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To future generations of earth scientists — may their enthusiasm
and creativity keep seismology vibrant and exciting

I cannot give any scientist of any age better advice than this: the intensity of the conviction that a hypothesis is true bas no bearing on
whether it is true or not. The importance of the strength of our conviction is only to provide a proportionally strong incentive to find
out if the bypothesis will stand up to critical examination.

Sir Peter Medawar, Advice to a Young Scientist, 1979
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Preface

Science is only worth doing if it is interesting and fun. Hence
the goal of a textbook is to interest students in a subject, con-
vince them it is worth the effort required to learn about it, and
help them do so. We have tried here to do all three.

For seismology, these should be easy. It is hard to imagine
topics more interesting than the structure and evolution of a
planet, as manifested by phenomena as dramatic as earth-
quakes. Our goal is to address them via an introduction to
seismology, which is one of the cornerstones of the modern
earth sciences. Seismology has been defined as the study of
earthquakes and associated phenomena, or the study of elastic
waves propagating in the earth. By integrating techniques and
data from physics, mathematics, and geology, seismology has
produced a remarkably sharp picture of the earth’s interior
that is a primary datum for studying the formation and evolu-
tion of terrestrial planets. Seismologists have also learned much
about the nature of earthquakes and the tectonic processes
responsible for them. These studies are not of purely academic
interest; seismology is the major tool for earthquake hazard
assessment, hydrocarbon exploration, and the peacekeeping
role of nuclear test monitoring.

We thus believe that seismology should be part of the educa-
tion of every solid earth scientist, rather than a specialized
course for those whose primary interest is seismology or other
branches of geophysics. The subject has much to offer miner-
alogists or petrologists studying the composition of the earth’s
interior, students of tectonics interested in processes of the
lithosphere, geologists interested in the nature and evolution
of the crust, engineers concerned with seismic hazards, and
planetologists interested in the evolution of the terrestrial plan-
ets. As the earth sciences become increasingly more integrated
and interdisciplinary, the advantages of understanding seismo-
logy will continue to grow.

Many students have been deterred from the subject because
it requires confronting, often for the first time, both the physics
of a continuous medium and wave propagation. We view these
concerns as manageable. In fact, we believe that seismology is
a good way to introduce these topics, because it applies what
might otherwise seem abstract ideas. Seismic waves illustrate
effects like reflection, refraction, diffraction, and dispersion
by using them to study the earth. Farthquakes demonstrate

concepts like rigid tectonic plates, stress and strain, and viscous
mantle flow. Thus seismology is a natural way to discuss funda-
mental processes.

Our goal is to introduce key concepts and their application in
present research. This twofold goal places several limitations
on the text. First, time and space restrictions require a trade-off
between the range of topics and the level of presentation. The
resulting choices are, of necessity, subjective. Second, we end
discussions when material, however fascinating, seems more
appropriate for advanced classes or courses in a related field.!
Third, these limitations preclude an account of the historical
development of the subject, or a systematic assignment of
credit for ideas and results. Fourth, in introducing topics of cur-
rent research, we try to give our sense of issues while recogniz-
ing that others’ views may differ. The danger in presenting the
“current state of knowledge” in a text is that the field changes
so rapidly that accounts can soon be out of date. We thus try to
focus not on “what we know,” but on “how we seek to find
out,” and highlight current findings in the context of studying
interesting questions.

Given these limitations, suggestions for further reading are
provided. When possible, the readings are texts or reviews
rather than specialized research papers. In many cases, the
sources of the figures used to illustrate a concept provide
additional information. We also give some references to sites
on the World Wide Web, recognizing the trade-off between the
wealth of information there and the fact that the Web is volatile
and sites can change locations or vanish.

The material is designed for advanced undergraduates and
first-year graduate students. Readers are assumed to be fam-
iliar with ordinary differential equations and introductory
physics. Further background, including basic earth science
courses, is helpful but not essential. Material beyond this level
is derived as needed. Thus, we seek a balance between present-
ing the mathematics like magic pulled from a hat and deriving
so much so that the thematic flow is disrupted. Hence we

1 Because subfields in the earth sciences overlap, the divisions between them are

not sharp, and a given topic draws on several. As John Muir, an early member of the
Seismological Society of America better known for founding the Sierra Club, pointed
out, “when we look at anything in isolation we realize it is hitched to the rest of the
universe.”
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review some useful mathematics in an Appendix, to which we
refer. Other mathematical concepts, notably topics in Fourier
analysis, are used as needed and then presented in more depth
when appropriate.

Our goal is to introduce some concepts about seismology
and its application to such studies of earth structure and earth-
quakes. Doing this requires developing basic ideas about wave
propagation in a continuous solid medium, so the material of
greatest interest to geologically oriented readers is somewhat
postponed. Readers are urged to enjoy rather than endure the
introductory material on elasticity and wave propagation. They
risk only discovering the appeal of these topics and finding
themselves taking subsequent advanced courses.

Part of the delights of the earth sciences is that they are less
structured than some other sciences. There is no single set of
topics covered in specific courses, which instead reflect the
instructor’s and students’ interests. Certainly this is the case
here. The topics we have chosen contain about a year’s worth
of class material, which we ourselves divide into several
courses. Many students, of course, take only one. We have
experimented with different groupings, all of which seemed to
work well. We usually do not cover the Appendix in lectures,
but assign its problems to identify areas for study or review.

We have found that the homework problems are helpful
for understanding the topics. Given the nature of the modern
earth sciences, many problems are designed to be done on com-
puters. In our teaching, we expect that most will be done by
writing programs, and hence require programming, beginning
with simple problems in the Appendix and building to more
complex ones in the chapters. A secondary motive is to ensure
that students learn the skills of scientific programming, which
are often not stressed in computer classes. Some of the prob-

lems can be done using spreadsheets, and most can be done
with specialized mathematical software.

Some matters of style are worth mentioning. We illustrate
interconnections between topics by referring both forward and
backward to other sections. Figures are labeled with hyphens
(e.g. 5.6-2), and equations with periods (e.g. 5.3.2). Footnotes
generally cover side observations which we note in class but are
not essential. We use both SI units (those based on the meter,
kilogram, and second) and cgs units (those based on the
centimeter, gram, and second) because both are common in the
literature, although SI units are slowly superseding cgs. We also
use other units when customary: seismic velocities are given
in km/s and plate motions are given in the more intuitive
mm/yr (e.g., 48 mm/yr rather than 1.5 x 10~ m/s), following
Emerson’s dictum that “a foolish consistency is the hobgoblin
of little minds.”

We have enjoyed writing this book. It is a pleasure to try to
summarize this diverse and fascinating discipline. We hope
readers have as much fun as we did, and that our discussions
prompt them to raise interesting and provocative questions as
well as learn the material. We also hope that some readers are
motivated to continue study of and research on these topics.
Much remains to be learned about the earth and earthquake
processes, and the opportunities for contributions are great
for those with the energy and imagination to go beyond our
current knowledge and ideas. Three hundred years after Isaac
Newton’s work in mechanics and optics laid what would
become seismology’s foundations, it is worth recalling his
words: “I seem to have been only like a boy playing on the
seashore, and diverting myself in now and then finding a
smoother pebble or a prettier shell than ordinary, whilst the
great ocean of truth lay all still undiscovered before me.”
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Introduction

I cannot belp feeling that seismology will stay in the place at the center of solid earth science for many, many years to come.
The joy of being a seismologist comes to you, when you find something new about the earth’s interior from the observation of
seismic waves obtained on the surface, and realize that you did it without penetrating the earth or touching or examining it directly.

Keiiti Aki, presidential address to the Seismological Society of America, 1980

1.1 Introduction

This book is an introduction to seismology, the study of elastic
waves or sound waves in the solid earth. Conceptually, the sub-
ject is simple. Seismic waves are generated at a source, which
can be natural, such as an earthquake, or artificial, such as an
explosion. The resulting waves propagate through the me-
dium, some portion of the earth, and are recorded at a receiver
(Fig. 1.1-1). A seismogram, the record of the motion of the
ground at a receiver called a seismometer, thus contains infor-
mation about both the source and the medium. This informa-
tion can take several forms. The waves provide information on
the location and nature of the source that generated them. If
the origin time when the waves left the source is known, their
arrival time at the receiver gives the travel time required to pass
through the medium, and hence information about the speed
at which they traveled, and thus the physical properties of the
medium. In addition, because the amplitude and shape of the

Source pulse Seismogram
Receiver
Source
* — L
Origin time Travel time Arrival time

Fig. 1.1-1 Schematic geometry of a seismic experiment.

wave pulses that left the source are affected by propagation
through the medium, the signals observed on seismograms
provide additional information about the medium.

1.1.1 Overview

Before embarking on our studies, it is worth briefly outlining
some of the ways in which seismology is used to study the
earth, and some of the methods used. Seismology is the prim-
ary tool for the study of the earth’s interior because little of
the planet is accessible to direct observation. The surface can
be mapped and explored, and drilling has penetrated to depths
of up to 13 kilometers, though at great expense. Information
about deeper depths, down to the center of the earth (approx-
imately 6371 km), is obtained primarily from indirect methods.
Seismology, the most powerful such method, is used to map the
earth’s interior and study the distribution of physical proper-
ties. The existence of the earth’s shallow crust, deeper mantle,
liquid outer core, and solid inner core are inferred from varia-
tions in seismic velocity with depth. Our ideas about their
chemical compositions, including the presumed locations of
changes in mineral structure due to the increase of pressure
with depth, are also based on seismological data. Near the
surface, seismology provides detailed crustal images that reveal
information about the locations of economic resources like
oil and minerals. Deeper in the earth, seismology provides
the basic data for understanding earth’s dynamic history and
evolution, including the process of mantle convection.
Seismology is also the primary method for studies of earth-
quakes. Most of the information about the nature of faulting
during an earthquake is determined from the resulting seismo-
grams. These observations are useful for several purposes.
Because earthquakes generally result from the motions of the
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plates making up the earth’s lithosphere, which are the sur-
face expression of convection within earth’s mantle, know-
ledge of the direction and amount of motion is valuable for
describing plate motions and the forces giving rise to them.
Analysis of seismograms also makes it possible to investigate
the physical processes that occur prior to, during, and after
faulting. Such studies are helpful in assessing the societal
hazards posed by earthquakes.

Our purpose here is to discuss some basic ideas about
seismology and its applications. To do this, we first introduce
several concepts about waves in a solid medium. We will see
that a few simple but powerful ideas give a great deal of insight
into how waves propagate and respond to variations in phys-
ical properties in the earth. Fortunately, most of these ideas are
analogous to familiar concepts in the propagation of light
and sound waves. As a result, studying the earth with seismic
waves is conceptually similar to sensing the world around us
using light and sound. For example, you are reading this by
receiving light reflected off the paper. We see color because
light has different wavelengths; the sky is blue because certain
wavelengths are scattered preferentially. An even closer ana-
logy is the use of sound waves by bats, dolphins, and subma-
rines to “see” their surroundings. Seismology gives detailed im-
ages of earth structure, much as sound waves (ultrasound) and
electromagnetic waves (X-rays) are used in medicine to study
human bodies.

A familiar property of light is that it bends when traveling be-
tween materials in which its speed differs. Objects inserted into
water appear crooked, because light waves travel more slowly
in water than in air. Prisms and lenses use this effect, called re-
fraction. This phenomenon occurs in the earth because seismic
wave velocities generally increase with depth. Wave paths bend
away from the vertical as they go deeper into the earth, eventu-
ally become horizontal (“bottom™), turn upward, and return to
the surface (Fig. 1.1-2). The wave paths are thus used to infer
the variation of seismic velocity, and hence the composition
and physical properties of material, with depth in the earth.

sP PPIPcP 5S/5¢S
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Fig. 1.1-2 Seismic ray paths in the earth, showing the effect of an increase
in seismic velocity with increasing depth. The waves travel in curved paths
between the earthquake and seismic stations.

Just as light waves reflect at a mirror, seismic waves reflect at
interfaces across which physical properties change, such as the
boundary between the earth’s mantle and core. Because the
amplitudes of the reflected and transmitted seismic waves de-
pend on the velocities and densities of the material on either
side of the boundary, analysis of seismic waves yields informa-
tion on the nature of the interface. In addition to refraction and
reflection, waves also undergo diffraction. Just as sound dif-
fracts around the corner of a building, allowing us to hear what
we cannot see, seismic waves bend around “obstacles” such as
the earth’s core.

The basic data for these studies are seismograms, records of
the motion of the ground resulting from the arrival of refracted,
reflected, and diffracted seismic waves. Seismograms incor-
porate precise timing, so that travel times can be determined.
The seismometer’s response is known, so the seismogram can
be related to the actual ground motion. Because ground motion
is a vector, three different components (north-south, east—
west, and up—down) are typically recorded. Hence, although
seismograms at first appear to be simply wiggly lines, they
contain interesting and useful information.

To illustrate the use of seismology for the study of earth
structure, consider a seismogram from a magnitude 6 earth-
quake in Colombia, recorded about 4900 kilometers away in
Colorado (Fig. 1.1-3). Several seismic wave arrivals, called
phases, are identified using a simple nomenclature that de-
scribes the path each followed from the source to the receiver.

P wave
S wave
Surface wave —-—-—-

Mantle

Fig. 1.1-3 Left: Long-period vertical component seismogram at Golden, Colorado, from an earthquake in Colombia (July 29, 1967), showing various
seismic phases. The distance from earthquake to station is 44°. Right: Ray paths for the seismic phases labeled on the seismogram.
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We will see that seismic waves are divided into two types. In
“one type, P or compressional waves, material moves back and
forth in the direction in which the wave propagates. In the
other, S or shear waves, material moves at right angles to the
propagation direction. P waves travel faster than S waves, so
the first arriving pulse, labeled “P,” is a P wave that followed a
direct path from the earthquake to the seismometer.! Soon
afterwards, a pulse labeled pP appears, which went upward
rom the earthquake, reflected off the earth’s surface, and

hen traveled to the seismometer as a P wave. If the distribu-
ion of seismic velocity near the source is known, the depth
f the earthquake below the earth’s surface can be found
rom the time difference between the direct P and pP phases,
secause the primary differences between their ray paths are the
P segments that first go up to and then reflect off the surface.

The phase marked PP is a compressional wave that went down-
ward from the source, “bottomed,” reflected at the surface,
nd repeated the process. Among the later arrivals on the
cismogram are shear wave phases, including the direct shear
wave arrival, S, and a shear phase SS that reflected off the
urface, analogous to PP. All these phases, which traveled
hrough the earth’s interior, are known as body waves. The
arge amplitude wave train that arrives later, marked “Ray-
igh,” is an example of a different type of wave. Such surface
Javes propagate along paths close to the earth’s surface.
 Figure 1.1-4 shows a seismogram from an earthquake at
depth of 650 km in the Tonga subduction zone recorded in
lawaii. The seismometer is oriented such that all the arrivals
re shear waves. In addition to § and SS, phases reflected at
€ core-mantle boundary appear. ScS went down from the
Qurce, reflected at the core~mantle boundary (hence “c”), and
ame back up to the seismometer. Its travel time gives the depth
o the core if the velocity in the mantle is known. Alternatively,
the depth to the core is known, the travel time gives a vertical

. he labels P and S come from the early days of seismology, when P stood for
tmary and S stood for secondary.

Seismometer

Fig.1.1-4 Seismogram (left) and ray paths (right) for a deep focus earthquake in Tonga, recorded at Oahu (Hawaii), showing multiple core reflections.

average of velocity with depth in the mantle. In addition, the
large amplitude of these reflections constrains the contrast in
physical properties between the solid rock-like lower mantle
and the fluid iron outer core. Multiple reflections also occur:
ScSScS, or ScS,, reflects twice at the core-mantle boundary,
ScSy reflects three times, and ScS, four times. Similar to the
phase SS, the S; wave reflects twice off the surface, and S,
reflects three times. By analogy to pP, sScS went upward
from the source and was reflected first at the surface and then
at the core-mantle boundary. Most of the multiple SS and
ScS phases also have observable surface reflected phases
(e.g.,s8cS,, sScSs, etc.).

These examples indicate some of the ways in which seismo-
logical observations are used to study earth structure. By col-
lecting many such records, seismologists have compiled travel
time and amplitude data for many seismic phases. Because the
different phases have different paths, they provide multiple
types of information about the distribution of seismic veloci-
ties, and therefore physical properties within the earth. Seis-
mology can also be used to study the internal structure of other
planets; seismometers were deployed on the lunar surface by
each of the Apollo missions, and the Viking spacecraft that
landed on Mars carried a seismometer.

An important use of seismology is the exploration of near-
surface regions for scientific purposes or resource extraction.
Figure 1.1-5 shows a schematic version of a common technique
used. An artificial source at or near the surface generates
seismic waves that travel downward, reflect off interfaces at
depth, and are detected by seismometer arrays. The resulting
data are processed using computers to enhance the arrivals cor-
responding to reflections and to estimate the velocity structure.
Seismograms from different receivers are then displayed side
by side, with the travel time increasing downward, to yield an
image of the vertical structure. Reflections that match between
seismograms give near-horizontal arrivals that often corre-
spond to interfaces at depth. The vertical axis can be converted
from time to depth using the estimated velocities, and reflectors
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Fig. 1.1-5 Schematic example of the seismic
reflection method, the basic tool of
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can be identified using geological information from the surface
and drill holes (Fig. 1.1-6). Such seismic images of the sub-
surface provide a powerful tool for structural and stratigraphic
studies. Although applications of seismology to exploration
have traditionally been treated in universities as distinct from
those dealing with earthquakes and the large-scale structure of
the earth, this distinction is largely historical.? These applica-
tions draw on a common body of seismological principles, and
the techniques used have considerable overlap.

2 This book follows this tradition and focuses on earthquakes and large-scale earth
structure because of the existence of an excellent introductory literature dealing with
exploration seismology and the inflexibility of university curricula.

—__ Nonmarine wedge
Mancos shale . . .
Fig. 1.1-6 Data from a reflection seismic

survey across the San Juan Basin, New
Mexico (bottom) and the resulting
geological interpretation (top). [Sangree
and Widmier, 1979. Reprinted by
permission of the Society of Exploration
Geophysicists.)

Seismic sources — typically earthquakes — are also a major
topic of seismological study. The location of an earthquake,
known as the focus or hypocenter, is found from the arrival
times of seismic waves recorded on seismometers at different
sites. This location is often shown by the epicenter, the point
on the earth’s surface above the earthquake. The size of earth-
quakes is measured from the amplitude of the motion recorded
on seismograms, and given in terms of magnitude or moment.’
In addition, the geometry of the fault on which an earthquake

3 Magnitude is given as a dimensionless number measured in various ways, includ-

ing the body wave magnitude 1, surface wave magnitude M, and moment magni-
tude M,, as discussed in Section 4.6. The seismic moment has the dimensions of
energy, dyn-cm or N-m.
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Fig. 1.1-7 First motions of seismic P waves observed
at seismometers located in various directions about
the earthquake allow the fault orientation to be
determined.

occurred is inferred from the three-dimensional pattern of radi-
ated seismic waves. Figure 1.1-7 illustrates the method used for
an earthquake in which the material on one side of a vertically
dipping fault moves horizontally with respect to that on the
other side. This motion generates seismic waves that propagate
away in all directions. In some directions the ground first
moves away from the source (toward a seismic station),
whereas in other directions the ground first moves toward the
source (away from a receiver). The seismograms thus differ
between stations. In the “toward” (called compressional)
~ quadrants the first ground motion recorded is toward the re-
ceiver, whereas in the “away” (called dilatational) quadrants
the first ground motion is away from the receiver. Because the
seismic waves go down from the source, turn, and arrive at a
distant seismographic station from below, the first motion
is upward in a compressional quadrant and downward in a
dilatational quadrant.* The compressional and dilatational
quadrants can be identified using seismograms recorded at
different azimuths around the source. The fault orientation and
a surface perpendicular to it can then be found, because in
these directions the first motion changes polarity. With the use
_ of additional data we can often tell which of these surfaces

was the actual fault. Given the fault orientation, the direction
of motion can also be found; note that the compressional and
dilatational quadrants would be interchanged if the fault had
moved in the opposite direction. The pulse radiated from the

~carthquake also gives some information about the amount of

slip that occurred, the size of the area that slipped, and the

- slip process.

Such observations of the location of earthquakes and the
fault motion that occurred in them are among the most import-
‘ant data we have for understanding plate tectonics, the prim-
ary process shaping our planet. The earthquake analyzed in
Fig. 1.1-7, for example, is like those that occur along the San
Andreas fault in northern California, part of the boundary
along which the Pacific plate moves northward with respect
to the North American plate. The fault is visible at the earth’s

4 . .
These terms are not the same as compressional and shear waves; as often occurs in
science, words have multiple meanings.
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surface, so geological and geodetic observations also show the
motion that occurs in earthquakes. In less accessible areas
seismological observations provide most of the data used to
identify the boundary along which motion occurs and to dem-
onstrate its nature. This is the case for most plate boundaries,
which occur in the oceans, beneath several kilometers of water.
Similarly, in subduction zones, where lithospheric plates
descend deep into the mantle and earthquakes can occur to
depths of 660 km, direct observations are not possible, but
analyses of seismograms reveal the motions and give insight
into their tectonic causes.

1.1.2 Models in seismology

As summarized in the previous section, seismology provides a
great deal of information about seismic sources, the structure
of the earth, and the relation of earthquakes to the tectonic pro-
cesses that produce them. Even so, we will see that there are
major limitations on what the present seismological observa-
tions and other data tell us. For example, although we have
good models of seismic velocity in the earth, we know much
less about the composition of the earth and have only general
ideas about the deep physical processes, such as convection,

e takig place. Similarly, althoughse: gy pro-
vides-argreat deal of detail about the slip that occurs duting
earthquake, we still have only general ideas about how
earthquakes are related to tectonics, little understanding of the
actual faulting process, no ability to predict earthquakes on
ime scales shorter than a hundred years, and only rudimentar

of the processes being studied ar € imits of our observa-
tions. Our best response seems to be to show humility in face of
the complexity of nature, recognize what we presently know

S Indiscussing analogous issues Sarewitz and Pielke (2000) note than even after bil-
lions of dollars spent on climate research, a senior scientist observes, “This may come
as a shock to many people who assume that we do know adequately what’s going
on with the climate, but we don’t,” and the National Academy of Sciences states that
deficiencies in our understanding “place serious limitations on the confidence” of .
climate modeling results,
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and what we do not, use statistical techniques to assess what
we can say with differing degrees of confidence from the data,
and develop new data and techniques to do better.

In general, the approach taken is to describe complex prob-
lems with simplified models that seek to represent key elements
of the process under consideration. For example, an earth-
quake is a complicated rupture process that occurs in a finite
volume and radiates seismic energy through the real materials
of the earth. As we will see in the next few chapters, we rep-
resent all aspects of this process with simple models. We treat
the complex faulting process as elastic slip on an infinitely
narrow surface. We further treat the rock around it as a simple
elastic material, and thus describe the complex seismic wave
disturbance that propagates through it, using a number of
simplifications.

It is important to bear in mind that these models are only
approximations to a more complicated reality. For example,
although the radiated seismic energy is real (it can destroy
buildings), the mathematical descriptions used to understand it
are human constructs. P waves, S waves, seismic phases like
ScS, seismic ray paths, surface waves, or the earth’s normal
modes are all approximations that make the radiated energy
easier to conceptualize. Similarly, we model a fault as a planar
slip surface and use seismological observations to characterize
the slip geometry and history. However, although this process
nicely replicates the seismic observations, it only approximates
the actual physics of earthquake rupture.

We often use a hierarchy of different approximations, as
appropriate. For example, we might first predict the approx-
imate time when a packet of seismic energy arrives by treating
it as a seismic ray, and then use a more sophisticated wave or
normal mode calculation to predict its amplitude and hence
learn more about the properties of the parts of the earth it
traversed. Similarly, we first describe the earth as isotropic
(having the same properties in all directions) and purely elastic
(no seismic energy is lost to heat by friction) and then confront
the deviations from these simplifications.

A similar approach is often followed when discussing the
tectonic context of earthquakes. Although faults, earthquakes,
volcanoes, and topography are real, we associate these with the
boundaries of plates that are human approximations. We will
see that the questions of when to regard a region as a plate and
how to characterize its boundaries are not simple. The simplest
analyses assume that plates are rigid and divided by narrow
boundaries. Later, we treat the boundaries as broad zones, and
eventually we confront the fact that plates are not perfectly
rigid, but in fact deform internally, as shown by earthquakes
that occur within them.

We often choose a type of model to represent the earth
and then use seismological and other data to estimate the
parameters of this model. Thus a characteristic activity of
seismology, and of the earth sciences in general, is solving
inverse problems. We start with the end result, the seismo-
grams, and work backwards using mathematical techniques to
characterize the earthquakes that generated the seismic waves

and the material the waves passed through. Inverse problems
are more complicated than the conceptually simpler forward
problems in which we use the theory of seismic wave genera-
tion and propagation to predict the seismogram that would be
observed for a given source and medium. Inverse problems are
harder to solve for several reasons. Seismograms reflect the
combined effect of the source and medium, neither of which is
known exactly. There are often aspects of the inverse problem
that the data are insufficient to resolve. Thus seismology and
other branches of the earth sciences, to a greater extent than
most other scientific disciplines, often infer a “big picture” from
grossly limited and insufficient data. For example, our images
of the earth from seismic waves suffer from the fact that the
severely limited geographical distributions of both earthquakes
and seismometers leave most of earth’s interior unsampled. This
situation is like a doctor examining a possible broken bone with
only a few scattered bursts of x-rays from random directions.

