
Materials and Methods

Error distribution

We use the lognormal distribution

p(Ii|X, γ, σ, I) =
1√

2πσ2 Ii

exp
{
− 1

2σ2
log2(Ii/γd−6

i (X))
}

(S1)

to model deviations of the observed intensitiesIi from those predicted by the ISPA (S1). The

intensities are subject to noise of unknown magnitudeσ, arising from various sources (data

acquisition, processing, shortcomings in theoretical models). The lognormal distribution is

defined for non-negative values and represents a natural choice for modeling positive data such

as intensities. We assume logical independence of the observation of NOESY (S2) cross-peaks,

thus the total likelihood function isp(D|X, γ, σ, I) =
∏

i p(Ii|X, γ, σ, I).

Conformational prior density

In order to describe our prior knowledge about the conformations of the SH3 domain, we use

an empirical force fieldEphys that encodes physical interactions within the molecule. Solvent

interactions are difficult to describe and will be neglected here. At room temperature, bond

lengths, bond angles and ring planarities show little variance. In good approximation we keep

these parameters fixed and use the ECEPP/2 force field (S3,S4) to describe the covalent geom-

etry of the molecule. In this case, 275 torsion angles are the only degrees of freedom (S5) and

parametrize the polypeptide chain. A repulsive potential describes non-bonded forces acting

between atomk andl and we obtain

Ephys(X) =
1

2

∑
k<l

kkl

{
[dkl − dkl(X)]4, dkl(X) < dkl

0 , dkl(X) ≥ dkl

}
, (S2)

where the sum runs over all atoms. Values for the force constants and minimum distanceskkl

anddkl, respectively, were taken from the PROLSQ (S6) X-ray refinement program. Assuming
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that experiments are carried out at a constant temperatureT and following the principle of

Maximum Entropy (S7), our conformational prior density is the canonical ensemble

p(X|I) =
1

Z(T )
exp {−Ephys(X)/(kBT )} (S3)

wherekB denotes Boltzmann’s constant.

Posterior density

We use Jeffreys’ prior (S8) for the two nuisance parametersγ andσ. According to Bayes’

theorem the joint posterior for all unknown parameters is

p(X, γ, σ|D, I) ∝ σ−(n+1) γ−1 exp
{
−Ephys(X)/(kBT )

}
× exp

{
− 1

2σ2

∑
i

log2
[
γd−6

i (X)/ Ii

]}
. (S4)

Posterior sampling

A Markov Chain Monte Carlo algorithm (S9) is used to simulate the posterior distribution. A

stochastic process generates random samples
(
X(k), γ(k), σ(k)

)
from p(X, γ, σ|D, I). We use

Gibbs sampling (S10) to decompose the simulation into three steps which are then iterated:

γ(k+1) ∼ p
(
γ|X(k), σ(k), D, I

)
,

σ(k+1) ∼ p
(
σ|X(k), γ(k+1), D, I

)
, (S5)

X(k+1) ∼ p
(
X|γ(k+1), σ(k+1), D, I

)
,

where “∼” means “drawn from”. The conditional posterior densities are obtained by fixing the

parameters listed right of the conditioning stroke in the joint posterior density (S4). Thus,

p(γ|X, σ,D, I) =

√
n

2πσ2
exp

{
− n

2σ2

[
log γ −

∑
i

log(d 6
i (X)Ii)

]2
}

(S6)

p(σ−2|X, γ, D, I) =
(χ2(X, γ)/2)

n/2

Γ(n/2)

(
σ−2

)(n/2−1)
exp

{
−χ2(X, γ)/2σ2

}
(S7)

p(X|γ, σ, D, I) ∝ exp
{
−χ2(X, γ)/2σ2 − βEphys(X)

}
(S8)
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with χ2(X, γ) =
∑

i log2(γd−6
i (X)/Ii) andΓ(·) being the gamma function. The conditional

posterior density forγ (Eq. (S6)) is a lognormal distribution. The conditional posterior density

for the inverse squared errorσ−2 (Eq. (S7)) is a gamma distribution. Thus we can update

the nuisance parameters using random number generators for the lognormal and the gamma

distribution, respectively.

The conditional conformational posterior densityp(X|γ, σ, D, I) (Eq. (S8)) is very com-

plex; we use the Hybrid Monte Carlo (HMC) method (S11) to obtain stochastic samples from

this density. HMC is an efficient method to investigate multidimensional correlated distribu-

tions. The negative logarithm of the conditional conformational posterior density is analoguous

to a physical energy and defines a dynamical system in conformational space. Numerical inte-

gration of Hamilton’s equations of motion with the leapfrog discretization scheme (S12) yields

a candidate conformation, which is accepted according to the Metropolis criterion (S13). The

number of integration steps for an HMC update was 250.

The Gibbs sampling procedure (Eq. (S5)) is embedded in a Replica-exchange Monte Carlo

scheme (S14) to cope with trapping in modes of the posterior distribution. The details of the

algorithm are described in (S15). Two parameters control the shape of the posterior distribution:

exponential weighting of the likelihood function switches the data gradually off; use of the

Tsallis ensemble (S16), an extension of the Boltzmann ensemble, allows one to turn off non-

bonded interactions. Multiple copies of the system are simulated at different values of the two

replica parameters. After 30 Gibbs sampling steps for each copy, parameter exchanges between

neighboring replicas are accepted according to the Metropolis criterion.

We simulated a replica arrangement consisting of 50 systems and calculated a total of 10000

conformations per copy. The calculation time on a 50 processor PC cluster was approximately

72 hours.
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Fig. S1. Replica-exchange Monte Carlo algorithm. We embed the Gibbs sampling scheme

(Eq. (S5) in a Replica-exchange Monte Carlo algorithm (S14) which simulates a sequence of

“heated” copies of the system. We introduce two temperature-like parametersλ andq (con-

fer (S15) for details).λ is a weighting factor that is used to control the contribution of the data

in the likelihood function. Forλ = 1 the data are switched on, forλ = 0 the data are switched

off. The second parameterq is the Tsallis parameter (S16) controlling the shape of the confor-

mational prior density. Forq = 1, the conformational prior density is identical to the Boltzmann

distribution. Forq → ∞, physical interactions are switched off and the conformational prior

density approaches a flat distribution over conformational space. By settingq to a large value,

the polypeptide chain can move almost freely during HMC sampling; for our system already

valuesqmax ≈ 1.1 are sufficiently large. We arange the copies of the system in such a way that

first the data are switched off by decreasingλ from 1.0 toλmin = 0.1 (while lettingq = 1). In

the other half of the arrangement also the physical interactions are swichted off by increasingq

from 1.0 to 1.1 (while lettingλ = λmin = 0.1, i.e. data are almost completely neglected).
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Figure S1
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