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Problems of Reductionism and the search for fundamental dofs.
(e.g. free-electron model of metal conductivity)

P.W.Anderson opened the season of “complexity” in 1972
(P.W. Anderson, More is different. Science, 177, 393-396 (1972)).

In a nutshell;

THERE IS NO FUNDAMENTAL SCALE
AT EACH SCALE THERE IS NEW PHYSICS
EACH SCALE HAS ITS OWN LEVEL OF COMPREHENSION



MOLECULAR STRUCTURE
An intrinsically classical notion
* Mechanical equilibrium configurations

* No net force condition (what 1s a force in QM?)
* Minima of the potential energy landscape



The “fundamental” law at atomic scale
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Non relativistic time dependent Schroedinger Equation with the “matter hamiltonian™:

Coulomb term

H (r,R;p, P) = Kn(P) + K.(p) + V(r,R)

H.(r,p|R)

Electronic hamiltonian




Born-Oppenheimer approximation

Nuclear masses exceed electronic ones by 2-3 orders of magnitude: my > Me

H.(r,p|R)Ps(r|R) = E;(R)Ps(r |R)

We split the molecular Schr. Equation into two: electronic and nuclear

Electronic wave-functions are more delocalized

‘VR(I)S| < ’V7(I)b’

U(r, R;t) sz (R; t)®s(r|R) ~ xo(R; t)®o(r|R)

adiabatic approximation: B. O. 1927



The evolution of the nuclear approximated w.f. Xo(R; 1) 1s given by:

0
th—xXo(R;t) = Hn(R, P)xo(R;t)

ot
Kn(P) + Eo(R)] xo(R;t)

The dynamics of the nuclei, apparently independent from the electrons, is driven
by Eo(R) as the interaction potential (a mean field, modelizable, no more Coulomb!);
the ground state electronic function parametrized by R.

In the rigid adiabatic approx. no excited electronic states, jumps are considered.

The force fields of protein MD come from models of Eo



If nuclei are heavy enough and/or temperature is high enough so that the thermal quantum length is
negligible w.r. to nuclear separations:

A = ——— << internuclear r
myk,T

Then the dynamics 1s no more quantum, but
Newton: and nuclei move classically in the
effective potential built up by electronic glue

myR = —VEy(R)



€  aclassical system of guantum particles interacting via an
effective interaction potential,

is be obtained ab initio, from quantum mechanics, (AIMD) by
some suitable fitting procedure=>phenomenological model, e.g. with a
Pairwise Additive Potential,

& if PAP, the equations of motion are numerically integrable for a
number of particles finite but large enough to study, by statistical
approach, the thermal properties of matter



Equilibrium (classical) Statistical Mechanics (1)

a closed system evolving in time under time-independent
forces will reach a STATIONARY state

the microscopic properties are ‘irrelevant’ while the

statistical (or macroscopic) are stable and interesting
(THERMODYNAMICS).

They can be computed by time or ensemble averages:



Equilibrium (classical) Statistical Mechanics (2)

micro

O = O(R,P) = lim l/T dt O(R(t), P(t))

T—00 T

(1)

Temporal average of an observable along a trajectory generated by the newtonian dynamics

N =00

N
B B .
~ lim N;:l:c)(}z(m),p(m)) .

Estimator of (1) i Relative probability of state 1

=Jm o3 [Fo ®)

{Evisited states

Estimator of (1) as an expected value over a probability scheme attached to “ states”™,
to be considered as statistically independent bunches of snapshots, similar to meso-states

N / dRAP p(R, P)O(R,P) = (O(R, P)) @

Ensemble average as in MC: (1) and (4) are the same if the dynamics is ergodic



I. THE BORN-OPPENHEIMER APPROXIMATION

The next few lectures will treat the problem of quantum chemistry, a subfield of quantum mechanics also known as
molecular quantum mechanics. The idea of quantum chemistry is to use only the simple facts molecules and, indeed,
all of ordinary matter, can be viewed as composed only of positively charged nuclei and negatively charged electrons.
This universal description is then subject to a quantum mechanical treatment from which the properties of the system
are derived or computed.