Moreover, although the forward problem typically can be
solved in a straightforward way, giving a unique solution,
the inverse problem often has no unique solution. In fact, the
data are generally somewhat inconsistent due to errors, so no
model can exactly describe the data. Finally, the fact that solv-
ing the inverse problem yields a set of model parameters that
describe the observations well does not necessarily mean that
the resulting model actually reflects physical reality. This non-
uniqueness reflects the logical tenet that because a implies b,
b does not necessarily imply a. In fact, we often have no way of
determining what the reality is. For example, we will never
truly know the composition and temperature of the earth’s core
because we cannot go there. This limitation remains in spite
of the fact that over time our models of the core have become
increasingly consistent with seismological data, experimental
results about materials at high pressure and temperature, and
other data including inferences from meteorites about the
composition of the solar system.®

A consequence of this approach is the need to consider issues
of precision, accuracy, and uncertainty. Estimates of quantities
like the magnitude or depth of an earthquake depend both on
the precision, or repeatability, with which data like seismic
wave arrival times and amplitudes are measured, and on the
accuracy, or extent to which the resulting inferences correctly
describe the earth. For example, earthquake magnitudes are
simple measures of earthquake size, estimated in various ways
from seismograms without accounting for effects like the geo-
metry of the earthquake source or lateral variations in seismic
velocities. Hence measurements at different sites yield various
estimates, so it is of little value to argue whether an earthquake
had magnitude 5.2 or §.4. Similarly, focal depths are derived
from seismic wave arrival times by assuming a velocity struc-
ture near the earthquake, which is often not well known. For

6 Similar difficulties afflict most of the earth sciences. Field geologists will never
know whether their inferences about the past history and environment of a region
are correct; paleontologists will never know how realistic their models of ancient
life are, etc.
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example, the depth is sometimes estimated (Section 4.3.3) from
Kalfthe product of the time difference between the direct P and
pP phases (see Fig. 1.1-3) and the velocity. If the time difference
is measured to 0.25 s, and the velocity is 8 km/s, the method
of propagation of errors (Section 6.5.1) shows that the uncer-
tainty in depth is about 1 km, so it makes little sense to report
the depth to greater precision. In reality the uncertainty will
~ be greater, because the velocity also has some uncertainty. It is
important to bear in mind that assigning a single value to an
earthquake depth may exceed the relevant accuracy because
faulting extends over a finite area that may be large (on the
order of 10 km for a magnitude 6 earthquake). Moreover,
when we have alternative models with which to estimate

2 parameter (for example, the earthquake stress drop estim-

ated from body waves depends on the assumed geometry of
the fault), the uncertainty associated with an estimate using
any particular model underestimates the uncertainty due to
the fact that we do not know which model is best. It is thus
useful to examine how the estimate depends on the precision
- of the observation, the model parameters, and the choice of
‘models.

= Seismologists generally assume that the best estimates of
values and uncertainties come from studies by different invest-
igators using multiple datasets and techniques. Ideally, studies
~ using the same data increase precision by reducing random
errors, and studies using different data and techniques increase
accuracy by reducing the effect of systematic errors. For ex-
- ample, for the well-studied Loma Prieta earthquake, seismic
~ moment estimates vary by about 25%, and M, values vary by
about 0.1 units.

However, statisticians have long noted the difficulties in as-
sessing probabilities and uncertainties. Two famous examples
are the Titanic, described as “unsinkable” (probability zero)
and the space shuttle, which was lost on its twenty-fifth launch,

- surprisingly soon given the estimated probability of accident of
- 1/100,000. Other examples come from the history of measure-
ments of physical constants, which shows that the reported
uncertainties underestimate the actual errors. For example, the
27 successive measurements of the speed of light between 1875
and 1958 are shown by subsequent analysis to be consistently
in error by much more than the assigned uncertainty. It appears
that assessments of the formal or random uncertainty often
significantly underestimate the systematic error, so the overall
_ uncertainty is dominated by the unrecognized systematic error
~and thus larger than expected. As a result, measurements of
a quantity often remain stable for some time, and then change
by much more than the previously assumed uncertainty. One
possible explanation, termed the “bandwagon effect,” is the
tendency to discount data that are inconsistent with previous
ideas, but later prove more accurate than those included.
Another effect appears to be the discarding of outliers: for
example, although R. Millikan reported using all the observa-
tions in his Nobel prize-winning (1910) study of the charge of
the electron, his notebooks show that he discarded 49 of 107
oil drops that appeared discordant, increasing the apparent
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precision of the result. Until a method is developed that
excludes obviously erroneous data without discarding real
disconforming evidence, making realistic uncertainty estimates
will remain a challenge. Although such analyses are more
difficult in the earth sciences — for example, an earthquake is a
nonrepeatable experiment — they are useful to bear in mind.

This discussion brings out the fact that although we often
speak of “finding” or “determining” quantities like earth-
quake source parameters or velocity structure, it might be
better to speak of “estimating” or “inferring” these quantities.
There is no harm in the common and more upbeat phrasing
so long as we remember that these values reflect uncertainties
due to random noise and errors of measurement (sometimes
called aleatory uncertainty, after the Latin word for dice)
and systematic (sometimes called epistemic) uncertainty due
to our choice of model to describe the phenomenon under
consideration.

Although these caveats sound worrisome, seismological
models are far from useless. We can usually develop models
that not only describe the data used to develop them, but to
predict other data. For example, earthquake source models de-
rived only from seismology often predict the observations
made using field geology and geodesy (ground deformation),
both for the specific earthquake studied and for others in the
same region. Moreover, the seismological results often give
useful insight that is consistent with other lines of evidence. For
example, seismology, gravity, and geomagnetism all favor the
earth having a dense liquid iron core chemically different from
the rocky mantle. This idea is also consistent with the fact
that meteorites — thought to be fragments of small planets —
are divided into stony and iron classes. Hence seismologists
use this modeling approach to understand the earth, while
recognizing its limitations.

For several reasons, our models usually improve with time.
First, the data improve in both quantity and quality. Second,
new observational and analytical techniques are introduced.
As a result, long-standing problems such as the velocity struc-
ture of the earth are repeatedly reassessed. Successive genera-
tions of models seek to explain additional types of data, and
often contain more model parameters in the hope of better rep-
resenting the earth. Using statistical tests, we find that in some
cases the resulting improvements are significant, whereas in
others the new model improves only slightly on earlier ones. An
important point is that more complicated models can always fit
data better, because they contain more free parameters, just as
a set of points in the x~y plane can be better fit by a quadratic
polynomial than by a straight line. Thus we can statistically test
models to see whether a new model reduces the misfit to the
data more than would be expected purely by chance due to the
additional parameters. Another useful test is whether the new
or old models do a better job of describing data that were not
used in deriving either, a process called pure prediction. When
new models pass these tests, we can accept them — and then
look again to see which data are still not described well and try
to do better.
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Fig. 1.1-8 Schematic illustration of how models of earth processes
advance with time due to additional data and improved model
parameterizations.

Over the years this process leads to a better understanding
of how the earth works (Fig. 1.1-8). For example, Fig. 1.1-9
summarizes the development of global plate motion models,
discussed in Chapter 5, that give the motion of the dozen or so
major plates. The models are derived by inverting data consist-
ing of the directions of plate motions along transform faults,
the directions of plate motions during earthquakes, and the
rates of plate motions shown by sea floor magnetic anomalies.
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Since 1972, when the first such model was made, the amount of
available data has increased, and the data have become better,
due to advances in seismology, sea floor imaging, and marine
magnetic measurements. Similarly, the fit to the data has
improved (or the misfit reduced) due both to the higher data
quality and to improvements in the model, such as treating
India and Australia as separate plates. Similar patterns of
increased data and improved fit occur for many applications,
including seismic velocity structure in the earth.

Many of the same issues surface when considering the
models used to describe earth processes. For example, we will
see that there are various models for what occurs at the core-
mantle boundary or what causes earthquakes within down-
going plates at subduction zones. Such models assume that a
particular set of physical processes occur, and show that for
apparently plausible values of the (often unknown) relevant
physical parameters, some behavior like that observed might
be expected. Although these simple models attempt to reflect
key aspects of the complex natural system, we often have no
way of telling if and how well they succeed. Typically, various
plausible models are suggested, all of which may in part be true
and offer interesting insights into what may be occurring. The
data often do not allow discrimination between them, so the
model one prefers depends on one’s geological instincts and
prejudices, and models go in and out of vogue. A common
scenario is for a model to become the consensus of the small
group of researchers most interested in a problem, and then be
challenged by fresh ideas or data from the outside. Hence, criti-
cally examining conventional wisdom often leads to discarding
or modifying it, and so making progress in keeping with the

Fig. 1.1-9 Evolution of successive global
plate motion models, as the amount of data
increases and the misfit is reduced. Left:
Number of data used to derive the models.
Three types of data are inverted: earthquake
slip vector azimuths, transform fault
azimuths, and spreading rates. Right: The
misfit to NUVEL-1 data for the various
models. The vertical bars showing total
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misfit are separated into segments giving the
misfit to each type of data. (DeMets et al.,
1990. Geophys. J. Int., 101,425-78.)
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rior to the acceptance of plate tectonics. The association of dip-slip
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ancient Jewish sages’ observation that “the rivalry of scholars
~ increases wisdom.”” This process requires a constant cycle of
_ learning and unlearning in which old models are discarded,
_even by those who helped create them, in favor of new models.
~Theclassic geological example of advancing beyond conven-
tional thinking is the plate tectonic revolution of the late 1960s.
Although the idea of continental drift had been around for a
long time and was strongly advocated by Alfred Wegener in
1915, it was not accepted by most of the geological community
in the USA and Europe,® in part because seismological pioneer
Harold Jeffreys argued that it was impossible. As a result,
although it was recognized in the 1950s that earthquakes
~ occurred on mid-ocean ridges that were young volcanic fea-
~ tures and at deep sea trenches in association with volcanoes
_ and mountain ranges (Fig. 1.1-10), their underlying nature was
- not understood. However, once paleomagnetic and marine
- geophysical data led to the recognition that oceanic lithosphere
~ formed at mid-ocean ridges and subducted at trenches, the
seismological observations made sense.

~ Thus, as in other sciences, progress in understanding seis-
~mological problems is typically incremental during “normal
~ science” periods, in which we make small steady advances.
- Occasionally, however, exciting “paradigm shifts” occur when
_important new ideas change our views from our previous con-

’ Alternative formulations of this idea include David Jackson’s observation,
(Fischman, 1992); “as soon asI hear ‘everybody knows’ I start asking ‘does everybody
know this, and how do they know it?” the quotation used as the epigraph to
this book by Nobel Laureate Peter Medewar; and the adage attributed to 1960s
political activist Abbie Hoffman that “sacred cows make the best hamburger.”

Interestingly, many geologists in Southern Hemisphere countries like Australia
and South Africa accepted continental drift early on and never abandoned it.
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ventional thinking and permit great advances. This concept,
developed by philosopher of science Thomas Kuhn (1962) for
science-wide conceptual revolutions like the theory of plate
tectonics, also describes progress in subfields. It is particularly
apt in seismology, because many major faults move at most
slightly for many years — and then break dramatically in large
earthquakes.

1.2 Seismology and society

Seismology impacts society through applications including
seismic exploration for resources, earthquake studies, and
nuclear arms control. These topics involve both scientific and
public policy issues beyond our focus on using seismic waves to
study earth structure, earthquakes, and plate tectonics. How-
ever, given the natural interest of these societal applications,
we briefly discuss some issues in earthquake hazard analysis
and nuclear test monitoring, in part to motivate our discussions
of the basic science.

These topics have the interesting feature that the state of
seismological knowledge influences policy, so scientific uncer-
tainties have broad implications. The choice of earthquake pre-
paredness strategies depends in part on how well earthquake
hazards can be assessed, and nations’ willingness to negotiate
test ban treaties depend in part on their confidence that com-
pliance can be verified seismologically. Seismology thus faces
the challenge, familiar in other applications like global warm-
ing or biotechnology, of explaining both knowledge and its
limits. Failure to do so can have embarrassing consequences.
For example, since the 1960s the Japanese government has
spent more than $1 billion on an earthquake prediction pro-
gram premised on the idea that large earthquakes will be
preceded by observable precursory phenomena, despite the
fact that (as discussed shortly) many seismologists increasingly
doubt that such phenomena exist. This approach has so far
failed to predict destructive earthquakes, like that which struck
the Kobe area in 1993, and has focused most of its efforts on
areas other than those where these earthquakes occurred.
Critics have thus argued that the program is scientifically weak,
diverts resources that could be more usefully employed for
basic seismology and earthquake engineering, and gives the
public the misleading impression that earthquakes can cur-
rently be predicted. Based on the program’s record to date, the
government would have been wiser to listen to these critics and
to have been more candid with the public.!

1 Such issues were eloquently summarized by Richard Feynman’s (1988) admoni-

tion after the loss of the space shuttle Challenger: “NASA owes it to the citizens from
whom it asks support to be frank, honest, and informative, so these citizens can
make the wisest decisions for the use of their limited resources. For a successful
technology, reality must take precedence over public relations, because nature cannot
be fooled.”
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Fig. 1.2-1 Map showing epicenters of all earthquakes during 1963-95 with magnitudes of 71, > 4. Most earthquakes occur along the boundaries between
tectonic plates. Where these boundaries are distinct, the earthquakes occur within narrow bounds. More diffuse plate boundaries, like the Himalayan

plateau between India and China, show a much broader distribution of epicenters.
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Fig. 1.2-2 Comparison of frequency,
magnitude, and energy release of
earthquakes and other phenomena. The
magnitude used is moment magnitude, M,,.
(After Incorporated Research Institutions
for Seismology.)



1 Seismic hazards and risks

e of the primary motivations for studying earthquakes and
ismology is the destruction caused by large earthquakes. In
many parts of the world, seismic risks are significant, whether
they are popularly recognized (as in Japan, where schools con-
duct earthquake drills) or not. Much of the challenge in assess-
ine and addressing seismic hazards is that in any given area
‘rg'é' earthquakes are relatively rare on human time scales, but
n cause great destruction when they occur.

Earthquakes primarily occur at the boundaries where the
100 km-thick tectonic plates converge, diverge, or slide past
cach other. Although the plates move steadily, their boundaries
are often “locked,” and do not move most of the time. How-
ever, on time scales of a few hundred years, the boundary slips
suddenly, and the accumulated motion is released in an earth-
‘qjiiake. Figure 1.2-1 shows the locations of 72, > 4 earthquakes
between 1963 and 1995. The earthquakes nicely define the
plate boundaries, although some earthquakes also occur in
intraplate regions, away from plate boundaries.

_ Theenergy released by large earthquakes is striking (Fig. 1.2-
2). For example, the 1906 San Francisco earthquake involved
about 4 m of slip on a 450 km-long fault, releasing about
3 x 106 Joules? of elastic energy. This energy is equivalent to
~ a 7 megaton nuclear explosion, much larger than the 0.012
megaton bomb dropped on Hiroshima. The largest recorded
earthquake, the 1960 Chilean event in which about 21 m of
slip occurred on a fault 800 km long and 200 km across,
released about 10 J of elastic energy, more than a 2000 Mt
- bomb. This earthquake released more energy than all the
_ nuclear bombs ever exploded, the largest of which was 58 M.
- For comparison, the total global human annual energy con-
sumption is about 3 x 1020 J.

Fortunately, the largest earthquakes are infrequent, because
the energy released accumulates slowly over a long time. The
San Francisco earthquake occurred on the San Andreas fault
in northern California, part of the boundary along which the
 Pacific plate moves northward relative to the North American
plate. Studies using the Global Positioning System satellites
~ show that away from the plate boundary the two plates move
by each other at a speed of about 45 mm/yr. Most parts of
the San Andreas fault are “locked” most of the time, but slip
several meters in a large earthquake every few hundred years.
A simple calculation suggests that such earthquakes should oc-
_ cur on average about every 4000 mm/(45 mm/yr) or 90 years.
The real interval is not uniform, for reasons that are unclear,
and is longer, because some of the motion occurs on other
faults.

- Because plate boundaries extend for more than 150,000 km,
and some earthquakes occur in plate interiors, earthquakes
occur frequently somewhere on earth. As shown in Table 1.2-1,

*. The SI unit of energy is 1 Joule (J) = 1 Newton meter (N-m) = 107 ergs = 107 dyn-
¢m. Nuclear explosions are often described in megatons (Mt), equivalent to
1,000,000 tons of TNT or 4.2 x 105 J.
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Table 1.2-1 Numbers of earthquakes per year.

Earthquake Number Energy released
magnitude (M,) per year (10" J/yr)

28.0 0-1 0-1,000

7-7.9 12 100

6-6.9 110 30

5-5.9 1,400 5

4-4.9 13,500 1

3-3.9 >100,000 0.2

Based upon data from the US Geological Survey National Earthquake
Information Center. Energy estimates are based upon an empirical
formula of Gutenberg and Richter (Gutenberg, 1959), and the magnitude
scaling relations of Geller (1976), and are very approximate.

an earthquake of magnitude 7 occurs approximately monthly,
and an earthquake of magnitude 6 or greater occurs on average
every three days.> Earthquakes of a given magnitude occur
about ten times less frequently than those one magnitude
smaller. Because the magnitude is proportional to the logarithm
of the energy released, most of the energy released seismically is
in the largest earthquakes. A magnitude 8.5 event releases more
energy than all the other earthquakes in a given year combined.
Hence the hazard from earthquakes is due primarily to large
(typically magnitude greater than 6.5) earthquakes.

In assessing the potential danger posed by earthquakes or
other natural disasters, it is useful to distinguish between haz-
ards and risks. The hazard is the intrinsic natural occurrence of
earthquakes and the resulting ground motion and other effects.
The risk is the danger the hazard poses to life and property.
Hence, although the hazard is an unavoidable geological fact,
the risk is affected by human actions. Areas of high hazard can
have low risk because few people live there, and areas of
modest hazard can have high risk due to large populations and
poor construction. Earthquake risks can be reduced by human
actions, whereas hazards cannot (hence the US government’s
National Earthquake Hazards Reduction Program is, strictly
speaking, misnamed).

These ideas are illustrated by Table 1.2-2, which lists some
significant earthquakes and their societal consequences. As
shown, some very large earthquakes caused no fatalities
because of their remote location or deep focal depth. In general,
the most destructive earthquakes occur where large popula-
tions live near plate boundaries. The highest property losses
occur in developed nations where more property is at risk,
whereas fatalities are highest in developing nations. Although
the statistics are often imprecise, the impact of major earth-
quakes can be enormous. Estimates are that the 1990 Northern
Iran shock killed 40,000 people, and that the 1988 Spitak

3 Aspart of his incorrect prediction of a magnitude 7 earthquake in the Midwest in
1990, L. Browning claimed that he had successfully predicted the 1989 Loma Prieta
earthquake. In fact, he had said that near the date in question there would be an earth-
quake somewhere in the world with magnitude 6, a prediction virtually guaranteed to
be true.
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Table 1.2-2 Some notable and destructive earthquakes. (Values in this table are compiled from various sources, and different estimates have been reported,
especially for older earthquakes.)

Location and date

Strength

Effects

Kourion, Cyprus
July 21, 365

Basel, Switzerland
October 18, 1356
Shansi, China
January 23, 1556

Port Royal, Jamaica
June 7, 1692

Lisbon, Portugal
November 1, 1755

New Madrid, MO
Dec. 1811 to Feb. 1812

Charleston, SC
August 31, 1886

Sanriku, Japan
June 15, 1896

Assam, India
June 12, 1897

San Francisco, CA
April 18, 1906
Kansu, China
December 16, 1920
Tokyo, Japan
September 1, 1923
Aleutian Islands, Alaska
April 1, 1946
Lituya Bay, Alaska
July 10, 1958
Hebgen Lake, MT
August 17, 1959
Chile

May 21, 1960

Alaska
March 27, 1964

Peru
May 31, 1970

San Fernando Valley, CA

February 9, 1971
Haicheng, China
February 4, 1975
Kalapana, Hawaii
November 29, 1975
Tangshan, China
July 27,1976
Mexico City, Mexico
September 19, 1985
Spitak, Armenia
December 7, 1988

Loma Prieta, CA
October 17, 1989

Caspian Sea, Iran
June 20, 1990
Luzon, Philippines
July 16, 1990

Landers, CA
June 28, 1992

X
MMI

Xi
MM

8
M, (est.)

8
M, (est.)

>8
M, (est.)

7-7.4
M, (est.)

7.2
M (est.)

8.5
M, (est.)

8.7
M, (est.)

7.8
M

s
8.5
M

s
8.2
M,

5
7.4
M

s
7.0
M

s
7.5
M,

s
9.5
M,

w
9.1
M

w
7.8
M

s
6.6
M

s
7.4
M

5
7.1
M,

s
7.6
M

s
7.9
M.

s
6.8
M

s
7.1
M

s
7.7
M,

s
7.8
M

s
7.3
M

w

Total destruction of this Greco-Roman city. Very large tsunami in the Mediterranean.

Eighty castles destroyed over a wide area. 300 killed. Toppled cooking hearths caused fires that burned for
many days.

Collapse of cave dwellings carved into bluffs of soft glacial loess. 830,000 reported killed (worst ever). Near the
1920 Kansu earthquake (see below).

Widespread liquefaction caused one-third of Port Royal to spread and sink 4 m beneath the ocean surface.
2500 kilied.

Large tsunamis seen all around the Atlantic. Felt over 1,600,000 km?. Algiers destroyed. 70,000 killed. Largest
documented earthquake in Europe (though several Italian quakes have killed >150,000 in past 500 years).

Three large quakes (Dec. 16, 1811, Jan. 23, 1812, Feb. 7, 1812). Vertical movements up to 7 m. Widespread
liquefaction. Changed course of Mississippi River. Felt over 5,000,000 km?.

No previous seismicity observed in this area between 1680 and 1886. Felt over 5,000,000 kmZ2. 14,000 chimneys
damaged or destroyed. 90% of buildings damaged/destroyed. 60 killed.

Tsunamis 35 m high washed away 10,000 houses and killed 26,000 along the Sanriku coast of Honshu. A similar
Sanriku quake on March 2, 1933, kilied 3000 with a 25 m high tsunami.

One of the largest quakes ever felt. 1500 killed. Extremely violent ground shaking. Other Himalayan events on
April 4, 1905 (20,000 killed), January 15, 1934 (10,000 killed), and August 15, 1950 (Ms = 8.6, 1526 killed).

About 4 m of slip on a 450 km-long fault. 28,000 buildings destroyed, largely by fires that burned for 3 days.
2500-3000 killed by fires (worst in USA).

180,000 killed, largely by downslope flow of liquefied soil over more than 1.5 km.

Occurred in Sagami Bay, 80 km south of Tokyo. 134 separate fires merged to become a giant firestorm. 12 m
tsunami hit shores of Sagami Bay. 143,000 killed.

Large tsunami destroyed a power station and caused $25 million in damage in Hilo, Hawaii, where it rose to 7 m
in height.

Massive landslides that slid into a local bay created a 60 m-high wave that washed up mountain sides as far as
540 m.

Extensive landslides, including one that dammed a river and created a lake. Reactivated 160 Yellowstone
geysers. Vertical displacement up to 6.5 m. 28 killed.

Largest quake ever recorded. Fault area: 800 by 200 km. Slip: 21 m. Triggered eruption of Puyehue volcano.
Massive landslides in Andes. Giant tsunami. 2000-3000 killed.

2" |argest quake ever recorded. Fault area: 500 by 300 km. Slip: 7 m. Large tsunamis, and widespread
liquefaction. 200,000 km? of crustal surface deformed. 131 killed.

Quake offshore caused large landslides. 30,000 killed, largely by 100,000,000 m® of rock and ice flowing down
Andes mountain sides.

Felt over more than 200,000 mi2. 65 killed. 1000 injured. More than $500 million in direct losses.

Successful prediction said to have led to an evacuation on the morning of the quake that possibly saved
100,000s of lives. 300-1200 killed.

South flank of Kiluea volcano slid seaward. 14.6 m-high tsunami on Hawaiian shores. Largest Hawaiian
earthquake since a 1868 quake that caused 22 m-high tsunamis and killed 148.

Of a city of 1 million, >250,000 killed and 50,000 injured. Exact numbers speculative: fatalities may have
exceeded the 1556 earthquake. In contrast to the 1975 Haicheng quake, this had no precursory behaviors.

Strong shaking lasted for 3 minutes due to sedimentary lake-fill oscillations. 10,000 killed. 30,000 injured.
$3 billion in damage.

Surface faulting showed 1.5 m of slip along a 10 km fault. 25,000 killed. 19,000 injured. 500,000 homeless.
$6.2 billion in damages.

Slip along San Andreas segment south of San Francisco. 63 killed, most from the collapse of an elevated freeway
in Oakland. About $6 billion in damages. Disrupted 5th game of World Series.

100,000 structures damaged or destroyed. 40,000 killed. 60,000 injured. 500,000 left homeless. Over
700 villages destroyed, and another 300 damaged.

