dualismo onda corpuscolo

- Gli effetti che abbiamo visto finora sono manifestazioni della natura corpuscolare della radiazione elettromagnetica (e quindi della luce)
- Naturalmente la natura corpuscolare non spiega le innumerevoli prove a favore della natura ondulatoria della luce
- La nuova fisica quantistica ci abituerà a questo dualismo onda-corpuscolo, anche per le particelle
- Per comprendere la natura ondulatoria delle particelle, dovranno essere state trattate in precedenza alcune cruciali manifestazioni della natura ondulatoria della luce

Teorie della luce

Ottica geometrica

raggi di luce

riflessione

rifrazione

dispersione (dipendenza dell'indice di rifrazione dalla frequenza)

Ottica fisica o ondulatoria

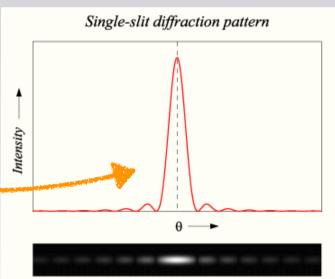
fronte d'onda determinato dal principio di Huygens

interferenza

diffrazione da doppia fenditura

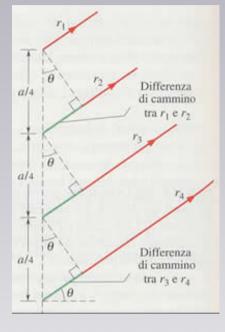
diffrazione da singola fenditura (di Fraunhofer)

reticolo di diffrazione

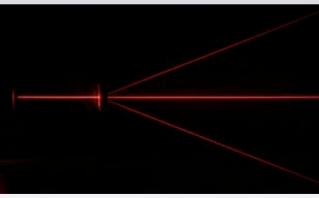


spettroscopi per l'analisi in frequenza

Reticolo di diffrazione

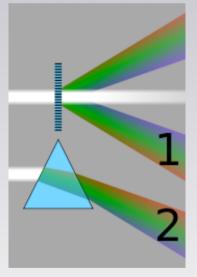


effetto su un laser rosso



Prisma: legge di Snell

Differenze tra uno spettroscopio a prisma o a reticolo



diffrazione dei raggi X

In un reticolo di diffrazione $d \sin \vartheta = n\lambda$ per osservare la diffrazione $d \sim \lambda$

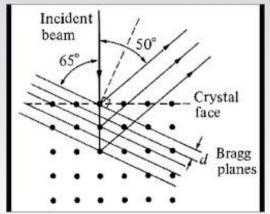
per la luce visibile $\lambda \approx 500 \text{ nm} = 0.5 \mu\text{m}$

facilmente realizzabile con tecniche fotografiche

per i raggi X frazione di nm! Struttura cristallina legge di Bragg $2d \sin \vartheta = n\lambda$

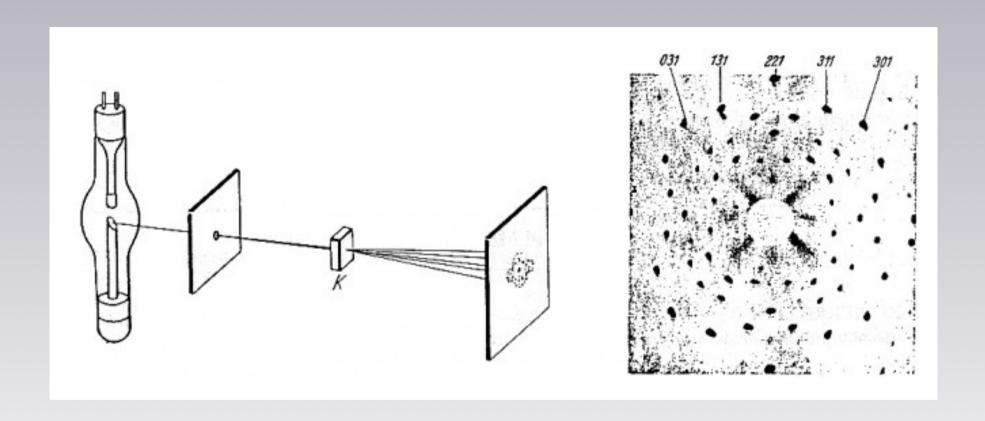
 $d = \frac{1}{\theta} \int d \sin \theta$

ma anche:



