Materials and Methods

Error distribution

We use the lognormal distribution

PEIX,7,0,1) = e exp = log? (1 /(X)) ()

V2ra? I
to model deviations of the observed intensitiefrom those predicted by the ISPSY. The
intensities are subject to noise of unknown magnitadarising from various sources (data
acquisition, processing, shortcomings in theoretical models). The lognormal distribution is
defined for non-negative values and represents a natural choice for modeling positive data such
as intensities. We assume logical independence of the observation of N@GRSX¥dss-peaks,

thus the total likelihood function is(D|X,~, o, I) = I1; p(L;|X,~, 0, I).

Conformational prior density

In order to describe our prior knowledge about the conformations of the SH3 domain, we use
an empirical force fieldZ,,, that encodes physical interactions within the molecule. Solvent
interactions are difficult to describe and will be neglected here. At room temperature, bond
lengths, bond angles and ring planarities show little variance. In good approximation we keep
these parameters fixed and use the ECEPP/2 force 88|58 to describe the covalent geom-

etry of the molecule. In this case, 275 torsion angles are the only degrees of fré8g§and
parametrize the polypeptide chain. A repulsive potential describes non-bonded forces acting

between atonk and! and we obtain

)= b { GO G

where the sum runs over all atoms. Values for the force constants and minimum distances

anddy;, respectively, were taken from the PROLS®H(X-ray refinement program. Assuming
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that experiments are carried out at a constant temperdtwaed following the principle of

Maximum Entropy §7), our conformational prior density is the canonical ensemble

p(X|I) = exp {—Epnys(X)/(ksT)} (S3)

1
Z(T)

wherekp denotes Boltzmann’s constant.

Posterior density

We use Jeffreys’ prior§8 for the two nuisance parameteysando. According to Bayes’

theorem the joint posterior for all unknown parameters is
p(Xa Y, 0|D7 ]) (8 U_(n+1) fy_l exp{_EphyS(X)/(kBT)}

X e:»cp{—2i22310g2 hdi_ﬁ(X)/]i}}. (S4)

Posterior sampling

A Markov Chain Monte Carlo algorithnmS® is used to simulate the posterior distribution. A
stochastic process generates random san(d(é@,y(@, a(k)) from p(X,~,0|D, ). We use
Gibbs sampling$10 to decompose the simulation into three steps which are then iterated:
FED o~ p (11X, 6W, D, 1),
o~ p(o|X®, 4 D), (S5)
X(k-‘rl) ~ p <X|’y(k+1)70(k+1),D7[> :
where ‘~” means “drawn from”. The conditional posterior densities are obtained by fixing the

parameters listed right of the conditioning stroke in the joint posterior density (S4). Thus,

p(v|X,0,D,I) = 2:02exp{—;ﬂ[logv—Zlog(diﬁ(X)]i)]Q} (S6)
2 n/2 2-1

plo X D) = DD (o) Ve ()20t} ()

p(X|7,0,D,1) o exp{—x*(X,7)/20” = BEpnys(X) } (S8)
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with x2(X,v) = X log®(vd; ®(X)/I;) andT'(-) being the gamma function. The conditional
posterior density foty (Eq. (S6)) is a lognormal distribution. The conditional posterior density

for the inverse squared error? (Eq. (S7)) is a gamma distribution. Thus we can update

the nuisance parameters using random number generators for the lognormal and the gamma
distribution, respectively.

The conditional conformational posterior densityX |, o, D, I) (Eq. (S8)) is very com-
plex; we use the Hybrid Monte Carlo (HMC) methdsll()) to obtain stochastic samples from
this density. HMC is an efficient method to investigate multidimensional correlated distribu-
tions. The negative logarithm of the conditional conformational posterior density is analoguous
to a physical energy and defines a dynamical system in conformational space. Numerical inte-
gration of Hamilton’s equations of motion with the leapfrog discretization sch&12 yields
a candidate conformation, which is accepted according to the Metropolis crit&iéh (The
number of integration steps for an HMC update was 250.

The Gibbs sampling procedure (Eq. (S5)) is embedded in a Replica-exchange Monte Carlo
scheme $149 to cope with trapping in modes of the posterior distribution. The details of the
algorithm are described ir5Q5. Two parameters control the shape of the posterior distribution:
exponential weighting of the likelihood function switches the data gradually off; use of the
Tsallis ensembleS16, an extension of the Boltzmann ensemble, allows one to turn off non-
bonded interactions. Multiple copies of the system are simulated at different values of the two
replica parameters. After 30 Gibbs sampling steps for each copy, parameter exchanges between
neighboring replicas are accepted according to the Metropolis criterion.

We simulated a replica arrangement consisting of 50 systems and calculated a total of 10000
conformations per copy. The calculation time on a 50 processor PC cluster was approximately

72 hours.
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Fig. S1. Replica-exchange Monte Carlo algorithm. We embed the Gibbs sampling scheme
(Eq. (S5) in a Replica-exchange Monte Carlo algoritt8t4 which simulates a sequence of
“heated” copies of the system. We introduce two temperature-like parameterdg (con-

fer (S19 for details). A is a weighting factor that is used to control the contribution of the data
in the likelihood function. Foi = 1 the data are switched on, far= 0 the data are switched

off. The second parameteiis the Tsallis paramete51§ controlling the shape of the confor-
mational prior density. Fay = 1, the conformational prior density is identical to the Boltzmann
distribution. Forq — oo, physical interactions are switched off and the conformational prior
density approaches a flat distribution over conformational space. By setiing large value,

the polypeptide chain can move almost freely during HMC sampling; for our system already
valuesq,..x =~ 1.1 are sufficiently large. We arange the copies of the system in such a way that
first the data are switched off by decreasinffom 1.0 to\,;, = 0.1 (while lettingqg = 1). In

the other half of the arrangement also the physical interactions are swichted off by incigasing

from 1.0 to 1.1 (while letting = A\..;, = 0.1, i.e. data are almost completely neglected).
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