Major rupture of Digdig fault, causing many landslides and major surface faulting. Extensive soil liquefaction.
1621 killed. 3000 injured.

Up to 6 m of horizontal displacement and 2 m of vertical displacement along a 70 km fault segment.
1 killed. 400 injured.
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Strength  Effects

océ’tibh and date

es Island, Indonesia 7.8
ecember 12,1992 M,

Jorthridge, CA
January 17, 1994 M,
Northern Bolivia 8.2

June9, 1994 M
obe, Japan 6.8

Tsunami heights reached 25 m. Extensive shoreline damage, where tsunami run-up was up to 300 m.
2200 killed. 30,000 buildings destroyed.

6.7 Rupture on a blind thrust fault beneath Los Angeles. Many rock slides, ground cracks, and soil liquefaction.
58 killed. 7000 injured. 20,000 homeless. About $20 billion in damages.

Largest deep earthquake ever (depth was 637 km). Felt as far away as Canada.

5502 killed. 36,896 injured. 310,000 homeless. Massive destruction to world's 3" largest seaport: 193,000
Largest oceanic intraplate earthquake ever. Occurred west of Australia-Pacific-Antarctic plate triple junction in
5 mslip. 120 km rupture. 30,000 killed. $20 billion in economic loss. 12 major (M > 6.7) events this century have

broken a total of 1000 km of the North Anatolian fault, including a 7.2 Mw aftershock on Nov. 12, 1999.
150 km south of Taipei. 2333 killed. 10,000 injured. >100,000 homeless. Extensive seismic monitoring in Taiwan

ary 16, 1995 M, buildings, $100 billion in damages (highest to date).
qf Balleny Islands 8.2
ch 25,1998 M, a region that was previously aseismic.
t, fu}‘key 7.4
ust 17, 1999 M,
Chi-Chi, Taiwan 7.6
September 21, 1999 M,

makes this one of the best seismically sampled earthquakes. One of largest observed surface thrust scarps.

menia) earthquake killed 25,000. Even in Japan, where
modern construction practices are used to reduce earthquake
age, the 1995 Kobe earthquake caused more than 5000
aths and $100 billion of damage. On average during the
past century earthquakes have caused about 11,500 deaths per
r. As aresult, earthquakes have had a mgmﬁcant effect upon
the history and culture of many regions.

he earthquake risk in the United States is much less than in
iny other countries because large earthquakes are relatively
rare in most of the country and because of earthquake-resistant
;constructxon * The most seismically active area is southern
Alaska, a subduction zone subject to large earthquakes. How-
ever, the population there is relatively small, so the 1964 earth-
qu ‘ke (the second largest ever recorded instrumentally) caused
far fewer deaths than a comparable earthquake would have in
; japan. The primary earthquake impact in recent years has been
California. The 1994 Northridge earthquake killed 58 peo-
ple and caused about $20 billion worth of damage in the Los
Angeles area, and the 1989 Loma Prieta earthquake that shook
the San Francisco area during a 1989 World Series baseball
game killed 63 people and did about $6 billion worth of
mage. Both these earthquakes were smaller (magnitude 6.8
and 7.1, respectively) than the largest known to occur on the
>an Andreas fault, such as the 1906 San Francisco earthquake,
hich had a magnitude of about 7.8.

Compared to other risks, earthquakes are not a major
ause of death or damage in the USA. Most earthquakes do
little harm, and even those felt in populated areas are com-
only more of a nuisance than a catastrophe. Since 1811,
US earthquakes have claimed an average of nine lives per year
Table 1.2-3), putting earthquakes at the level of in-line skating

Many seismologists have faced situations like explaining to apprehensive
phone callers that the danger of earthquakes is small enough that the callers’
pcoming family vacations to Disneyland are not suicidal ventures.

Table 1.2-3 Some causes of death in the United States, 1996.

Cause of death Number of deaths
Heart attack 733,834
Cancer 544,278
Stroke 160,431
Lung disease 106,143
Pneumonia/influenza 82,579
Diabetes 61,559
Motor vehicle accidents 43,300
AIDS 32,655
Suicide 30,862
Liver disease/cirrhosis 25,135
Kidney disease 24,391
Alzheimer’s 21,166
Homicide 20,738
Falling 14,100
Poison 10,400
Drowning 3,900
Fires 3,200
Suffocation 3,000
Bicycle accidents 695
Severe weather’ 514
In-line skating? 25
Football? 18
Skateboards? 10
Earthquakes (1811-1983),3 per year 9
Earthquakes (1984-98), per year 9

1 From the National Weather Service (property loss due to severe weather
is $10-15 billion/yr, comparable to the Northridge earthquake, and that
from individual hurricanes can go up to $25 billion).

2 From the Consumer Product Safety Commission.

3 From Gere and Shah (1984).

All others from the National Safety Council and National Center for
Health Statistics.
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or football,® but far less than bicycles, for risk of loss of
life. Similarly, the $20 billion worth of damage from the
Northridge earthquake, though enormous, is about 10% of the
annual loss due to automobile accidents. As a result, earth-
quakes pose an interesting challenge to society because they
cause infrequent, but occasionally major, fatalities and dam-
age. Society seems better able to accept risks that are more
frequent but where individual events are less destructive.®

Similar issues surface when society must decide the costs,
benefits, and appropriateness of various measures to reduce
earthquake risks. Conceptually, the issues are essentially those
faced in daily life. For example, a home security system costing
$200 per year makes sense if one anticipates losing $1000 in
property to a burglary about every five years ($200/year), but
not if this loss is likely only once every 25 years ($40/year).
However, the analysis is difficult, because the limited historical
record of earthquakes makes it hard to assess their recurrence
and potential damage.

Seismology is used in various ways to try to mitigate earth-
quake risks. Studies of past earthquakes are integrated with
other geophysical data to forecast the location and size of
future earthquakes. These estimates help engineers design
earthquake-resistant structures, and help engineers and public
authorities estimate and prepare for future damage by develop-
ing codes for earthquake-resistant construction. Seismology is
also used by the insurance industry to develop rates for earth-
quake insurance, which can reduce the financial losses due to
earthquakes and provide the resources for economic recovery
after a damaging earthquake. Rates can be based on factors in-
cluding the nature of a structure, its location relative to active
faults, and soil conditions. Homeowners and businesses then
decide whether to purchase insurance, depending on their per-
ceived risk and the fact that damages must exceed a deductible
amount (10-15% of the insured value) before the insurance
company pays. A complexity for the insurer is that, unlike
automobile accidents, whose occurrence is relatively uniform,
earthquakes or other natural disasters are rare but can produce
concentrated damage so large as to imperil the insurer’s ability
to pay claims. Approaches to this problem include limits on
how much a company will insure in a given area, the use of
reinsurance by which one insurance company insures another,
catastrophe bonds that spread the financial risk into the global
capital market, and government insurance programs.

1.2.2  Engineering seismology and earthquake engineering

Most earthquake-related deaths result from the collapse of
buildings, because people standing in an open field during a
large earthquake would just be knocked down. Thus it is often
stated that in general “earthquakes don’t kill people; buildings

5 These figures are for American football; in other countries soccer, termed football
there, is safer for players but more dangerous for spectators.

6 For example, although considerable attention is paid to aviation disasters and
safety, far more lives could be saved at far less cost by enforcing automobile seat belt
laws.
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kill people.” As a result, proper construction is the primary
method used to reduce earthquake risks. This issue is addressed
by engineering seismology and earthquake engineering, dis-
ciplines at the interface between seismology and civil engineer-
ing. Their joint goal is to understand the earthquake ground
motions that can damage buildings and other critical struc-
tures, and to design structures to survive them or at least ensure
the safety of the inhabitants.

These studies focus on the strong ground motion near earth-
quakes that is large enough to do damage, rather than the much
smaller and often imperceptible ground motions used in many
other seismological applications. Two common measures are
used to characterize the ground motion at a site. One is the ac-
celeration, or the second time derivative of the ground motion.
Accelerations are primarily responsible for building destruc-
tion. A house would be unharmed on a high-speed train going
along a straight track, where there is no acceleration. However,
during an earthquake the house will be shaken and could be
damaged if the accelerations were large enough. These issues
are investigated using seismometers called accelerometers that
can operate during violent shaking close to an earthquake but are
less sensitive to the smaller ground motion from distant earth-
quakes. The seismic hazard to a given area is often described
by numerical models that estimate how likely an area is to ex-
perience a certain acceleration in a given time. For example, the
hazard map in Fig. 1.2-3 predicts the maximum acceleration
expected at a 2% probability in the next 50 years, or at least
once during the next 2500 (50/0.02) years. These values are
given as a fraction of “g,” the acceleration of gravity (9.8 m/s).

A second way to characterize strong ground motion uses
intensity, a descriptive measure of the effects of shaking.
Table 1.2-4 shows values for the commonly used Modified
Mercalli intensity (MMI) scale, which uses roman numerals
ranging from I (generally unfelt) to XII (total destruction).
Intensity is not uniquely related to acceleration, which is a
numerical parameter that seismologists compute for an earth-
quake and engineers use to describe building effects. The table
shows an approximate correspondence between intensity and
acceleration, but this can vary. However, intensity has the
advantage that it is inferred from human accounts, and so can
be determined where no seismometer was present and for
earthquakes that occurred before the modern seismometer was
invented (about 1890). Although intensity values can be
imprecise (a fallen chimney can raise the value for a large area),
they are often the best information available about historic
earthquakes. For example, intensity data provide much of
what is known about the New Madrid earthquakes of 1811
and 1812 (Fig. 1.2-4). These large earthquakes are interesting
in that they occurred in the relatively stable continental interior
of the North American plate (Section §.6). Historical accounts
show that houses fell down (intensity X) in the tiny Mississippi
river town of New Madrid, and several chimneys toppled
(intensity VII) near St Louis. Intensities can be used to infer
earthquake magnitudes, albeit with significant uncertainties.
These data have been used to infer the magnitude (about 7.2 +
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nificant hazards. (Courtesy of the US Geological Survey.)

3 in the study shown) and fault geometry of the historic
arthquakes and to give insight into the effects of future ones.

- The variation in ground motion with distance from an
carthquake can be seen by plotting lines of constant intensity,
known as isoseismals. Typically, as illustrated in Fig. 1.2-4, the
intensity decays with distance from the earthquake. Similarly,
ong motion data show that the variation in acceleration a
with earthquake magnitude M and distance 7 from the earth-
quake can be described approximately by relations like

M, 7r)=b10Mp=d, (1)

where b, ¢, and d are constants that depend on factors includ-
ng the geology of the area in question, the earthquake depth
and fault geometry, and the frequency of ground motion.
Hence the predicted ground acceleration increases with earth-
quake magnitude and falls off rapidly with distance at a rate
depending on the rock type. For example, rocks in the USA east
f the Rocky Mountains transmit seismic energy better than
hose in the western USA (Section 3.7.10), so earthquakes in
he East are felt over a larger area than earthquakes of the same
ize in the West (Fig. 1.2-5). Because the shaking decays rapidly
ith distance, nearby earthquakes can do more damage than
arger ones further away.
The damage resulting from a given ground motion depends

-90°

Fig. 1.2-3 A map of estimated earthquake hazards in the United States. The predicted hazards are plotted as the maximum acceleration of ground shaking
expected at a 2% probability over a 50-year period. Although the only active plate boundaries are in the western USA, other areas are also shown as having

on the types of buildings. As shown in Fig. 1.2-6, reinforced
concrete fares better during an earthquake than a timber frame,
which does better than brick or masonry. Hence, as also shown
in Table 1.2-4, serious damage occurs for about 10% of brick
buildings starting above about intensity VII (about 0.2 g),
whereas reinforced concrete buildings have similar damage
only around intensity VIII-IX (about 0.3-0.5 g). Buildings
designed with seismic safety features do even better. The worst
earthquake fatalities, such as the approximately 25,000 deaths
in the 1988 Spitak (Armenia) earthquake, occur where many of
the buildings are vulnerable (Fig. 1.2-7). Hence a knowledge-
able observer” estimated that an earthquake of this size would
cause approximately 30 deaths in California. This estimate
proved accurate for the 1989 Loma Prieta earthquake, which
was slightly larger and killed 63 people.

Designing buildings to withstand earthquakes is a technical,
economic, and societal challenge. Research is being directed to
better understand how buildings respond to ground motion
and how they should be built to best survive it. Because such
design raises construction costs and thus diverts resources from
other uses, some of which might save more lives at less cost
or otherwise do more societal good, the issue is to assess the
seismic hazard and choose a level of earthquake-resistant

7 Ambraseys (1989).
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Table 1.2-4 Modified Mercalli intensity scale.

Intersity Effects

]
i

Vi

Vil

Vil

Xl

Xl

Shaking not felt, no damage: not felt except by a very few under especially favorable circumstances.

Shaking weak, no damage: felt only by a few persons at rest, especially on upper floors of buildings. Delicately suspended objects
may swing.

Felt quite noticeably indoors, especially on upper floors of buildings, but many people do not recognize it as an earthquake.
Standing automobiles may rock slightly. Vibration like passing of truck. Duration estimated.

Shaking light, no damage: during the day felt indoors by many, outdoors by very few. At night some awakened. Dishes, windows,
doors disturbed; walls make creaking sound. Sensation like heavy truck striking building. Standing automobiles rocked noticeably.
(0.015-0.02 g)

Shaking moderate, very light damage: felt by nearly everyone, many awakened. Some dishes, windows, and so on broken; cracked
plaster in a few places; unstable objects overturned. Disturbances of trees and poles, and other tall objects sometimes noticed.
Pendulum clocks may stop. (0.03-0.04 g)

Shaking strong, light damage: felt by all, many frightened and run outdoors. Some heavy furniture moved; a few instances of
fallen plaster and damaged chimneys. Damage slight. (0.06-0.07 g)

Shaking very strong, moderate damage: everybody runs outdoors. Damage negligible in buildings of good design and
construction; slight to moderate in well-built ordinary structures; considerable in poorly built or badly designed structures; some
chimneys broken. Noticed by persons driving cars. (0.10-0.15 g)

Shaking severe, moderate to heavy damage: damage slight in specially designed structures; considerable in ordinary substantial
buildings with partial collapse; great in poorly built structures. Panel walls thrown out of frame structures. Fall of chimneys, factory
stacks, columns, monuments, walls. Heavy furniture overturned. Sand and mud ejected in small amounts. Changes in well water.
Persons driving cars disturbed. (0.25-0.30 g)

Shaking violent, heavy damage: damage considerable in specially designed structures; well-designed frame structures thrown out
of plumb; great in substantial buildings, with partial collapse. Buildings shifted off foundations. Ground cracked conspicuously.
Underground pipes broken. (0.50-0.55 g)

Shaking extreme, very heavy damage: some well-built wooden structures destroyed; most masonry and frame structures destroyed
with foundations; ground badly cracked. Rails bent. Landslides considerable from river banks and steep slopes. Shifted sand and
mud. Water splashed, slopped over banks. (More than 0.60 g)

Few, if any, (masonry) structures remain standing. Bridges destroyed. Broad fissures in ground. Underground pipelines completely
out of service. Earth slumps and land slips in soft ground. Rails bent greatly.

Damage total. Waves seen on ground surfaces. Lines of sight and level destroyed. Objects thrown into the air.

Note: Parentheses show the average peak acceleration in terms of g (9.8 m/s), taken from Bolt (1999).
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nstruction that makes economic sense. Countries like the
A and Japan have the financial resources to study the effects
f shaking on buildings, develop codes of appropriate building
onstruction, and build structures to meet those codes. The
ask for building codes is to not be too weak, permitting unsafe
onstruction and undue risks, or too strong, imposing un-
eeded costs and encouraging their evasion. Deciding where
draw this line is a complex policy issue for which there
no unique answer. Making the appropriate decisions is
en more difficult in developing nations, many of which
ace serious hazards but have even larger alternative demands
or resources that could be used for seismic safety. A classic
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Fig. 1.2-7 Five-story building in Spitak, Armenia, destroyed during the
December 7, 1988, earthquake. The building was made from precast
concrete frames that were inadequately connected. The failure of such
buildings contributed greatly to the loss of 25,000 lives. (Courtesy of the
US Geological Survey.)

example is the choice between building schools for towns
without them or making existing schools earthquake-resistant.

A related issue is ensuring that buildings are built to the
codes, given the tendency to evade expensive regulations de-
signed to deal with events that are infrequent on a human time
scale. For example, much damage occurred during large earth-
quakes in Turkey in 1999 because the building codes were not
enforced. It has been reported that walls crumbled, revealing
empty olive oil cans inserted during construction to save the
costs of concrete.

Much of what has been learned about safe construction has
been via trial and error. In California, the first major set of
building codes was enacted following the 1933 Long Beach
carthquake, which did $41 million worth of damage and killed
120 people. With successive destructive earthquakes, engineers
have acquired a better sense of what works best, and build-
ing codes have been modified. For instance, buildings have
become more resistant to the lateral shear that accompanies
horizontal shaking with the use of shear walls consisting of
concrete reinforced with steel. Similarly, measures have been
developed to retrofit older buildings to increase their earth-
quake resistance.

An important factor for earthquake engineers is that struc-
tures resonate at different periods. Although the resonant
period or periods depend on the specific building geometry and
materials, they generally increase with an increase in the height
or base width of a building. For example, typical houses or
small buildings have periods of about 0.2 s, whereas a typical
10-story building has a period around 1 s. If the peak energy of
ground motion is close to a building’s resonant period, and the
shaking continues long enough, the building may undergo
large oscillations and be seriously damaged. This effect is
like a swing — pushing at random intervals will likely stop
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the swing, whereas pushing repeatedly at its resonant period
gives the person on it a good ride. Through this mechanism,
an earthquake can destroy certain buildings and not others.
Similarly, a building might collapse after a magnitude 7 earth-
quake, but remain standing after a magnitude 8 event with
peak energy at a lower frequency. Sometimes damage occurs
because adjacent buildings resonate out of phase, making their
tops collide.

Another crucial factor for earthquake-resistant construction
is the ground material of the site. Loose sediments and other
weak rocks at the surface enhance ground motion compared
to bedrock sites. As shown in Section 2.4.5, near-surface
sediments can increase ground displacements by more than
an order of magnitude. For instance, during the 1989 Loma
Prieta earthquake, areas that sustained the worst damage
corresponded to ones of high risk identified on the basis of
subsurface geology. The failures of buildings in the Marina
district, the Bay Bridge, and the Nimitz freeway all occurred
on sedimentary layers.

An example of these effects occurred in 19835 in Mexico City,
which is built on the sedimentary fill of an ancient lake that has
dried up since the time of the Aztecs. A magnitude 7.9 earth-
quake at the subduction zone to the west caused the sediment-
ary basin to shake for more than 3 minutes (an unusually long
time) at a dominant period of about 2 s. The worst damage was
sustained by buildings with 6-135 stories, which had resonant
periods of 1-3 s. Shorter or taller buildings were less damaged
because they did not resonate with the ground shaking. This
damage pattern has repeated for successive earthquakes.

1.2.3 Highways, bridges, dams, and pipelines

Buildings are not the only challenge for earthquake-resistant
construction. Highways, bridges, parking structures, land-
fills, dams, pipelines, and power plants present additional
problems. Many of these structures are crucial to society, so
considerable effort is made to ensure that they will survive
earthquakes.

Elevated highways often fail during earthquakes. Most of
the lives lost during the 1989 Loma Prieta earthquake were due
to the collapse of the Nimitz freeway in Oakland. In Los Ange-
les, the I-5 freeway was built to withstand a large earthquake,
but parts were destroyed during the 1971 San Fernando earth-
quake. These were rebuilt, but parts collapsed again during the
1994 Northridge shock. A dramatic highway failure occurred
during the 1995 Kobe earthquake, when a 20 km length of
an expressway supported by large concrete piers fell over,
crushing many cars and trucks.

Similar problems beset bridges, as illustrated in the 1989
Loma Prieta earthquake. The Bay Bridge connecting San Fran-
cisco and Oakland is a double-deck bridge built in 1936 with
little flexibility and rests on sedimentary rocks. A large piece of
the upper span collapsed during the earthquake (Fig. 1.2-8),
and the bridge was closed for months for repairs. By contrast,
the Golden Gate Bridge, a suspension bridge built into bed-

Fig. 1.2-8 Damage to the Bay Bridge, connecting San Francisco
and Oakland, from the October 17, 1989, Loma Prieta earthquake.
The bridge is of old construction (1936), and its supports rest in
sedimentary fill that amplifies ground shaking. (Courtesy of the

US Geological Survey.)

rock, was designed to withstand a large amount of shaking and
fared well.

The failure of dams due to earthquakes poses considerable
risk, as illustrated by the near-failure of the lower Van Norman
dam during the 1971 San Fernando earthquake. A segment of
the dam 600 m long broke and slid into the reservoir (Fig. 1.2-
9), lowering the dam by 10 m and leaving it only 1.5 m above
the water. Fortunately, the area had been suffering from a
drought, and the reservoir was only half full. Eighty thousand
people living below the dam were evacuated, and the reser-
voir was quickly drained. The dam was replaced by a more
modern dam that suffered only minor cracking during the
1994 Northridge earthquake.

Dams have the special problem that they can cause earth-
quakes. This seems counter-intuitive, because the added weight
of the water should increase the pressure on the rock below and
inhibit faulting, because the two sides of the fault are pressed
together harder, requiring a greater force to overcome the
friction. However, it seems that the water impounded by dams
sometimes flows into the rock, lowering the friction across
faults and making rupture easier. The effect can be noticeable;
seismicity associated with the man-made lake in Koyna, India,
seems to follow a seasonal curve, being more active follow-
ing the rainy season when reservoir levels are higher. One
earthquake in 1967 was large enough to kill 200 people. The
possibility of reservoir-induced earthquakes is thus considered
when designing dams.

The greatest cause of earthquake-related death and destruc-
tion, other than the collapse of buildings, is fire. An important
contributor to this problem is that water pipelines can rupture,
making fire fighting harder. In the 1906 San Francisco earth-
quake, many buildings were damaged by the shaking, but fires
that lasted three days are thought to have done ten times more




-9 Failure of the lower Van Norman dam that occurred during the
1y.9,1971, San Fernando valley earthquake. Flooding did not
wuse the region had been experiencing a drought, and the water
zi',s'lo'wk‘. (Courtesy of the US Geological Survey.)

mage (Fig. 1.2-10). Following the 1923 Tokyo earthquake,
fires caused by overturned cooking stoves spread rapidly
ough the city and were unstoppable, due to ruptured water
es. Many of the over 140,000 deaths resulted from fire,
luding a fire storm that engulfed 40,000 people who fled to
pen area to escape collapsing buildings. In modern cities,
ral gas pipelines can rupture, allowing flammable gas to
cape and ignite. After the 1994 Northridge and 1995 Kobe
thquakes, both of which happened at night, the wide
threaks of fires were the first way that rescue efforts could
entify the areas that sustained the greatest damage. People in
thquake-prone areas are taught to turn off the gas supply to
ir homes if they smell gas after a large earthquake.

.2-10 Fires burning in San Francisco
ours after the April 18, 1906,

h uake. Many buildings received little
amage from the earthquake, but were
troyed by the fires that burned out of
gtrol for three days. (Courtesy of the
ational Geophysical Data Center.)
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Fig. 1.2-11 Aerial view of Valdez, Alaska, showing the inundation of the
coastline following the great 1964 earthquake. The resulting tsunami was
as high as 32 m in places. (National Geophysical Data Center. Courtesy of
the US Department of the Interior.)

1.2.4 Tsunamis, landslides, and soil liquefaction

Spectacular exceptions to the truism that “earthquakes don’t
kill people, buildings kill people” include tsunamis, landslides,
avalanches, and soil liquefaction. Earthquake hazard planning
thus includes identifying sites where these risks are present.
Tsunamis are large water waves that occur when portions of
the sea floor are displaced by volcanic eruptions, submarine
landslides, or underwater earthquakes (Fig. 1.2-11). Tsunamis
are not noticeable as they cross the ocean, but can be amplified
dramatically upon reaching the shore. The 1896 Sanriku
(Japan) earthquake caused 35 m-high tsunamis that washed
away 10,000 homes and killed 26,000 people. Hawaii is espe-
cially susceptible to tsunamis from earthquakes around the
Pacific rim. Tsunamis from the 1960 Chilean earthquake killed
61 people in Hawaii, and the 1946 Alaska earthquake created
a 7 m-high tsunami that washed over and short-circuited a
power station, plunging Hilo into darkness. To address these
risks, tsunami warning systems have been developed that assess
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Fig. 1.2-12 Landslide along California State Highway 17 in the Santa
Cruz mountains, caused by shaking from the 1989 Loma Prieta
earthquake. The landslide blocked the major commuter route between
Santa Cruz and San Jose. (Courtesy of the US Geological Survey.)

the likelihood that a large earthquake will generate a tsunami
and issue warnings before the tsunami reaches distant areas.

Ground shaking in areas with steep topography can cause
destructive landslides and avalanches (Fig. 1.2-12). For ex-
ample, a 1970 earthquake in Peru caused rock and ice land-
slides that traveled downhill at speeds of 300 km/hr, burying
villages and killing 30,000 people.

