the current values of the other parameters (figure 2). In
order to apply a Gibbs sampling scheme, we need to be able to simulate the conditional posterior
densities for the nuisance parameters and the coordinates. For some distributions, e.g. a normal
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Figure 3: Replica-exchange Monte Carlo algorithm. We embed the Gibbs sampler (figure 2) in a Replica-exchange
Monte Carlo scheme which simulates a sequence of “heated” replicas of the system. Two generalized temperatures,
A and ¢, control the shape of the likelihood function and of the prior distribution, respectively. For A = 1 the
data are switched on, for A = 0 they are switched off. For ¢ = 1, the canonical ensemble is restored as prior
probability [cf. Eq. (2)]. For ¢ > 1 physical interactions are gradually switched off and the prior probability
approaches a flat distribution over conformation space. We arange the replicas in such a way that first the data
are switched off (by gradually decreasing \). In the other half of the arrangement, we additionally switch off the
physical interactions by increasing q.

or log-normal distribution, this can be done by using random number generators. To sample the
highly correlated 3D coordinates, however, we need to employ more elaborate techniques such as
the Hybrid Monte Carlo (HMC) method [17].

Replica-exchange Monte Carlo

For complex systems such as proteins, the sampling scheme described so far is likely to get trapped
in one of the modes of the posterior distribution and thus fails to explore the entire parameter
space. These modes correspond to protein conformations that all fulfill the data well. Missing a
high-probability fold would bias our analysis.

A physical system trapped in a metastable state can be melted by increasing its temperature.
For sufficiently high temperatures the system easily explores all regions of the configuration space.
The Replica-exchange Monte Carlo method [18] exploits this observation: It considers a composite
Markov chain comprising several non-interacting copies of the system, so-called “replicas”, each of
which is simulated at a different temperature. Neighbouring replicas are coupled by exchanging
configurations after a number of Gibbs sampling steps (“super-transition”), which significantly
enhances the mobility of the individual Markov chains.

We have extended this scheme by introducing two generalized “temperatures”, A and ¢, to in-
dependently control the likelihood function and the prior probability [19] (figure 3). The parameter
A weighs the likelihood function, and thus controls the influence of the data. We further improve
the sampling by replacing the canonical ensemble with Tsallis generalized ensemble [20-23]. Tsallis
ensemble is based on a non-linear transformation of the force field E(X) and involves a parameter
g which controls the strength of the non-linearity. The transformation is chosen such that high
energy configurations are no longer exponentially suppressed, but follow a power law. This has



the effect that atoms can exceedingly pass through each other, thus facilitating large conforma-
tional changes. During a simulation, states diffuse up and down in the replica arrangement, which
guarantees ergodic sampling of the posterior distribution.

Computational considerations

As argued above, solving an inferential structure determination problem boils down to sampling
conformations from the conformational posterior distribution. That is, the aim is to explore en-
tire distributions of structures, instead of locating a number of low-energy conformers as done in
conventional approaches. Therefore, the ISD approach is computationally more challenging than
standard techniques.

However, thanks to the availability of computer clusters, the time required to infer the structure
of systems that are accessible to NMR techniques can be kept within reasonable limits. In practise,
the calculation time depends on the system size as well as the amount and quality of the data. For
example, few data and/or data of poor quality typically result in uncertain structures — as common
sense would suggest. That is, the corresponding conformational distributions are severely spread
out and thus require more samples (i.e. more computer time) to be adequately represented. In
contast, exploring the distribution of well defined structures can be fast as few samples may be
sufficient to descibe the structural uncertainty. Though the program works on desktop PCs, we
strongly recommend running ISD on a computer cluster. To our experience, the calculation time
typically ranges from 1 day to 1 week, when using a Linux cluster with 50 nodes.

4 The ISD software package

The program ISD [24] implements the methodology outlined in the preceeding sections. ISD is
based on an object-oriented software library written in the programming languages Python [25]
and C. Python is an object-oriented language and features an advanced language design. It is open
source, offers strong support for integration with other languages, and is easy to learn. C is well
known for its performance.

Time critical routines, such as the computation of the energy of physical interactions within
a molecule, are written in C for optimal performance. So-called “wrappers” glue the C to the
Python world thus enabling the use of C functions seamlessly from within Python. Using this
hybrid approach, we benefit from both Python’s advanced language design, and the performance
of C.

4.1 License

The ISD distribution comes with a free academic license. If you use ISD you must register at
http://www.bioc.cam.ac.uk/isd and accept the following license agreement:

The Inferential Structure Determination (ISD) software library. Authors: Wolfgang Rieping and
Michael Habeck. Copyright (C) Michael Habeck and Wolfgang Rieping. All rights reserved.



ISD is provided “as is” without warranty of any kind, expressed or implied, including, but not lim-
ited to the implied warranties of merchantability and fitness for a particular purpose or a warranty
of non-infringement. Distribution of modified versions of any of the modules of ISD is prohibited
without the explicit permission of the copyright holders.

The information in this software is subject to change without notice. We do hope, however, to
get responses from users, especially when errors have been found.

4.2 References

If you use the program, please quote the following reference(s):

1. Wolfgang Rieping, Michael Habeck, Michael Nilges (2005): Inferential Structure Determina-
tion. Science 309:303-306

4.3 Online resources

Web site: Please visit our web site at http://www.bioc.cam.ac.uk/isd, which contains more infor-
mation on ISD and related topics.

Discussion group: For those of you who are interested in ISD or who would like to share their
experience with other users, please join our ISD user group at http://groups.google.com/group/isd-
discuss.

4.4 Installation
4.4.1 System requirements

As already mentioned, ISD is computational more challenging than conventional structure calcu-
lation techniques. Though the program runs on desktop PCs, we therefore strongly recommend
using a computer cluster in order to keep the calculation time within reasonable limits.

ISD has been tested on different Linux environments (RedHat, Centos, SuSE, Ubuntu, Gentoo
and Fedora Core). Memory and disk requirements depend on the model that is used to analyse
the data. It also depends on the amount of data and of the size of the system at hand. However,
experience suggests that 512 MB of memory per process is sufficient for most applications.

Running ISD requires the following third party software packages:

1. Python (version 2.3 or 2.4). Python can be downloaded from the Python homepage!. The
installation should be straightforward for most LINUX systems. Please note that according
to some user reports, ISD might hang or crash when used in combination with Python 2.4.x
on some SUSE Systems. In this case, please use version 2.3.x instead. ISD has not been
tested with Python 2.5 yet.

"http:/ /www.python.org
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2.

Numerical Python (version 21 or higher, except version 23). Numerical Python (not to be
confused with the extensions NumPy) is a popular Python module. It can be obtained from
SourceForge?. Go to Download Numerical Python and download the package 01d Numeric.
For installation, please follow the instructions provided with the Python Numeric distribution.

For users who install Numerical Python using the package manager aptitude: please make
sure you install the module numeric as well as numeric-ext.

. Scientific Python. The Scientific Python® (not SciPy!) distribution contains some func-

tionality needed by ISD. For installation, please follow the instruction provided with the
distribution.

Additionally, some features of the program require the following optional modules:

1.

Python Remote Objects. From version 1.1 on, ISD provides an additional communication
module based on the Python Remote Objects (PyRo) protocol. PyRo is open source an can be
downloaded from the PyRo homepage.? Installation of the package does not require special
privileges. Please follow the installation instructions provided with the PyRo distribution.

. Biggles scientific plotting library. The Report feature of ISD creates a PDF document

with summaries and analyses of the calculation results. The feature requires installing the
plotting library Biggles® which is freely available.

. PDFLatex and PDF/EPS tools. The report feature also requires the software pack-

ages pdflatex, epstopdf, and eps2eps, which are installed on many Linux distributions by
default.

. CNS. The program CNS is not required for running ISD. However, we recommend installing

the program, as it greatly simplifies the generation of PDB files with the initial coordinates
needed to initialise a simulation. Otherwise, users need to provide their own PDB starting
structure. Academic users can obtain a free license for CNS from the CNS web site®.

. CCPN distribution. Importing and Exporting data from and to a CCPN project, re-

specively, requires installation of the CCPN distribution”. Please download and install the
full distribution including the API, the FormatConverter, and Analysis. ISD requires the lat-
est version of some helper modules that are part of Analysis. These modules can be installed
after installation of the CCPN distribution by using the CCPN upgrade feature. To do so,
simply start Analysis and choose “Upgrade” in menu “File” and follow the instructions.

. Whatlf, Procheck, DSSP. Optionally, ISD calculates a number of quality scores in order

to validate the generated structures. The report gives a summary of the validation checks.
This requires the programs WhatIf® and Procheck. In addition, ISD calculates probabilities

http:/ /sourceforge.net/projects/numpy
3http://dirac.cnrs-orleans.fr/ScientificPython
“http://pyro.sourceforge.net
®http://biggles.sourceforge.net.
Shttp://cns.csb.yale.edu
Thttp://www.ccpn.ac.uk/downloads/downloads.html
Shttp://swift.cmbi.kun.nl/whatif
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for the different secondary structural states using the program DSSP?. Please note that some
validation/structure scores are available in recent versions of Whatlf only (version 6.0 has
been tested).

4.4.2 Unpacking and testing
To install ISD, please unpack the ISD distribution by using the following command:

tar xvzf isd-[VERSION_NUMBER].tgz

This creates a new directory isd- [VERSION_NUMBER]. You find the Python modules in the sub-
directory src/py of the distribution. XML files that contain force field and topology parameters
can be found in the sub-directory toppar. Two example projects are located in the sub-directory
examples. A PDF file with this manual can be found in the sub-directory manual.

For convenience we suggest adding the following lines to your .cshrc login script:

setenv ISD_ROOT <isd-installation-path>
alias isd <Python-executable> -i $ISD_RO0T/isd.py

Adding the ISD Python modules to your PYTHONPATH is not necessary and might cause
problems during runtime. In order to test whether ISD and the Python environment are setup
correctly, use the command isd --check.

If the installation has been successful, ISD can be started from the the shell with the command
isd. The program provides a number of options, an overview of which is given by the option
--help.

