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center of its circular swimming path. These

particles move randomly with an apparent

diffusion coefficient of D 0 9.0 T 2.0 mm2/s,

measured for isolated spermatozoa. A short-

range pairwise attraction, arising from the

hydrodynamic forces leading to the observed

synchronization (20), and a longer range re-

pulsion, which could be of steric or hydro-

dynamic origin (21), are assumed (Fig. 4D).

Although one cannot describe circular flow by

a potential (22), the important features of the

observed pattern are captured by our model.

Stochastic simulations of this model (SOM

text) also revealed two regimes: a random

distribution of particles at low densities with a

transition toward a hexagonal array of clusters

at a critical particle density (Fig. 4E). Assign-

ing to each particle a spermatozoon circling

around that position, we generated simulated

movies (3) mimicking the experimental obser-

vation (Fig. 4F versus Fig. 1B). Moreover, the

order parameter c computed for different sim-

ulated sperm densities agreed with the exper-

imentally observed dependency (Fig. 4C). Our

numerical results were further supported by a

1D mean-field analysis (SOM text), which in-

dicated the existence of a supercritical pitch-

fork bifurcation at a critical sperm density

(23). This critical density was proportional to

the interaction strength and inversely propor-

tional to the diffusion coefficient, the latter

being associated with the noise in the system.

This analysis demonstrates how the activity of

biological processes can be regulated by crit-

ical points or bifurcations. For example, ciliary

metachronal waves (16, 24) might be switched

on and off by small physiologically controlled

changes of the activity of the individual cilia,

thereby tuning the critical density for the onset

of the metachronal wave.

The only free parameter in our model was

the ratio of the maximum interaction potential

to the drag coefficient, V
0
/g 0 5 mm2/s, which

was chosen to match the critical density (Fig.

4C). This allowed us to estimate the interac-

tion force between two spermatozoa F
int

0
kgrad(V )k 0 (V

0
/g) � g/R È 0.03 pN (using R 0

13 mm and g 0 0.07 mNIs/m from above). This

force is about 1% of the forward propulsion

force of spermatozoa F
for

È 5 pN (25). Al-

though this hydrodynamic interaction force is

smaller than typical adhesion forces involved

in sperm cooperation (26), it is evidently large

enough to coordinate the cells and to regulate

large-scale pattern formation in the absence of

chemical signals (27).
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Inferential Structure
Determination

Wolfgang Rieping,* Michael Habeck,* Michael Nilges.

Macromolecular structures calculated from nuclear magnetic resonance data
are not fully determined by experimental data but depend on subjective
choices in data treatment and parameter settings. This makes it difficult to
objectively judge the precision of the structures. We used Bayesian inference
to derive a probability distribution that represents the unknown structure and
its precision. This probability distribution also determines additional un-
knowns, such as theory parameters, that previously had to be chosen empiri-
cally. We implemented this approach by using Markov chain Monte Carlo
techniques. Our method provides an objective figure of merit and improves
structural quality.

A major difficulty in the determination of three-

dimensional macromolecular structures is that

experimental data are indirect. We observe

physical effects that depend on the atomic ge-

ometry and use a forward model to relate the

observed data to the atomic coordinates. For

example in nuclear magnetic resonance (NMR),

the intensity I
i
of peaks in nuclear Overhauser

effect spectroscopy (NOESY) data is propor-

tional to the inverse sixth power of the dis-

tance d
i

of two spins: I
i
0 gd

i
j6 (1). This

isolated spin pair approximation (ISPA) in-

volves an unknown scaling factor g. It seems

straightforward to obtain the structure in the

example: simply use the observed intensities

to calculate sufficient distances to define the

structure.

In realistic applications, this approach runs

into difficulties. One problem is that the for-

ward model is usually inherently degenerate,

meaning that different conformations can lead

to the same observations and therefore cannot

be distinguished experimentally, and even a

formally invertable forward model is practically

degenerate if the data are incomplete. A further

complication is that there are uncertainties in

both the data and the forward model: Data are

subject to experimental errors, and theories rest

on approximations. Moreover, the forward

model typically involves parameters that are

not measurable. Algorithms for structure calcu-

lation from x-ray reflections, NMR spectra, or

homology-derived restraints should account for

these fundamental difficulties in some way.

Structure determination in general is an ill-

posed inverse problem, meaning that going

from the data to a unique structure is im-

possible. However, the current paradigm in

structure calculation is to attempt an inversion

of the forward model. Most algorithms min-

imize a hybrid energy E
hybrid

0 E
phys

þ
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w
data

E
data

(2), where a nonphysical energy

E
data

uses the forward model and a restraining

function to assess the agreement between data

and structure. A force field E
phys

describes the

physical properties of the macromolecule,

such as bonded and nonbonded interactions

between the atoms, and partially removes the

degeneracy of the problem. The rationale is

that minimization of the hybrid energy ef-

fectively inverts the forward model, yielding

the Btrue[ structure.