Another earthquake hazard involves liquefaction, a process
by which loose water-saturated sands behave like liquids when
vigorously shaken. Under normal conditions, the sand grains
are in contact with each other, and water fills the pore spaces
between them. Strong shaking moves the grains apart, so the
soil behaves like a fluid slurry similar to “quicksand.” Build-
ings can sink, otherwise undamaged, during the few seconds of
peak ground shaking, and end up permanently stuck when the
shaking stops and the soil resolidifies. A classic example is the
tilting and sinking of buildings in Niigata, Japan, during a
1964 earthquake (Fig. 1.2-13).

Ground consisting of loose wet sediment is most suscept-
ible to liquefaction. Sometimes the sand is ejected out of the
surface as sand blows. This happened in the Marina district of
the San Francisco waterfront during the 1989 Loma Prieta
earthquake. Ironically, some of the material that erupted from
the ground was building rubble from the 1906 San Francisco
earthquake that had been bulldozed into the bay to make new
waterfront property.

Liquefaction can be widespread and devastating, involving
large downslope movements of soil called lateral spreading. In
the 1920 Kansu, China, earthquake, downslope flows traveled
over 1.5 km, killing 180,000 people. During the 1964 Alaska
earthquake, parts of the Turnagain Heights section of Anchor-
age liquefied and collapsed. A dramatic example occurred on

Fig. 1.2-13 Damage to apartment buildings caused by soil liquefaction
during the June 16, 1964, Niigata (Japan) earthquake. About a third of
the city sank by as much 2 m as a result of sand compaction. (Courtesy
of the National Geophysical Data Center.)

the island of Jamaica due to a magnitude 8 earthquake in 1692,
where much of the town of Port Royal, built upon sand, sank
about 4 m beneath the ocean. For years afterward, people on
boats in the harbor could see houses below.

1.2.5 Earthquake forecasting

Reducing earthquake risks via resistant construction relies on
identifying regions prone to earthquakes and estimating, even
if crudely, how likely earthquakes are to occur and what shak-
ing they might produce. Thus earthquake forecasting involves
both scientific issues and the related question of how society
can best use what seismology can provide.

Before addressing the predictions of earthquakes, it is useful
to consider predictions for other geophysical processes. For
example, severe storms are predicted in several ways. The first
are long-term average forecasts: Chicagoans expect winter
snowstorms, whereas Miamians expect fall hurricanes. Public
authorities, power companies, homeowners, and businesses use
the historical record of storms to prepare for them. Although
surprises occur, long-term forecasting is generally adequate to
ensure that needed resources (snow plows, salt) are available,
whereas funds are not wasted on unneeded preparations (snow
plows in Miami). Second, short-term weather forecasting often
can identify conditions under which a storm is likely to form
soon. Third, once formed, storms are tracked in real time,
so people are often warned a day or more in advance to make
preparations.

Similarly, volcanic hazard assessment begins with the loca-
tion of volcanoes that are active or have been so recently (in
geological terms). Based on the eruption history taken from
historical accounts and the geologic record, long-term forecasts



ade. Short-term predictions are made using various
ena that precede major eruptions: rising magma causes
deformation, small earthquakes, and the release of
ic gases. Finally, small eruptions usually precede a large
aking it possible to issue real-time warmngs Hence the
of volcanic predictions, though not perfect,? is reason-
od. The area around Mt St Helens was evacuated before
jant eruption of May 18, 1980, reducing the loss of life
60 people, including a geologist studying the volcano
ens who refused to leave. The largest eruption of
econd half of the twentieth century, Mt Pinatubo in the
pines, destroyed over 100,000 houses and a nearby US
ce base, yet only 281 people died because of evacuations
g the preceding days.

smologxsts would like to do as well for earthquakes. We
like to be able to forecast where they are on average
o occur in years to come, predict them a few years to
before they occur, and issue real-time warnings after an
quake has occurred in situations where such a warning
be useful. However, the record of seismology in these
s mixed. To date there has been some success in long-
orecasting, little if any in short-term prediction, and
in real-time warning.

thquake forecasting, discussed in Section 4.7.3, estimates
robability that an earthquake of a certain magnitude will
ur in a particular area during a specific time. For instance,
ast might be a 25% probability of a magnitude 7 or
earthquake occurring along the San Francisco segment
San Andreas fault in the next 30 years. Forecasting uses
istory of earthquakes on the fault and other geophysical
mation, such as the crustal motions measured using the
bal Positioning System, to predict its likely future behavior.
ile forecasting is not relevant to short-term earthquake
rations, it is important in the enactment of building codes
rthquake-resistant construction, which are costly and
re justification. Such forecasting is already successful in
al ways; knowing that the San Andreas and nearby faults
¢ the sites of recurrent earthquakes has prompted build-
odes that are a major reason why the 1989 Loma Prieta
994 Northridge earthquakes caused few casualties.
ingbeyond general forecasts is more difficult. For ex-
e, the probabilistic hazard map for the USA in Fig. 1.2-3
licts a general pattern of higher hazards in areas of known
large earthquakes. Most of these, in California and
vada, the Pacific Northwest, and Utah, are in the western
A, in the broad boundary zone between the Pacific and
rth American plates. In addition, high hazards are predic-
n parts of the interior of the continent, near Charleston,

)

. 982, uplift of the volcanic dome and other activity near the resort town of
! mgth Lakes, California, suggested that an eruption might be imminent. Geolo-
1ss'ued’a volcano alert, resulting in significant tensions with local business leaders.
10 eruption occurred, geologists were the target of much local anger, and the
supervisor who arranged for an escape route in the event of a volcanic eruption
ecalledina special election.
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South Carolina, and the New Madrid seismic zone in the
Midwest. The map attempts to quantify this risk in terms of the
maximum expected acceleration (recall that 0.2 g corresponds
approximately to the onset of significant building damage)
during a time interval. Such maps are made by assuming where
and how often earthquakes will occur, how large they will be,
and then using ground motion models like those in Fig. 1.2-5 to
predict how much ground motion they will produce. Because
these factors are not well understood, especially in intraplate
regions where large earthquakes are rare, hazard estimates
have considerable uncertainties.” For example, the high hazard
predicted for parts of the Midwest, exceeding that in San
Francisco or Los Angeles, results from specific assumptions,
and alternative assumptions yield quite different estimates
(Fig. 1.2-14).

Similarly, hazard estimates depend on the probability and
hence recurrence time considered. Where the largest earth-
quakes are expected about every 200 years — for example, near
a plate boundary as in California — a hazard map predicting
the maximum acceleration expected at a 10% probabil-
ity in the next 50 years, or at least once during the next 500
(50/0.1) years, will be similar to one for 2% probability in the
next 50 years, or at least once during the next 2500 (50/0.02)
years, because each portion of plate boundary is expected to
rupture at least once in 500 years. However, the two maps
would differ significantly where large earthquakes are less
frequent — for example, in an intraplate region like the New
Madrid zone (Sections 4.7.1, 5.6.3). This issue is important in
choosing building codes because typical buildings have a useful
life of about 50 years.

Because earthquakes are infrequent on a human time scale,
it will be a long time before we know how well such estimates,
which combine long-term earthquake forecasts and ground
motion predictions, actually describe future earthquakes.
Nonetheless, such estimates are used for purposes such as
developing building codes and setting insurance rates. As a
result, how to make meaningful predictions and hazard estim-
ates, communicate their uncertainties to the public, and best
use them for policy is a topic of discussion relevant not just
to seismology but to the other earth sciences as well.

A key scientific challenge for hazard estimation is that the
process determining when large earthquakes recur is unclear.
The underlying basis for seismic forecasting is the principle of
elastic rebound (Section 4.1). In this model, large-scale crustal
motions, in most cases due to plate motions, slowly build up
stress and strain across locked faults. When the stress reaches
a critical threshold, seismic slip occurs along the fault, and the
stress immediately drops. The process then begins again. The
repeat time for these earthquakes depends on the rate at which
crustal motions load the fault and the properties of the rocks
that control when it slips.

° Earthquake risk assessment has been described as “a game of chance of which we

still don’t know all the rules” (Lomnitz, 1989).
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This idea implies that the history of large past earthquakes
in an area should indicate the probable time of the next one.
Naturally, the longer the history available, the better. Unfortun-
ately, the duration of earthquake cycles is typically long com-
pared to the approximately 100-year history of instrumental
seismology. In some parts of the world, like China and Japan,
historical records extend well into the past, whereas in the
USA, the historic record is shorter. The earthquake history can
be extended by paleoseismology, a branch of geology that
studies the past history of faults. One of the best examples is the
use of geological data to infer the history of large earthquakes
on a major southern segment of the San Andreas fault. The last
major earthquake recorded at a site at Pallett Creek, Califor-
nia, the 1857 Fort Tejon earthquake, is known from historical
records to have caused shaking with an intensity of XI. The

Fig. 1.2-14 Comparison of the predicted
seismic hazard (peak ground acceleration
expected at 2% probability in 50 years)
from New Madrid seismic zone
earthquakes for alternative parameter
choices. Rows show the effect of varying
the magnitude of the largest expected New
Madrid fault earthquakes from 8 to 7,
which primarily affects the predicted
acceleration near the fault. Columns show
the effect of two different ground motion
models (“Frankel” and “Toro”) which
affect the predicted acceleration over a
larger area. (Newman ez al., 2001.

© Seismological Society of America.

All rights reserved.)
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faulting is recorded by disruptions of sedimentary strata,
including sand blows where material erupted during the
earthquake. Sand blows and other structures from previous
earthquakes were dated with radiometric carbon-14 methods,
giving the dates of previous earthquakes. Despite the many
uncertainties involved with these methods, including uncer-
tainties in radiometric dating and the effects of climate varia-
tions and burrowing animals, the data show that faulting has
recurred over the past thousands of years. However, assessing
the size of past earthquakes and whether some earthquakes
were missed is difficult,

The results can be surprising. For instance, large earthquakes
near Pallett Creek appear to have occurred approximately in
the years 1857, 1812, 1480, 1346, 1100, 1048, 997, 797, 734,
and 671. Because the average time between events is 132 years,
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Fig. 1.2-15 Paleoseismic time series of earthquakes along the San Andreas
fault near Pallett Creek, California, inferred from sedimentary deposits by
Siehet al. (1989). The sequence shows earthquake clusters separated by
longer time intervals, illustrating the complexity of earthquake recurrence.
(Keller and Pinter, Active Tectonics: earthquakes, uplift, and the
landscape, © 1996. Reprinted by permission of Pearson Education.)

we might have expected the next large earthquake around the
year 1989. However, the intervals between earthquakes vary
from 45 years to 332 years, with a standard deviation of 105
years. Thus, given these data right after the 1857 earthquake,
the simplest view would be that the earthquake would likely
recur between 1885 and 2093. However, the time history sug-
gests that something more complicated is going on (Fig. 1.2-
15), as illustrated by the fact that the standard deviation of the
recurrence time is similar to its mean. It looks as if the earth-
quakes are clustered: three earthquakes between 671 and 797,
then a 200-year gap, then three between 997 and 1100, fol-
lowed by a 246-year gap. Hence, using the earthquake history
to forecast the next big earthquake is challenging, and the
study’s authors concluded in 1989 that one could estimate
the probability of a similar earthquake before 2019 as only
somewhere in the range 7-51%. For example, if the cluster that
included the 1812 and 1857 earthquakes is over, then it may be
along time until the next big earthquake there.

The variability of recurrence times is striking because these
data span for a long time history (10 earthquake cycles) on a
plate boundary where the plate motion causing the earthquake
is steady. The history of most faults is known only for the past
few cycles, and the Pallett Creek data imply that these may not
be representative of the long-term pattern. The recurrence may
be even more complicated for earthquake zones within plates,
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many of which seem to act for only a few earthquake cycles,
and others of which may be one-time events. Research, some
of which is discussed in Section 5.7, is going on to investigate
this complexity.

Even with the dates of previous major earthquakes, it is diffi-
cult to predict when the next will occur, as illustrated by the
segment of the San Andreas fault near Parkfield, California.
Compared to the southern segment just discussed, or the north-
ern segment on which the 1906 earthquake occurred, the
Parkfield segment is characterized by smaller earthquakes that
occur more frequently and appear much more periodic. Earth-
quakes of magnitude 5-6 occurred in 1857, 1881,1901, 1922,
1934, and 1966. The average recurrence interval is 22 years,
and a linear fit to these dates made 1988 the likely date of the
next event. In 1985, it was predicted at the 95% confidence
level that the next Parkfield earthquake would occur before
1993, which was the USA’s first official earthquake prediction.
A comprehensive observing system was set up to monitor elec-
trical resistivity, magnetic field strength, seismic wave velocity,
microseismicity, ground tilting, water well levels and chem-
istry (especially radon content), and motion across the fault.
The well-publicized experiment® hoped to observe precursory
behavior, which seemed likely because surface cracks were
observed 10 days before the 1966 earthquake and a pipeline
ruptured 9 hours before the shock, and to obtain detailed
records of the earthquake at short distances. As of 2002, the
earthquake had not yet happened, making the current interval
(35 years and growing) the longest yet observed between earth-
quakes there. The next Parkfield earthquake will eventually
occur, but its non-arrival to date illustrates both the limitations
of the statistical approaches used in the prediction (including
the omission of the 1934 earthquake on the grounds that it
was premature and should have occurred in 1944) and the fact
that even in the best of circumstances nature is not necessarily
cooperative or easily predicted. For that matter, it is unclear
whether the Parkfield segment of the San Andreas fault shows
such unusual quasi-periodicity because it differs from other
parts of the San Andreas fault (in which case predicting earth-
quakes there might not be that helpful for other parts), or
whether it results simply from the fact that, given enough time
and different fault segments, essentially random seismicity can
yield apparent periodicity somewhere. As is usual with such
questions, only time will tell.

Such seismic forecasting involves the concept of seismic
gaps, discussed further in Sections 4.7.3 and 5.4.3. The idea is
that a long plate boundary like the San Andreas or an oceanic
trench ruptures in segments. We would thus expect steady plate
motion to cause earthquakes that fill in gaps and occur at
relatively regular intervals. However, the Pallett Creek and

19 The costs involved (more than $30 million) led The Economist magazine
(Aug. 1, 1987) to argue that “Parkfield is geophysics’ Waterloo. If the earthquake
comes without warnings of any kind, earthquakes are unpredictable and science is
defeated. There will be no excuses left, for never has an ambush been more carefully
laid.”
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Fig. 1.2-16 Cross-section of the seismicity along the San Andreas fault before (top) and after (bottom) the 1989 Loma Prieta earthquake. This earthquake,
whose rupture began at the large circle in the lower figure and is marked by the aftershocks (small circles), has been interpreted as filling a seismic gap along
the San Andreas fault, although other interpretations have also been made. (Courtesy of the US Geological Survey.)

Parkfield examples show that the earth is more complicated.
Some earthquakes may fit the gap idea; the 1989 Loma Prieta
earthquake and its aftershocks have been interpreted as filling
a gap along the San Andreas fault (Fig. 1.2-16), although the
fact that the earthquake differed from the expected fault
geometry has also been interpreted as making it different from
the expected gap-filling earthquake. In other areas, however,
the gap hypothesis has not yet proved successful in identifying
future earthquake locations significantly better than random
guessing. Faults deemed likely to rupture have not done so,
and earthquakes sometimes occur on faults that were either
unknown or considered seismically inactive. Understanding if,
where, and when the gap hypothesis is useful is thus an active
research area. Until it is resolved, it is unclear whether it is
better to assume that all segments of a given fault are equally
likely to rupture, making the probability of a major earthquake
independent of time, or whether the segment that ruptured
longest ago should have since accumulated the greatest elastic
strain, and therefore be most likely to rupture next. This issue is
important for hazard estimates.

In summary, several factors make earthquake forecasting
difficult. In the meteorological case, storms occur frequently on
human time scales, and we believe that we understand their
basic physics. By contrast, the cycle of earthquakes on a given
fault segment is long on a human time scale. Thus there are
only a few places with a time history long enough to formulate
useful hypotheses (recall that even the Pallett Creek 1000-year
history shows major complexity). Moreover, because forecasts
must be tested by their ability to predict future earthquakes, a
long time will be needed to convincingly test models of earth-
quake recurrence and hazards. Even worse, the fundamental
physics of earthquake faulting is not yet understood. Clearly,

the process is complex. Earthquakes are at best only crudely
periodic, and sometimes appear instead to cluster in time.
Faults display a continuum of behavior from locking, to slow
aseismic creep, to earthquakes. Thus the theoretical and ex-
perimental study of rock deformation and its application to
earthquake faulting is an active field of research (Section 5.7).

1.2.6 Earthquake prediction

Earthquake prediction is defined as specifying within certain
ranges the location, time, and size of an earthquake a few years
to days before it occurs. Prediction is an even more difficult
problem than long-term forecasting. A common analogy is that
although a bending stick will eventually snap, it is hard to pre-
dict exactly when. To do so requires either a theoretical basis
for knowing when the stick will break, given a history of the
applied force, or observing some change in physical properties
that immediately precedes the stick’s failure.

Because little is known about the fundamental physics of
faulting, many attempts to predict earthquakes have searched
for precursors, observable behavior that precedes earthquakes.
To date, as discussed next, this search has proved generally un-
successful. As a result, it is unclear whether earthquake predic-
tion is even possible. In one hypothesis, all earthquakes start off
as tiny earthquakes, which happen frequently, but only a few
cascade via a random failure process into large earthquakes.!!

11 This hypothesis draws on ideas from nonlinear dynamics or chaos theory, in

which small perturbations can grow to have unpredictable large consequences. These
ideas were posed in terms of the possibility that the flap of a butterfly’s wings in Brazil
might set off a tornado in Texas, or in general that minuscule disturbances do not
affect the overall frequency of storms but can modify when they occur (Lorenz, 1993).
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‘In this view, because there is nothing special about those tiny
earthquakes that happen to grow into large ones, the interval
between large earthquakes is highly variable, and no observ-
able precursors should occur before them. If so, earthquake
. 'prediction is either impossible or nearly so.

- Support for this view comes from the failure to observe a
compelling pattern of precursory behavior before earthquakes.
Various possible precursors have been suggested, and some
may have been real in certain cases, but none have yet proved to
be a general feature preceding all earthquakes, or to stand out
convincingly from the normal range of the earth’s variable
behavior. Although it is tempting to note a precursory pattern
after an earthquake based on a small set of data and to suggest
that the earthquake might have been predicted, rigorous tests
with large sets of data are needed to tell whether a possible
precursory behavior is real and correlates with earthquakes
more frequently than expected purely by chance. Most cru-
cially, any such pattern needs to be tested by predicting future
earthquakes.

One class of precursors involves foreshocks, earthquakes
that occur before a main shock. Many earthquakes, in hind-
sight, have followed periods of anomalous seismicity. In some
cases, there is a flurry of microseismicity: very small earth-
quakes like the cracking that precedes a bent stick’s snapping.
In other cases, there is no preceding seismicity. However, faults
often show periods of either elevated or nonexistent micro-
seismicity that are not followed by a large earthquake. Altern-
atively, the level of microseismicity before a large event can
be unremarkable, occurring at a normal low level. The lack of
a pattern highlights the problem with possible earthquake pre-
cursors: to date, no changes that might be associated with an
upcoming earthquake are consistently distinguishable from the
normal variations in seismicity that are not followed by a large
earthquake.

Another class of possible precursors involves changes in the
properties of rock within a fault zone preceding a large earth-
quake. It has been suggested that as a region experiences a
buildup of elastic stress and strain, microcracks may form and
fill with water, lowering the strength of the rock and eventually
leading to an earthquake. This effect has been advocated based
on data showing changes in the level of radon gas, presumably
reflecting the development of microcracks that allow radon
to escape. For example, the radon detected in groundwater
rose steadily in the months before the 1995 Kobe earthquake,
increased further two week before the earthquake, and then
returned to a background level (Fig. 1.2-17).

A variety of similar observations have been reported. In
some cases, the ratio of P- and S-wave speeds in the region of an
earthquake has been reported to have decreased by as much as
10% before an earthquake. Such observations would be con-
sistent with laboratory experiments, and would reflect cracks
opening in the rock (lowering wave speeds) due to increasing
stress and later filling (increasing wave speeds). However,
this phenomenon has not been substantiated as a general phe-
nomenon. Similar difficulties beset reports of a decrease in the
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Fig. 1.2-17 Radon within groundwater before and after the January 16,
1995, Kobe earthquake in Japan. (Igarashi et al., 1995. Reprinted with
permission from Science, 269, 60~1. Copyright 1995, American
Association for the Advancement of Science.)

electrical resistivity of the ground before some earthquakes,
consistent with large-scale microcracking. Changes in the
amount and composition of groundwater have also been ob-
served. For example, a geyser in Calistoga, California, changed
its period between eruptions before the 1989 Loma Prieta and
1975 Oroville, California, earthquakes.

Efforts have also been made to identify ground deformation
immediately preceding earthquakes. The most famous of these
studies was the report in 1975 of 30~45 cm of uplift along
the San Andreas fault near Palmdale, California. This highly
publicized “Palmdale Bulge” was interpreted as evidence of an
impending large earthquake and was a factor in the US govern-
ment’s decision to launch the National Earthquake Hazards
Reduction Program aimed at studying and predicting earth-
quakes. However, the earthquake did not occur, and reanalysis
of the data implied that the bulge had been an artifact of errors
involved in referring the vertical motions to sea level via a
traverse across the San Gabriel mountains. Subsequent studies,
using newer and more accurate techniques including the
Global Positioning System satellites, satellite radar interfero-
metry, and borehole strainmeters have not yet convincingly
detected precursory ground deformation.

An often-reported precursor that is even harder to quantify
is anomalous animal behavior. What the animals are sensing
(high-frequency noise, electromagnetic fields, gas emissions) is
unclear. Moreover, because it is hard to distinguish “anoma-
lous” behaviors from the usual range of animal behaviors,
most such observations have been “postdictions,” coming
after rather than before an earthquake.

Despite these difficulties, Chinese scientists are attempting to
predict earthquakes using precursors. Chinese sources report
a successful prediction in which the city of Haicheng was
evacuated in 19735, prior to a magnitude 7.4 earthquake that
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damaged more than 90% of the houses. The prediction is said
to have been based on precursors, including ground deforma-
tion, changes in the electromagnetic field and groundwater
levels, anomalous animal behavior, and significant foreshocks.
However, in the following year, the Tangshan earthquake
occurred not too far away without precursors. In minutes,
250,000 people died, and another 500,000 people were
injured. In the following month, an earthquake warning in the
Kwangtung province caused people to sleep in tents for two
months, but no earthquake occurred. Because foreign scient-
ists have been yet been able to assess the Chinese data and the
record of predictions, including both false positives (predic-
tions without earthquakes) and false negatives (earthquakes
without predictions), it is difficult to evaluate the program.

In summary, despite tantalizing suggestions, at present there
is still an absence of reliable precursors. The frustrations of this
search have led to the wry observation that “it is difficult
to predict earthquakes, especially before they happen.” Most
researchers thus feel that although earthquake prediction
would be seismology’s greatest triumph, it is either far away
or will never happen. However, because success would be of
enormous societal benefit, the search for methods of earth-
quake prediction will likely continue.

1.2.7 Real-time warnings

Some recent efforts are directed to the tractable goal of real-
time warnings, where seismometers trigger an immediate
warning if a set of criteria is met. For tsunamis, the warning
may be several hours in advance, which is enough time for
preparations. This is because tsunamis travel more slowly
than seismic waves. A P wave travels from Alaska to Hawaii
in about 7 minutes, whereas a tsunami traveling at about
800 km/hr across the ocean takes 5.5 hours. After the damage
done to Hilo by the 1946 Alaska earthquake, the Seismic Sea
Wave Warning System was organized for countries that rim the
Pacific Ocean. Information from seismometers and tide gauges
was phoned to the Tsunami Warning Center in Honolulu,
Hawaii, which issued tsunami alerts if necessary.!? Tsunami
warning systems have since become more automated, using
real-time digital seismic data to locate large earthquakes and
derive information about their magnitudes, depths, and focal
mechanisms. An assessment can be made of the likelihood of
a tsunami, which usually results from vertical motion at the sea
floor.

The situation is much more complicated with seismic waves.
Although local seismic networks can automatically and imme-
diately locate an earthquake and assess if it is hazardous, the
warning time is short. For example, a warning after a major
earthquake on the New Madrid fault system instantly relayed
via Internet or radio to St Louis would arrive about 40 seconds

12 Serious or older television viewers may recall the episode of Hawaii 5-0 in which
criminals force the center to issue a spurious tsunami warning to prompt evacuation
of downtown Honolulu and facilitate a robbery.

before the first seismic waves. Seismologists, engineers, and
public authorities are thus discussing what might be done with
such short warning times. Although such times would not per-
mit evacuations, certain steps might be useful. For example,
real-time warnings are used in Japan to stop high-speed trains,
and it may be practical to have gas line shut-off valves or other
automatic responses connected to such a system. The questions
are whether the improved safety justifies the cost and whether
the risk of false alarms is serious.

A related approach is to provide authorities with near-
real-time information, including data on the distribution of
shaking, immediately after major earthquakes. Seismic net-
works are working to provide emergency management services
with information that can help direct the needed response to
the most affected areas during the chaotic few hours after a
large earthquake, when the location and extent of damage are
often still unclear.