4.4.3 Password-free SSH access

Running ISD on a computer cluster requires that you can log into all machines that are used for
a calculation via ssh without being prompted for a password. A password-free ssh access can be
setup in three steps:

1. Generate a public identity key on the master node by invoking:

ssh-keygen -t rsa

After invoking this command, you will be asked three questions each of which you answer
by pressing the return key. After completion, you should find the key file id_rsa.pub in the
directory ~/.ssh.

2. Copy the key file over to the client node (you are still on the master node):
scp “/.ssh/id_rsa.pub <client-node>:/tmp/.

3. Now, log into the client node and add the key file to the list of machines that are authorized
to do password-free SSH:

Shttp://swift.cmbi.ru.nl/gv/dssp
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cat /tmp/id_rsa.pub >> ~/.ssh/authorized_keys

That’s it. From the master node, you can now connect to the client node for which you have
performed steps 1-3, without being asked for a password.

4.4.4 Python installations on master and slave nodes

ISD supports the use of different Python installations on the master node (from where you run
ISD) and the slave nodes used to do the computation. The name of the Python binary that shall
be used on the slave nodes can be pecfied in the project file (s. keyword python in section 8.3 for
details.)

4.5 What's new in version 1.17
Infrastructure

Communication ISD 1.1 comes with an additional communication module based on the open source
protocol Python Remote Objects (PyRo). The module uses PyRo remote services to perform certain
tasks in parallel. In the case of ISD, such a service is the implementation of the sampling engine.
In the current implementation, all machines that are connected to the same network can be used
for a calculation, provided they have the same architechture and operating system.

The new communcation module is slighty more demanding in terms of installation and setup.
However, compared to the existing method it has the advantage of not requiring a directory that
is shared among all machines. It also causes less network traffic and seems to be more reliable.

Project file The layout of a project file has been reorganised slightly. However, project files created
with version 1.0 work out of the box and do need to be updated. Specifically:

e An additional field data_name has been added to each sub-section under section ” Experimen-
tal data”. The field specifies the name of a dataset to be used internally. If given, the name
will also appear in the PDF report. The new field replaces the variable data_key which is
now only used as a key to access datasets in ISD XML files or a CCPN project.

e The two variables molecule.extended and molecule.randomize were collapsed into a new
field molecule.initial_conformation. The field can be set to EXTENDED, RANDOM or AS_IS.
Please see section 8.4 for further information.

Command line options Version 1.1 comes with a number of new command line options. To get a
full list of options, use ”isd —help”. Among other things, it is now possible to save an ensemble of
representative or most probable structure as PDB files (option —write-pdb). The way in which this
is done is controlled by section ”pdb_files” in a project file. Please see section 9 for details.

Models

Dihedral angles The existing model to analyse dihedral angle information is based on the assump-
tion, that all dihedral angle measurements have the same (unknown) error. The error is estimated
during a calculation. However, the assumption of a common error is not always correct. For exam-
ple, torsion angle predictions made by the program TALOS assign site-specfic error estimates to
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each dihedral angle. Therefore, the model has been extended in order to account for this additional
information.

Non-bonded interactions To speed-up simulations of larger systems, the calculation of non-bonded
interactions involving hydrogen atoms (which contribute significantly to the overall calculation
time) can be disabled. To our experience, neglecting these interactions has only very little impact
on the quality of a structure but leads to a significant calculation speed-up.

Data handling

CCPN data model ISD now interfaces the CCPN data model (API version 1)!° to import data
from a CCPN project. We support the import of sequences, NOEs, distances, RDCs and dihedral
angles. On the export side, we currently support the export of a probabilistic structure ensemble.
The project file has been extended and several new command line options were added to the main
program isd that controls the CCPN import/export feature.

Migrating version 1.0 ensemble and history files A migration feature allows to convert version 1.0
ensemble files to the current format. Please see section 5.4 for more details.

Manual and Report

Both manual and report have been extended and revised. The validation module has been extended
and now uses the program DSSP to derive the most likely secondary structure assignment of the
molecule at hand. The module now also supports the program WhatCheck (the smaller brother
of Whatlf) for calculating validation scores. The project file provides a switch to choose between
both programs.

Sampling engine

The length of the initial period during which the step size (used by the MD part of the hybrid
Monte Carlo engine) is adjusted automatically, can now be set in the project file. After that period,
an average step size is used which is kept fixed thoughout a calculation.

Miscellaneous

Example Python scripts A couple of example Python scripts illustrate how to use the ISD Python
library to manipulate data and analyse results etc. The scripts are accessible on the website.

Minor Extensions and changes In the case of a simulation crash, remote processes terminate automat-
ically, i.e. the system is not clogged up by zombie Python processes. The reader for X-PLOR/CNS
tbl files now copes with RDC restraints.

Bug fixes Bugs mentioned on the website and in the discussion group (reader for X-PLOR/CNS
TBL files, report generation, issues with the "shared" communcation module in certain network
environments) have been fixed.

198ee http://www.ccpn.ac.uk
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Figure 4: Overview of the architecture of ISD. On the user-side, ISD (red) manages the import of the experimental
data (grey), the setup of a replica-exchange calculation (blue), as well as the generation of a report providing
analyses of the calculation results (green). The ISD software library (amber) provides the functional basis for
performing these steps.

Changes The command line option —-template to create a new project file has been renamed to
--new-project. The option --template is still available though.

5 Program and software library

Figure 4 shows the principal design of ISD. The object-oriented software library shown in amber
forms the heart of the program. It provides the functionality needed for setting up a project,
performing a structure calculation, as well as analysing the results. Each of these steps is controlled
by a “project file” depicted in red. The project comes with default parameter settings which have
proven suitable for inferring biomolecular structures based on various NMR experiments. The
experimental data are incorporated into a calculation by setting-up a respective likelihood function,
one for every dataset. The program does all these steps fully automatic — the user only needs to
specify information on the type and location of the data.

5.1 Command line options

Provided the program has been installed correctly, ISD can be run from the command line by using
the command isd. The program provides a number of command line options, an overview of which
is given by the option --help:

e The command line option --check verifies that the ISD Python modules can be imported
successfully. It also tests your Python environment. If any of these tests fails, please verfiy
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your software setup.

e The option ——new-project creates a new project file, see chapter 8.1 for details. From version
1.1 on, this option replaces the option --template that has been used in version 1.0.

e A PDF report that summarises the simulation results can be generated with the option
—--report. Chapter 10 discusses this feature in detail.

e To generate PDB files with the coordinates of the ensemble members, use the option ——write-pdb
with a project file as argument. Files are stored in the current directory. See section 9 for
more details.

e The option --quit with a project file as argument can be used to quit a calculation that is
running in the background (cf. section 8.8.2).

e Features introduced with a newer version of ISD may require an extended data format for
representing the simulation results. The option --migrate modifies ensemble and history
files that were generated with an older version of ISD in such a way that they are compatible
with the current version. See section 5.4 for more details.

e The option --ccpn-info, called with a CCPN project as argument, lists the keys of all objects
that can be read from the CCPN project. The keys are required by ISD in order to locate a
particular object (e.g. a molecular system or restraint list) within a CCPN project.

e The option --ccpn-export with a project file as argument exports entities such as structures
to the CCPN project specified in the project file. See section 8.7 for details.

5.2 Supported data formats

ISD represents experimental data with a format based on the eXtensible Markup Language (XML)
[26]. The XML standard allows the definition of portable and human readable formats for infor-
mation exchange and facilitates the validation of documents. The program provides XML data
formats for describing the molecular topology (following the IUPAC naming system [27]) and the
experimental NMR, parameters.

In addition to XML, the data can also be specified in X-PLOR/CNS tbl format (NOEs/distances,
dihedral angles, and RDCs), TALOS format (dihedral angles) and via a CCPN project (s. below).
During the initialisation of a calculation, proprietry data formats are converted into ISD XML
format and stored in the directory [WORKING_PATH]/data.

5.3 CCPN data model

Most NMR software packages use proprietary formats for data storage which need to be inter-
converted for transferring data between different applications. This usually requires manual inter-
vention and can lead to a loss of information since the data conversion is often incomplete. The
CCPN data model [28] alleviates these problems by defining a storage model that integrates all
information emerging in a structure determination project in a common framework. This includes
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Figure 5: Distributions of the negative log-posterior probabilities of the replicas. The color encodes the position
in the replica chain (i.e. “temperature”). Blue: true posterior distribution, red: “high-temperature” posterior
distribution.

details on the molecular system and experimental data such as NOEs or residual dipolar cou-
plings. The model can also handle the calculation results, most importantly the three-dimensional
coordinates of the structures.

ISD supports the import of data from and the export of the calculation results, most impor-
tantly the conformational ensemble, to a CCPN project. This enables users, for example, to run a
calculation using restraint lists that were created with other programs that support CCPN, such
as the program ARIA [29,30] for automated NOE assignment, without the need to first convert
the data to ISD XML. During the initialisation of a calculation, data read from a CCPN project
are converted into ISD XML format and stored in the directory [WORKING_PATH]/data.

5.4 Migrating projects from older versions

Features introduced with newer versions of ISD may require an extended data format for adequately
representing the simulation results. A project can be migrated from an older version to the current
version of the program, by using the command line option --migrate. The migration feature
modifies the following files:

1. Ensemble files [FILE_ROOT] _n, where n depends on the number of replicas;
2. The project history file [FILE_ROOT] _history.

Please note: The files above are modified in-place, i.e. no backup files are created. Therefore,
please make sure you backup your files before using migrating.

5.5 Replica-exchange calculation

Setting up an ISD replica-exchange simulation only requires specifying the generalised temperature
values (A, q), as well as the number of Gibbs sampling steps per super-transition. The default
settings are suited for standard systems, however, depending on the system size and the amount
and quality of the data, “fine-tuning” of the temperatures might be neccessary in order to get a
reasonable rate of convergence.
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*** Pyro Name Server *x*

Pyro Server Initialized. Using Pyro V3.7

Name server listening on: (°0.0.0.0’, 9090)

Broadcast server listening on: (’255.255.255.255°, 9090)

URI is: PYR0://192.168.5.123:9090/c0a805bd77d61bc52485597506aacebae2
URI written to: /tmp/Pyro_NS_URI

Name Server started.