La diffrazione di Bragg ci permette di studiare la struttura cristallina (schemi di Laue)

diffrazione di Bragg e schemi di Laue



Spettroscopia atomica

Abbiamo già parlato dello spettro a righe dei raggi X Spettri di emissione dei gas eccitati da scariche elettriche serie di Balmer dell'idrogeno (1885)

$$\lambda = \frac{m^2}{m^2 - 2^2} 364.6 \text{ nm} \quad \text{con m} \ge 3$$

serie di Paschen, Lyman: formula di Rydberg-Ritz (1888)

$$\frac{1}{\lambda} = RZ^2 \left(\frac{1}{n_2^2} - \frac{1}{n_1^2} \right) \quad \text{con } R = 10.974 \,\mu\text{m}^{-1}$$

modellizzazione atomica per spiegare le serie spettroscopiche osservate

modello di Thomson vs modello di Rutherford

modello atomico di Bohr

Instabilità classica del modello di Rutherford: l'elettrone in orbita circolare deve emettere onde e.m. e perde energia fino a collassare sul nucleo

Bohr (1913) postula che

l'elettrone può muoversi solo su determinate orbite circolari, "stati stazionari", sotto l'effetto della attrazione Coulombiana e secondo le leggi della meccanica classica.

Ciononostante l'elettrone non irraggia (?!).

I momenti angolari permessi sono solo i multipli di $\hbar = \frac{h}{2\pi}$

Le transizioni tra stati stazionari sono possibili solo con assorbimento o emissione di fotoni secondo la relazione di Planck

$$\left| E_i - E_f \right| = hv$$

livelli energetici del modello di Bohr

energia totale dell'elettrone
$$E = \frac{1}{2}mv^2 - k\frac{Ze^2}{r}$$
 orbita circolare $k\frac{Ze^2}{r^2} = m\frac{v^2}{r} \to k\frac{Ze^2}{r} = mv^2$ energia cinetica per orbita circolare $\frac{1}{2}mv^2 = \frac{1}{2}k\frac{Ze^2}{r}$ energia totale per orbita circolare $E = -\frac{1}{2}k\frac{Ze^2}{r}$ quantizzazione del momento angolare $mvr = n\hbar$, da cui si ricava $v = \frac{n\hbar}{mr}$

$$v^{2} = n^{2} \frac{\hbar^{2}}{m^{2} r^{2}} = \frac{kZe^{2}}{mr}$$

$$r_{n} = n^{2} \frac{\hbar^{2}}{mkZe^{2}}$$

$$E_{n} = -\frac{1}{2}k\frac{Ze^{2}}{r} = -\frac{kZe^{2}}{2}\frac{mkZe^{2}}{\hbar^{2}}\frac{1}{n^{2}} = \frac{m(kZe^{2})^{2}}{2\hbar^{2}}\frac{1}{n^{2}}$$

transizioni tra orbite stazionarie

calcolando la frequenza emessa o assorbita in una transizione

$$v = \frac{\left| E_i - E_f \right|}{h} = \frac{m_e \left(k Z e^2 \right)^2}{4 \pi \hbar^3} \left| \frac{1}{n_f^2} - \frac{1}{n_i^2} \right|$$

si ritrova la formula di Rydberg-Ritz ottenendo il valore numerico di R determinato sperimentalmente!

Il valore che si ottiene per n=1 e Z=1 (idrogeno) è il cosiddetto raggio di Bohr per l'idrogeno:

$$r_B = \frac{\hbar^2}{m_e k e^2} = 0,53 \cdot 10^{-10} \text{ m} = 0,053 \text{ nm}$$

a cui corrisponde una energia di legame pari a -13.6 eV.

Il secondo livello energetico ha una energia di -3.4 eV, per cui la prima riga di assorbimento corrisponde a fotoni di energia hv = 10.2 eV

Spettri di emissione e spettri di assorbimento. Solo la serie di Lyman si trova in entrambi

Importanza della spettroscopia nell'interpretazione dell'universo

- L'analisi spettrale della luce proveniente da qualunque oggetto cosmico ci permette di identificare gli elementi presenti nell'oggetto cosmico.
- In effetti si ritrovano gli stessi pattern spettrali osservati sulla Terra, ma con lunghezze d'onda allungate (spostate verso il rosso, "red-shift") in funzione della velocità con cui l'oggetto si sposta (si allontana) da noi.
- Si tratta dell'effetto Doppler, che dimostra che tutti gli oggetti lontani si allontanano da noi, ed è alla base dell'ipotesi dell'esapansione dell'Universo.