1.2.8 Nuclear monitoring and treaty verification

Another important societal application of seismology is the
monitoring of nuclear testing. Although atomic physics destab-
ilized world politics through the invention of the atomic bomb,
seismology has partially restabilized it. Throughout the cold
war between the USA and the Soviet Union, seismology helped
verify that treaties were being observed.

The role of seismology in nuclear monitoring began in 1957
when the USA detonated RAINIER, the first underground
nuclear explosion. By the early 1960s it became clear that
radioactive elements produced by atmospheric nuclear testing
posed significant health threats. In 1963, 116 nations signed
the Limited Test Ban Treaty, which banned nuclear testing
in the atmosphere, in the oceans, and in space, and required
testing to occur underground. At about this time, the US Air
Force helped fund the deployment of the World Wide Stand-
ardized Seismographic Network (WWSSN). WWSSN stations
provided important information for monitoring nuclear testing
and a wealth of data that played a major role in modern geo-
physical seismology.

In 1976, countries began to abide by the Threshold Test Ban
Treaty, which limited the size of underground nuclear tests to
150 kt (equivalent to 150 kilotons of TNT). Before then, the
largest atmospheric test had been 58 Mt, and the largest under-
ground test had been 4.4 Mt. Figure 1.2-18 shows the yields es-
timated seismologically for underground nuclear tests carried
out by the Soviet Union. Although it was initially thought that
some of the post-1976 explosions were greater than 150 kt,
this turned out to reflect the different geologies of the western
USA and central Asia. The conversion of seismic body wave
magnitude 77, values into TNT yields was calibrated using the
Nevada test site, but the western US crust is more seismically
attenuating than the more stable Soviet sites in Kazakhstan
and Novaya Zemlya (see Section 3.7.10). The yields of
explosions in kilotons, Y, can be related to the observed seismic
magnitudes by
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Fig. 1.2-19 Seismograms showing the differences
between an earthquake and an explosion. For shallow
earthquakes, in this case an 72, 4.8 shock in India, the
P wave is much smaller than the surface waves. By
contrast, the initial P wave is the largest arrival for
explosions like this Indian nuclear test. Data recorded 1
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at Nilore, Pakistan. (Courtesy of the Incorporated 0
Research Institutions for Seismology.)

m,=C+0.75log Y, (2)
but the constant differs for Nevada (C= 3.95) and Kazakhstan
(C = 4.45). With these corrections, it appears that the Soviet
Union complied with the treaty.

Monitoring nuclear tests requires distinguishing them from
earthquakes. Examples of the differences are shown in Fig. 1.2-
19 for an earthquake and an explosion in India. Earthquakes
occur by slip across a fault, generating large amounts of shear
wave energy and hence large surface waves. By contrast, explo-
sions involve motions away from the source, and so produce
far less shear wave energy. Hence, for bombs the surface waves
are dwarfed by the initial P wave. This difference is the basis for
discrimination between earthquakes and explosions. A plot of
M, vs m, (Fig. 1.2-20) separates earthquakes, which generate

60 120 180
Time (s)

more surface wave energy (M,), from the explosions, which
generate more body (P) wave energy (m1,,).

The challenge of seismic monitoring has increased in recent
years. Since 1996 the USA has abided by the Comprehensive
Test Ban Treaty (CTBT), which bans all nuclear testing, pre-
venting the development of new nuclear weapons. Thus the
focus of US monitoring efforts has expanded to include smaller
countries around the world.!? There is also the need to identify
possible smaller nuclear tests, including those by terrorists.
Hence seismic monitoring must identify explosions less than
1 kt, which have a magnitude of 4-4.5 (Eqn 2). This requires
locating and identifying more than 200,000 earthquakes and
additional mining explosions every year.

13 Astrategy described as “In God we trust, all others we verify.”
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Fig. 1.2-20 Body wave magnitudes (m,) versus surface wave magnitude
{M,) and seismic moment (M) for a set of earthquakes and explosions in
the western USA. Because the P waves of explosions are very large, as
shown in the previous figure, they have anomalously high #2;, values for a
given source energy (represented by M,). A comparison of 2, and M, can
thus discriminate between earthquakes and nuclear explosions. (After Al-
eqabi et al., 2001. © Seismological Society of America. All rights reserved.)

An important part of this effort is the International Mon-
itoring System (IMS), whose aim is to detect, locate, and ident-
ify nuclear detonations that occur underground, underwater,
or above ground. To do this, the IMS will combine seismolog-
ical, hydroacoustic, and infrasound networks. Underwater
nuclear tests create sound waves that travel efficiently through
the ocean (Section 2.5.8), so a network of hydroacoustic
stations will be established, with some sites using underwater
hydrophones and others on islands to observe seismic phases
that are generated when the oceanic acoustic waves reach
land. Nuclear tests in the atmosphere will be detected by the
infrasonic (frequencies less than 20 Hz, below the human
hearing range) sound waves they generate. The IMS infrasound
network will consist of small arrays of microphones that can
determine the direction in which the infrasonic waves are
traveling, so detection at multiple stations will identify the
source of the waves.

Because most clandestine tests would likely occur under-
ground, seismic stations will be a vital part of the IMS. The IMS
seismic network will have 50 primary stations with three-
component broadband seismometers. About half of these sites
will be augmented with local arrays of short-period vertical-
component sensors. Data will be telemetered in real time, so
that there is no delay in monitoring. An auxiliary network

of 120 broadband stations, distributed over 61 countries and
largely based on existing networks, will aid in discrimination
and replace malfunctioning primary stations.

Further reading

The seismological topics introduced in this chapter are discussed elsewhere
in the text, so references are given in the appropriate sections. Many other
references exist for the topics of societal interest discussed here.

Popular accounts of issues related to earthquakes include Gere and Shah
(1984), Bolt (1999), and Brumbaugh (1999). Introductory treatments
dealing with earthquakes and volcanoes from the point of view of the geo-
logy and hazards include Alexander (1993), Kovach (1995), and Sieh and
LeVay (1998). The World Wide Web contains a wealth of general earth-
quake information; sites to start at include bttp:/fwww.scec.org, bttp://
WWW.seismosoc.org, bttp:/fwww.iris.edu, and http:/learthquake.usgs.gov.
Specific issues related to volcano prediction studies at Mammoth Lakes
are discussed by Sieh and LeVay (1998) and Hill (1998). For discussions
of paleoseismology and geological effects of earthquakes, see Keller and
Pinter (1996) and Yeats et al. (1997). The role of seismology in the plate
tectonic revolution is discussed by Cox (1973) and Menard (1986); the
general idea of scientific revolutions as “paradigm shifts” is given by Kuhn
(1962).

Issues of assessing probabilities and uncertainties are discussed by
Ekeland (1993); Henrion and Fischoff (1986) analyze the history of meas-
urements of physical constants. Probabilistic seismic hazard analysis is dis-
cussed by Reiter (1990), Hanks and Cornell (1994), and Hanks (1997).
The US Geological Survey National Seismic Hazard maps are described
by Frankel et al. (1996), and a global hazard map is described by Shedlock
et al. (2000). Uncertainties in earthquake probabilities for California are
discussed by Savage (1991). Real-time seismology applications to earth-
quake risk mitigation are discussed by Kanamori et al. (1997). Sarewitz
et al. (2000) discuss general issues of prediction and policy for the earth
sciences, including earthquake prediction. Geschwind (2001) reviews the
history of seismic risk mitigation and earthquake prediction policies in the
USA.

A considerable volume of scientific literature addresses earthquake pre-
diction, often arguing whether either a specific approach or any method
can predict earthquakes. Turcotte (1991) gives a general review of many
aspects of the topic, and Geller (1997) summarizes the history of earth-
quake prediction efforts, including that at Parkfield and the Palmdale
Bulge. Geller et al. (1997) and Evans (1997) argue that earthquakes are
unpredictable; Lomnitz (1994), Wyss et al. (1997), and Sykes et al. (1999)
argue the other side. The Parkfield earthquake prediction experiment
is summarized by Roeloffs and Langbein (1994); Davis et al. (1989) and
Savage (1993) discuss the limitations of the statistical approach used. The
controversy over the seismic gap hypothesis is discussed by Stein (1992);
Kagan and Jackson (1991) and Jackson and Kagan (1993) argue against
the hypothesis, and Nishenko and Sykes (1993) argue for it.

Earthquake engineering is discussed by Bray (1995), Chopra (1995),
Krinitzsky et al. (1993), and Wiegel (1970). A good World Wide Web site
to start at is bitp://www.eeri.org, which also provides an introduction to
earthquake insurance. Issues in natural disaster insurance are discussed by
Michaels et al. (1997).

Bolt (1976), Sykes and Davis (1987), Richards and Zavales (1990),
and Lay (1992) discuss seismic verification of nuclear testing. More
description of the Comprehensive Test Ban Treaty can be found at
bttp://pws.ctbto.org.



inside the earth.

2.1 Introduction

We begin the study of seismic waves in the earth by addressing
two basic questions. First, what in the physics of the solid earth
allows waves to propagate through it? Second, how does the
propagation of seismic waves depend on the nature of the
material within the earth?

We will see that seismic waves propagate through the earth
because the material within it, though solid, can undergo
internal deformation. As a result, earthquakes and other dis-
turbances generate seismic waves, which give information
about both the source of the waves and the material they pass
through.

To motivate these ideas, we first discuss a stretched string, a
simple physical system that gives rise to waves analogous to
seismic waves in the earth. As for the solid earth, deforming the
string causes displacements that are functions of space and time
satisfying the wave equation. The velocity of the propagating
waves depends on the physical properties of the string in a way
similar to that for waves in the earth, and the waves respond to
changes in the physical properties of the string in ways
analogous to what occurs for waves in the earth.

After discussing the string, we develop basic ideas about the
mechanics of the solid earth. We introduce the stress tensor,
which describes the forces acting within a deformable solid
material, and the strain tensor, which describes the deforma-
tion. We then explore the relation between these tensors,
and show that the displacements within the material can be
described as functions of position and time satisfying the wave
equation. Specifically, we will see how two types of seismic
waves, P and S, propagate.

2 Basic Seismological Theory

A very interesting example of sound waves in a solid, both longitudinal and transverse, are waves in the solid earth. Inside the earth,
from time to time, there are earthquakes so sound waves travel around in the earth. Therefore if we place a seismograph at some loca-
tion and watch the way the thing jiggles after there has been an earthquake somewbhere else, we might get a jiggling, and a quieting
down, and another jiggling . . . By using a large number of observations of many earthquakes at different places, we know what is

Richard Feynman, The Feynman Lectures on Physics, 1963

We then introduce concepts of wave propagation in the
earth, with emphasis on how waves behave when they encoun-
ter changes in physical properties. These ideas give us the tools
for Chapter 3, which discusses how seismic waves are used
to study the interior of the earth, and Chapter 4, where we dis-
cuss how seismic waves are used to study earthquakes.

Although we focus on seismic waves, many of the concepts
are similar to ones for other types of waves, so we will some-
times draw analogies to familar behavior of light, water, and
sound waves.

2.2 Waves on a string

2.2.1 Theory

We consider an idealized mathematical string that extends in
the x direction. Initially the string is straight in response to
a tension force 7exerted along it, so u, the displacement from
the equilibrium position in the y direction, is zero everywhere.
After the string is plucked, portions of the string are displaced
from their equilibrium positions and disturbances move along
the string.

Our goal is to describe the displacement u(x, ) as a function
of both position along the string and of time. To do this, we
apply Newton’s second law of motion, F = 7za, which states that
the force vector equals the mass times the acceleration vector,!
to a segment dx of the string. Once the string segment is dis-
placed, the string is stretched and the tension directed along the

1 Bold face is commonly used to denote vectors; see Section A.3.1.
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Fig. 2.2-1 Geometry of a segment of a string subject to a tension 7.
A slight difference in the angles 8, and 6, provides a net force in the
y direction of F= Tsin 6, — 7sin 8, which accelerates the string.

string gives rise to forces (Fig. 2.2-1) in the y direction of
7sin 0, and —7sin 6, at the ends of the segment. The net force in
the y direction equals the inertial term, which is the accelera-
tion (second time derivative of the displacement) times the
mass, where the mass is the product of the density p and dx.
Hence, the vector equation F =ma becomes the scalar equation

2.
Flx, )= Tsin 6, — Tsin 6, = pdxa_”g_(’fzﬂ "
I

If the angles 6 are small, sin 6 = 6 = tan 6 can be approxim-
ated by the slope, so
2
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which can be expanded by forming a Taylor series and dis-
carding the higher-order terms:

2 2
ou(x, t) N 0*u(x, t) dx — ou(x, t) _ T8 u(x, t) dac
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2u(x, t)
= pdx ——2"" 3
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yielding the wave equation:

Pu(x,t) 1 d%u(x,?)
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where v=(1/p)"2.

This equation gives the relationship between the time and
space derivatives of the displacement #(x, #) along the string.
We will see that the coupling between the two partial derivat-
ives gives rise to waves propagating along the string with a
velocity v. Because (4) describes the propagation of the scalar
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Fig. 2.2-2 “Snapshots” of a string showing a pulse f(x — 21) traveling to
the right in the +x direction. Because the velocity is 2, the pulse moves two
distance units during each time unit. This pulse is one of many forms a
traveling wave can take.

quantity #(x, t) in one space dimension, it is called the one-
dimensional scalar wave equation.

The wave equation is easily solved, because any function
with the form u(x, £) = f(x + vt) is a solution. To show this, note
that the partial derivatives are

2 2
Mz}’”(xiut) and szzf”(xivt), (5)

ox? or?
where f” is the second derivative of f with respect to its argu-
ment. Thus, although we often think of solutions to the wave
equation as sines and cosines, any function whose argument is
(x £ vt)is a solution.

To see that a function f(x —vt) describes a propagating wave,
consider how it varies in space and time. As time increases by
an increment dt, the argument stays constant provided that the
distance increases by vdt. Because the function’s value stays
the same when its argument is constant, f{x — vt) describes a
wave of constant shape propagating with velocity v in the
positive x direction (Fig. 2.2-2). Similarly, because (x + v) is
constant if x decreases as time increases, f(x + vz) describes a
wave propagating with velocity v in the —x direction. The sign
relating the x and ¢ terms thus shows which way the wave
travels. We follow seismological convention and use the vector
term “velocity” for v, although it is a scalar and thus better
termed a “speed.”

The velocity v = (t/p)V* at which the waves propagate
depends on two physical properties of the string: the tension
with which it is stretched and its density. Equation 1 shows
how these properties interact. Because the tension provides
the force that tends to restore any displacement to the equilib-
rium position, greater tension gives higher acceleration and
thus faster wave propagation. In contrast, because the density
appears in the inertial term, higher density gives lower accelera-
tion and slower wave propagation.

)1/2



The fact that the velocity depends on the density illustrates
orie of the reasons why the string is a useful analogy for seismic
waves in the earth. One goal of seismology is to study the com-
'position of the earth. For this purpose, we measure the time
that waves take to travel between sources and receivers, find
the velocity at which the waves propagated, and thus learn
about the properties of the earth.

2.2.2  Harmonic wave solution

Any function of the form f(x +vz) describes a propagating wave
as a function of time and distance. A particularly useful form is
2 harmonic or sinusoidal wave?

. ulx, ) = Ae?@EkX) = A cos (wt + kx) + Ai sin (ot + kx). (6)

A harmonic wave is characterized by its amplitude A and two

- parameters, @ and k, which we will discuss shortly. Substitut-

ing into the wave equation (4) and canceling the exponential
and constant show that the wave velocity is the ratio

v=w/k. (7)

Although the exponential function #u(x, ) in Eqn 6 is
complex, the physical displacement must be real. We thus
describe the displacement as the real part of #(x, #). The com-
plex exponential form can be used for most purposes, because
when a complex exponential appears in the solution of a
physical problem, its conjugate also appears, so their sum
yields a real displacement.

To understand the harmonic wave solution, consider the wave
given by the real part of u(x, #), which is A cos (ot — kx). Fig-
ure 2.2-3 shows how this function varies with both distance
and time. The value of u is constant when the phase (wt — kx)
remains constant, as for a crest or a trough. Such lines of con-
stant phase require that x increases when ¢ increases. These
lines indicate waves propagating in the +x direction at a velo-
city shown by dx/dt, the slope of the line in the x—¢ plane.

- Additional insight comes by examining u(x, #) at a point in
space, x,. In terms of Fig. 2.2-3, this is a slice of the function on
a plane parallel to the time axis, which intersects the distance
axis at x,. This gives a periodic function of time, u(x, t) =
A cos (ot — kx;) (Fig. 2.2-4, top). Because the function returns
to the same value when @t changes by 27, the oscillation is
characterized by the period, T = 27/, the time over which it
repeats. The periodicity can also be described by the frequency,
f=1/T = w/(2n), the number of oscillations within a unit time,
or by the angular frequency, =27nf. The period has the dimen-
sions of time, so the frequency and angular frequency have
dimensions of time™'. In Fig. 2.2-3, for example, u(x, t) =
A cos (7t — 27x), so the angular frequency is 7 (time units)™!
the frequency is '/ (time units)~?, and the period is 2 time units.

3

2 Properties of complex numbers are reviewed in Section A.2.
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ulx, D

Fig. 2.2-3 Displacement as a function of position and time for the
harmonic wave u(x, #) = A cos (nt — 27x) propagating in the +x direction.
A line following a peak (or any part of the wave) in space and time
represents the wave’s velocity.

C
C

C
C

Fig. 2.2-4 A harmonic wave u(x, t) = A cos (@t — kx) shown at a fixed
position as a function of time (zop) and at a fixed time as a function of
position (bottom).

Thus the interval shown, 4 time units, includes two full cycles
of the oscillation. Equivalently, /2 a cycle occurs in a unit time.

Alternatively, we can examine #(x, ) at a fixed time,
and plot u(x, ¢,) = A cos (@, — kx) as a function of position
(Fig. 2.2-4, bottom). In terms of Fig. 2.2-3, this is a slice of the
function on a plane parallel to the distance axis, which inter-
sects the time axis at #,. The displacement is periodic in space
over a distance equal to the wavelength, A = 2n/k, the dis-
tance between two corresponding points in a cycle. How
the oscillation repeats in space can also be described by k,
the wavenumber or spatial frequency, which is 27 times the
number of cycles occurring in a unit distance. The wavelength
has units of distance, so the wavenumber has dimensions of
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Table 2.2-1 Relationships between wave variables.

Quantity Units

Velocity distance/time v=wlk=fA= AT
Period time T=2mlw=1/f=Alv
Angular frequency time™ w=2n/T=2nf=kv
Frequency time™ f=w/2m)=1T=viA
Wavelength distance A=2mlk=v/f=vT
Wavenumber distance™ k=2m/A=wlv=2nflv

distance™. In Fig. 2.2-3 the wavelength is 1 distance unit, four
cycles occur in the 4-distance unit interval shown, and the
wavenumber is 27 (distance units)~!. Note that the wavelength
and wavenumber are analogous, for constant time, to the
period and angular frequency for constant x.

Table 2.2-1 summarizes the relationships between the differ-
ent wave parameters. All these relations can be derived from
v = w/k and the definitions of the other quantities. Note the
analogy between period and angular frequency, which describe
the wave in time at a fixed point in space, and wavelength and
wavenumber, which describe the wave in space at a fixed time.
Although the different relations may seem confusing, they are
easy to remember using the dimensions of the quantities. For
example, velocity must be the ratio of wavelength to period,
not their product.

Thus Aei@*k%) represents a wave field that is a function of
both space and time. Often we hold one quantity fixed and
observe the variation in the other. We can pick a point on a string
and record a seismogram (“stringogram”) of the displacement
as a function of time. By contrast, a “snapshot” picture of the
waves on the string shows the displacement as a function of
position, at a given time. These ideas apply to other wave
phenomena, such as water waves incident on a beach. A life-
guard, looking over the water at an instant of time, sees a wave
field that varies in space. A swimmer, at a location in the water,
encounters waves that vary in time. Both are observing, in
different ways, a wave field that varies in both space and time.
We will see that the same concept applies to seismic waves.

The harmonic wave solution describes a sinusoidal wave of
a particular frequency. This might seem to make it a specific
solution, not applicable to more complicated propagating
waves. In particular, the sinusoid is defined for all times and
distances, whereas in physical situations we deal with waves
that exist only for a limited span in space and duration in time.
Fortunately, as we will discuss later, an arbitrary wave shape
can be decomposed into a set of harmonic waves using Fourier
analysis. As a result, solutions describing the simple case of
harmonic waves can be applied to more complicated cases.

2.2.3 Reflection and transmission

So far, we have discussed waves traveling along a string of uni-
form velocity. To use this as an analogy for the earth, within

Incident

Transmitted

|
|
|
Reflected |
1

0

Fig. 2.2-5 A wave pulse incident from the left on a junction between
two strings of different properties gives rise to transmitted and reflected
wave pulses. The fact that the reflected wave is inverted shows that the
impedance is greater in the right string. Similarly, the fact that the
transmitted pulse has a smaller length shows that the velocity is

lower in the right string.

which physical properties vary with depth, we need to treat
waves on a string with variable properties along its length.
The simplest situation is a string composed of segments with
uniform properties. If the segments are long enough, we treat
the displacement in each segment as composed of propagat-
ing waves described by the solution for a uniform string with
the appropriate properties, and then match solutions across the
boundaries between segments.

To illustrate this approach, consider a junction between
strings of different properties (Fig. 2.2-5). The junction at
x = 0 separates string segment 1 on the left with density p, and
velocity v, from string segment 2 on the right (x > 0) with
density p, and velocity v,. A wave arriving at the junction from
the left yields two new waves. Some of the incident wave
reflects from the junction, and thus travels to the left in string
segment 1. The remainder of the incident wave is transmitted
across the junction and travels to the right in string segment 2.
We will show that the relative amounts of reflected and trans-
mitted energy depend on the difference in properties across the
interface.’

For the joined string segments, we write the total displace-
ment in the left string segment as the sum of two harmonic
waves

ul(x, t) :Aei(mt—klx) +Bei(mt+k1x)_ (8)

The signs of the complex exponentials indicate that the incident
wave, with amplitude A, travels in the +x direction, whereas

3 The wave’s simultaneous reflection and transmission is analogous to shining a

flashlight out of a window at night; you see the light reflected by the window, whereas
someone outside sees the light transmitted through the window.
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the reflected wave, with amplitude B, travels in the —x direc-
tion. In the right-hand string segment there is only a trans-
mitted wave going in the +x direction

iy, ) = Cefl01ho) ©)

The waves in the two string segments have different waven-
umbers because of the different velocities in the two segments.

.. The amplitudes of the reflected and transmitted waves are
found using two boundary conditions that the physics of the
string imposes on the solution at the junction x = 0. First, be-
cause the two segments at the junction stay joined, the displace-
ment must always be continuous across the junction, so

;11(0, t) = 142(0, t)a

:Aeiwt+Beiwt:Ceiwt' (10)

For this to occur at all times, the angular frequency of the three
waves must be the same, as we have assumed, and the ampli-
tudes must satisfy

A+B=C. (11)

Second, the y components of the tension forces acting on
the two sides of the junction must always be equal, or the un-
equal forces would tear the string apart. Thus, by analogy to
Eqn 2, we have another boundary condition

. 01,(0, 2) . 0u,(0, 2) .

= 12
ox ox (12)
Taking the derivatives and canceling terms gives
Tk,(A - B)=1k,C, (13)

or, because the velocities on the two sides are v, = (7/p,"? and
k;=wlv,,

pyvy(A-B)=p,C. (14)

" We now have two equations (11 and 14) for the three con-
stants A, B, and C, giving the amplitudes of the incident,
reflected, and transmitted waves. We can eliminate C and find
the ratio of the amplitudes of the reflected and incident waves,
known as the reflection coefficient,

' B v — poU
R, =— =Pl =Pl (15)
Ay + Py,

Similarly, eliminating B yields the transmission coefficient, the
ratio of transmitted and incident wave amplitudes,

_ 2o (16)

C
Ty=—= :
A piptpavy
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The “12” subscripts indicate that the reflection and trans-
mission coefficients describe a wave incident from segment 1
upon segment 2; the corresponding coefficients for a wave
incident from the right have subscripts “21.” These can be
derived by interchanging the subscripts, showing that
Ry,==-Ry, Typ+Ty=2. (17)

The reflection and transmission coefficients depend on the
product of the density and velocity for each string, p;v;, a
quantity called the acoustic impedance. Because the amount
reflected depends on the difference in impedances between the
two sides, the strongest reflections occur at boundaries where
properties change significantly. One limiting case is if the
materials on both sides of the junction are identical (p, = p, and
v, = v,), the reflection coefficient is zero and the transmission
coefficient would be one. Hence, as expected, all the wave is
transmitted, and none reflects. The other limiting case, total
reflection and no transmission, occurs at the end of a string.
The fixed end of a string, where no displacement occurs, can be
treated as a junction with a string of infinite impedance. Hence
the reflection coefficient is

Py (18)

so the entire incident wave pulse reflects with the opposite
polarity. Similarly, a string whose end is free to move is de-
scribed by the condition that the derivative du/ox is zero,
because there is no force applied. This can be treated as a junc-
tion with a string of zero impedance, so the reflection coetfi-
cient is +1, and the entire incident pulse reflects with the same
polarity. For values between the limiting cases, Eqn 15 shows
that the polarity of the reflection depends upon whether the
wave leaves or enters a string of greater impedance. If the
impedance of segment 2 exceeds that of segment 1, waves
going from segment 1 toward segment 2 reflect with reversed
polarity, whereas waves going the other way reflect with-
out changing polarity. Reflections at free and fixed ends are
extreme cases of this property. Hence the amplitudes of reflec-
tions from boundaries can be used to infer changes in physical
properties.