We begin our discussion of AIMD by considering a system of N nuclei described by coordinates, R, ..., Ry = R,
momenta, Pi,...,Py = P, and masses M;,..., My, and N, electrons described by coordinates, ry,...,ry, = r,
momenta, pi,..., PN, = P, and spin variables, si, ..., sy, = s. The Hamiltonian of the system is given by

Ne 2 2
b; & 717 ye? Ze?
H 1
Z2MI RPN rra P B v I By v
=1 1> J

= TN + Te + Vee(r) + Van(R) + Ven(r, R)

where m is the mass of the electron, and Zje is the charge on the Ith nucleus. In the second line, TN, T¢, Ve,
Van, and Ven represent the nuclear and electron kinetic energy operators and electron-electron, electron-nuclear,
and nuclear-nuclear interaction potential operators, respectively. Note that this Hamiltonian is universal in that
it describes all of everyday matter from biological macromolecules such as proteins, enzymes and nucleic acids, to
metals and semiconductors to synthetic materials such as plastics. Thus, if we could solve for the eigenvalues and
eigenfunctions of this Hamiltonian, we could, predict any property we wished of a given system. This fact lead the



In + Te + Vee(r) + Van(R) + Ven(r, R)| ¥(x, R) = EV¥(x,R)
Molecular eigen-value problem
U(x,R) = ¢(x,R)x(R)

Separation of scales, adiabatic factorization... Vix(R) > V;é(x,R)

Te + Vee(r) + Ven(r, R)] 9(x, R) _ o, [Tiv + Van(R)] X (R)
¢(x,R) X(R)

Te 4+ Vee(r) + Ven(r, R)] 6(x,R) = ¢(R)¢p(x, R) Electronic eq

TN + Van(R) +en(R)] x(R) = Ex(R) nuclear

Moreover, each electronic eigenvalue, £, (R), will give rise to an electronic surface, and these surfaces are known as
Born-Oppenheimer surfaces. Thus, the full internuclear potential for each electronic surface is given by Vn(R) +
en(R). On each Born-Oppenheimer surface, the nuclear eigenvalue problem can be solved, which yields a set of levels



Nuclear motions are ruled by the time dependent Schroedinger Eq.

Ty + Van (R) + en(R)] X (R, 1) = z’h%X(R, )

[Te -+ ‘/ee (I‘) T VI%N (I‘, R)] qu (Xv R) — €0 (R)¢O (X7 R)

Tx + eo(R) + Van(R)] X (R, t) = ih%X(R, 1)

Coupling the nuclear dynamics with electronic on the flight solutio of the electronic eigen-value problem is
Ab-Initio Car-Parrinello MD



Moreover, if nuclear quantum effects can be neglected, then we may arrive at classical nuclear evolution by assuming
X(R,1) is of the form

X(R,t) = A(R, t)eS®D/R (11)

and neglecting all terms involving , which yields an approximate equation for S(R,t):

oS
HN(Vls,...,VNS,Rl,...,RN)+E =0 (12)
which is just the classical Hamiltonian-Jacobi equation with
N p2
_ I
Hx(Py,....PN, Ry, .., RN) = IEl SN, + VN (R) 4+ 20(R) (13)

denoting the classical nuclear Hamiltonian. The Hamilton-Jacobi equation is equivalent to classical motion on the
ground-state surface, Eo(R) = ¢9(R) + Van(R) given by

. P;
R;=-——
I M,
P; = —VEy(R) (14)

Note that the force —V;Ep(R) contains a term from the nuclear-nuclear repulsion and a term from the derivative of
the electronic eigenvalue, £9(R). Because of the Hellman-Feynman theorem, the latter can be expressed as

Vrieo(R) = (¢o(R)|VIHe(R)|po(R))



II. PROOF OF THE HELLMAN-FEYNMAN THEOREM

Consider a system with a Hamiltonian H()) that depends on some parameters A. Let [)()\)) be an eigenvector of

H()\) with eigenvalue E(\)
HN)[W(N) = EN[p(N))
We further assume that [)())) is normalized so that
WN) =1

The Hellman-Feynman theorem states that
dE dH
— = A) | — (A
% = (v |5 o)
The proof of the Hellman-Feynman theorem is straightforward. We begin with the fact that

EQ) = (N[HN)[$(N)

Differentiating both sides yields

2 - o g o (S ) o (s i)

Since [¢(A)) is an eigenvector of H (), this can be written as

aE _ il

(o0 | G |w) + 200 [ (G2 1000 ) + (w1 55)

However, since |t()\)) is normalized, we have, from the normalization condition:
WNA) =1
dip AN

Hence, the term in square brackets vanishes, and we have

&= (v |5 o)

which is just the Hellman-Feynman theorem.

£~ () ) 0 o

(16)
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So, we have grounded the notion of molecular structure and
molecular dynamics on quantume mechanics. Moreover, we have
given, through Hellmann-Feynman’ theorem a meaning to the notion of

Molecular forces. E scusate se € poco