This strategy works in the case of many

data of good quality. In less favorable situ-

ations, the ill-posed nature of the inverse prob-

lem becomes apparent. Specifically, it remains

unclear how to choose auxiliary parameters

like the weight w
data

or theory parameters such

as the scaling factor g in the ISPA. Because the

hybrid energy minimization paradigm offers

no principle to settle these issues, such param-

eters need to be determined heuristically.

The principal difficulty in structure deter-

mination by NMR is the lack of information

that is indispensible to reconstruct the struc-

ture unambiguously. By formulating an opti-

mization problem (Bsearch for the minimum

of E
hybrid

[), one however implicitly assumes

that there is a unique answer. Repeating the

optimization procedure multiple times to ob-

tain several Bunique[ solutions hides but does

not solve the ambiguity and makes it difficult

to judge the validity and precision of NMR

structures in an objective way.

We suggest that it is a misconception to

use structure calculation methods that are

only appropriate if the objective is to obtain

a unique structure. Instead, we view structure

determination as an inference problem, requir-

ing reasoning from incomplete and uncertain

information. We consider the entire confor-

mational space and use the data only to rank

the molecule_s possible conformations. We

assign a number P
i

to every conformation X
i
.

If P
i
9 P

j
, conformation X

i
is more supported

by the data than X
j
. Cox (3) proved that such

rankings are equivalent to a probability and

that probability theory is the only consistent

calculus to solve inference problems. The dis-

tribution of the probabilities P
i

reflects the

information content of the data. If all but one

P
i

vanish, the data determine the structure

uniquely. If P
i

are uniform throughout con-

formational space, the data are completely

uninformative with respect to the structure.

Any inferential structure determination

(ISD) is solved by calculating the probabilities

P
i
. We demand the probabilities to be objec-

tive in the sense that they only depend on data

D and on relevant prior information I (such as

the forward model or knowledge about phys-

ical interactions). Thus, P
i

is a conditional

probability, P
i
0 P(X

i
kD,I); it is not a fre-

quency of occurence but a quantitative repre-

sentation of our state of knowledge. In the

case of a continuous parametrization of con-

formations, such as Cartesian coordinates, P
i

is a density p(X kD,I).

A direct consequence of probability calcu-

lus is Bayes_ theorem (4), which formally

solves our inference problem. The posterior

density

pðX kD; IÞ º pðDkX; IÞ pðX kIÞ ð1Þ

factorizes into two natural components: The

likelihood function p(DkX, I) combines a

forward model and an error distribution and

quantifies the likelihood of observing data D

given a molecular structure X. Because we

model deviations between measurements and

predictions explicitly, the precision of the co-

ordinates depends on the quality of the data

and on the accuracy of the forward model. In

the ideal case of a uniquely invertible model,

the likelihood function is only peaked at the

structure that satisfies the data (i.e., the con-

ventional approach is contained as limiting

case). The prior density p(X kI) takes prior

knowledge about biomolecular structures into

account and is determined by the physical en-

ergy and the temperature of the system (5).

The error distribution and the forward

model typically contain auxiliary parameters

x that are unavailable from the data but nec-

essary in order to describe the problem ade-

quately. In Bayesian theory, such nuisance

parameters are treated in the same way as the

coordinates: They are estimated from the ex-

perimental data by replacing X with (X, x) in

Eq. 1. Assuming independence of X and x, the

joint posterior density for all unknown param-

eters is

pðX ;xkD; IÞ º pðDkX ;x; IÞ pðX kIÞ pðxkIÞ
ð2Þ

Equation 2 provides a unique rule to deter-

mine any quantity that is not accessible by

experiment.

To demonstrate the practical feasibility of

the ISD approach, we infer the molecular

structure of the Fyn SH3 domain (59 amino

acids length). Experimental distances between

amide protons were derived from a series of

NOESY spectra on a A15N, 2HZ enriched

protein (6). The data set is sparse: It comprises

154 measurements, of which on average only

one per amino acid provides long-range struc-

tural information. The forward model I
i
0

gd
i
j6(X ) defined by the ISPA does not account

for experimental errors and systematic effects

like spin diffusion (1) and internal dynamics

(7); hence, observed intensities will deviate

from theoretical predictions. A log normal dis-

tribution (5) describes these deviations and in-

troduces a second nuisance parameter s that

quantifies their magnitude. Thus, we have two

nuisance parameters, x 0 (g,s).