Limiti del modello di Bohr

- Il modello di Bohr funzionava bene per l'idrogeno e per gli atomi idrogenoidi, ma non per gli altri elementi
- Non dava alcuna spiegazione di come avvenissero effettivamente le transizioni (per esempio non permetteva di calcolare la diversa intensità delle varie righe)
- Non rendeva conto di tutte le righe osservate (spesso si osservano doppietti o multipletti di righe)
- Inoltre i postulati di Bohr non avevano nessuna giustificazione nella fisica classica, benché la loro assunzione permetteva poi un trattamento puramente classico

Onde associate agli elettroni

De Broglie (1924): ipotesi ondulatoria per gli elettroni:

$$v = \frac{E}{h}$$
 $\lambda = \frac{h}{p}$

analoga alla relazione di Einstein-Planck per i fotoni:

$$E = pc$$
 $v\lambda = c$ $\lambda = \frac{c}{v} = \frac{hc}{E} = \frac{hc}{pc} = \frac{h}{p}$

Su queste basi, la quantizzazione di Bohr si traduce in una quantizzazione della lunghezza dell'orbita in termini di lunghezza d'onda dell'elettrone:

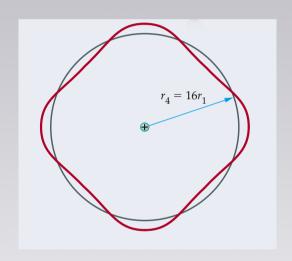
$$pr = \frac{h}{\lambda}r = n\frac{h}{2\pi}$$
 \Rightarrow $n\lambda = 2\pi r$

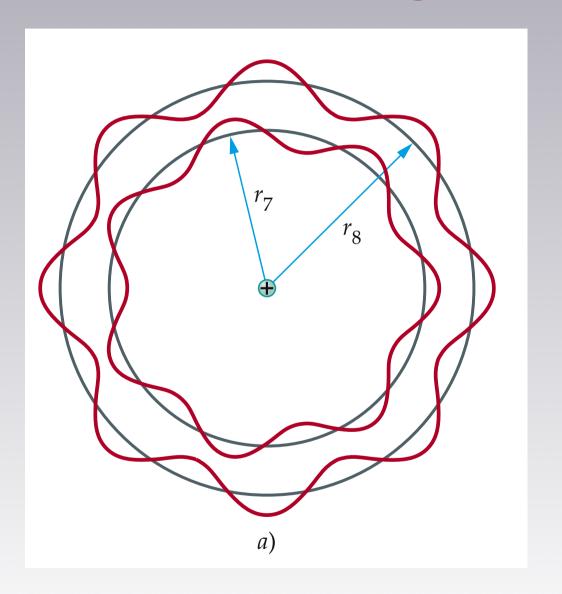
onde stazionarie su una circonferenza

onde stazionarie su un anello



le orbite stazionarie secondo de Broglie

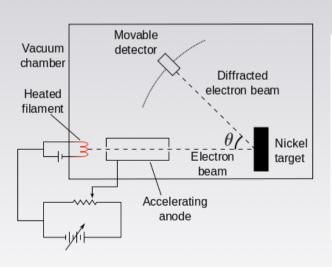


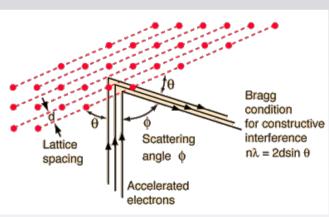


Diffrazione di elettroni

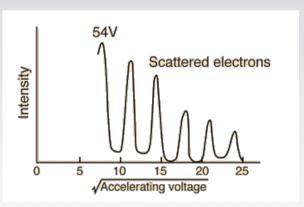
Una conseguenza dell'ipotesi ondulatoria per gli elettroni che poteva essere verificata sperimentalmente è la possibilità di osservare fenomeni di diffrazione

Esperimenti di Davisson-Germer (1927), ripetuti successivamente da G.P. Thomson, che confrontando con i raggi X ottiene lunghezze d'onda di 5-8 10-11 m per elettroni di energia cinetica di 20-60 keV)





