Cognome e nome	Matr.

REGOLE D'ESAME

- 1) Non è ammesso l'uso di libri, appunti, calcolatrici, cellulari, etc. Soltanto carta e penna!
- 2) Il compito deve essere svolto su questi fogli (utilizzando anche il retro), che sono gli unici ad essere consegnati al docente per la correzione.
- ♣ Esercizio 1. Calcolare il seguente integrale

$$\iint\limits_{\Omega} xydxdy$$

dove Ω è dato dall'unione del trapezio di vertici (-1,0), (1,0), (0,-1), (-1,-1) e del semicerchio di centro l'origine, raggio 1 e ordinate positive.

♣ - Esercizio 2. Dato il campo vettoriale

$$\mathbf{F}(x,y) = \left(\ln(x+3y) + \frac{x}{x+3y}, \frac{\alpha x}{x+3y}\right),\,$$

trovare i valori reali di α che rendono il campo conservativo nel suo dominio. Per tali valori di α , trovare il lavoro compiuto dal campo per spostare un punto materiale da (1,0) a (2,0).

🌲 - Nei seguenti esercizi indicare con una croce la risposta. Verranno assegnati 3 punti alle risposte esatte e -1 a quelle sbagliate

Esercizio 3. Calcolare il seguente integrale

$$\iint\limits_{\Omega} \frac{2xe^{x^2+y^2}}{\sqrt{x^2+y^2}} dxdy$$

dove Ω è la parte di cerchio di centro l'origine e raggio 2 contenuta nel primo quadrante.

Risposta: A 0

B Nessuna delle altre risposte

 $\boxed{\mathbf{C}} e - 1$ $\boxed{\mathbf{D}} e^4 - 1$

Esercizio 4. Calcolare l'area della figura racchiusa dalla seguente curva,

$$\gamma(t) = \begin{cases} x = (1-t)^2 t \\ y = (1-t)t \end{cases}, \quad t \in [0,1]$$

(Suggerimento: la curva è semplice, e percorsa in senso antiorario; non occorre disegnarla.)

Risposta: A Nessuna delle altre risposte

 $\boxed{\mathrm{B}} \frac{1}{50}$

Esercizio 5. Si consideri la spirale γ di equazioni parametriche

$$\begin{cases} x(t) = t \cos t, \\ y(t) = t \sin t. \end{cases}$$

Il versore tangente a γ nel punto $(2\pi, 0)$ è:

Risposta: A $(1, 2\pi)$ B $(-1, -2\pi)$ C $\frac{(1, 2\pi)}{\sqrt{1+4\pi^2}}$ D $\frac{(-1, -2\pi)}{\sqrt{1+4\pi^2}}$ E nessuna delle altre risposte

Esercizio 6. L'espressione che fornisce l'integrale curvilineo $\int_{\gamma} y \, ds$ lungo la curva γ di equazione $y = 2x^2$, $x \in [0,1],$ è data da (non si richiede di calcolare l'integrale):

Risposta: $\boxed{\mathbf{A}} \int_{0}^{1} \sqrt{1+16x^2} \, dx$ $\boxed{\mathbf{B}} \int_{0}^{1} 2x^2 \sqrt{1+4x} \, dx$ $\boxed{\mathbf{C}} \int_{0}^{1} 2x^2 \sqrt{1+16x^2} \, dx$

 $\boxed{\mathsf{D}} \int_{}^{1} \sqrt{1 + 4x^4} \, dx$

|E| nessuna delle altre risposte

Cognome e nome	Matr.
	I .

REGOLE D'ESAME

- 1) Non è ammesso l'uso di libri, appunti, calcolatrici, cellulari, etc. Soltanto carta e penna!
- 2) Il compito deve essere svolto su questi fogli (utilizzando anche il retro), che sono gli unici ad essere consegnati al docente per la correzione.
- \diamondsuit Esercizio 1. Calcolare il seguente integrale

$$2\iint\limits_{\Omega}xydxdy$$

dove Ω è dato dall'unione del trapezio di vertici (-1,0), (1,0), (0,1), (-1,1) e dal semicerchio di centro l'origine, raggio 1 e ordinate negative.

 \diamondsuit - Esercizio 2. Dato il campo vettoriale

$$\mathbf{F}(x,y) = \left(\ln(4x+y) + \frac{4x}{4x+y}, \frac{\alpha x}{4x+y}\right),\,$$

trovare i valori reali di α che rendono il campo conservativo nel suo dominio. Per tali valori di α , trovare il lavoro compiuto dal campo per spostare un punto materiale da (2,0) a (0,1).