Figure 6: Startup of a Python Remote Object name server. If multiple simulations are to be run on the same
network, it is sufficient to start the name server only once. The name server listens on port 9090, which needs to
be open in case you run a firewall.

5.5.1 Mode of operation

As described in section 3, each super-transition requires a number of Gibbs sampling updates for
every replica. Because communication between the replicas is rare (it is only required upon the
exchange of states), a replica-exchange scheme is particularily suited to be run on multiple machines
in parallel. The setup of a parallel simulation is straightforward: All one needs to do is to specify a
list of available machines. ISD then launches the required services on each of these machines using
the communication method chosen. During a calculation every remote process receives requests
from the master to perform a number of Gibbs sampling steps at a given temperature. ISD then
collects the results, attempts an exchange of states, and starts a new super-transition. The parallel
setup is completely transparent to the user as the main program runs locally on his desktop machine.
The mixing efficiency of the replica algorithm depends on the number of, and the rate of exchange
between the replicas. Therefore, the temperatures A and ¢ need to be chosen carefully as they
control the overlap between the posterior distributions and hence the rate of exchange. The default
settings typically result in an rate of exchange between 20 and 70 percent (figure 5). For optimal
performance, the number of available machines should be equal to the number of replicas (default:
50).

5.5.2 Communication protocols

ISD supports two communication mechanisms for distributing a calculation on a computer cluster.
The communication modules provide the means to exchange data between the host on which you
run ISD and the remote machines that are used to perform the calculation.

File-based method “shared” The communication method ¢ ¢shared’’ uses files and a shared direc-
tory that is accessible from all machines to pass data between the nodes. The method does not
require additional software modules to be installed, and is therefore easy to use, but can become
inefficient if the machine that hosts the shared directory is loaded. In some cases, if NFS (used to
share the directory) is not setup properly, NFS-related timing issues can cause simulation hang-ups.

Python Remote Objects “pyro” From version 1.1 on, ISD supports a new communication method
¢ ‘pyro’’ based on the Python Remote Objects (“PyRo”) protocol. PyRo uses a name server to
register remote services (provided by “servers”) that can be used by a “client” in order to perform
a certain task remotely. In case of ISD such a service is the implementation of the sampling engine,
and the main program “isd” is the client. With the current implementation, all machines that
are connected to the same network can be used for a calculation, provided they have the same
architechture (e.g. 64-bit PC Linux). Data exchange is done via the TCP/IP protocol and requires
several ports to be open. In a nutshell, the name server uses port 9090, the servers (i.e. the
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machines which you use for a calculation) listen on ports 7766 to 7865. Therefore, in case your
system operates a firewall, please make sure the following ports are open (TCP and UDP):

1. Port 9090 on the machine that runs the name server;

2. Ports 7766-7865 on the machines that are used for a calculation.

For more detailed information, please see the PyRo manual.

PyRo name server Prior to a calculation, the name server needs to be started. This can be done by
running the script Pyro-[version number] /bin/pyro-ns -k &. The name or IP address of the
machine running the name server needs to be specified in the project file (see section 8.3). Though
the command line option -k is not required for starting the name server, we strongly recommend
using this option as otherwise your name server could accidentially get shut down by other users.!!

As mentioned above, the name server is used to register services provided by the servers. To
ensure that multiple servers can access the name server simulatenously, please set the environment
variable PYRO_MAXCONNECTIONS in your .cshrc (or similar) to 1000.

Because independent calculations (running on the same network) can share the same name
server, it is sufficient to start the name server only once. For example, the name server could be
started automatically during boot time on some machine with IP address, say, 192.168.5.1. All users
could then use the same name server simply by specifying the IP address 192.168.5.1 in their project
files. The output of a successful startup of a PyRo name server is shown in figure 6. In the case a
name server is already running on some machine, use the script Pyro- [version_number] /bin/pyro-nsc
listall to obtain the IP address of that machine.

6 Supported NMR parameters

To incorporate experimental data into a calculation, a “theory” is used to calculate the ideal value
of a measurand. The ideal value depends on the three-dimensional coordinates of a structure
and, depending on the theory, a set of theory parameters. The program also supports geometric
parameters directly, such as distances or dihedral angles.

The current version of the program supports most of the commonly used experimental NMR
parameters (cf. table 1). The NOE contains information about the spatial vicinity of protons and
is the most important source of structural information. It has been utilised to determine virtually
all of the NMR structures currently stored in the Protein Data Bank (PDB) [32]. Residual dipolar
couplings (RDC) are less informative than the NOE but can be very useful for obtaining information
on the global fold of the protein [33] and for validation a structure. Three-bond scalar couplings are
routinely measured to obtain precise information on the local conformation of a biomolecule [34].
In addition to experimental parameters, the user can specify structural information directly in the
form of distances and torsion angles.

6.1 NOE intensities

ISD uses the isolated spin pair approximation to calculate experimental NOE intensities from the
three-dimensional coordinates of a structure. In case the NOE involves atoms that are part of

"This issue is dicussed in more detail on the PyRo hompage.
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Parameter Structure Theory Error nf

NOE intensity  distance ISPA Log-normal 2
Scalar coupling  torsion angle Karplus curve  Normal 4
RDC bond orientation Saupe tensor! Normal 6
Chemical shift torsion angle Talos? Von-Mises® 1
Distance distance None Log-normal 2
Hyrdogen bond distance None Log-normal 1
Disulfide bridge distance None Log-normal 0
Dihedral angle  torsion angle None Von-Mises 1

Table 1: Experimental NMR parameters. Left panel: Relationship between NMR parameter and structural
parameter. Right panel: NMR parameters supported by ISD. TNumber of nuisance parameters to be estimated
for a particular dataset. 'RDCs depend on the orientation of the associated bond angle with respect to an external
frame of reference. Experiments establish this reference by using specific media to partially align the molecules.
The Saupe tensor describes the alignment. 2Talos [31] is computer program that predicts backbone torsion angles
from chemical shifts o. 3The von-Mises distribution is the “normal distribution for periodic variables”.

equivalent groups (basically methylene and isopropyl groups), the partial NOE volumes are added
up, and the observed NOE intensity lexp is calculated as

Iexp(X) = ’YZ dij(X)_Ga
1<J

where X denotes the three-dimensional coordinates of the structure, d;;(-) the distance between
atoms ¢ and j, and - the scale of the measured intensities. The scale - is a typical theory parameter:
It cannot be determined experimentally but is required in order to match calculated and measured
values. During the course of a calculation, the scale is estimated from the data.

6.2 Scalar couplings

The Karplus curve is used to describe the observed three-bond scalar coupling constants 2J in terms
of the intervening torsion angle ¢:

3J(¢) = Acos® p + Beos g + C.

The coefficients A, B, C of the Karplus curve cannot be determined experimentally and, therefore,
need to be estimated from the data (see [34] for details).

6.3 Residual dipolar couplings

The Saupe or alignment tensor S is used to describe the observed dipolar couplings D in terms of
the inter-atomic bond vector r:
D =r'Sr. (4)

The alignment tensor is symmetric and trace-less, ST = S, tr[S] = 0, and can be parametrized
using five independent elements s1,...,s5. The explicit parameterization of the alignment tensor

20



is:
81 — 82 83 84
S = 53 —S81 — S92 S5
S4 S5 282

The alignment tensor describes the average orientation of the molecule in the alignment medium and
also quantifies the degree of alignment. The average orientation can be calculated by diagonalizing
the tensor: S = ULUT. The rotation matrix U describes the average orientation. The eigenvalues
of S (i.e. the elements of the diagonal matrix L) can be transformed into an axial and rhombic
component of the alignment tensor.

The tensor elements cannot be determined experimentally and, therefore, need to be estimated
from the data. Several heuristics such as the histogram method [35] have been developed that allow
for an approximate estimation of the axial and rhombic components from the dipolar coupling
data alone. When using ISD, such preliminary analyses are superfluous, because the unknown
tensor elements are treated as nuisance parameters and estimated during the actual structure
calculation [33].

7 Error models

Measured and calculated NMR, parameters never match. Deviations of measured from calculated
data are the result of experimental noise and, often more important, approximations in the theory
used to calculate the data from the three-dimensional coordinates of a structure. For example, most
expressions for calculating NMR, parameters neglect the dynamics of a molecule, which can lead
to systematic deviations of calculated from measured values. The magnitude of these deviations
is a priori unknown. In a probabilistic framework, this lack of knowledge is described by an error
model. ISD supports various error models, which shall be descibed in the following paragraphs.

7.1 Log-normal

The lognormal distribution can be considered as the “Gaussian for positive quantities” and is better
suited for describing positive measurands (such as distances or NOE intensities) than, for example,
a Gaussian or a probability distribution that corresponds to a flat-bottom potential (see [10] for
details). The density function of a lognormal distribution is

1 1 A
Pr(Aexp|Acate(X),0) = ——— ex {—10 26’“’},
( exp‘ CalC( ) ) /27TO'AeXp p 20_2 g Acalc (X)
where Aexp and Acale(X) denote the observed and calculated NMR parameter, respectively. The
error parameter o relates to the width of the distribution. As mentioned above, o quantifies the
degree to which the data can be explained on the basis of a single structure, and a given theory.
However, is a priori unknown and needs to estimated from the data.

7.2 Gaussian

ISD uses a normal distribution to model the errors of scalar and dipolar coupling constants. The
magnitude of these errors is a priori unknown, and is described by an error parameter ¢ which
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relates to the width of the distribution. The density function of the normal distribution is

Pr(Aexp ’Acalc(X)a U) =

1
€xp {_M(Aexp - Acalc(X))z} )

2mo

where Aexp and Acaie(X) denote the observed and calculated NMR parameter, respectively.