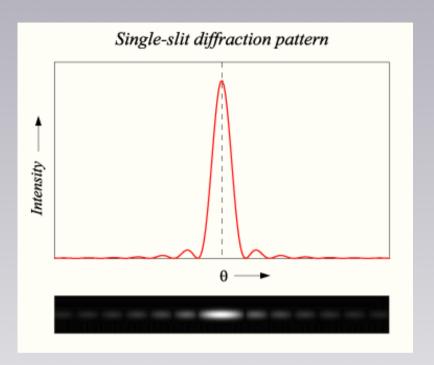
$$\frac{1}{\lambda} = \frac{n}{2d\sin\vartheta} = \frac{p}{h} = \frac{\sqrt{2mE}}{h} = \frac{\sqrt{2meV}}{h}$$



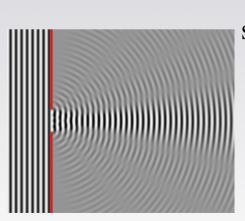
Diffrazione da singola fenditura

diffrazione ottica alla Fraunhofer:

se
$$\frac{d}{2}\sin\vartheta = \left(n + \frac{1}{2}\right)\lambda$$
le due metà del fronte sono in opposizione di fase



θ₀ primo angolo per cui l'intensità si annulla

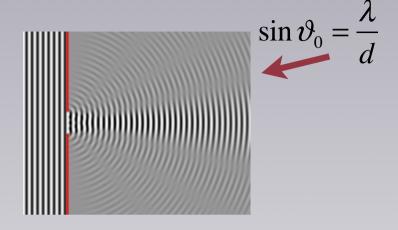


$$\sin \vartheta_0 = \frac{\lambda}{d}$$

minore è d, maggiore è θ_0 da un'apertura puntiforme esce un'onda sferica

Diffrazione di elettroni e principio di indeterminazione

L'impulso iniziale degli elettroni è orizzontale L'impulso finale avrà una direzione



diversa

$$\sin \vartheta = \frac{p_y}{p}$$

$$\sin \vartheta = \frac{p_y}{p} \qquad \sin \vartheta_0 = \frac{p_y^{\text{max}}}{p} = \frac{\Delta p}{p} \qquad \Delta p = p_y^{\text{max}}$$

$$\Delta p = p_y^{\text{max}}$$

Ad una indeterminazione in posizione $\Delta y = d$ corrisponde una indeterminazione in impulso:

usando la relazione di de Broglie per l'impulso $\lambda = \frac{n}{n}$

$$\sin \vartheta_0 = \frac{\lambda}{d} = \frac{\lambda}{\Delta y} = \frac{p_y^{\text{max}}}{p} = \frac{\Delta p}{h/\lambda}$$

$$\Delta y \Delta p = h$$

un altro aspetto dell'indeterminazione di un'onda

- Supponiamo di avere un pacchetto d'onde, localizzato in una regione $\Delta x = N\lambda$
- Se Δx è molto piccolo rispetto a λ , non è possibile determinare λ !
- Se Δx è dell'ordine di λ , l'errore su λ è dell'ordine di λ , per cui $\Delta x \Delta \lambda \sim \lambda^2$
- Se N è grande, posso determinare λ contando N: $\lambda = \frac{\Delta x}{N}$ $\frac{\Delta \lambda}{\lambda} \sim \frac{1}{N} \Rightarrow \Delta \lambda \sim \frac{\lambda}{N} \Rightarrow \Delta x \Delta \lambda \sim \lambda^{2}$

Per un pacchetto d'onde quindi è sempre $\frac{\Delta x \Delta \lambda}{\lambda^2} \sim 1$

- tanto meglio conosco la posizione, tanto peggio conosco la lunghezza d'onda.
- La relazione può essere resa rigorosa ricorrendo alla trasformata di Fourier.