♦ - Nei seguenti esercizi indicare con una croce la risposta. Verranno assegnati 3 punti alle risposte esatte e -1 a quelle sbagliate

Esercizio 3

Calcolare il seguente integrale

$$\iint\limits_{\Omega} \frac{xe^{x^2+y^2}}{\sqrt{x^2+y^2}} dx dy$$

dove Ω è la parte di cerchio di centro l'origine e raggio 2 contenuta nel quarto quadrante.

Risposta: A 0

B Nessuna delle altre risposte

 $\boxed{\mathbb{C}} \frac{e-1}{2}$ $\boxed{\mathbb{D}} \frac{e^4-1}{2}$ $\boxed{\mathbb{E}} \frac{e^2-1}{2}$

Esercizio 4

Calcolare l'area della figura racchiusa dalla seguente curva,

$$\gamma(t) = \begin{cases} x = 2(1-t)^2 t \\ y = 2(1-t)t \end{cases}, \quad t \in [0,1]$$

(Suggerimento: la curva è semplice, e percorsa in senso antiorario; non occorre disegnarla.)

Risposta: A Nessuna delle altre risposte B $\frac{1}{10}$

 $|C| \frac{1}{15}$

Esercizio 5

Si consideri la curva γ di equazioni parametriche

$$\begin{cases} x(t) = t^5 - t, \\ y(t) = t^3. \end{cases}$$

Il versore tangente a γ nel punto (0,1) è:

Risposta: $\boxed{A} \left(\frac{4}{5}, \frac{3}{5}\right)$ $\boxed{B} (4,3)$ $\boxed{C} \left(-\frac{4}{5}, \frac{3}{5}\right)$ $\boxed{D} (-4,3)$ \boxed{E} nessuna delle altre risposte

Esercizio 6. L'espressione che fornisce l'integrale curvilineo $\int_{\gamma} y \, ds$ lungo la curva γ di equazione $y = 3x^2$, $x \in [0, 1]$, è data da (non si richiede di calcolare l'integrale):

Risposta: $\boxed{\mathbf{A}} \int_0^1 \sqrt{1+36x^2} \, dx$ $\boxed{\mathbf{B}} \int_0^1 3x^2 \sqrt{1+36x^2} \, dx$ $\boxed{\mathbf{C}} \int_0^1 3x^2 \sqrt{1+9x^4} \, dx$

 $\boxed{\mathbf{D}} \int_{1}^{1} \sqrt{1+6x} \, dx$

|E| nessuna delle altre risposte

Cognome e nome	Matr.
----------------	-------

REGOLE D'ESAME

- 1) Non è ammesso l'uso di libri, appunti, calcolatrici, cellulari, etc. Soltanto carta e penna!
- 2) Il compito deve essere svolto su questi fogli (utilizzando anche il retro), che sono gli unici ad essere consegnati al docente per la correzione.
- ♠ Esercizio 1. Calcolare il seguente integrale

$$\iint\limits_{\Omega} xy\,dxdy$$

dove Ω è dato dall'unione del trapezio di vertici (0,-1), (1,0), (1,1), (0,1) e del semicerchio di centro l'origine, raggio 1 e ascisse negative.

♠ - Esercizio 2. Dato il campo vettoriale

$$\mathbf{F}(x,y) = \left(\frac{\alpha y}{x+3y}, \ln(x+3y) + \frac{3y}{x+3y}\right),\,$$

trovare i valori reali di α che rendono il campo conservativo nel suo dominio. Per tali valori di α , trovare il lavoro compiuto dal campo per spostare un punto materiale da (1,0) a (1,1).

♠ - Nei seguenti esercizi indicare con una croce la risposta. Verranno assegnati 3 punti alle risposte esatte e -1 a quelle sbagliate

Esercizio 3. Calcolare il seguente integrale

$$\iint\limits_{\Omega} \frac{2xe^{x^2+y^2}}{\sqrt{x^2+y^2}} dxdy$$

dove Ω è la parte di cerchio di centro l'origine e raggio 2 contenuta nel terzo quadrante.

Risposta: A 0

B Nessuna delle altre risposte

|C|1-e

 $D 1 - e^4$

Esercizio 4

Calcolare l'area della figura racchiusa dalla seguente curva,

$$\gamma(t) = \begin{cases} x = 3(1-t)^2 t \\ y = 3(1-t)t \end{cases}, \quad t \in [0,1]$$

(Suggerimento: la curva è semplice, e percorsa in senso antiorario; non occorre disegnarla.)