7.3 Von Mises

The von Mises distribution is the equivalent of the normal distribution for periodic variables. ISD
uses this distribution to model the deviations of measured from calculated torsion angles. These
deviations are the result of experimental noise and errors in predicted torsion angles (e.g. if they
are predicted from chemical shifts). The magnitude of the deviations is a priori unknown, and is
described by a shape parameter x which quantifies the precision of the torsion angle restraints.
The density function of the von Mises distribution is

Pr(‘PeXP‘SOcaIC(X)v K) = 27r110(,£) exp {"f COS(SOexp - “Pcalc(X»} )
where Yexp and @eaic(X) denote the observed and calculated torsion angle, respectively. I is the
Bessel function of the first kind. If the estimated shape parameter x has a negative sign, this
indicates that a common phase of 7 needs to be added to the torsion angles to obtain the best fit.
If an error estimate of the observed torsion angle is available, it can be used to weight the mea-
surement. The von Mises distribution above is then replaced with a weighted von Mises distribution
of the form:

1

Pr({@exp } [{#cale(X)}, £, {w}) = L 27T (ruwy) exp {mei €08 (Pexp,i — Socalc,i(X))}

for a set of observed and calculated angles pexp i and @calc; with weights w; > 0. The global shape
parameter is still estimated in a way similar to the unweighted von Mises distribution.

8 Setup of a calculation

The purpose of a project setup is to read-in the data and to create the data structures that represent
the joint posterior distribution of the structure determination problem. The program also requires
some information on the computing environment. The complete parameter set necessary to setup
a project is contained in a single file, the project file. Technically, a project file is a small Python
script that is executed internally in order to create all data structures that are require for running
a calculation. The command syntax of Python is clear and simple which makes the project file
easy to read and modify. Please note the following characteristics of Python’s command syntax:

e Expressions are case sensitive.
e Indentation matters, do not use leading whitespace at the beginning of a line.

e Comments start with a hash symbol (#)
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Strings are defined with either a single (?) or double (") quotation mark.
The decimal point in floating point numbers is a dot, not a comma.
The value of a boolean variable can be True or False (case sensitive).

Python dictionaries (“hash tables”) map keys to values.

Example: d = {’name’: ’mr smith’, ’age’: 123}

The project file contains comments which explain each of the settings in more detail. After creation
of a project file, you can use your favourite text editor to modify the simulation settings.

8.1

Creating a new project

A new project file with the default settings can be created by calling ISD from the command line:

isd --new-project my_project.py

This command reads-in the default project file project_template.py located in the directory
$ISD _RO0T/src/py/data, and saves it under a new name ("my_project.py“ in this example). The
default project file can be modified in order to use certain parameter settings by default.

Please note: project filenames must not start with numbers or special characters.

8.2

General settings

Section “General settings” of the project file summarises general parameters, most of which are
mandatory and need to be specified for every simulation (unless these settings are preset in the
default project file locate in $ISD_RO0T/src/py/data):

1.

2.

A user-defined name of the simulation can be specified in the field name.

The variable working path refers to the main directory of your project. ISD uses this di-
rectory to store all results, primarily the structure ensembles and a report file (in the sub-
directory working path/analysis).

. The directory temp_path is used to store temporary files created during a simulation.

Set the variable shared_temp_path to True if the temporary path is shared via NFS, i.e. if
it can be accessed from all machines. Please note that the temporary path has to be shared
in case you choose the communication method “shared”.

. The field cns_executable points to the full path of a binary of the program CNS. CNS is

required only if a sequence file (.seq) is used to define the molecule (cf. Section 8.4), in which
case CNS is called to create a PDB file with the coordinates of an extended conformation of
your molecule.
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6. The fileroot is used to compile the name of all output files. For example, if the fileroot is

8.3

¢

set to ¢ ‘my_protein’’, PDB files are named ¢ ‘my_protein_1.pdb’’ etc.

The floating point variable temperature defines the physical temperature in Kelvin at which
the measurements have been carried out. The default value is 300 K.

. The parameter naming_system specifies the atom name nomenclature convention used in the

sequence PDB file and data files. ISD supports the IUPAC standard and the CNS naming
convention. Please note that internally, ISD uses the ITUPAC naming system. During the

startup of a simulation, atom names of sequence and data file are automatically converted to
IUPAC.

Replica-exchange algorithm

As already discussed in Section 3, optimal parameter settings for a replica-exchange calculation
depend on many factors, most importantly the size and quality of the data, and the size of the
molecule. The section “Replica-exchange Monte Carlo” of the project file summarises the param-
eters that control the performance of a calculation:

1.

The variable n_replicas specifies the number of replicas to be simulated in parallel. For most
systems, 50 replicas has proven to be sufficient. However, larger systems may require a larger
number of replicas in order to converge. The choice of the number of replicas is discussed in
more detail in Section 11.1.

. The number of Monte Carlo samples to be calculated in total can be specified in the field

n_samples. By default, ISD generates 10000 samples. However, we recommend running ISD
ad infinitum and regularily check the calculation for convergence by creating a report (see
11.1 for more details).

. The field hmc.steps stores the number of Hybrid Monte Carlo steps that are generated

between two attempts to exchange neighbouring states. Larger numbers improve the mixing
efficiency, and thus the rate of convergence of a calculation, but reduce its speed. Experience
shows that values down to 10 produce good results.

. The number of molecular dynamics steps (ISD employes torsion angle dynamics) generated

during Hybrid Monte Carlo in order to update the molecular coordinates can be specified in
the field hmc.md.steps. The default values is 250.

. The stepsize of the leapfrog integration scheme used in the Hybrid Monte Carlo algorithm

is a parameter that is critical for the efficiency of conformational sampling. By setting the
field adjust_stepsize to a boolean value, our automatic stepsize heuristic can be switched
on (True) or off (False). It is advisible to use the heuristic because the optimal stepsize
differs for different heat baths and different systems. However, in the production run the
stepsize adjustment should be turned off to guarantee proper sampling (detailed balance).
If adjust_stepsize is set to an integer, the stepsizes will be frozen when the number of
super-transitions exceeds the specified number. For every heat bath, the stepsize will be fixed
to the median value of the adjusted stepsizes.
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10.

11.

12.

13.

. Associated with each replica is an “ensemble” which represents the information generated in

that replica (cf. Section 12). Files with the ensembles are written to disk every save_interval
samples. The files are named as follows: [FILE ROOT]_n where n denotes the index of the
respective replica ranging from 0 to n_replicas-1.

By default, ISD only writes the two ensembles to disk that represent the lowest and highest
temperature replica. Set the parameter full_save to True in case you wish to save the
intermediate ensembles as well.

. If an existing calculation is restarted, ISD normally loads the value of all auxiliary parameters

from the ensemble files stored on disk. Therefore, modification of any auxiliary parameter in
a project filed has no effect as they will be overridden with the values stored on disk. To use
the parameter values specified in the project file, set the variable override_parameters to
True.

. By default, the Monte Carlo engine runs in threaded mode, so that the user can access and

control the simulation during runtime by using the interactive Python shell. A calculation can
also be run in the background (e.g. by using the UNIX command nohup). This is necessary,
for example, when ISD shall not be run inside a terminal window. In this case, set the variable
background to True.

The name of the Python binary used on the remote machines can be specified in the field
python. This can come in handy if the Python installation on the remote machines differs
from the one on the local machine on which ISD has been started.

The priority of the ISD services started on remote machines can be controlled with the
parameter niceness. The default value is 0, i.e. services are run with the highest priority.

[3X4 ¢

The communication method can be either ¢‘shared’’ or ¢ ‘pyro’’ (see 5.5.2 for more de-
tails). If set to ¢ ‘shared’’ the directory used as temporary path needs to be accessible from
all machines and the variable shared_temp_path (see above) needs to be set to True. If the
¢ ‘pyro’’, the field name_server (s. below) points to the machines
that runs the PyRo name server.

communication method is

The list host_list contains the names of all machines that shall be used for a calculation.
Machine names or IP addresses need to be given as a list of comma-separated strings, for
example

sim.replica.host_list ’192.168.0.1°, ’localhost’, ’machineX’

or

sim.replica.host_list (°192.168.0.1°, ’localhost’, ’machineX’)

In order for ISD to work properly, each of these machines needs to be configured in such a
way, that an SSH connection does not prompt for a password. Please see section 4.4.3 for
detailed instructions of how to do that.

For making use of multi-processor machines, simply add the relevant machine names or 1P
addresss n times to the list, where n denotes the number of processors that shall be used.
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14. If the machines do not share a common temporary directory, individual directory names
can be listed in the dictionary temp_paths. For example, a dictionary for specifying the
temporary directories ¢ ‘/tmp’’ and ‘‘/scratch’’ for the two machines ‘‘localhost’’
and ¢ ‘nodel’’, respectively, would look as follows:

temp_paths = {’localhost’: ’/tmp’, ’nodel’: ’/scratch’}

Temperature settings The parameter blocks replica.weight_schedule and replica.prior_schedule,
respectively, contain variables that control the generalised temperatures for the likelihood function
and the physical prior distribution. The temperatures 7; are calculated as a function of the replica
index 4, ranging from 1 to the total number of replicas, using the function

T; = Cexp {scale - i} .

The normalisation constant C' is chosen such that the temperatures lie within the limits specified
in the fields initial and finial of the respective block. A scale quantifies the non-linearity of
the temperature curve: Small scales result in an almost linear relationship between replica index
and temperature, whereas larger values lead to a curve that is more pronounced at the beginning
or end, depending on whether the initial temperature is smaller or larger than the final one.'?

8.4 Molecular system

The section “Molecular system” summarises the information required to define the sequence of your
molecule and the conformation used as a starting structure of a calculation.

1. The field filename refers to the file which contains the sequence or the initial conformation
of the molecule. A filename is not required if the sequence is read from a CCPN project.

2. The format of a sequence file can be PDB, SEQ (default), XML or CCPN. A sequence file in SEQ
format contains the sequence in three-letter codes. If the sequence is read from a CCPN
project, a SEQ, or an XML file, ISD runs CNS to create an extended starting structure with
the correct sequence.

3. In case you work with a SEQ sequence file, the variable first_residue _number can be used to
change the numbering of the first residue. This can come in handy if the residue numbering
of data and sequence have a difference offset.

4. In case you wish to read the sequence from a CCPN project, specify the CCPN key of the
molecule in the field key. Keys of objects that can be read from a CCPN project can be
obtained by using the ISD command line option --ccpn-info (see section 8.7 for details).
The import of the molecular coordinates from a CCPN project will be supported by a future
version of the program.