To illustrate these ideas, consider the reflection and trans-
mission of waves on a string divided at x = 10 into two
segments (Fig. 2.2-6). The left segment has p; = 1, v, = 3, and
the right segment has p, = 4, v, = 1.5. At time O the string
is plucked for a very short time by a source at the position
marked by the triangle, so waves spread out in either direction.

At time 1, the first time shown, the wave traveling to the right
has just encountered the junction (marked by a vertical dashed
line). The reflection and transmission coefficients depend on the
impedances p,v; = 3 and p,v, = 6. Thus for waves going from
left to right R,, =-0.33 and T}, = 0.67. A small reflected pulse
is generated, with a downward polarity opposite that of the
incident pulse, because the reflection coefficient is negative. At
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Fig. 2.2-6 Wave propagation on a string composed of two segments

of different properties: the left (segment 1) with p; =1, v, =3, and the
right (segment 2) with p, =4, v, = 1.5. The triangle marks the position of
the source (distance 6.5) that plucked the string at time 0. The traces are
successive snapshots of the string one time unit apart. The vertical dashed
line indicates the position of the junction. Both ends of the string are fixed,
so reflections there have unchanged amplitude but reversed polarity.

time 2 we see this reflected wave traveling to the left and a
larger transmitted wave traveling to the right. Note that,
because of the different velocities, the reflected wave is further
from the junction than the transmitted wave.

At time 2 the original pulse traveling to the left has reached
the left end of the string. What happens to it depends on the
boundary condition at the end. Here, we assumed that the
ends were fixed, so at time 3 the pulse is inverted and reflected.
Similarly at time S the first reflection off the junction has been
inverted at the left end and now travels to the right.

When a pulse arrives at the junction, part is reflected and
part is transmitted. For example, at time 6, the original pulse
reflected from the left end has been converted at the junction
into a transmitted wave with downward polarity and a re-
flected wave with positive polarity. As time goes by, many
pulses develop, each with an amplitude that is the product of its
history. Thus, if the initial pulses had unit amplitude, the first
reflection has amplitude R |,. Once inverted by reflection off the
fixed left end, this pulse has amplitude R,(~1). When it reaches

the middle again (time 8), it gives rise to the small reflection
with amplitude R;,(~1)R;, = —=0.11 and a transmitted pulse
with amplitude R,,(-1)T,=0.22.

By time 14, the original pulse that traveled to the right has
been transmitted to segment 2, inverted by reflection off the
right boundary (time 8), and is now incident on the junction
from the right. The reflection and transmission coefficients for
a wave incident from segment 2 are R,; = 0.33, T,; = 1.33.
Thus the reflected and transmitted pulses have the same down-
ward polarity as the incident wave and amplitudes T;,(-1)R,,
=-0.22 and T},(-1)T,, =-0.89.

It may seem curious that, because T,, is greater than 1,
waves transmitted to the left have larger amplitude than the
incident wave that generated them. This effect, although not
appealing intuitively, is possible so long as the energy in the
transmitted wave does not exceed that in the incident wave. We
will show later that this is the case.

When a pulse is transmitted across the junction, its length
as well as its amplitude changes. For example, the transmitted
pulse at time 2 is shorter than the incident pulse. This results
from the different velocities. To see this, recall that for a har-
monic wave the angular frequencies of the transmitted and
incident waves in the two strings are the same because the
strings stay joined (Eqn 10). Thus

o=v,k,=v,k, =v,27/A =v,27/A,, (19)

so the wavelength is shorter in the slower string. Another way
to see this is from the time needed for an incident pulse to be
transmitted (Fig. 2.2-7). If the pulse in segment 1 has length 4,,
it takes a time A,/v; to pass through the junction. The length
of the transmitted pulse in segment 2 is the distance v,4,/v,
traveled by the leading edge of the transmitted pulse when the
trailing edge of the incident pulse reaches the boundary.

A point worth noting is that the displacement at a point
on the string is the sum of the displacements of all the waves
passing by that point. For example, at time 10 (in Fig. 2.2-6)
two waves, one traveling in either direction, add up to give
a large pulse. At the next time step, the two waves have
separated. Thus a wave has no lasting effect after crossing
another; the waves “go through” each other. The concept that
the waves can be added up without affecting each other is
called linear superposition. This is generally assumed to be
valid unless the amplitudes of the waves are so large that the
material behaves nonlinearly, or differently from the simple
elastic assumptions used to derive the propagating wave equa-
tion. Superposition allows us to form waves of arbitrary shape
from harmonic waves of different frequencies using a Fourier
series, as was done to form the pulses in this example. This
posed no difficulty because in our derivation neither the velo-
city nor the reflection and transmission coefficients depended
on frequency.

The fact that the amplitudes of waves on a string change as
they are reflected and transmitted at interfaces where the prop-
erties of the string change illustrates a concept important for



_Fig.2.2-7 Anincident wave pulse of length 4, on a string with velocity v
_generates a transmitted pulse of length 4, in a string with velocity v,.

The change in pulse length results from the distance the transmitted
k'pulse travels while the incident pulse passes through the junction. If the

_ amplitude of the incident pulse is 1, then the reflected and transmitted
_pulses have amplitudes R, and T,.

seismic waves in the earth. We will use this approach to show
 how we study changes in physical properties at depth in the
earth from the amplitudes of reflected and transmitted waves.

2.2.4 Energy in a harmonic wave

We noted earlier that in some cases the transmission coeffici-
entexceeds 1. To see how this occurs, we consider the energy
~ transported by the traveling waves. It turns out that although
amplitudes are easier to visualize, energy is often more useful
~ for understanding wave behavior because energy is conserved,

whereas amplitude is not. Hence, when a result for amplitudes
is hard to understand, considering the energy can provide
1nsight.

By analogy to the kinetic energy mv%/2 of a point mass, the
kinetic energy, KE, of a segment dx of the string is found from
the velocity, the time derivative of the displacement, so

2
KE=2[2] 4, (20)
, 2\ ot

because the mass of the string is 72 = pdx.

The string also stores potential energy, because it is stretched,
or deformed, from its equilibrium position. We will see shortly
that a measure of the deformation is the strain, e, which for
the string is the ratio of the change in the length to the original
length. Hence for an element of the string (Fig. 2.2-1) with
initial length dx, the strain due to the displacement du is

2 2112 21" 2
o= B du) o dx 1+[£“ﬁ] -1:1(8—“] , 1)
dx dx 2\ ox
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where the last step used the Taylor series (1 + )2 = 1 + a2/2
for small a. The potential energy stored in the string is the prod-
uct of the tension and the strain integrated over the entire
length L,

L 2
12 g, (22)
2 )\ ox

0
so we can define the average potential energy, PE, in a segment

dx as

2
PE=Z| 2] 4x. (23)
2\ ox

We characterize the energy of a traveling wave by the kinetic
and potential energy averaged over a wavelength. If u(x, f)
= A cos (wt — kx), then the kinetic energy averaged over a
wavelength is

A
KE=2
%
0

The integral of the sinusoid squared over a period is

A
2 2,92
9\ g = PAOT | G2 (ot — k). (24)
ot 24

A
Jsinz (wt — kx)dx = 412, (25)
0

so the kinetic energy is
KE=A2a?p/4. (26)

Similarly, the potential energy averaged over a wavelength is

A A
2 232
PE= || 9%] g - TA k sin? (ot — kx)dx, (27)
24 |l ox 22
0 0

which, using Eqn 25, becomes

PE = tA2kY4 = A2w?pl4, (28)

the same as the kinetic energy.
Hence the total energy transported, averaged over a wave-
length, is the sum of the potential and kinetic energies:

E=PE+KE=A’w?p/2. (29)
Another way to state this is in terms of the energy flux, the rate

at which the wave transports energy past a point on the string.
The average flux is just the averaged energy times the velocity
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E=A%w0%pv/2. (30)

For a string of a given density, the energy flux is proportional
to the amplitude and angular frequency squared, so higher-
frequency waves transport more energy.

Consideration of the energy explains how in Fig. 2.2-6 the
transmitted wave can have higher amplitude than the incident
wave. To see that an incident wave converting into reflected
and transmitted waves conserves energy, assume that a wave
in segment 1, described by cos (@t — k;x), is incident on the
junction. It gives rise to a reflected wave in segment 1, described
by Ry, cos (0t + k,x), and a transmitted wave in segment 2,
described by T, cos (wt — kyx). Using Eqns 15 and 16 for Ry,
and T},, the net energy flux for the reflected and transmitted
waves is the sum

Ex+Ep=RE,0%pv,/2 + T2, 0*p,v,/2
= (@0%2)[Ripv1p1 + THrp,]
=w’pv,2=E, (31)

which equals the energy flux in the incident wave. Thus, even
if the amplitude of the transmitted wave exceeds that of the
incident wave, the energy of the transmitted wave is less than
that of the incident wave.*

2.2.5 Normal modes of a string

So far, we have discussed waves propagating along a string.
Additional insight into propagating waves can be gained by
considering standing waves, which are known as the normal
modes, or free oscillations, of the string.

Recall that we began by applying Newton’s second law to a
string, and found that the displacement #(x, ) as a function of
position and time satisfied the scalar wave equation

Pulx,t) _ 1 0°u(x,1) (4)
ox? oot

We saw that this equation had solutions like
u(x,t)=A cos (ot * kx), (32)

which describes harmonic waves with angular frequency o
and wavenumber k = 27/A, propagating at velocity v such that
v=0olk.

An alternative approach is to seek solutions of (4) with a
cos (wt) time dependence, such that

u(x, t) = U(x, o) cos (wt), (33)

4 An analogous phenomenon occurs at beaches, where waves increase in amplitude

as they approach the shore because the wave speed is proportional to the square root
of water depth.

by substituting this form into the wave equation (Eqn 4).5
Taking the derivatives and canceling the common factor yields

*U(x, @) ?*
—a =T Ulx, o). (34)

One solution of this equation is
Ulx, o) =sin (wx/v). (35)

If the string has fixed ends at x =0 and x = L, then Eqn 35 must
satisfy the boundary conditions

U(0, w)=U(L, w)=0. (36)

The solution already satisfies the boundary condition at x = 0,
so all that is needed is to satisfy the boundary condition at
x=L,

U(L, @)=sin (oL/v)=0, (37)
which occurs for angular frequencies , such that

w,Llv=nr or ,=nnv/L. (38)
Thus the zero displacement boundary conditions at the string’s
ends require that it vibrate only at specific frequencies, called
eigenfrequencies. The eigenfrequencies each correspond to a
solution

U,(x, w,) cos (@,1), (39)
where the spatial term
U, (x, w,)=sin (®,x/v)=sin (nmx/L) (40)

is known as the spatial eigenfunction.
To interpret these solutions physically, note that @ = vk
=v27/A, so the eigenfrequencies correspond to

o,=nnv/L=2rv/A or L=ni/2. (41)

Thus each spatial eigenfunction has an integral number of half
wavelengths along the string’s length L, so the displacement
at both ends is zero. The solutions are standing waves, known
as the normal modes, or free oscillations, of the string, each of
which has a characteristic spatial eigenfunction and vibrates at
a characteristic eigenfrequency. Because the string is finite, it
can vibrate only in these discrete modes that satisfy the bound-
ary conditions. The eigenfrequencies are spaced mv/L apart, so

5 This procedure amounts to taking the Fourier transform of the equation in

frequency, and then using a Fourier series in space. Fourier analysis is discussed in
chapter 6.




+the longer the string is (i.e., the larger L gets), the closer the
eigenfrequencies become.

A traveling wave can be expressed as the weighted sum of the
ring’s normal modes, so it is the sum of the eigenfunctions,
ach weighted by the amplitude A, and vibrating at its eigen-

frequency @,,,

orthogonal, meaning that the integral over the string of the
product of two different eigenfunctions is zero,

sin (’””’CJ sin [@] ax=Ls (43)
L 2

where 8, the Kronecker delta symbol defined in Eqn A.3.37,
is zero unless 72 = n. Each mode is independent and cannot be
constructed by combining other modes. Thus we can think
of the displacement of the string as a vector in a vector space
(Section A.3.6) whose basis vectors are the eigenfunctions. Any
particular set of waves is given by the amplitudes A, which are
the weighting factors of the eigenfunctions or the components
of the basis vectors.

The amplitude for each eigenfunction depends on the posi-
tion of the source that generated the waves and on the behavior
of the source as a function of time. The spatial part of A, has
the same form as U, (Eqn 40), so

k-‘,——ﬂr-*'

Mode number

-0

 : An =sin (nmx,/L)F(w,), (44)

where x_ is the position of the source, and F(,) is a weighting

factor describing how different frequencies contribute to the
_ time history of the source. Thus the normal mode expression
for the displacement (Eqn 42) can be written

M3

:f Culx, f)= sin (nwx /L)F(®,) sin (n7x/L) cos (@,£). (45)

0

=
Il

- Figure 2.2-8, computed in this way, illustrates how the first
40 modes of a string with fixed ends and a uniform velocity
combine to give traveling waves. The source, at x, = 8, is
described by

Flo,)=exp [~(0,7)4/4] (46)

with 7= 0.2. The computer program used is similar to that
discussed in Section A.8.1. The mode sum shows two waves,
one propagating to the right and one propagating to the left,
at the expected positions. Hence the mode sum correctly gives
the propagating waves. In addition to the propagating waves,
we see some small oscillations along the string because only the
first 40 modes were summed.
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Fig. 2.2-8 Displacement of a string with fixed ends computed using

the normal mode formulation. The string has length 20, velocity 3,

and was plucked at time 0 by a source at position 8 (triangle). The bottom
trace shows the displacement of the string at time 1.5, computed by
summing the first 40 modes. The mode sum generates both the right-

and the left-propagating waves at the appropriate positions. Spatial
eigenfunctions for the individual modes, each of which corresponds to

an integral number of half wavelengths, are also shown above the sum.
The traces are normalized to unit amplitude.

We now have two ways to think of the displacement of the
string as a function of time: either as propagating waves or as
normal modes. Neither is more “real” — both are ways of rep-
resenting how the displacement evolves. Thus comparing the
two gives interesting insights. For example, consider studying
the properties of the string. In the traveling wave formulation,
we measure travel times and thus infer velocity. In the normal
mode formulation, we measure eigenfrequencies and then infer
velocities. Thus the eigenfrequencies are analogous to the travel
times.
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The normal mode solution (Eqn 45) gives insight into the
relation between the medium in which waves propagate and
the source that generates them. The waves are expressed as
the sum of eigenfunctions weighted by amplitudes that depend
on the source. The physical properties of the string control its
velocity and thus its eigenfrequencies and spatial eigenfunctions.
The displacement due to any particular source corresponds to a
different weighting of the eigenfunctions. By analogy, we use
the eigenfrequencies of the earth’s normal modes to study the
properties of the medium (earth structure), and the displace-
ment (the specific weighting of eigenfunctions) to study the
source (generally an earthquake) that excited them.

The normal mode solution generates all the incident, reflected,
and transmitted waves, although they do not appear individu-
ally as they do in a traveling wave solution like Eqn 8. The
mode solution is thus less intuitive, and individual modes are
not physically meaningful, although their sum is. For example,
each mode mathematically starts vibrating along the entire
string at time zero, even though no waves have reached the
string ends. When the modes are summed, the resulting waves
propagate at the correct velocity.

The solution also illustrates an important relation between
the positions of the source and the receiver. The fact that
Eqn 45 depends in the same way on the positions of the source
(x,) and the receiver (x) illustrates the principle of reciprocity,
which states that under appropriate conditions the same dis-
placement occurs if the positions of the source and the receiver
are interchanged. This principle is important for studying earth
structure because it is often convenient to place the source or
the receiver at a particular site. We can do this knowing that
the same ray paths and thus waves result.® Equation 45 also
illustrates an important point about the relation of the source
position to the waves generated: namely, a source at a point
where a particular mode has no displacement will not excite
that mode. For example, in Fig. 2.2-8, modes with numbers
that are multiples of five give zero displacement because the
source term sin (n7x /20) is zero. Analogously, in the earth,
surface waves whose displacements are largest near the surface
are not excited well by deep earthquakes.

Finally, although we have discussed the normal modes of
a uniform string, we could generalize these ideas to find the
modes of a non-uniform string. One way to do this is to extend
the method used to find the reflection and transmission coef-
ficients (Section 2.2.3). We treat the string as a set of uniform
pieces, use the harmonic wave solution in each piece, and
impose displacement and traction boundary conditions at the
junctions. We then numerically find eigenfrequencies that
satisfy the fixed boundary condition at the string’s end. The
normal modes of the non-uniform string are then summed to
give the traveling waves. The waves on the non-uniform string
in Fig. 2.2-6 were calculated in this way.

6 A familiar version for light waves, seen on the back of large trucks, warns other
drivers that “If you can’t see my mirrors, I can’t see you.”

2.3 Stress and strain

2.3.1 Introduction

By applying Newton’s second law of motion, F =a, to a string,
we found that deforming the string gave rise to propagating
waves. Similarly, deforming the solid earth produces seismic
waves. We study these waves using concepts from continuum
mechanics, which describes the behavior of a continuous
deformable material made up of particles packed so closely
together that density, force, and displacement can be thought
of as continuous and differentiable functions. This approxima-
tion breaks down on an atomic distance scale, but is adequate
for most seismological problems.

For these applications, we write Newton’s second law in
terms of the force per unit volume and the density, the mass per
unit volume. If the density does not change with time, the force
per unit volume f(x, t) equals the inertial term, the product
of the density p and the second derivative of the displacement
vector u(x, ¢) with time. Thus F = ma becomes

d*u(x, )

fx, 1) = pL o, (1)
ot

This vector equation can be written as a set of three equations,

one for each component of the force and displacement vectors!

0%u;(x, 1)
fix,t) = PT- (2)

In seismic wave propagation, both the displacement and the
force vectors can vary in space and time. Although this depend-
ence is generally not written explicitly, we will sometimes do
so to remind ourselves that the solutions depend on space and
time.

The goal of this section is to use Newton’s second law to
characterize a continuous medium and its response to applied
forces. We first introduce the stress tensor that describes the
forces acting on a deformable continuous medium. We then
formulate the equation of motion, the version of Newton’s law
appropriate for a continuous medium, which relates the stress
to the displacement. The variation in displacement within the
material, described by the strain tensor, gives rise to internal
deformation. This deformation is related to the stress via the
constitutive equation that characterizes the properties of the
material. Our brief discussion covers some basic results of
continuum mechanics necessary for introductory seismology.
The suggested reading listed at the end of the chapter provides
further treatment of these and related topics.

! The three equations are written as one using index notation (Section A.3.5) in

which the index i ranges from 1 to 3 over the coordinate axes. Index notation makes
cumbersome vector equations shorter, clearer, and often easier to solve. These equa-
tions are often made even more compact using a dot superscript to indicate differen-
tiation with respect to time, so the acceleration is 7;.



Fig. 2.3-1 Surface force on a volume element V within a material. The
_surface force F due to the material outside V acts on each element of
surface dS, which has an outward-pointing unit normal vector fi.

232 Stress

 Two types of forces can act on an object. The first is a body
_force, which acts everywhere within an object, resulting in a
_ net force proportional to the volume of the object. A familiar
_example is the body force g due to gravity; the net force on an
' infinitesimal body with density p and volume dV is pgdV. The
~units of a body force are force per unit volume.

A second type of force is a surface force, which acts on the
surface of an object, yielding a net force proportional to the
surface area of the object. For example, an object in a pool
of fluid is subject to a pressure equal to the weight (a force)
_ per unit area of the fluid above the object. At any point on the

- object’s surface, the pressure is directed along the normal to
the surface. Thus a surface force like pressure acts in different
directions on different parts of an object, in contrast to gravity,
which is a body force that always points down. Surface forces
have units of force per unit area.

We now consider the forces acting on a small volume V, with
surface S, within a larger continuous medium (Fig. 2.3-1). The
material inside V is affected by body forces acting on every-
thing inside V and surface forces, due to the material outside,
acting on the surface S. If the surface force F acts on each ele-
ment of surface dS, whose outward unit normal vector is i, we
define the traction vector, T, as the limit of the surface force per
unit area at any point as the area becomes infinitesimal:

F
TH)= lim —.
(@) Hm =S (3)

The traction vector has the same orientation as the force, and is
a function of the unit normal vector i because it depends on the
orientation of the surface.

The system of surface forces acting on a volume is described
by three traction vectors. Each acts on a surface perpendicular
to a coordinate axis (Fig. 2.3-2), and is thus parallel to the
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Fig. 2.3-2 Traction vectors acting on three faces of a volume element
which are perpendicular to the coordinate axes. The superscript on
T indicates the direction of the normal to the face on which T acts.
The three components T are shown.

plane defined by the other two axes. We define T(/) as the trac-
tion vector acting on the surface whose outward normal is in
the positive € direction. The components of the three traction
vectors are T/, where the upper index (j) indicates the surface
and the lower (7) index indicates the component. For example,
T is the x5 component of the traction on the surface whose
normal is &,.

This set of nine terms that describes the surface forces can be
grouped into the stress tensor, 0. The tensor’s rows are the
three traction vectors, such that

1 )] (1) (1)

011 %12 O3 T Ty Ty Ty
0,;=|0y 0y 0y|=|T?|= ¢ 19 19| (4)

3 3 3 3

03 0Oy oOx) (TO) |TO T TY

Thus the stress component o is the ith component of the trac-
tion vector acting on the surface whose outward normal points
in the € direction. The stress gives the force per unit area that
the material on the outside (the side to which fi points) of the
surface exerts on the material inside. In the special geometry of
Fig. 2.3-2, where the surfaces are along coordinate axes, it is
easy to see that ;= Tﬁ-f).

In some applications, it is more convenient to write the co-
ordinate axes as x, v, and z, so the stress tensor is written

Ox ny Oz
Oji =| %y Oy Oy |- ()
O 2y O

The stress tensor gives the traction vector T acting on any
surface within the medium. To illustrate this, we examine the
traction on an arbitrary element of surface dS, whose normal fi
is not along a coordinate axis. Consider the material inside an
infinitesimal tetrahedron of volume dV formed by this surface
and three other faces, each perpendicular to a coordinate axis,
with normal in the —& direction (Fig. 2.3-3). The area of the
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Fig. 2.3-3 Stress components on three faces of a tetrahedron, with
normals parallel to coordinate axes. Summing the resulting forces
yields the net force on the fourth (slanted) side.

face with its normal in the —&; direction is given by using the
scalar product to find the cosine of the angle between fiand €,

(R~ &)dS =n,dS. (6)

Because traction is force per unit area, the net surface force in
a given direction is found by multiplying each component of
the traction by the area of the face it acts on and summing over
the faces. Thus the total force in the &, direction is that due to
this component of the traction, those resulting from the stress
on the other three faces, and the component of the body force
f in this direction. This total force equals the mass pdV of
the tetrahedron times the component of acceleration in the &,
direction,

3 2

T.dS - Y oymdS + f,dV = p%dv. (7)
: t
j=1

Dividing by the area and letting dV/dS go to zero, we see that
the stress tensor is related to the traction and normal vectors by

3
T;= 2 o;n;=
j=1

om, (8)

where the last form uses the index notation convention that a
repeated index indicates summation (Section A.3.5). Because
this equation gives the traction on an arbitrary surface, the
‘stress tensor describes the surface forces acting on any volume
within the material.
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Fig. 2.3-4 The sense of positive stress components for a volume with faces
perpendicular to the coordinate axes. oy, is the stress component acting in
the & direction on the face with outward normal in the €, direction.

The sign convention for stress components comes from the
relation between the outward normal and the basis vectors.
Figure 2.3-4 shows the positive stress components acting on a
cube of material with faces perpendicular to the coordinate axes.
For example, on the face with outward normal €;=(0,0, 1), 053
is positive in the &, direction, and o3, is positive in the &, direc-
tion. Because the tractions are T, = o3, positive 033 and 0y,
yield forces in the x5 and x, directions. By contrast, on the
opposite face with outward normal —&;= (0, 0,-1), o35 is posit-
ive in the —x direction, and oy, is positive in the —x, direction.
Thus the tractions are T, =—0;;, and positive 033 and o3, yield
forces in the —x; and —x, directions.

The three diagonal components of the stress tensor, 0y, Oyy,
and 033, are known as normal stresses, and the six off-diagonal
components are called shear stresses. The corresponding com-
ponents of the traction vector are called normal and shear
tractions. Figure 2.3-4 shows that positive normal stresses
tend to expand the volume, whereas negative normal stresses
make the volume smaller. Thus positive values of the normal
tractions correspond to tension, whereas negative normal trac-
tions correspond to compression. At most points within the
earth, because material is under compression from the weight
of rock above, the normal stress components are negative.
Geophysicists thus often speak of the “maximum compressive
stress,” the most negative and largest in absolute value, and the
“minimum compressive stress,” the least negative and smallest
in absolute value.