Il principio di indeterminazione di Heisenberg

Se partiamo dalla ultima relazione e la combiniamo con l'ipotesi ondulatoria di de Broglie otteniamo:

$$\frac{\Delta x \Delta \lambda}{\lambda^2} \sim 1 \Rightarrow \frac{h \Delta x \Delta \lambda}{\lambda^2} \sim h$$

$$p = \frac{h}{\lambda} \Rightarrow \Delta p = \frac{h}{\lambda^2} \Delta \lambda$$

$$\Delta x \Delta p \sim h$$

Heisenberg (1927) dimostra che, quali che siano i metodi di misura dell'impulso e della posizione, deve sempre essere:

$$\Delta x \Delta p \ge \frac{h}{4\pi} = \frac{\hbar}{2}$$

Principio di indeterminazione della meccanica quantistica

meccanica quantistica

Equazione di Schroedinger

Soluzione: funzione d'onda

Interpretazione del quadrato della funzione d'onda come densità di probabilità di trovare la particella in una determinata posizione

Applicazioni alla fisica atomica: gli orbitali elettronici

Il processo di misura e il "collasso" della funzione d'onda

in che stato si trova la particella prima di essere misurata?

dove si trova la particella prima di incontrare il rivelatore?

Interpretazione "di Copenaghen" e eventuali alternative

Indeterminazione ontologica (Bohr)

vs. indeterminazione epistemologica (realismo) (Einstein)

II paradosso EPR

La meccanica quantistica per particelle relativistiche (La meccanica quantistica e la relatività generale)

Equazione di Schroedinger

La ricetta:

- equazione matematicamente coerente con le leggi fisiche, continua ed a singolo valore
- equazione lineare, per garantire il principio di sovrapposizione
- conservazione dell'energia
- consistenza con l'ipotesi di de Broglie

Equazione di Schroedinger

eq. di D'Alembert
$$\frac{\partial^2 f(x,t)}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 f(x,t)}{\partial t^2}$$

soluzione di onda piana $f(x,t) = Ae^{i(kx-\omega t)}$ con $\omega = 2\pi v = vk = v\frac{2\pi}{2}$ energia per un fotone $E(-hv - \hbar\omega) = pc(-hc/\lambda - \hbar ck) \Rightarrow ck = \omega$ energia per un elettrone $E = \hbar \omega = \frac{p^2}{2m}$ $\Rightarrow \omega = \frac{\hbar k^2}{2m}$ onda piana per elettroelazit/ne,tclassica tra

l'equazione energia ed impulso
$$\frac{2m}{2m}\frac{\partial d}{\partial x^2}\Psi(x,t)=i\hbar\frac{\partial}{\partial t}\Psi(x,t)$$
 riproduce la relazione corretta $\frac{-\hbar^2}{2m}(-k^2)=i\hbar\left(-i\frac{\hbar k^2}{2m}\right)$

equazione per l'energia di una particella libera $\frac{-\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \Psi(x,t) = \frac{\hbar^2 k^2}{2m} \Psi(x,t) = E\Psi(x,t)$

$$\frac{-\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\Psi(x,t) = \frac{\hbar^2 k^2}{2m}\Psi(x,t) = E\Psi(x,t)$$

eq. di Schroedinger completa (1926) Piana: particella libera che si Propaga nello spazio

Equazione di Schroedinger indipendente dal tempo

per evitare le complicazioni dell'equazione alle derivate parziali si può assumere una situazione unidimensionale indipendente dal tempo

e ricercare in analogia con le onde classiche una soluzione sinusoidale: $\psi(x) = A \sin kx$

$$\frac{d^2}{dx^2}\psi(x) = -k^2 A \sin kx = -k^2 \psi(x)$$

$$\frac{-\hbar^2}{2m} \frac{d^2}{dx^2} \psi(x) = \frac{\hbar^2 k^2}{2m} \psi(x)$$

$$\frac{-\hbar^2}{2m} \frac{d^2}{dx^2} \psi(x) = E\psi(x)$$

e introducendo una energia potenziale V(x)

$$\frac{-\hbar^2}{2m}\frac{d^2}{dx^2}\psi(x) = (E - V(x))\psi(x)$$

Equazione di Schroedinger

eq. di Schroedinger completa
$$\left[\frac{-\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x) \right] \Psi(x,t) = i\hbar \frac{\partial}{\partial t} \Psi(x,t)$$

Si noti che nell'eq. di Schroedinger l'interazione della particella è rappresentata da un potenziale, non da una forza!

Si noti anche che per soddisfare l'eq. di Schroedinger la funzione d'onda non può essere reale!

Il significato della funzione d'onda

Interpretazione di Max Born (1926): il modulo quadro della funzione d'onda rappresenta la probabilità di trovare la particella in una determinata posizione dello spazio