5. The field initial_conformation specifies the conformation that is used as a starting struc-
ture. Set to EXTENDED or RANDOM to start from an extended or random conformation, respec-
tively. Alternatively, you can use the coordinates stored in the PDB file as starting structure.
In this case, set the field to AS_IS.

121f the parameter initial is larger than the value specified in the field final, ISD uses a negative scale.
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##

## Experimental data ##

##

##

## BLOCK START

##

## data_filename: (string) Name of file that contains the data.

## data_format: (const) Data format; either XML, TBL; default: XML
## data_key: (string) Key to identify dataset
## data_name: (string or None) Unique name for dataset. If set to None,

##

data_type
data_filename
data_format
data_key
data_name

data_key is used as name. Must not contain white space.
NOESY
3
TBL

713C’
’NOE’

## BLOCK END

Figure 7: All sections that relate to the experimental data share a common header. The header contains fields to

specify informatio such as the type of a dataset and the location of its data file.".

6. The field exclude hydrogens controls if non-bonded interactions for hydrogen atoms are

8.5

taken into account (True) or not (False). Non-bonded interactions are computationally
expensive to evaluate. To our experience, neglecting non-bonded interactions of hydrogen
atoms does not result in a serious loss of quality of the structures (RMSD to crystal structure,
bumps, etc.) but leads to a significant speed-up of the calculation (about a factor of 1.5 and
more depending on the system size).

Adding data

The section “Experimental data”, an excerpt of which is shown in figure 7, contains fields that need
to be filled-in in order to provide information such as the type and location of your data. The lines
## BLOCK START and ## BLOCK END indicate the beginning and end, respectively, of the definition
of a dataset. Common to all types of data are the following variables:

1. The name stored in the field data_filename points to the location of the file that contains

for data.

. The variable data_format specifies the format in which the data are stored. The format can

be ISD XML (format XML) or CCPN (format CCPN). Depending on the type of a particular
dataset, ISD supports other formats, such as XPLOR/CNS TBL and TALOS format (cf. section
5.2).

. A data key needs to be specified only if your data are stored in ISD XML format or inside a

CCPN project. ISD uses this key to retrieve a datasets from an XML file or a CCPN project.
Both data sources can contain multiple datasets. It is not required for the other formats.

. Assigned to each dataset is a unique name, which can be specified in the field data_name.

The name can be set to None (default) in which case the data key is used as name. In this
case, please make sure the key is unique.
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The remaining fields depend on the type of a particular dataset and are discussed below. The
default settings should work in most situations. To add a dataset, fill in the required parameters
in the respective section, and uncomment the line ## sim _data.append(specs).

In order to add more than one dataset of the same kind, copy the block of instructions between
the lines ## BLOCK START and ## BLOCK END. Make sure the line sim_data .append(specs) is not
commented out for any dataset, i.e. remove any hash (#) symbol, when present.

8.6 Data specific settings

As mentioned above, the project file contains sections with parameters specific to each of the
supported data types. The following paragraphs discuss these sections in more detail.

8.6.1 NOE intensities

Parameters required to setup the model that describes assigned NOE data are summarised in
section “NOE data”. The section defines the following variables:

1. theory.scale.update,
2. error_model.error.initial,
3. error_model.error.update.

The theory (cf. Section 6.1) ISD uses to calculate NOE intensities introduces a scale in order to
match calculated and measured intensities. It cannot be determined experimentally, and needs to
be estimated from the data.

The log-normal distribution which models the deviations of calculated from measured inten-
sities involves an error parameter. It depends on various factors and cannot be determined a
priori. Like the scale, ISD estimates the error from the data, and can thus provide a measure of the
quality of a dataset. Estimation of the quality of a dataset is discussed in more detail in Section 11.2

By default, the estimation of scale and error is activated. It can be turned off by setting the
variables theory.scale.update and error_model.error.update, respectively, to False. In case
the error shall not be estimated from the data, set the variable error_ model. error.initial
to the relative error of the NOE volumes measured on a distance scale between 0 and 1, i.e. 0.3
corresponds to a relative distance error of 30 %.

8.6.2 Distances

Fill-in the parameters in section “Distance data” to supply ISD with information about inter-atomic
distances in your molecule. This section defines the following variables:

1. theory.scale.update,
2. error_model.error.initial,
3. error_model.error.update.

28



As in case of NOE data, a log-normal distribution is an appropriate error model to describe the de-
viations of the distances provided and the distances found in the structure. By default, the error o
is estimated from the data. The turn the estimation off, set the field error_model.errorg.update
to False and error_ model.error.initial to the desired relative distance error on a scale between
0 and 1, i.e. 0.3 for a relative error of 30 %.

ISD assumes that the overall scale of the inter-atomic distances is correct. If this assump-
tion can be incorrect, the scale can be estimated during the calculation, by setting the variable
theory.scale.update to True.

8.6.3 Scalar couplings

Measurements of scalar couplings can be added in section “Scalar coupling”. This section defines
the following variables:

theory.karplus_curve.A,
theory.karplus_curve.B,
theory.karplus_curve.C,
theory.karplus_curve.update,
error_ model.error.initial,

SN o

error_model.error.update.

Theoretical couplings are calculated from a structure based on the Karplus relationship. By default,
the expansion coefficients A, B, and C' do not need to be set as they are estimated from the data
during a calculation. The estimation can be turned off by setting the field theory.karplus_curve.
update to False. In this case, the variables theory.karplus_curve.{A,B,C} need to be set ac-
cordingly.

A normal distribution with unknown error describes the deviations of calculated from measured
couplings. To turn the error estimation off, set the field error model.error.update to False and
error_model.error.initial to the absolute error in Hz.

8.6.4 Residual dipolar couplings

Measurements of residual dipolar couplings can be added in section “Dipolar couplings”. This
section defines the following variables:

theory.saupe_tensor.sl,
theory.saupe_tensor.s2,
theory.saupe_tensor.s3,
theory.saupe_tensor.s4,
theory.saupe_tensor.sb,
theory.saupe_tensor.update,
error model.error.initial,

© NSO W

error_model.error.update.
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Theoretical dipolar couplings are calculated from a structure based on the relationship (4). By de-
fault, the tensor elements s1, ..., s5 do not need to be set as they are estimated from the data during
a calculation. The estimation can be turned off by setting the field theory.saupe_tensor.update
to False. In this case, the variables theory.saupe_tensor.{s1,s2,s3,s4,s5} need to be set ac-
cordingly.

A normal distribution with unknown error describes the deviations of calculated from measured
couplings. To turn the error estimation off, set the field error model.error.update to False and
error_model.error.initial to the absolute error in Hz.

8.6.5 Dihedral angles

Fill-in the parameters in section “Dihedral angles” to supply ISD with information on angles around
rotatable bounds of your molecule. Apart from the standard formats XML and XPLOR/CNS TBL,
ISD can also handle files containing information on ¢/ dihedral angles predicted by the program
Talos. In this case, set the field data_format to TALOS. Upon simulation startup, Talos data are
automatically converted into XML. This section defines the following variables:

1. error_model.error.update,
2. error_model.use_weighting.

The discepancies between the dihedrals angles and their counterparts in a structure are modelled by
a von Mises distribution, the width of which is estimated during a calculation. Optionally, dihedral
angles can be weighted by their errors if available (the program Talos, for example, provides such
error estimates). Whether to use individual weighting or not, can be specified in project file by
setting the field use_weighting to True or False, respectively.

8.6.6 Hydrogen bonds

Measurements of hydrogen bonds can be added in section “Hydrogen bonds”. In the current
version of ISD, hydrogen bonds need to be provided as a list of hydrogen-acceptor and donor-
acceptor distances. Typically these distances should be set to 1.8 A for the hydrogen-acceptor, and
2.8 A for the donor-acceptor distance. The hydrogen bond section defines the following variables:

1. error_model.error.initial,
2. error_model.error.update.

As for any distance data, a log-normal distribution is an appropriate error model to describe the
deviations of the distances provided and the distances found in the structure. By default, the error
is estimated from the data. To turn the estimation off, set the field error_model.error.update to
False and error model.error.initial to the desired relative distance error on a scale between
0 and 1, i.e. 0.3 for a relative error of 30 %.

8.6.7 Disulfide bridges

Fill-in the parameters in section “Disulfide bridges” to supply ISD with information on disulfide
bridges in your molecule. In the current version of ISD, disulfide bridges are implemented by
restraining the distance between the involved sulfur atoms. The section defines the following
variables:
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1. distance
2. error_model.error.initial,
3. error_model.error.update.

As for any distance data, a log-normal distribution is an appropriate error model to describe
the deviations of the distances and the distances between the bridging sulfur atoms found in the
structure. By default, the estimation of the error is disabled. To turn the error estimation on, set
the field error_model.error.update to True.

8.7 Data import/export from a CCPN project

ISD supports both the import of data from, and the export of the calculation results to a CCPN
project. Section “CCPN data model” in a project file summarises the parameters that control this
feature. The CCPN project must exist before you can use the import/export feature. New CCPN
projects can be created with CcpNmr Analysis or the FormatConverter.

Import

Each object, such as a molecular system or a list of distance restraints, stored in a CCPN project
has a unique key. The keys are used by ISD to access objects within a CCPN project. A list of
objects/keys can be obtain by running ISD with the command line option --ccpn-info and the
name of the CCPN project as argument.

In order to import a particular molecular system or dataset from a CCPN project, you first
need to make sure the field ccpn.project_filename points to the name of your CCPN project. In
a second step, all that needs to be done is to specify the key of the objects you wish to use in the
fields data_set.key in the respective sections in the project file (or in the variable molecule.key
in case of a sequence). The variable data_format needs to be set to CCPN; the field data_filename
can be left blank. In case you wish to use a nickname for your dataset, simply specify the name in
the variable data name. If set, nicknames appear in the PDF summary.