An important property of a stress tensor is that it is
symmetric,

0,;=0j. 9)
To show this, consider the torque (Eqn A.3.32) 75 about the x;
axis on a rectangle of material with sides dx,, dx,, along the
coordinate axes (Fig. 2.3-5). If the torque is zero, the angular
momentum of the block remains constant, so the block will not
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ig.2.3-5 Clockwise and counterclockwise torques about the x5 axis ona
rectangle due to the stress components and body forces. If the stress tensor
ere not symmetric, 0y, = 0, a net torque would arise.

start to rotate if it is not already doing so. The net body force, if
any, is f,dx,dx,, where f, is the force at the center of the block.
Because a torque is the product of a force and a lever (or
oment) arm, the shear stresses 0,; and o, acting on the faces
along the x; and x, axes contribute no torque. The other stress
components cause torques equal to the product of the lever arm
and the traction, the stress component times the area of the
face. Thus the total counterclockwise torque is the sum of that
due to the shear tractions on the other two faces, with lever
arms dx, and dx,, the normal tractions on all four faces, with
ever arms dx,/2 and dx,/2, and the two body force com-
ponents acting at the center of the block, with lever arms dx,/2
~and dx,/2:

=| 0y, + —2dx, | dxdx, — | 0y + —2Ldx, | dx,dx,
Xy X
oy, + 9oy, dx, | dx,—= + 0y dx, dx
X9
+| oy, + do dx, | d. 1d ——Gzzdxlé—gﬁ—
X2
+ frdx, dx2 dx, — fdx,dx,—= dz (10)

, D1v1dmg by the area and letting dx; and dx, go to zero, we see
that for there to be no torque, 0, = 6,;. The same argument for
the torque about the other two axes shows that 013 = 03y and

053 = 03,. Thus, although the stress tensor has nine compon-

e N A
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ents, only the three normal ones and three of the six shear ones
are independent.
Because the stress tensor is symmetric, we usually write (8) as

T,= 20‘11 o (11)

or, in terms of the vectors rather than their components,
T=o01. (12)

Stress has units of force per area. In the cgs system of units
based on the centimeter, gram, and second, force is given
in dynes (dyn), with 1 dyn = 1 g-cm/s?, so stress is given in
dyn/cm?, or bars, a unit equal to 10° dyn/cm?. The bar has the
convenient property that atmospheric pressure at sea level is
1.01 bars. In SI units based on the meter, kilogram, and second
(mks), force is given in Newtons (N}, with 1 N = 1 kg-m/s?, so
stress is given in Pascals (Pa), a unit equal to 1 N/m?. The two
sets of units can be related by noting that 1 Pa = 10° dyn/
10* cm? =10 dyn/cm? = 1075 bars, so 1 MPa equals 10 bars.

2.3.3 Stress as a tensor

We have been using the term “tensor” without defining it. Al-
ready, we saw that it came from a relation between the traction
and normal vectors, and is an entity with two subscripts that
has properties similar to those of vectors. Vectors are entities
that are independent of coordinate system, so that physical
laws written using them do not depend on the coordinate
system and can be analyzed using any convenient coordinate
system. We now show that tensors are similar entities.
Specifically, a vector is an entity that remains the same in two
coordinate systems (Section A.5.1), such that its components
in two different Cartesian coordinate systems are related by the
transformation matrix A. Hence, given two sets of axes (x;, x,,
x5) and (x7, x3, x3), the components of a vector u are related by

u'=Au. (13)

The relation between the components of the stress tensor
in two Cartesian coordinate systems can be found using the
fact that it relates the traction and normal vectors in each
coordinate system. The components of the traction and normal
vectors in the two coordinate systems satisfy
T'=AT, # =Ah. (14)
The reverse transformation can be written using the inverse of
A which, because A is orthogonal, equals its transpose:

A=A =ATH. (15)

In the primed coordinate system, the traction is related to the
normal vector and the stress tensor by
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T =0'i, (16)
s0, by Eqns 14 and 15,
T =AT=Acih=AcATH. (17)

Comparison of Eqn 16 and the last term in Eqn 17 shows that
o’=AcAT. (18)

This equation defines a tensor in Cartesian coordinates. Recall
that what makes a vector more than a set of three numbers is its
transformation properties: the numerical values of the com-
ponents that describe it transform between coordinate systems
in a way that preserves the vector as an entity independent of
coordinate system. Similarly, a matrix of numbers is a tensor
only if it transforms between coordinate systems according
to Eqn 18. We derived this transformation by assuming that a
tensor, in this case stress, is an operator relating two vectors, in
this case the normal and traction, in a specific way regardless of
coordinate system. The tensor’s components transform between
coordinate systems, so the tensor as an entity does not change.
Because one application of the transformation matrix trans-
forms a vector, two applications transform a tensor that relates
two vectors. Unfortunately, tensors are harder to visualize than
vectors. Although the stress tensor may seem puzzling, it is one
of the easier tensors to interpret physically.

To illustrate these ideas, we consider an example of how a
stress tensor’s components change between coordinate systems.
Assume that a block of material, with faces perpendicular to
the x, and x, axes, is subject only to normal stresses 0; and o,
(Fig. 2.3-6), so the stress tensor is diagonal,

o, O
o={0 o,
0 0

o oo
—
X

(<7

Fig. 2.3-6 An example of the stress tensor’s different components in
different coordinate systems. In the x,, x, axis coordinate system, the
stress tensor is diagonal. In contrast, shear stresses act on a volume with
faces normal to the x] and x coordinate axes, which are rotated by 6
with respect to the x,, x, axes.

Now, consider the stress acting on a smaller block, with faces
of a different orientation, within the larger one. To find the
tractions on the second block’s sides, we define a second
coordinate system in which the x] and x5 axes are normal to the
faces and rotated by 6 with respect to the x; and x, axes,
whereas the x; and x} axes coincide. Although the stress is
the same in both blocks, the components of the stress tensor
expressed in the two coordinate systems differ. The relation
between the components is given by

o' =AcAT
cos® sinf O (o} 0 O cos® —-sm@ O
=|-sinf® cos® Of| 0 o, Ofsind cos6 O
0 0 1Jlo o ojf © 0 1
0, cos?> 6+ 0, sin*@ (0, —0y)sinOcos@ 0
=|(0, —0,)sin O cos & o;sin?0 +0,cos* O  (20)
0 0 0

For example, if 6, =1, 6, =—1,and §=45°,

0 -1 0
o'=|-1 0 0. (21)
0 00

Thus, although the large block is oriented such that the stress
tensor causes only normal tractions, giving compression along
the x, axis and tension along the x, axis, only shear tractions
act on the smaller block because its sides are oriented differ-
ently. The negative shear stress values yield tractions in the —x/
direction on the face with normal &7, and in the x’ direction on
the opposite face with normal —&7, consistent with what we ex-
pect from the normal tractions on the larger block. Although the
components of the stress tensor in the two coordinate systems
differ, they represent the same entity, the physical state of stress.

2.3.4 Principal stresses

For a given state of stress, the traction vector acting on most
surfaces within a material has components both normal to the
surface and tangential to it. There are, however, some surfaces
oriented such that the shear tractions on them vanish. These
surfaces can be characterized by their normal vectors, called
principal stress axes; the normal stresses on these surfaces are
called principal stresses. The concept of principal stress axes is
important for discussion of earthquake source mechanisms
(Section 4.2).

To find the principal stresses, we use the concepts of
eigenvalues and eigenvectors (Section A.5.2). The shear com-
ponents of the traction will be zero if the traction and normal
vectors are parallel, such that they differ only by a multiplicat-
ive constant, A,

T,=o,m;=An,. (22)




hus the principal stress axes i are the eigenvectors of the stress
nsor, and the principal stresses A associated with each one are
the eigenvalues. The eigenvalues and eigenvectors can be found
by solving the system of homogeneous linear equations

0.~ A8,)n;=0
A op O3 Y 0
L Op—A oy ||m|=]0], (23)
031 O3, o33 - )73 0

where the Kronecker delta symbol 8, = 0 except when i =,
in which case it equals 1 (Eqn A.3.37). A nontrivial solution
exists only for values of A such that the matrix is singular (has
no inverse), which occurs when its determinant is zero (Section

AA4.3),

oy—A O O3
0,1 Op—A 0y (=0 (24)
031 O3, o33 - A

‘Multiplying out the determinant gives the characteristic
_ polynomial

B2+ LA—15=0, (25)

whose coefficients, the invariants of the stress tensor, are
independent of the coordinate system. In particular, I, is the
trace, or sum of the diagonal elements, which has physical
significance, as discussed in Section 2.3.6.

The roots A of Eqn 25 are the eigenvalues or principal
stresses, denoted o,,, which are often ordered by decreasing
value oy 2 0, 2 0;. In geology, where all stresses are com-
pressive (negative), we usually order the principal stresses by
magnitude, so | 0, | 2| 0, | 2| 03 |. Each eigenvalue is then sub-
stituted into Eqn 23 to find the components of the associated
eigenvector A", Because the stress tensor is symmetric, the
three eigenvectors are automatically orthogonal if the roots are
distinct (Section A.5.3), so there are three mutually perpendi-
cular surfaces on which there is no tangential traction. Even
if there are multiple roots, it is still always possible to find
orthogonal f

The principal stress axes are perpendicular and can be used
as basis vectors for a useful coordinate system in which the
stress tensor is diagonal. To transform vectors into this new
coordinate system, we use a rotation matrix (Section A.5.1)
whose rows are the components of the basis vectors of the new
coordinate system written in the old coordinate system. In this
case the rows are the eigenvectors, and the transformation
matrix is

a0 o

A0 ny ny wy
A= ﬁg; = n(]z) n'y ngz) . (26)
i WL L

. A\ A
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Defining the diagonal matrix containing the eigenvalues as A,

oo 0 0
A=|0 o, 0], (27)
0 0 o

we can describe all the eigenvalue—eigenvector pairs by writing
Eqn 22 as a matrix equation,

cAT=ATA (28)
A n? a9 (4 A2 A (o, 0 0

] ng) n(zz) n<23) = n%) n(22) ng’) 0 o, O
e B P I | R I

Carrying out the tensor transformation (Eqn 18) shows that
the stress tensor in the new coordinate system is now diagonal,

o'=AcAT=A, o}=0:;

i’

(29)

where summation over 7 is not implied. To see why the stress
tensor is diagonal, recall that each row of the stress tensor
contains the components of the traction vector acting on a
plane perpendicular to a coordinate axis. The new coordinate
axes were chosen to be the principal stress axes, so on surfaces
with these as normals the normal traction is the only nonzero
component of the traction vector.

2.3.5 Maximum shear stress and faulting

An important seismological application of the principal stresses
is that the simplest theory for rock fracture predicts that
faulting will occur on the plane on which the shear stress is
highest (Section 5.7.2). Although this is not exactly true, it
gives insight into the relation between fault orientations and
regional tectonics.

Given a state of stress, we can find the plane of maximum
shear stress using the diagonalized stress tensor (Eqn 29), and
thus a coordinate system whose basis vectors are the principal
stress axes. By Eqn 11 the traction on a plane with normal
vector 11 is

65”71]

Ti=0'i'l-n o;n;, (30)
where summation over i is not implied. The squared magnitude
of the traction normal to the surface is (T - A)? = (T,n,)?,
so, using the triangular geometry (Fig. 2.3-7), the squared
magnitude of 7, the tangential traction along the surface can be
written as a function of the components of the normal vector

Tz(”p N n3) = TiTi - (Tzni)z

= (037, 2+ (O'2n2)2 + (0'3713)2

—(on?+ oyn3+ ognl)?. (31)
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Fig. 2.3-7 Traction vector T acting on the surface dS, decomposed into
two components. The normal traction is parallel to the normal, i, whereas
Tis the tangential traction parallel to the surface.

This expression lets us find planes, characterized by their
normal vectors fi, on which 7? is a maximum. We eliminate 7,
using the fact that n=1-#n%—n3, so

t2(ny, ny) =n3(01— 03) +n3(02-03) + o}

— 130, - 03) +ni(0, - 03) + 03] (32)

At the maxima of 72, its derivatives with respect to 7, and 7,
are zero:

0= 27:..?_7_

"y
=2n,(0, - 03){(0, + 03) = 2[n3(0; — 03)
+n3(o, - 03) + Gy},

0=2:2%

n,
=2n,(0, - 63){(0, + 03) — 2[n3 (0] - 03)

+n(0, - 0;) + 03]} (33)

The first equation is satisfied if #; =0, in which case 73 = 1/2
satisfies the second equation because the term in braces is zero.
For these values 73 = 1/2, yielding a plane with unit normal
a=(0, 1/«/5, 1/ﬁ). A second plane is found by setting #, = 0,
so the first equation yields fi = (142, 0, 14/2). Eliminating ny
from Eqn 31 using the method used for 7, yields two similar
equations that can be solved for the third solution, fi = (1/x/2=
1A/2,0).

Each of these planes bisects the 90° angle between a pair of
principal stress axes. Because two such planes can be defined
for each pair of axes, there are other solutions. For example,
because the condition for 7, = 0 was that n} = n3 = 1/2,
A=(0,~14/2, 1/4/2) is also a solution.

To find the value of 72 as a function of fi, we rewrite Eqn 31
2

41y, ny, n3) =nin3lo; - 0,]* + ninilo, — 03]

+n3nilo;, - ;)% (34)

This equation shows that of the three possible local maxima of
the tangential traction, the largest value is

T= (07— 03)/2, (35)

where o, is the maximum principal stress and o3 is the
minimum principal stress. This occurs on the planes with unit
normal vectors

A=(14/2,0,14/2) and f=(-14/2,0, 14/2). (36)

Thus the planes of maximum shear stress are halfway between
the maximum (1, 0, 0) and minimum (0, 0, 1) principal stress
axes, and contain the intermediate principal stress axis. The
derivatives (Eqn 33) are also zero at local minima, correspond-
ing to the principal stress axes where 72=0.

To apply this theory, consider an experiment in which a rock
is compressed (Fig. 2.3-8) such that the principal stresses are
negative, with | 0, | 2| 0, | 2 | 03 |. We expect fracture on the
planes of maximum shear stress. By Eqn 36, there are two such
planes, each 45° from the maximum and minimum principal
stress axes and including the intermediate principal stress axis.
Either plane is equally likely to fracture. Alternatively, if the
experiment is conducted in a common laboratory situation
known as uniaxial compression, where |0, | 2 | 0,| = | 03],
failure should occur on any plane 45° from the maximum
principal stress (o) axis. Experiments (Section 5.7.2) support
the idea that fracture is controlled by shear stress, but in a
more complicated way such that the fracture plane is often

Oy

R Rock ’
\ /

% — o,

Fracture occurs

Fig. 2.3-8 Schematic illustration of an experiment in which a cylindrical
rock sample is compressed along the direction of the maximum principal
stress o, until fracture occurs. The minimum principal stresses o, and o,
are approximately equal. If fracture occurs on a plane of maximum shear
stress, the rock breaks on a plane 45° from the direction of maximum
principal stress.
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Fig. 2.3-9 Stress fields associated with three types of faulting, assuming
that the earthquake occurred on a plane of maximum shear stress. Normal
_(a), reverse (b), and strike-slip (c) faulting involve different orientations of
the principal stresses.

about 25°, rather than 45°, from the maximum principal stress
direction.

© For simplicity, however, assume that faults in the earth form
‘on the planes of maximum shear stress. We will see (Section
2.3.10) that the earth’s surface is a free surface, where tractions
must be zero. Hence, at the surface one principal stress axis
must be vertical, and the other two must be parallel to the
surface. The three basic fault geometries — strike-slip, normal,
and thrust — are related to the stress axes (Fig. 2.3-9). If the ver-
tical principal stress is the most compressive, the fault dips at
45°, and normal faulting occurs. If, instead, the vertical princi-
pal stress is the least compressive, the fault geometry is the
same, but reverse or thrust faulting occurs.2 When the vertical
principal stress is the intermediate principal stress, strike-slip
motion occurs on a fault plane 45° from the maximum prin-
cipal stress. Thus the geometry of faults, which can be mapped
geologically or inferred from seismograms of earthquakes, can
be used to study stress orientations. This model is subject
to limitations, especially because earthquakes often occur on
preexisting faults (Section 5.7.2). Nonetheless, the approach
is useful, especially when integrated with other methods of
estimating stress directions.

Seismologists sometimes use the terms reverse and thrust fault interchangeably,
whereas structural geologists reserve the term thrust for a shallow-dipping reverse
fault.
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2.3.6 Deviatoric stresses

Large compressive stresses occur at depth within the earth
due to the weight of the overlying rock. It is convenient in many
applications to remove the effect of the overall compressive
stress and consider only the deviations from it. We thus define
the mean stress

M={(0y,+ 0y, +033)/3=0,/3 (37)

as 1 of the sum of the normal stresses, the trace of the stress
tensor. The mean stress can be related to the principal stresses,
because the trace of the stress tensor is independent of the
coordinate system.

To see that the trace does not change, we write the trans-
formation of the stress tensor between two coordinate systems
(Eqn 18) in terms of the components, using the summation
convention (Section A.3.5)

, T_
0= A0 A= A0y A (38)
The trace can be written

s’ __ ’ — — —_
0= 00:0;= A0 A= 60y = Opeo (39)

because A is an orthogonal matrix, so that A, A;=8,;. Thus the
trace is invariant under an orthogonal transformation, and so
is known as the first invariant of a tensor. The other two invari-
ants (Eqn 25) are also preserved by such transformations.

The mean stress can thus be written in terms of the trace of
the diagonalized stress tensor (Eqn 29)

M=(0,+0,+0;)/3 (40)

as + of the sum of the principal stresses. The deviatoric stress
tensor is defined by removing the effect of the mean stress

D;= Gi/—M6i/

oy —M 01 O3
D= Oy 0, - M Oy | (41)
031 O3 03~ M

Thus, when the principal stresses are large and nearly equal,
the deviatoric stress tensor removes their effect and indicates
the remaining stress state. The deviatoric stress tensor can be
diagonalized and has the same principal stress axes as the stress
tensor.

This concept is important in discussing processes in the
earth, because the deviatoric stresses result from tectonic forces
and cause earthquake faulting and seismic wave propagation
effects like anisotropy. At depths greater than a few kilometers,
we often assume that a lithostatic state of stress exists, where
the normal stresses are equal to minus the pressure of the over-
lying material and the deviatoric stresses are zero. Because
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the weight of a column of material of height z and density
p is pgz, the pressure at a depth of 3 km beneath a column
of rock with density 3 g/cm? is

P=(3 g/cm3)(980 cm/s?)(3 x 10° cm)
~9x 108 dyn/cm? = 0.9 kbar. (42)

The approximation that the pressure at 3 km depth is about
1 kbar (100 MPa) is useful to remember.

The pressure causes compression and thus negative values of
the principal stresses. If the state of stress at depth is lithostatic,
the mean stress equals the negative of the pressure. Because
deviatoric stresses exist, this relation is only approximate, but
it is useful because the mean stress is usually thought to be
much greater than the deviatoric stress.

2.3.7 Eguation of motion

Now that we can describe the forces acting on the surface of a
material element in terms of the stresses, we write Newton’s
second law (Eqn 1) in terms of body forces and stresses. This is
the first step to deriving the equations describing seismic wave
propagation.

Consider the forces acting on a block of material of density p
and volume dx,dx,dx with sides perpendicular to the coordin-
ate axes (Fig. 2.3-10). The net body force, if any, is f,dx,dx,dx,
where £, is the force per unit volume at the center of the block.
The total force is the sum of the surface forces on each face plus
the body force within the material.

For example, the net surface force in the x, direction is
the sum of three terms, each of which describes the net force
due to the difference in traction between opposing faces. The
first term involves the difference between the traction in the &,
direction resulting from the stress on the face with normal &,
and that on the opposite face with normal —¢&,. Because stress
is force per unit area, we multiply this difference by the area of

the two faces, dx,dx;, and use a Taylor series to obtain the net
force due to these two faces,

[0)5(x +dx,€,) — 0,5 (x)]dx,dx

=] 0y, (x) + dez — 0y (x) |dxdx,
X

= ——BGZZ(X) dx,dx,dx,. (43)

X

We then do the same for the force in the x, direction due to the
pairs of faces with normals +&, and *+&;. Summing the three
terms, adding the body force component, and equating this net
force to the density times this component of the acceleration
yields

doy, + 902 + 905, dx dxydxy + frdx dacydixy

0x,  0x, X5
2
= p%—;%z dx dx,dx;. (44)

The first three terms give the net force from the tractions on
opposite faces of the cube. As we saw, each stress component
canceled with its value from the opposite face, so only the par-
tial derivative of that component contributes to the net force.
Hence the spatial variation of the stress field, rather than the

stress field itself, causes a net force. Dividing by the volume of
the block yields

96, 090, 003, >, 00, 0%,
+ + +f= +fh= :
L T D

(45)

3 Afield is a quantity that varies in space (Section A.6.1).




Similar equations apply for the x; and x; components of
force and acceleratlon The set of three equatlons can be

ry in both space and time is explicitly written. Alternatively,
cause the stress tensor is symmetric, we can write

Note that the force in the i direction is obtained by summing
over the faces j of the block. If the partial derivative with
Spect t0 X; is denoted by a comma, Eqn 47 becomes

%u;(x, t)
H+fix,t)=p Py
This equation, called the equation of motion, is satisfied
everywhere in a continuous medium. It expresses Newton’s
second law, F = ma, in terms of surface and body forces. The
acceleration results from the body force and oy ;, the diver-
gence of the stress tensor. A stress field that does not vary with
position has no divergence, and hence produces no force. It is
_ interesting to note that the divergence of the stress tensor gives
rise to a force, which is a vector, just as the divergence of a
- vector yields a scalar (Section A.6.3).

An important form of the equation of motion describes a
body at equilibrium, whose acceleration is zero, so the diver-
- gence of the stress tensor exactly balances the body forces

(¢

- ii?]'(x> t) :_fi(xs t)' (49)

- This equation of equilibrium must be satisfied for any static
elasticity problem, such as finding the stresses due only to
gravity.

- Another important form, if no body forces are applied, is

?u,(x, t)

50
¥ (50)

: O'i/',j(xa t) =p

This is called the homogeneous equation of motion, where
“homogeneous” refers to the lack of forces, as in the termino-
logy of linear equations (Section A.4.4). This equation describes
seismic wave propagation except at a source, such as an earth-
quake or an explosion, where a body force generates seismic
waves.

2.3.8 Strain

If stresses are applied to a material that is not rigid, points
within it move with respect to each other, and deformation
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Undeformed

Deformed

Fig. 2.3-11 Geometry showing how deformation arises from the relative
displacement du between two points originally separated by 6x.

results. The strain tensor describes the deformation resulting
from the differential motion within the body.

Consider an element of solid material within which displace-
ments u(x) have occurred. If a point originally at x is displaced
by u (Fig. 2.3-11), we describe the displacement of a nearby
point originally at x + 8x by expanding the components of the
displacement vector in a Taylor series,

o, (x)

ox f

u,(x+ 0x) = u,(x) + Ox;=u,(x) + Ou;, (51)

]

so that the relative displacement near x, u,, is to the first order

Su. = on;(x) Ox;

1 ]’
Bx/»

(52)

where the partial derivatives are evaluated at x.

Although we are interested in deformation that distorts
the body, there can also be a rigid body translation or a rigid
body rotation, neither of which produces deformation. To dis-
tinguish these effects, we add and subtract du,;/0x; to Eqn 52
and then separate it into two parts

ou; . ou;
5141-:1 o, +i 6x-+l o
2 E)x ox; ) ax/- ox;

1

Sxi =(eﬁ+ “’ii)5xi'

The @, term corresponds to a rigid body rotation without
deformatlon To see this, note that because ;; is antisymmetric

.=—a;), the diagonal terms are zero, and there are only three
1ncfependent components. We can then form a vector @ with
components

®, = E,,0,12, (54)

where €, is the permutation symbol (Eqn A.3.39). Using the
identity
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—~A MW

Eiksth = EpijCpst = 6:‘567'1 - 6it6jsa (55)
we find that
&1 O, = Ejjp€eyp Oy /2 = (W — )12 = @, (56)

Thus the last term in Eqn 53 can be written as
@;;6%; = €, 6x;= WX 5%, (57)

which is the displacement from a rigid rotation of |@| about an
axis in the w direction (Eqn A.3.31). Hence this term does not
reflect deformation.

The other term in Eqn 53, e;, is the strain tensor, a sym-
metric tensor describing the internal deformation. Its tensor
components

e 1(9_@_&4_2] l[iméz;)
ox; 2\0x, o0x; ) 2\0x; Ox;
1(9._8_] o 1(8_51_] (58)
2l ox;  ox, ox, 2\ 0x; ox,
2\ 0x; 0dx3) 2\0x, Ox; ox;

are spatial derivatives of the displacement field, u(x). If the dis-
placement field does not vary, its derivatives are zero, so there
is no deformation, only a rigid body translation.