Risposta: A Nessuna delle altre risposte

 $|B| \frac{1}{20}$

Esercizio 5

Si consideri la spirale γ di equazioni parametriche

$$\begin{cases} x(t) = t \cos t, \\ y(t) = t \sin t. \end{cases}$$

Il versore tangente a γ nel punto $(0, \frac{\pi}{2})$ è:

Risposta: $\boxed{A} \frac{\left(\frac{\pi}{2},1\right)}{\sqrt{\frac{\pi^2}{4}+1}} \qquad \boxed{B} \left(\frac{\pi}{2},1\right) \qquad \boxed{C} \frac{\left(-\frac{\pi}{2},1\right)}{\sqrt{\frac{\pi^2}{4}+1}} \qquad \boxed{D} \left(-\frac{\pi}{2},1\right) \qquad \boxed{E} \text{ nessuna delle altre risposte}$

Esercizio 6. L'espressione che fornisce l'integrale curvilineo $\int_{\gamma} y \, ds$ lungo la curva γ di equazione $y = -x^2$, $x \in [0, 1]$, è data da (non si richiede di calcolare l'integrale):

Risposta: $\boxed{\mathbf{A}} - \int_{\mathbf{a}} x^2 \sqrt{1 + 4x^2} \, dx$

$$\boxed{\mathbf{B}} \int_{0}^{1} \sqrt{1+4x^{2}} \, dx \qquad \boxed{\mathbf{C}} - \int_{0}^{1} x^{2} \sqrt{1+x^{4}} \, dx$$

$$\boxed{D} \int_{0}^{1} \sqrt{1 - 2x} \, dx$$

|E| nessuna delle altre risposte

Cognome e nome	Matr.
	I .

REGOLE D'ESAME

- 1) Non è ammesso l'uso di libri, appunti, calcolatrici, cellulari, etc. Soltanto carta e penna!
- 2) Il compito deve essere svolto su questi fogli (utilizzando anche il retro), che sono gli unici ad essere consegnati al docente per la correzione.

Esercizio 1 - \heartsuit . Calcolare il seguente integrale

$$2\iint\limits_{\Omega}xydxdy$$

dove Ω è dato dall'unione del trapezio di vertici (-1,0), (0,-1), (0,1), (-1,1) e del semicerchio di centro l'origine, raggio 1 e ascisse positive.

Esercizio 2 - \heartsuit . Dato il campo vettoriale

$$\mathbf{F}(x,y) = \left(\frac{\alpha y}{4x+y}, \ln(4x+y) + \frac{y}{4x+y}\right),\,$$

trovare i valori reali di α che rendono il campo conservativo nel suo dominio. Per tali valori di α , trovare il lavoro compiuto dal campo per spostare un punto materiale da (2,0) a (0,2).

Nei seguenti esercizi indicare con una croce la risposta. Verranno assegnati 3 punti alle risposte esatte e -1 a quelle sbagliate

Esercizio 3. Calcolare il seguente integrale

$$\iint\limits_{\Omega} \frac{xe^{x^2+y^2}}{\sqrt{x^2+y^2}} dxdy$$

dove Ω è la parte di cerchio di centro l'origine e raggio 2 contenuta nel secondo quadrante.

Risposta: A 0

B Nessuna delle altre risposte $C = \frac{1-e}{2}$ $D = \frac{1-e^4}{2}$ $E = \frac{1-e^2}{2}$

Esercizio 4

Calcolare l'area della figura racchiusa dalla seguente curva,

$$\gamma(t) = \begin{cases} x = 2(1-t)^2 t \\ y = 2(1-t)t \end{cases}, \quad t \in [0,1]$$

(Suggerimento: la curva è semplice, e percorsa in senso antiorario; non occorre disegnarla.)

Risposta: A Nessuna delle altre risposte

 $\mathbb{B} \frac{1}{15}$

 $\boxed{\text{C} \frac{1}{20}} \qquad \boxed{\text{D} \frac{1}{25}} \qquad \boxed{\text{E} \frac{1}{30}}$

Esercizio 5. Si consideri la curva γ di equazioni parametriche

$$\begin{cases} x(t) = t - t^5, \\ y(t) = t^3. \end{cases}$$

Il versore tangente a γ nel punto (0,1) è:

Risposta: $\boxed{A} \left(\frac{4}{5}, \frac{3}{5}\right)$ $\boxed{B} (4,3)$ $\boxed{C} \left(-\frac{4}{5}, \frac{3}{5}\right)$ $\boxed{D} (-4,3)$ \boxed{E} Nessuna delle altre risposte

Esercizio 6. L'espressione che fornisce l'integrale curvilineo $\int_{\gamma} y \, ds$ lungo la curva γ di equazione $y = x^3$, $x \in [0, 1]$, è data da (non si richiede di calcolare l'integrale):

Risposta: A Nessuna delle altre risposte

 $\boxed{\mathbf{B}} \int_{0}^{1} \sqrt{1+9x^4} \, dx \qquad \boxed{\mathbf{C}} \int_{0}^{1} \sqrt{1+x^6} \, dx$

$$\boxed{D} \int_{0}^{1} x^3 \sqrt{1 + 3x^2} \, dx$$

$$\boxed{\text{E}} \int_{0}^{1} x^{3} \sqrt{1 + 9x^{4}} \, dx$$