For example, to read a sequence with key ¢ ‘mol|A’’ as well as an NOE restraint list with key

“‘test|111’’ from a CCPN project, and use “noesy” as a nickname for the NOE restraints, the
relevant parts in the project file would look as follows:

sim.ccpn.project_filename = ’/home/guest/my_ccpn_project.xml’

)

sim.molecule.filename

sim.molecule.format = CCPN
sim.molecule.key = ’mol|A’
data_type = NOESY
data_filename =77
data_format = CCPN
data_key = ’noeC13[1]1’
data_name = ’noesy’
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Export

The current implementation supports the export of an ensemble of structures to a CCPN project.
As mentioned above, the CCPN project must exist before the export feature can be used. All
exported objects are stored in an “NmrProject” (to use CCPN terminology) of a CCPN project,
which serve as containers for the exported objects. The name of NmrProject project needs to be
specfied in the field nmr_project name. ISD creates a new NmrProject if it does not exist yet.

Structures To export an ensemble of structures, set the variable ensemble.enabled to True (de-
fault:False). Both the ensemble type (REPRESENTATIVE or MOST_PROBABLE) as well as the number
of structures to be exported can be set in section pdb_files (cf. section 9). The name un-
der which the structures are stored (the CCPN “MolSystem”) needs to be specified in the field
molecular_system name and must not contain white space.

8.8 Starting a calculation

Once the project file my_project.py has been modified and saved, start the calculation by invoking
the command:

isd my_project.py
During the initialization of a calculation, ISD performs the following tasks:

1. Create temporary directory,
2. Create molecule (possibly from a sequence file by using CNS),

3. Read-in experimental data (possibly converting data formatted in proprietary formats into
ISD XML format),

4. Start services on cluster,

5. Create initial conformation.

After these tasks have been completed, ISD launches the replica-exchange simulation using param-
eters and machines specified in the project file. During the runtime of a simulation, the internal
data structures of ISD can readily be accessed by using the interactive Python shell. A list of run-
time commands is shown below. Ensemble files that contain the Monte Carlo samples are written
to disk after a certain number of replica super-transitions. PDB files with representative ensemble
members can be generated by creating a report (s. section 10) or by using the command line (s.
section 9).

Please note that a “correct” structure ensemble is only obtained after an initial convergence
phase (the “burn-in”) of a calculation. A non-converged simulation usually yields structures of
sub-optimal quality. Section 10 discusses how to assess the convergence of a calculation. Advanced
users may want to write their own scripts in order to analyse the Monte Carlo sample in depth.
Section 12 gives some examples of how this can be done.

8.8.1 Restarting a calculation

In case a simulation or one of the machines used for the calculation has crashed, restart the
simulation simply by using the same command as for starting a calculation. ISD then automatically
resumes with the calculation where it has stopped before.
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8.8.2 Running a calculation in the background

We recommend running ISD inside a terminal window as the interactive Python shell gives the user
full control over the calculation during runtime. However, ISD can also be run in the background,
e.g. detached from a terminal window or by using the UNIX program nohup. In order for this to
work, the Monte Carlo engine needs to be run in non-threaded mode, which is controlled by the
variable background in the section “Replica-exchange Monte Carlo” of the project file, which needs
to be set to True. To quit a calculation that is running in the background, use the command line
option --quit.

8.9 Runtime commands

ISD supports a number of runtime commands, a list of which can be obtained with the command
help:

1. The command save writes all ensembles to your working directory. If the option analysis.
report.auto in section “Analyses / report” of the project file is set to True, ISD also gener-
ates a PDF report containing an analysis of the simulation.

2. Use the command show to display the current structure in your PDB viewer. A filename
pointing to the binary of your favourite molecular graphics program can be set in section
“Analyses / report” of the project file.

3. The command info gives a brief summary of the current simulation, such as the number of
Monte Carlo samples generated so far.

4. The command report creates a PDF report which is stored in the directory working_
path/analysis. Alternatively, a report can also be generated using isd from the command
line. The ISD report is disussed in more detail in Section 10

5. ISD can be quit by either using the command quit or by exiting the Python interpreter by
pressing Ctrl-D. If the calculation is run in the background, use the command line option
-—quit with the name of the project file as argument.

8.10 Example projects

The distribution comes with two example projects which can be found in the sub-directory ./examples.
The first example dataset provided is for the protein Ubiquitin [36], the second one for a Tudor do-
main'3 [37,38]. Each of the example directories contains a sub-directory ./pdb with representative
ensemble members, and a sub-directory report containing a PDF report.

8.10.1 Tudor domain

The project file for this example can be found in the directory ./examples/tudor. The sequence
(56 amino acids), a list of assigned NOE intensities from two NOESY experiments (13C and 1°N) as

13We thank Michael Sattler for kindly providing this dataset.

33



well as scalar coupling constants are contained in the data file examples/tudor/data /data.xml,
formatted in ISD XML format. By default, the calculation runs on the local machine, and the
complete set of nuisance parameters (scales, Karplus coefficients, and errors) is estimated from
the data. In order to run the example on a computer cluster, please specify an appropriate list
of machines in the project file. Please note that the calculation of quality scores has been turned
off. To activate, please modify the project file. If ISD is correctly setup, you can run the example
calculation from the command line using

isd tudor.py

8.10.2 Ubiquitin

The project file for this example can be found in the directory ./examples/ubq. The sequence (76
amino acids) and lists of nonredundant NOE-based distance restraints, hydrogen bond restraints,
scalar and dipolar coupling constants are contained in the data file examples/ubq/data/data.xml,
formatted in ISD XML format. The NOEs, J couplings and RDCs are part of the original restraint
file obtainable at the PDB (ID code: 1D3Z). In addition, dihedral angle restraints predicted with
the TALOS program are available (examples/ubq/data/talos.tab). By default, the calculation
runs on the local machine, and the complete set of nuisance parameters (scales, Karplus coefficients,
tensor elements, and errors) is estimated from the data. In order to run the example on a computer
cluster, please specify an appropriate list of machines in the project file. Please note that the
calculation of quality scores has been turned off. To activate, please modify the project file. If ISD
is correctly setup, you can run the example calculation from the command line using

isd ubq.py

9 Creating PDB files

PDB files with the 3D coordinates of the ensemble members are created automatically whenever
you generate a report. The structures are superimposed on the average structure are stored in the
sub-directory ./analysis/structures of the working directory of the project. Alternatively, PDB
files can be generated from the command line using the option --write-pdb. In this case, the files
are stored in your current directory.

The sub-section “pdb_files” of a project file summarises parameters that control the way PDB
files are generated:

1. Set the field ensemble to REPRESENTATIVE or MOST_PROBABLE to store PDB files containing
representative ensemble members, or most probable structures, respectively. Please note that
the variance observed in a “most probable” ensemble (unlike in a “representative” ensemble)
under-estimates the true uncertainty of the 3D coordinates.

2. The parameter n defines how many ensemble members shall be written to disk.

3. Each PDB file contains the coordinates of residues that are specified in the comma-separated
list residue_list. If the field is set to None (default) the coordinates of all residues are saved.
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Figure 6: Distribution and trace of the RMSD to the reference structure, calculated for the atoms CA, C, N, .

Figure 3: Left: trace of the total energy associated with the target distribution. For converged calculations
o S g o The most probable structure has an RMSD of 1.78

the energy should scatter around its median (dotted). Right:®y plot for all residues of the high temperature
ensemble. For an appropriate kq schedule this distrubtion should be uniform,

to analyse a particular NMR experiment. It also depends, to a lesser extent, on approximations in
the background assumptions, such as the form of the force field used to describe physico-chemical
interactions between the atoms of a molecule. In others, incomplete data always leads to uncertain
structures, as common sense would suggest.

21 Uncertainty
It is important to keep in mind that structural uncertainty should always be regarded in the sense
of an “error bar” of a structure. This error bar is of statistical nature, that is there is no causal
connection to real physical fluctuations of the atom postitions. Physical fluctuations can be one of
the reasons why a structure is uncertain 2, uncertainty and fluctuations might even correlate on a
qualitative level. Quantitatively, however, we cannot infer dynamics from structural uncertainty. Residue number

Figure 7: Secondary structure assignment. Shown is the propensity with which a residue adopts the secondary
structural states ?-helical, -strand, 3,p-helical or isolated? -bridge. Secondary structure assignments were derived
of its Cq atoms (s. Figure 4) has been calculated on the basis of 100 ensemble members and with the program DSSP, propensities are calculated on the basis of the conformational ensemble.

amounts to Gyua = 1.44 + 0.66 A. The directory /WORKINGPATH/analysis/structures  contains
100 members of the structure ensemble (stored in IUPAC PDB format).

The uncertainty of the present structure, quantified via the median uncertainty in the position

22 Quality scores
In order to validate the structure further, we calculate a number of quality scores using the programs 23 H
Whatlf and Procheck. The scores are based on our knowledge about general geometric features 1.

of proteins, and are derived by comparing the three-dimensional coordinates of the calculated &
structures with a database of high-resolution x-ray structures. The scores (see table 2) include

measures of the packing of a protein, of the local geometry, as well as of the compatibility of the

backbone with known protein structures. T e e om0

Figure 8: Probability distribution (left) and trace (right) of the scale (calibration factor’) y used in the ISPA to
fat d peak intensities t ces

Figure 8: Excerpt of an ISD report. A report summarises the calculation results in the form of a PDF document.
It provides graphical information on the performance of a calculation, as well as various analyses, such as of the
data quality, structure validation scores, and estimates of all theory parameters.

A list of numbers ranging from 1 to (including) n can be created with the Python command
range(1,n+1).

10 The ISD report

ISD stores all calculation results in Python’s persitent object format (“Python pickles”)!#. Users
familiar with Python can thus access the full information generated during a calculation to perform
further analyses. How this is done is discussed in some detail in Section 12. A more convenient
way of accessing the simulation results is to create a report which summarises the results in the
form of a PDF document (cf. figure 8). An ISD report can be generated during the run-time of
a simulation. It is stored in the directory working_path/analysis, and can be created by using
the following command:

isd --report my_project.py

The report provides graphical information on the performance of the calculation, analyses of
each dataset (for example, an estimate of its quality). It also gives estimates of all theory parame-
ters. Furthermore PDB files are generated that contain the coordinates of representative members
of the probabilistic structure ensemble. The ensemble members live in the same Cartesian frame of
reference, and thus can directly be visualized in your favourite molecular graphics program without
prior superposition. PDB files with the 3D coordinates of the ensemble members are stored in the
directory analysis/structures.