Although given in analytically closed form

(5), it is practically impossible to evaluate the

posterior density p(X,g,skD,I ) over all confor-

mational space. Therefore, in our view, struc-

ture calculation comprises posterior simulation,

which samples only regions that carry a con-

siderable amount of probability mass. We have

Fig. 1. Replica-exchange
Monte Carlo algorithm.
(A) We generate a
stochastic sample (X(k),
g(k), s(k)) from the joint
posterior distribution in
an iterative fashion by
using Gibbs sampling
(20). The nuisance pa-
rameters g and s are
consecutively drawn
from their conditional
posterior distributions,
with the values of the
other parameters being
fixed to their previously
generated values. Coor-
dinates are updated by
using the hybrid Monte
Carlo method (21). (B)
To overcome energy
barriers, we embed this
scheme in a replica-
exchange strategy,
which simulates a se-
quence of heated copies
of the system. Samples
of the target distribu-
tion are generated in
the low-temperature copy (Tlow) and propagate via stochastic exchanges between intermediate
copies (Tlow G Ti G Thigh) to the high-temperature system (Thigh). The temperature Thigh is chosen
such that the polypeptide chain can move freely in order to escape local modes of the probability
density.
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developed a Markov chain Monte Carlo

(MCMC) algorithm based on the replica-

exchange method (8) to simulate the joint pos-

terior density of a structure determination

problem (5, 9) (Fig. 1 and fig. S1).

The most pronounced features of the poste-

rior density can be represented in a set of con-

formational samples. Although this looks at first

glance like a conventional structure ensemble,

the rationale behind our approach to obtain

conformational samples is very different. The

uncertainty of atomic positions is directly influ-

enced by the uncertainty of nuisance parameters

and by the quality of the data. Effects not de-

scribed in the ISPA, such as protein dynamics,

tend to increase the deviations between pre-

dicted and measured peak intensities. This is

reflected in an increase of the error s and con-

sequently leads to a loss in structural precision.

However, unless the forward model incorporates

experimental information on protein dynamics,

we cannot discriminate motion from impreci-

sions due to experimental errors or lack of data.

Compared with conventional structure en-

sembles, our conformational samples are much

better defined and systematically closer to the

structure obtained with x-ray crystallography

(10) (Fig. 2). A comparison of the 20 most

probable conformations with the x-ray struc-

ture yields a backbone heavy atom rmsd (root

mean square deviation) of 1.84 T 0.20 ) for all

residues and 1.36 T 0.19 ) for the secondary

structural elements. This is a considerable im-

provement over conventional techniques used

in (6), where an ensemble with an overall

rmsd of 2.86 T 0.33) and an rmsd of 2.01 T
0.28 ) for secondary structure elements was

obtained. This improvement originates in the

calculation of structures by random sam-

pling, which searches conformational space

more exhaustively and suppresses topological-

ly unlikely conformations. Misfolds such as

mirror images can only be realized in a small

number of ways; thus, they are entropically

suppressed and do not show up in a statistical

ensemble. Discriminating such conformations

on the basis of the hybrid energy is more dif-

ficult, in particular if the data are sparse.

A probabilistic structure ensemble is exclu-

sively determined by the data and the working

hypotheses that enter the analysis (which are

in the presented example the ISPA, the log-

normal error distribution, and our choice of

the force field). Modifications will, of course,

lead to changes in the structures. The atom

positions, for example, are sensitive to the pa-

rameters and the functional form of the force

field used in the conformational prior density.

This also holds for conventional approaches,

which are based on analogous assumptions.

However, in addition, conventional methods

require empirical rules to treat nuisance pa-

rameters, because they cannot be determined

from the hybrid energy alone. Cross-validation

(11, 12) and maximum likelihood methods (13),

for example, have successfully been applied

in NMR and crystallographic refinement to

determine certain nuisance parameters such

as the weight w
data

. The ISD approach goes

Fig. 2. Structure ensembles. Calculated structures (gray)
were superimposed onto the x-ray structure of the SH3
domain (black). Superposition and plotting of the structures
was carried out with MOLMOL (24). (A) Backbone traces
(atoms N, Ca, and C) of the 20 most likely conformations
obtained with our sampling algorithm. For comparison, two
conventional structure ensembles were calculated by
repeatedly running a standard simulated annealing protocol
(22) with fixed weight wdata. We used the program CNS
(23) to calculate 200 conformers for two different
restraining potentials; the panels show the 20 lowest
energy conformations. (B) In the first calculation, distance
bounds and a flat-bottom harmonic-wall potential with
linear asymptotes (25) were used, resulting in an ensemble
with a backbone heavy atom rmsd to the x-ray structure
(10) of 3.07 T 0.53 Å for all residues and 1.93 T 0.34 Å for
secondary structure elements. (C) In the second calculation,
we used a harmonic restraining potential on the distances
Ii
j1/6, leading to an overall rmsd of 2.98 T 0.46 Å and 2.15 T

0.41 Å for secondary structure elements.
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beyond these techniques. Once the working

hypotheses are made, Eq. 2 provides definite

rules to determine any nuisance parameter, in-

cluding its uncertainty, directly from the data

(Fig. 3). Therefore heuristics and other sub-

jective elements are superfluous.

Because conventional structure ensembles

depend on user-specific parameter settings and

on the minimization protocol, it is difficult if

not impossible to assign statistically meaning-

ful error bars to atomic coordinates. In con-

trast, stochastic samples drawn from the joint

posterior density p(X, g, skD,I ) are statisti-

cally well defined and can directly be used to

calculate estimates of mean values and stan-

dard deviations (14). As a special case, we

can derive an average structure with atom-

wise error bars and are thus able to define an

objective figure of merit for NMR structures

(Fig. 4).

Bayesian and maximum likelihood ap-

proaches have already proven useful for data

analysis and partial aspects of structure refine-

ment in NMR spectroscopy and x-ray crystal-

lography (15, 16, 13, 17). Our results suggest

that structure determination can be solved en-

tirely in a probabilistic framework.

It is straightforward to apply our approach

to other NMR parameters. In case of three-

bond scalar coupling constants, for example,

an appropriate forward model is the Karplus

curve (18) involving three coefficients that are

treated as nuisance parameters. However, our

method is not restricted to NMR data and can

be applied to other structure determination

problems. Besides theoretical coherence, a rig-

orous probabilistic approach has decisive prac-

tical advantages. It has no free parameter and is

stable for many more than the two nuisance

parameters used in the example (19). Hence,

tedious and time-consuming searches for op-

timal values are no longer necessary. Once

the forward model to describe the data has

been chosen, probability calculus uniquely

determines the posterior distribution for all

unknowns. It is then only a computational

issue to generate posterior samples. Further

intervention is not required, and structure de-

termination attains objectivity.
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Natl. Acad. Sci. U.S.A. 94, 5018 (1997).
14. M. H. Chen, Q. M. Shao, J. G. Ibrahim, Monte Carlo

Methods in Bayesian Computation (Springer Verlag,
New York, 2002).

15. R. B. Altman, O. Jardetzky, Methods Enzymol. 177, 218
(1989).

16. M. Andrec, G. T. Montelione, R. M. Levy, J. Magn. Reson.
139, 408 (1999).

17. G. Bricogne, Methods Enzymol. 276, 361 (1997).
18. M. Karplus, J. Am. Chem. Soc. 85, 2870 (1963).
19. W. Rieping, M. Habeck, M. Nilges, data not shown.
20. S. Geman, D. Geman, IEEE Trans. Pattern Anal. Mach.

Intell. 6, 721 (1984).
21. S. Duane, A. D. Kennedy, B. Pendleton, D. Roweth, Phys.

Lett. B 195, 216 (1987).
22. M. Nilges, M. J. Macias, S. I. O’Donoghue, H. Oschkinat,

J. Mol. Biol. 269, 408 (1997).
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Fig. 4. Conformational un-
certainty. MOLMOL ‘‘sau-
sage’’ plot of the mean
structure with atom-wise
error bars indicated by the
thickness of the sausage.
The 20 most probable con-
formations (also shown in
Fig. 2A) from the simula-
tion of the joint posterior
distribution p(X,g,skD,I)
were used to calculate the
average structure and its
precision. The local preci-
sion ranges from 0.6 Å for
secondary structure ele-
ments to 4.6 Å for loop
regions (bottom and right-
hand side) and termini
(top). The average preci-
sion is 1.07 Å. The average
precision of the structure
ensembles calculated with
CNS is 4.93 Å for the flat-
bottom harmonic-wall po-
tential and 5.04 Å for the
harmonic potential.
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Fig. 3. Estimation of nuisance parameters. Posterior histograms compiled from MCMC samples for the
scaling factor g in the ISPA and for the width s of the log normal error distribution. (A) Posterior
histogram p(gj1/6kD,I) for the inverse sixth power of g. This factor corrects interproton distances to
match the experimental distances best. (B) Posterior histogram p(skD,I) for the error s. In conventional
approaches, this analog to the weight (wdata º sj2) can only be estimated via cross-validation or
must be set empirically.
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