1For more information on Python persistent objects, please see the documentation available at www.python.org.
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10.1 General settings

Section “Analyses / report” of the project file contains parameters that control the generation of
a report:

1. In order to obtain unbiased estimates of a structure, the uncertainty of the 3D coordinates,
and auxiliary parameters, ISD needs to make sure it restricts the analyses to the converged
part of a calculation only. However, as will be discussed in Section 11.1 it is difficult to
determine the point at which a calculation has converged in an automatic fashion. Therefore,
the variable burnin needs to be specified by the user to define the number of most recent
samples to be used during the analyses. The default value is 1000, i.e. the analyses are based
on the last 1000 samples.

2. If the variable report.auto is set to True, a report is generated automatically whenever a
simulation is saved to disk. This can come in handy to monitor the results of a calculation
on a regular basis.

3. In case you wish to keep the files that were used to generate the PDF report (Latex sources
and figures in EPS and PDF format), set the variable report.keep_sources to True. The
sources are stored in the directory [WORKING_PATH]/analysis/sources.

4. The setting pdb_viewer is unrelated to the report. However, it points the program that is
used to visualise structures using the interactive command show (cf. Section 8.8).

5. The name of the binary of the utility programs pdflatex, epstopdf, and eps2eps can be
specified in the variables pdf _latex, eps_to_pdf, and eps_to_eps, respectively. ISD requires
either of these programs for creating a PDF report.

Please note that on SUSE 10.x systems, it has been reported that post-processing of EPS
files is required in order for the report to be formatted correctly. Post-processing is turned
off by default (eps_to_eps is set to ’?).

10.2 Quality assessment and structural analyses

ISD calculates a number of quality scores and performs structural analyses to validate the struc-
tures. This requires the programs Whatlf, Procheck, and DSSP. The analyses are carried out for
the PDB files that are generated during the report, see section 9 for details.

10.2.1 Quality scores

Scores for the packing quality, the normality of the backbone conformation, etc. are calculated
with the program Whatlf. The field whatif.binary points to the location of the executable of
Whatlf. Disabled by default, calculation of quality scores can be enabled by setting the variable
whatif.enabled to True. If you wish to use the program WhatCheck (which is free of charge,
by the time we write this manual) instead of Whatlf, set the variable whatif.use_whatcheck to
True. The quality scores can also be depicted on a per sample basis. The feature is controlled by
the variable whatif .show_traces.
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10.2.2 Ramachandran statistics

The program Procheck is used to calculate the proportion of residues that populate the most
favoured and allowed regions of the Ramachandran plot. The field procheck.binary points to the
location of a binary of Procheck. Disabled by default, use of Procheck can be turned on by setting
the variable procheck.enabled to True. The scores can also be presented on a per sample basis.
The feature is controlled by the variable procheck.show_traces.

10.2.3 Secondary structure

Seconday structure propensities are calculated with the program DSSP. The propensities («-helical,
(-strand, 319-helical or isolated (3-bridge) are presented in a graphical form on a per residue basis.
The field dssp.binary points to the location of a binary of DSSP. Disabled by default, calculation
of propensities can be enabled by setting the variable dssp.enabled to True.

11 Analysing the results

An important first step in the analysis of a calculation is to make sure the simulation has converged
properly. In case a simulation has not converged, the structures and parameter sets generated were
not drawn from the joint posterior distribution. Typically this leads to sub-optimal or, in the worst
case, incorrect results.

The second step in the analysis should be devoted to an examination of the quality of each
dataset. On the one hand, this can provide another indication of whether a simulation has con-
verged. As the quality of typical datasets usually falls into a narrow range - this is particularily
true for NOE data: Overly low data qualities might hint to a general incompatibility of data and
structure which is often a result of a non-converged simulation. On the other hand, the data quality
can provide valuable information for validating the experimental data.

11.1 Convergence of a calculation

Unfortunately, the current theory of Markov chains does not provide conditions that are sufficient
to assess the convergence of a simulation in a mathematically rigorous way. Instead, we need to
limit ourselves to the use of heuristic rules. A similar problem arises in conventional structure
calculation methods where the difficulty is to distinguish converged from non-converged structures.

In technical terms, if an ISD simulation has converged it means that the sequence of structures
and parameter sets, initially drawn from a non-equilibrium distribution'®, has finally become com-
patible with the joint posterior distribution of an inferential structure determination problem. In
other words, for converged simulations one finds that the frequency of occurrence of a particular
structure is equal to its probability. Thus, probable structures occur more often in the ensemble
than less probably ones.
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Table 2: Total energy of a calculation. The trace of the total energy can be used to monitor the convergence
of a calculation. Ideally, the energy drops quickly in the early phase of a calculation and reaches a plateau. The
simulation shown in the right panel has not converged as the energy is not stationary. The left panel shows an
example of a converged calculation.
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Table 3: Exchange rates. The example on the left shows a simulation which is reasonable well behaved. The
exchange rates are homogeneous, and fall off only at the high-temperature end of the replica arrangement. The
right panel shows a case in which the temperature scheme has not been chosen adequately. This results in weak
mixing and, hence, slower convergence.

11.1.1 Total energy

A suitable quantity to monitor the convergence of a simulation on an empirical level is the “total
energy” of a replica calculation. It is defined as the energy associated with each replica, summed
over all replicas. During the so-called “burn-in” phase, the total energy typically falls off, and
finally reaches an equilibrium value around which it scatters for the rest of a calculation. Figure
2 shows examples of a converged (left) and non-converged simulation (right). Similar figures are
contained in an ISD report in Section “Performance”. Unless the total energy is stationaty, a
calculation should be considered not converged.

11.1.2 Rates of exchange

In order for the total energy to drop quickly, a simulation need to mix sufficiently. This means that
conformations need to propagate efficiently up and down in the replica arrangement. As discussed
briefly in Section 3, the limiting step for this to happen is the rate by which neighbouring replicas
exchange. The rate of exchange is determined by the general temperature settings applied to the
likelihood and the prior distribution: Large temperature differences of neighbouring replicas result

5This is because a calculation starts from a different conformation than the structure we seek to determine.
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in lower rates of exchanges. Basically, the reason for this behaviour is that the associated probability
distributions are sufficiently dissimilar so that states generated in both replicas are incompatible
with each other, hence no exchange.

For a good performance of a calculation it is, therefore, important to choose a suitable tem-
perature scheme. An obvious solution would be to choose the temperatures in such a way that
its differences are sufficiently small. However, the spacing cannot be made arbitrarily small as the
replicas needs to cover a certain temperature range (the temperatures of the lowest and highest
replica are fixed). The effect of the temperature settings on the rate of exchange depends on many
factors, mainly the size of datasets and system. The default temperature settings are suitable
for standard systems of moderate size. However, in particular for larger systems or datasets, the
settings may need to be adjusted.

The section “Protocol” in a report provides some information about the rates of exchange of a
calculation. The rates should be homogeneous and not fall below 20 %. Sudden drops, however,
especially at the high-temperature end of an replica arrangement, are often unavoidable. Figure
3 shows an example of well and less well behaved simulation. The average rate of exchange of
the simulation shown in the right panel is low compared to the well behaved calculation shown on
the left. The exchange rate drops to nearly zero for replicas 41 and 42, which leads to very slow
convergence as there will be practically no exchange of states.

11.1.3 High temperature distribution

If the temperature schedule as been chosen appropriately, the probability distribution associated
with the high-temperature replica (the rightmost distribution in figure 3) is expected to be nearly
uniform. If this is not the case, for example because the maximum temperature is not sufficiently
high, the simulation cannot escape local modes (or, equivalently, overcome energy barriers) and
will converge only slowly. In order to visualise the topography of the this distribution, section
“Performance” of the report contains a figure that shows the backbone dihedral angles ¢/ of all
sampled conformations. Ideally, the dihedral angles are distributed uniformly, although realistic
cases almost always show some residue of structure. Please note that the ¢/v-distribution is not
expected to look like a Ramachandran plot.

11.1.4 Improving convergence

If the empirical rules discussed so far suggest that the calculation has not converged yet, one
should increase the calculation time. Alternatively, one can adjust the algorithmic settings in order
to speed up convergence. This includes:

1. Choosing a larger number of replicas usually increases the average rate of convergence, as
it reduces the temperature differences between neighbouring copies. This often solves the
problem, but comes at the cost of longer calculation times. However, in particular for larger
systems, using more replicas is often the only way to achieve a reasonable rate of convergence.

2. If the ¢/ty-distribution associated with the high-temperature replica shows a significant
amount of structure, one should increase its temperature. This can either be done by in-
creasing the maximum temperature which transforms the physical prior distribution, or by
lowering the minimum value of the likelihood weight. Both parameters are discussed in more
detail in Section 8.3.
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Figure 9: Quality of NOE data. Shown are the distributions for the relative error o for eight different datasets.
When transformed to a distance scale, the errors fall into a narrow range, as long as a dataset does not contain
systematic errors. One finds that the discrepancy between measured and calculated '°N data is usually smaller
compared to '3C measurements.

3. The average rate of exchange can also be optimized by altering the scale in the functional
relationship of temperature and replica index, i.e. the function which assigns a temperature
to each replica. Section 8.3 gives brief instructions for how to do that.

If the convergence behaviour has still not improved after taking either of these measures, the only
solution to the problem is to run the simulation for a longer time.

11.2 Data quality

An important parameter that is suited to validate the experimental data is the quality of a dataset.
Models for NMR observables almost always involve an error-like parameter, called o here, which ISD
estimates individually for every set. We use o as a measure of the data quality. It is independent
of the size of a dataset, and measures the degree to which the measurements can be explained on
the basis of a single structure. It thus reflects the consistency of the data, limited, for example, by
experimental noise, but also depends on the theory used to analyse the data.

As mentioned before, ISD estimates the error of a dataset during a calculation. The error
directly relates to the weight with which the data are incorporated into the joint posterior dis-
tribution. This ensures that high quality datasets are assigned higher weights than sets with a
lower quality. Furthermore, errors are estimated individually for each set, so that the data are
incorporated in a calcualtion in an optimal manner. The issue of weighting experimental data is
discussed in more detail in [39)].

In order to quantify the quality of NOE data it is convenient to transform the intensity error
to a distance scale. Experience shows that NOE data that do not contain systematic errors are
of similar quality. As a rule of thumb, the relative distance error should be less than about 20
%. The report contains estimates for the error of all datasets used during a calculation. One also
finds that the discrepancy between measured and calculated !N data is usually smaller that for
13C measurements. One reason for this behaviour is that hetero-nuclear relaxation, which is not
accounted for by the ISPA, affects *C data more than "N data.
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Figure 10: Violation analysis. Shown is a hypothetical predictive distribution (solid line). The red cross indicates
the measurement. The probability of this data point to be inconsistent is constructed as follows: (i) draw a line
that is parallel to the x axis and passes through the data point (dotted line); (ii) whereever the line intersects
with the graph of the predictive distribution, draw a parallel to the y axis (dashed lines); (iii) intersections of the
y parallels with the x axis define x intervals, intervals with a probability equal or greater than the probability of
the data point define the confidence interval that is associated with the measurement; (iv) the probability mass
carried by the confidence interval is considered as the probability that the measurement is inconsistent (sum of
the grey areas). That is, measurements that are close to modes of the predictive distribution have only a small
associated confidence interval and therefore little probability of being wrong. For measurements falling into the
low probability regions of the predictive distribution, the opposite holds.

The report also contains estimates of the error for other datasets, such as three-bond scalar
couplings and residual dipolar couplings, for which the error is specified in absolute terms in Hz.

11.2.1 Reliability of individual measurements

The sampled conformations and nuisance parameters can be used to calculate the expected dis-
tribution for each measurement under the model assumptions and the experimental data. Such
distributions are called predictive distributions. Predictive distributions express what we expect
for the outcome of a new experiment, given our current knowledge of the structure and nuisance
parameters, inferred from the data. Formally, if y is your observable and f(X, «) a theory used to
calculate mock data, then the expected distribution of y is

Pr(y|D,I) = /dXdozdo* Pr(X,a,0|D,I)Pr(y|f(X,«a),0,1).

These distributions can be used to assess the consistency of the data with the modelling assumptions
and with one another: A measurement is likely to be wrong, if it deviates from its prediction based
on the complete dataset. The magnitude of the deviation relates to the probability that the
measurement is incorrect.

Predictive distributions can be used to assess the quality of a data point a posteriori. We define
the probability associated with the confidence interval that just contains the measurement as the
probability that the measurement is inconsistent with the model and the other data. Figure 10
illustrates how this probability is constructed. For a Gaussian model, it is directly related to the Z
score of a measurement: a measurement that is one standard deviation off the mean has Z score 1
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Figure 11: Structural uncertainty. Shown is the structure and uncertainty of a TUDOR domain (left) and an
SH3 domain (right). Both datasets are of similiar quality (relative distance error of about 20 %). The size of the
TUDOR dataset is about ten times larger than the one used for the SH3 domain.

¢

and a probability of 68% of being inconsistent or “wrong”, a measurement with Z score 3 is much
less reliable and has a probability of 99% of being wrong.

Similar to a conventional violation analysis, we can now assess the quality of the dataset by
defining a threshold above which we consider measurements as incorrect. However, a probabilistic
analog of the standard violation analysis is more general than the standard procedure: It takes
the uncertainty of the structure, which might vary in different regions of the molecule, fully in
account. Furthermore, violation probabilities are not restricted to error models that correspond to
flat-bottom potentials'®, but can be calculcated for arbitrary error distributions. Here, we assess
the quality of the data by defining a threshold above which we consider measurements as incorrect.
This threshold is set to 95% by default. Section “Violation analysis” in the report gives a summary
of the analysis, and measurements that are likely to be errorneous are explicitly listed in report
files stored in the directory WORKING_PATH/analysis.

11.3 Structure validation
11.3.1 Structural uncertainty

The uncertainty of the structure is directly represented by the spread of the posterior distribution.
Thus, in order to calculate the uncertainty, we need to explore the relevant part of this distribution.
This is one of the reasons why ISD employs sampling rather than minimisation techniques. The
precision with which we can determine the three-dimensional coordinates of a target structure
depends on the amount of information we start with. Hence, datasets of low quality and/or of
small size generally lead to less precise structures - just as common sense would suggest (figure 11
shows an example).

The section “Structural analysis” in the report states the overall precision of the structure,
quantified via the median uncertainty of the C, positions. It also shows the local uncertainty in
graphical form, calculated for the backbone C, atoms. Furthermore, ISD stores PDB files with

16 A5 has been argued earlier, ISD does not use flat-bottom potentials since they tend to decrease the explanatory
power of the data, and furthermore produce less accurate and precise structures compared to proper error distributions
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representive members of the conformational ensemble in the directory analysis/structures. The
ensemble members live in the same Cartesian frame of reference, i.e. the structure ensemble can
directly be visualised without prior superposition. The most probably structure is stored in the
PDB file structures/[FILE ROOT] most_probable.pdb.

11.3.2 Quality scores

In order to validate a structure further, ISD calculates a number of quality scores using the programs
Whatlf and Procheck. The scores are based on the knowledge we have about general geometric
features of proteins, and are derived by comparing the three-dimensional coordinates of the calcu-
lated structures with a database of high-resolution x-ray structures. A table listing the scores can
be found in section “Structural analysis” in the PDF report. The scores include measures of the
packing of a protein (first and second generation packing score), of the local geometry (Ramachan-
dran appearance and percentage coverage of the most favoured region of the Ramachandran plot),
as well as of the compatibility of the backbone with known protein structures (backbone normality
score).

12 Accessing simulation results using Python

ISD stores the information generated during a calculation in the form of Python persistent objects
(“Python pickles”). The data are stored in on a per-sample basis, which closely matches the way
the data are generated. The Python class State represents and stores the information created
during one replica-exchange Monte Carlo step. That is, if the simulation has a length of, say,
5000 samples, ISD creates 5000 State objects. Each state stores, among other things, information
such as the dihedral angles of the respective conformation, and the “energy” of that conformation
(defined as the negative logarithm of its probability). A set of samples makes up an ensemble,
described by the Python class Ensemble. ISD represents the information generated in each replica
by an associated ensemble object. A couple of example Python scripts illustrate how to use the
ISD Python library to manipulate data and analyse results etc. The scripts can be accessed via
the website.

12.1 Creating a posterior object

In order to load an ensemble into memory, we first need to make sure Python has access to the
required classes. In case the environment variable ISD_ROOT has been set correctly, this is straight-
forward:

import sys, os

modules = os.path.join(os.environ[’ISD_R0O0T’], ’src/py’)
sys.path.insert (0, modules)

The next step is to create the Python objects that represent the posterior probability distri-
bution of a simulation. If my_project.py is the project file of the simulation, we can create these
objects simply by using the following lines:
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import setup

simulation = setup.create_simulation_from_project(’my_project.py’)
posterior = simulation.posterior

12.2 Loading and accessing “ensembles”

To load the ensemble stored, for example, in the file my_protein 0 (i.e. the low temperature
ensemble), use the following command:

from utils import Load

ensemble = Load(’my_protein_0’)

Ensembles behave both like Python dictionaries and lists. A state in an ensemble can accessed
simply as follows:

state = ensemble[123]
>>> print state

State(569 torsion angle(s), E=2.40e+03, E_phys=1.02e+02, E_boltzmann=1.02e+02,
E_prior=1.00e+02, E_likelihood=2.30e+03, E_data=2.30e+03, sub_states={’13C’:
SubState(name=13C, E=1.08e+03, E_prior=-1.05e+00, E_likelihood=1.08e+03,
E_data=1.08e+03, k=5.21e-01), ’phi’: SubState(name=phi,E=-1.20e+02,
E_prior=0.00e+00, E_likelihood=-1.20e+02, E_data=-1.20e+02, k=1.30e+00),
’hbonds’: SubState(name=hbonds, E=-1.13e+01, E_prior=1.24e+00,
E_likelihood=-1.26e+01, E_data=-1.26e+01, k=3.45e+00)})

The dictionary sub_states (see the printout above) is an attribute of State and links to
information on the different datasets used in a calculation. In the present case these are NOE
(“13C”), dihedral angle (“phi”), and hydrogen bond (“hbonds”) data. The dictionary sub_states
maps the name of a dataset to a SubState object which, just like a State, contains information on
parameters specific to a particular dataset, such as its error . For example, the error of dataset
“13C” for the 1000th sample can be obtained as follows:

from Numeric import sqrt

error = 1./sqrt(ensemble[1000] [*13C’] .k)

Please note that ISD does not store the error directly, but the inverse variance k = 1/02. The
exact set of parameters depends on the theory and error model used to describe the respective
data. Alternatively, one can use the dictionary interface of an Ensemble to access a whole sequence
of sampled parameters of a particular set. For example, the samples for the errors parameter of
dataset “13C” can be accessed as follows:

from Numeric import sqrt

sub_ensemble = ensemble[’13C’]
errors = 1./sqrt(sub_ensemble.k)

>>> print len(errors)

1243
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In this case, the simulation contains 1243 samples in total.

12.3 Saving conformational samples as PDB files

The creation of a PDB file that contains the conformation sampled at a particular time in a
simulation consists of two steps. First, one needs to calculate the three-dimensional coordinates
from a set of dihedral angles. Second, the coordinates need to be written to a PDB file. This is
illustrated by the following lines:

molecule = posterior.get_polymer () ## first get the object that
## represents the molecule

torsion_angles = ensemble[123].torsion_angles ## access torsion angles
## of sample no. 123

molecule.set_torsions(torsion_angles, update=1)
molecule.write_pdb(’./conformation_123.pdb’)

The last two lines first calculate the Cartesian coordinates from the torsion angles generated in
sample 123, and afterwards write the coordinates in the form of a PDB file to disk.
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