The strain tensor can be written in terms of the x, y, z axes
using the derivatives of the displacement vector components

(u,, uy, uz):

aux _1_ a&.}._a_u.y_ 1 a&_l_%
ox 2l dy  odx | 2| 9z ox
) a o
B T OO T TN | S
72\ ox 9y dy 2( 3%z oy
1(ou, Ou, | 1|0u, Ou, ou,
20dx dz ) 2| dy oz 0z

The components of the strain tensor are dimensionless
because they have units of length divided by length. The com-
ponents are of two different types. The diagonal components
show how the displacement in the direction of a coordinate axis
varies along that axis. For example, if displacement occurs
only in the x; direction (#, = 0, #;= 0) and %, changes only in
that direction, then the only nonzero term in the tensor is e;;.
Extension occurs along the x, axis if du,/dx, > 0 (Fig. 2.3-12a),
whereas contraction occurs if it is negative (Fig. 2.3-12b). If e,
were constant within the material, it would equal the change in
length per unit length along the x, axis. The other diagonal
terms, e,, and e, represent similar strains along their coordin-
ate axes.

The off-diagonal components describe changes along a co-
ordinate axis of displacement in another direction. A simple
case (Fig. 2.3-12¢) is when only #; # 0, but u; changes only
along the x, axis, so only e;, and e,, are nonzero. We can also
have both du,/dx, and du,/dx; nonzero (Fig. 2.3-12d, e),
Depending on the relative values of the derivatives, the strain
components describe various deformations.

The strain tensor can be characterized by its eigenvectors,
the principal strain axes, and associated eigenvalues, the prin-
cipal strains. The strain tensor is diagonal when expressed in a
coordinate system whose basis vectors are the principal strain
axes. The trace or sum of diagonal terms of the strain tensor,

€ %WL%”*%:V'U, (60)
dx; dx, Oxy

known as the dilatation, equals the divergence of the displace-
ment field u(x). The dilatation has physical significance because
it gives the change in volume per unit volume associated with
the deformation. To see this, note that in the principal strain
axes coordinate system a block of material with initial volume
dxdx,dx; has a volume after deformation (Fig. 2.3-13) of

1494 | g 14 2% d| 1+ 9% | g, (61)
0x, 0x, 0x4

which, to first order,

dx; Ox, Ox,

~ (1 f om0 _%J dxydeydoc, = (1+6) dx,dxydcs. (62)

Thus, if we define the initial volume as V=dx,dx,dx;,
V+AV=(1+6)V,s0 6=AV/V, (63)

and the dilatation is the change in volume per unit volume.

It is worth noting that we have discussed the strain tensor in
Cartesian coordinates. This tensor is more complicated when
formulated in other coordinate systems, because it involves
spatial derivatives of the basis vectors (Section A.7.4).

2.3.9 Counstitutive equations

Various materials respond differently to an applied stress. For a
given stress, a more rigid material responds with smaller strains
than occur in a less rigid material. The relation between stress
and strain is given by the material’s constitutive equation.

The simplest type of materials are linearly elastic, such that
there is a linear relation between the stress and strain tensors.
We will see that when the earth behaves as linearly elastic, it
gives rise to seismic waves. Linear elasticity is valid for the short
time scale involved in the propagation of seismic waves, but not
for longer time scales. On time scales of thousands of years or
longer, the earth flows as a viscous fluid (Section 5.7.3).
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Fig. 2.3-13 Change in volume of a small block of material with faces
normal to the coordinate axes, due to the principal strains. The fractional
change in volume is the dilatation, the sum of the principal strains.

In assuming that material is elastic, we also assume that the
displacements from an unstrained initial state are small. This
assumption, known as infinitesimal strain theory, is generally
valid for seismic waves. For example, a body wave may have a
displacement on the order of 10 microns, and a wavelength on
the order of 10 km. Expressing all quantities in meters, the res-
ulting strain is about (10°/10%) = 107, certainly small enough
for infinitesimal theory to be valid. However, for strains greater
than about 1074, the linear relation between stress and strain
fails. This occurs in regions of the earth’s mantle under very
high pressure, or when rocks break during an earthquake
(Section 5.7.2).

The stress and strain for a linearly elastic material are related
by a constitutive equation called Hooke’s law,

03 = Cijk1Cri> (64)
written here using the summation convention. The constants
¢;p the elastic moduli, describe the properties of the material.

o understand how the elastic moduli affect the equation of
motion, we write the constitutive equation (64) using the fact
that the strains are derivatives of the displacement,
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O} = Cijki Mg, 1+ (63)
Substituting this expression in Eqn 48 gives the equation of
motion in terms of the displacements:

0%u,(x, 1)

¥ (66)

O-i/,;'(xa £)+ l[i(xa t)= (cj/‘kluk’])’j(x7 t)+ f,-(X, )=p

Thus the elastic moduli control how displacements evolve in
time and space in response to an applied force, and so, as we
will see in the next section, determine the velocity of seismic
waves.

The elastic moduli ¢;;, form a more complicated tensor than
we have dealt with so far. It has four subscripts and relates
the stress and strain tensors, each of which have two sub-
scripts. This situation is analogous to the way in which the
stress tensor, with two subscripts, relates the normal and trac-
tion vectors, each with one subscript. Because the subscripts
each range from 1 to 3, c;, has 3%, or 81, components. Fortun-
ately, the number of in(fependent components is reduced by
symmetry considerations. The stress and strain tensors are
symmetric
Ciikl = Cjikl>  Cijkl ™ Cijlk> (67)
so the number of independent components is 36 because there
are 6 independent components of the stress and strain tensors.
A further symmetry relation

Cijkl = Ciijp (68)

based on the idea of strain energy, which we will discuss later,
reduces the number of independent components that charac-
terize a general elastic medium to 21.

On a large scale, material within the earth has approxim-
ately the same physical properties regardless of orientation, a
condition known as isotropy. For an isotropic material, the ¢,
have further symmetries, so there are only two independent
elastic moduli, which can be defined in various ways. One
useful pair are the Lamé constants A and i, which are defined
such that

Citr= A0y 6py + 18,8 + 6;0y). (69)

In terms of the Lamé constants, the constitutive equation
(Eqn 64) for an isotropic material is written

0= ey, 0;+ 2fie; = 105, + 2ue (70)

i
where 6is the dilatation. So, for example, 0y, = 40+ 2ue, ;, and
0y, = 2ue,,. We will use this constitutive relation to study
seismic waves in the next section. We will also see that the
velocities of seismic waves depend on the elastic moduli, so
in an isotropic material the velocities of seismic waves do not

depend on the direction in which they propagate. Deviations
from isotropy occur in many parts of the earth, notably in the
oceanic lithosphere and at the base of the mantle (Section 3.7).

Although the ¢;;,; completely describe the behavior of an
elastic material, they are hard to visualize. This is also true for
the Lamé constant A.* By contrast, 4, called the rigidity or shear
modulus, has a simple physical interpretation. Consider the
response of an isotropic elastic body to an applied shear stress
0y, In this case, the term in the constitutive equation (Eqn 70)
involving the dilatation is zero (recall that &;, = 0), so only a
shear strain, e, = 0,,/214, results. The response to shear is thus
described by the rigidity. g must be nonnegative, so the sense
of strain is consistent with the applied stress (consider Fig.
2.3-12¢). A material with large 4 is quite rigid and responds to
a given stress with a small strain. By contrast, a given shear
stress produces a larger strain in a material with lower rigidity.
A material in which u is zero cannot support shear stresses, and
corresponds to a perfect fluid, one with zero viscosity. In such a
fluid, the stress tensor is diagonal in any coordinate system, and
the pressure equals the negative of the mean stress. Although
perfect fluids do not exist,’ the ocean can generally be treated
this way for seismic waves incident on the sea floor. Even more
surprisingly, the hot iron fluid thought to comprise the earth’s
outer core can be described as an ideal fluid for seismological
purposes.

Other elastic constants that can be defined in terms of simple
experiments are often useful. The incompressibility, or bulk
modulus, K, is defined by subjecting a body to a lithostatic
pressure dP, such that

do,=-dPs;. (71)

For an isotropic elastic body, the resulting strains, from Eqn 70,
are

~dP&,=1d05,+ 2ude;. (72)
Setting i =7 and summing yields

-3dP=3Ad6+2ud6, (73)
because ;= 3. The bulk modulus is thus the ratio of the pres-

sure applied to the fractional volume change that results:

2
K=—"—=21+Zu. 74
70 3u (74)

The term incompressibility is apt because the larger the value of
K, the smaller the volume change produced by a given pressure.
K is greater than zero, because otherwise objects would expand

4 Unfortunately, this Lamé constant is not only hard to interpret; it has no
common name and is denoted by the same symbol as is used for wavelength.

5 Perfect fluids have been called “dry water” to illustrate that no real fluid behaves
exactly this way.
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when compressed.® In an ideal fluid, K = 4, so in this case A has
‘an easy physical interpretation.
Writing the constitutive equation (70) in terms of K and i,

0= =K03; i+ 20(e; —65,/3) (75)

shows that the response to an applied stress has two parts: a
volume change characterized by K and a shear deformation,
or change in shape, characterized by u.

“Two other elastic constants are defined by pulling the mater-
:lal along only one axis, leading to a state of stress called
uniaxial tension. If the tension is applied along the x, axis, then
by Equation 70,

7y = (A+2p)e , + Aey, + Aes,
0y, =0=1Aey; +(A+2M)ey, + Aey;

;a33:0:/1611+2'622+(2'+ 2u)ess. (76)

Subtracting the last two equations shows that e,, = 33, s0

where v, defined as Poisson’s ratio, gives the ratio of the con-
_ traction along the other two axes to the extension along the
~ axis where tension was applied. Substituting in the first line in
~ Eqn 76 yields

Ou _ HBA +24) E, (78)
e A+ U
where E is called Young’s modulus, the ratio of the tensional
- stress to the resulting extensional strain.
- The elastic constants E, v, and K are often used in engineer-
ing because they are easily measured by simple experiments.
However, for seismic wave propagation, A, i, and sometimes
K are more natural constants.” Box 2.3-1 gives conversions
between the various elastic constants.

Many seismological problems are simplified by assuming
that A = u. Such a material, called a Poisson solid, is often

a good approximation for the earth. In this case, Poisson’s

ratio equals 0.25, Young’s modulus E =
modulus K = (5/3).

Because strain is dimensionless, the elastic constants 4, u, E,
and K all have dimensions of stress. For the earth’s crust, u is
approximately 3 x 101! dyn/cm?. For comparison, the rigidity
of steel is about 8 x 10'! dyn/cm?. Young’s modulus for the
crust, assuming a Poisson solid, is 7.5 x 10! dyn/cm?, com-
pared to 5 x 10 dyn/cm? for rubber.

(8/2)u, and the bulk

& Such strange materials have been manufactured synthetically.
7 Inengineering the shear modulus j1is often termed G.
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Box2.3-1 Relations between moduli

A A _E_ _3K-2u 3K-E
20+u) (GBK-A4) 2u 203K + ) 6K
E= HEA+2p) _ AL+ v)(1-2v) _ 9K(K - A) =21 +v)

A+u v 3K-2
:..95_&__:31((1#2‘,)
3K+ pu
K=A+%‘u:/1(1+v):2,u(l+v): LE _ E
3 3v 31-2v) 33u-E) 3(1-2)
1= 2uv :,u(E-Zu)zK_“Z‘#= Ev
1-2v 3u—E 3 1+ v)(1—2v)

_ 3Kv _ 3K(K - E)
1+v  9K-E
_Mi-2v) 3 E

(K A) =
2v 21+ v)

_3K(1-2v)  3KE
20+v) 9K-E

2.3.10 Boundary conditions

For a string (Section 2.2.3), wave propagation across an
interface depends on boundary conditions that relate the dis-
placements and tractions across the interface. In the earth, we
conduct similar analyses for three types of interface.

The boundary conditions at the earth’s surface are derived
for most seismological purposes by neglecting the atmosphere
and treating the surface as a boundary between a solid and a
vacuum. In this approximation, the earth’s surface is a free
surface, not subject to any force. At a free surface with normal
fi the traction vector is zero, giving a constraint on those stress
components that affect the components of the traction:

T,=0;m;=0. (79)

Thus, in a coordinate system in which the surface is horizontal,
the normal vector is #;= 05, and T;= 03723, s0

013=0,3=033=0. (80)

The components of the stress tensor that do not affect the
tractions, in this case 0;;, 05, and 0,,, are unconstrained.
Similarly, no restriction is placed on the displacements. A free
surface corresponds in the one-dimensional case to a string
whose end is free to move.

There are also interfaces between two solids, a solid and
a liquid, and between two liquids. Their boundary conditions
are obtained by considering a volume, sometimes called a
Gaussian pill box, along the interface between different mater-
ials (Fig. 2.3-14). The volume’s long axis is along the interface,
so the surface area, S, is large relative to the volume, V. We
integrate the homogeneous equation of motion (Eqn 50) over
the volume
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Fig.2.3-14 “Gaussian pill box” used to formulate the boundary
conditions across an interface. Application of the divergence theorem
shows that the traction vector must be continuous across the interface,
but that the entire stress tensor need not be.

0%u;(x, t)
o /(% t)—p———a—tz— dv =0, (81)
and use the divergence theorem (Eqn A.6.10) to transform the
first term to a surface integral, giving

%u(x, t
p i(x, 7)

dv =0, (82)
ot?

0%, t)nidS -

where 7; is the j component of the unit outward normal vector
at each point on S. In the limit as the thickness approaches zero,
the volume integral becomes negligible, so

0;(x, 2)n.dS = 0. (83)

Because the thickness goes to zero, we neglect the ends, so that
for the integral to be zero, the contributions from the top (+)
and bottom () surfaces must satisfy

(0y)*+ (0m)"= 0. (84)
Hence, because the unit normal on top is opposite that on the
bottom (nf=-n7), the three components of the traction vector,
T,= 0,1, must be continuous across the interface.

The continuity of traction leads to conditions on specific
stress components, depending on the orientation of the inter-

face. For example, if the interface is horizontal, then n= 5,-3, )

T;=0,63=0; (85)

must be continuous. If, instead, the boundary between two
solids were vertical, then ;= §,,, so

T;=0,6; =0y (86)

would be continuous. Because the continuity conditions are
for tractions rather than stresses, the stress components not
involved in the traction condition need not be continuous.

Table 2.3-1 Boundary conditions.

Interface Boundary conditions
solid-solid Tr=Tr
uf=u;y
solid-liquid Ti=T3
T,=T;=0
ut=u;3
free surface T.=0

1

At the interface between two solids, sometimes called a
“welded” interface, all components of the displacement are
continuous because no overlaps or tears occur. For the same
reason, the tractions are continuous. This is the condition we
used at the junction between two strings in Section 2.2.3.

At the interface between a solid and a perfect fluid the fluid
can slip along the interface because its rigidity is zero, so it
cannot support shear stress. Hence the components of traction
tangential to the interface are zero in the fluid and, by the
condition of continuity, in the solid as well. Thus the tan-
gential displacement components need not be continuous, but
the normal components of the traction and displacement are
continuous.

Table 2.3-1 summarizes the boundary conditions for a
horizontal interface between different media.

2.3.11 Strain energy

Because applying a force to an elastic material causes deforma-
tion, potential energy is stored within the material, as we saw
for waves on a string (Section 2.2.4). To motivate this elastic
strain energy, consider a spring with a restoring force f=—kx.
Compressing the spring a distance dx requires work against
the spring, equal to the integral of the force applied times the
distance. If the spring is initially at equilibrium, the work is

W = | koo = %—kxz, (87)
0
which equals the potential energy stored in the spring.

By analogy, the strain energy stored in a volume is the integ-
ral of the product of stress and strain components summed

1 1

The strain energy is symmetric in i and kI, providing the
rationale for the statement (Eqn 68) that the tensor of elastic
constants has the symmetry ¢, = ¢y




4 Seismic waves

4.1 The seismic wave equation

The ideas of elasticity in the last section let us show that the
quation of motion has solutions that describe the two types
of propagating seismic (or elastic) waves, compressional and
hear waves. We will see that these wave types propagate
ifferently, with velocities that depend in different ways on
he elastic properties of the material. Our approach to show-
g that the equations of elasticity have propagating wave
olutions is conceptually similar to the way we showed (Sec-
ion 2.2) that the physics of a string gives rise to traveling
waves. In that analysis, we first demonstrated that waves
occur on a uniform string, and then considered how waves
propagate between strings of differing properties. That ana-
ysis considered propagating waves without regard to how
ey were generated.

Following that approach, we consider a homogeneous" re-
ion, one of uniform properties, within an elastic material. We
assume that the region contains no source of seismic waves,
which requires a body force. Once the waves propagate away
_from the source, the relation between the stresses and dis-
placements is given by the homogeneous equation of motion,
which includes no body force term, so F = ma becomes

1

0%u,(x, )

ot? )

oy t)=p

- Before solving the equation, two points are worth noting.
The equation of motion can be written and solved entirely in
‘terms of displacements, because the stress is related to the
strain, which is formed from derivatives of the displacement.
- The stress and strain are related by the constitutive relation,
which characterizes the material. Thus, although the equa-
tion of motion does not depend on the elastic constants, the
solution does. Second, the equation of motion relates spatial
derivatives of the stress tensor to a time derivative of the dis-
placement vector. The resulting solutions give the displacement
~ vector and hence the strain and stress tensors as functions of
‘both space and time. Often, for simplicity, these dependences
are not explicitly written.

~ We solve Eqn 1 in Cartesian (x, v, z) coordinates, beginning
- with the x component,

e 90, (x, 2
90, (%,1) oy (X5 2) N 90,,(%, 1) _ , Puy(x,t) )

ox dy oz o2

To express this in terms of displacements, we use the constitut-
ive law for an isotropic elastic medium (Eqn 2.3.70),

1 . . .
Unfortunately, this word is used for two different concepts: a homogeneous

medium has properties that do not vary with position, whereas a homogeneous equa-
tion has no forcing function or source term.
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0;=A05;+ 2pie;, - (3)

and write the strains in terms of displacements, which yields

=A0+2ue,, = A0+ 2 = Oty
x
aux
Oy = ey = M ay ]
Ou,  Ou,
O, =2Ue,, = L % o | (4)

We then take derivatives of the stress components

90, _a 9_@ 2 0%u,
ax ox ox2
adxy =U azux azu}'
dy dy>  dyodx
2 2
acrxz:u auX+8uz (5)
0z d9z*  0z0x

using the fact that for a homogeneous material the elastic
constants do not vary with position. Finally, substituting the
derivatives into the equation of motion and using the defini-
tions of the dilatation

)
dx Jdy dz

and of the Laplacian (Section A.6.5)

yields

o+ 02 s i) = p L (3)
0x

ot?

for the x component of the equation of motion (1).

Similar equations can be obtained for the y and z compon-
ents of displacement. The three equations can be combined,
using the vector Laplacian of the displacement field

Viu=(V2u,, Vzuy, Vu,), 9)
into a single vector equation:

o%u(x, t)

(A+WV(V-u(x, 1)) +uV3u(x,t) = p
ot?
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This is the equation of motion for an isotropic elastic medium
written entirely in terms of the displacements, with the depend-
ence on position and time explicitly written to remind us that
we seek a solution that varies in this way. Equation 10 can be
rewritten using the vector identity (Eqn A.6.23)

V2u=V(V-u)-Vx(Vxu) (11)
to obtain
(A+2W)V(V -u(x, 1)) - uVx(Vxu(x, 1) = pa—Z%(t—Xzit—). (12)

Rather than solve Eqn 12 directly, we express the displace-
ment field in terms of two other functions, ¢ and Y, which are
known as potentials;

u(x, t) = Vé(x, ) + VxY(x, t). (13)

In this representation, the displacement is the sum of the gradi-
ent of a scalar potential, ¢(x, t), and the curl of a vector poten-
tial,? Y(x, t), both of which are functions of space and time.
Although this decomposition appears to introduce complexity,
it actually clarifies the problem, because the vector identities
(Section A.6.4)
Vx(Vg)=0 V- (VxY)=0 (14)
separate the displacement field into two parts. The part associ-
ated with the scalar potential has no curl or rotation and gives
rise to compressional waves. Conversely, the part associated
with the vector potential has zero divergence, causes no volume
change, and corresponds to shear waves. Because taking the
curl discards any part of the vector potential that would give a
nonzero divergence, we require that the vector potential satisfy
V-Y(x,1)=0.3

Substituting the potentials into Eqn 12 and rearranging
terms using Eqn 14 yields

(A+2)V(V?9) - uV X Vx (VxY) = p—gfz—(V¢+V><‘I‘). (15)

Using Eqn 11, the second term of Eqn 15 simplifies to

VXV x(VXY)=-VAVXY)+V(V-(VXY))
=-V2(VxY), (16)

because the divergence of the curl is zero. After this substitu-
tion, the terms in Eqn 15 can be regrouped to give

2 Although W is often used for the vector potential, we use Y (upsilon) to avoid con-
fusion with the SV potential in the text section.

3 This decomposition into scalar and vector potentials, known as Helmholtz decom-
position, can be done for any vector field.

VAT

V| (2 + 200V290, 1 - p L2 1)
or?
02Y(x, 1) V
-V x| uV2X(x, ) — pL5 Y
x{u ) - p = } (17)

because the elastic constants do not vary with position, and
the order of differentiation has no effect. |

One solution of the equation can be found if both terms in
brackets are zero. In this case, we have two wave equations,
one for each potential. The scalar potential satisfies '

1 0%¢(x, 1)
V2ip(x, t) = — ——2—, 18
ot 1) = — 2% (18)
with the velocity
a=[(A+2p)/p]". (19)

As we will see shortly, this solution corresponds to P, or com-
pressional, waves. Similarly, the vector potential satisfies

2

VPY(x, 1) = La_ﬁ’éﬂ’ (20)
with velocity

B=(ulp)"?, (21)

and corresponds to S, or shear, waves.

Equations 18 and 20 are wave equations that are slightly
different from those that we have previously encountered.
Waves on a string (Section 2.2) satisfied the wave equation
2 2
d*u(x, t) :ia ux, t)’ (22)

ox? vr or?

describing the propagation of a scalar quantity in one space
dimension. The scalar potential satisfies a similar scalar wave
equation, with the difference that the space variable x is in
three dimensions. The vector potential, a vector quantity, satis-
fies the analogous vector wave equation in three dimensions.

The wave equations in Eqns 18 and 20 are strictly valid only
for a homogeneous medium because they were derived assum-
ing that all derivatives of the elastic constants were zero. Al-
though these equations were derived in Cartesian coordinates,
they are valid in any coordinate system. We next discuss solu-
tions of the wave equation, and then return to these two types
of waves.

2.4.2 Plane waves

The scalar wave equation in three dimensions,

Vg, 1) = — L0 1) (23)
v 9t




ons. By analogy to the equation of motion (Eqn 2.3.50),
gn 23 is a homogeneous wave equation, with no forcing
dction to act as a source of the waves. If there were, the
homogeneous scalar wave equation in three dimensions with

source term f(x, 2),

——=fx1), (24)

he harmonic wave solution to the scalar wave equation in
e dimension (Eqn 2.2.6)

(25)

in be generalized to solve the three-dimensional scalar wave
uation. This solution, known as a harmonic plane wave, is

=Aexp (i(wttk xi-kyyik 2)), (26)

here x is now the position vector, and k = (k,,, k,, k,) is now
he wave vector, sometimes also called the wavenumber vector.
This solution describes a plane wave propagating in an arbit-
rary direction given by the wave vector, in contrast to the
one-dimensional solution that describes propagation along a
coordinate axis. To demonstrate this, we write k=] k | k, where
kis a unit vector in the direction of k; so Eqn 26 becomes

8(x,1)= A exp (it k|(k-x))), 27)
plane wave propagating in the k direction with velocity
=l k|. (28)

_ Thus the wave vector describes two important features of a
~ propagating wave. Its magnitude gives the wavenumber, the
spatial frequency, and its direction gives the direction of pro-
_ pagation. The wave fronts, which at any time are surfaces
_ of constant phase (@f — k - x) and thus constant values of
- 0(x,1), are planes perpendicular to the direction of propagation
(Fig. 2.4-1). To see this, note that all points on a plane perpen-
dicular to the wave vector have the same value of k - x, because
this scalar product is the projection of k on x. The phase is
periodic over a distance along the propagation direction equal
to the wavelength, 27/| k |. As for the waves on a string, we can
_ use the complex exponential formulation so long as we ensure
that the displacement is purely real, either by taking the real
part of the complex exponential or by also using the complex
conjugate.

% When the arguments of exponentials become lengthy, we sometimes use the nota-
tion exp (x) =e* for clarity.
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X

Fig. 2.4-1 Wave fronts for a harmonic plane wave traveling in the
direction indicated by the wave vector k. The wavelength is =27/ k |.

This solution to the three-dimensional scalar wave equation
can be generalized to solve the vector wave equation in three
dimensions,

PY(x, t)

1
V2X(x, t) = — , 29
ot 2 (29)

which describes the propagation of a vector field. In Cartesian
coordinates this breaks up into three scalar wave equations:

1Y, (x,7)

VY _(x,t) =
ek vt 92
%Y (x, ¢
VzTy(x, )= _L__X(X__)’
v: o2
1 02Y,(x, 1)
2 _ el
VAY, (x,8) = - -—-——-——gtz . (30)

The harmonic plane wave solution to the vector wave equation
is then

Y(x,#)=A exp (i(wt—k - x)), (31)

which is like Eqn 26 except that Y(x, #) and the constant A are
vectors.

2.4.3 Spherical waves

A second solution to the three-dimensional scalar wave equation
yields waves with spherical, rather than planar, wave fronts.
To obtain this solution, we express a scalar potential, ¢(r, 2),
and its Laplacian in spherical coordinates (Eqn A.7.17). We
consider spherically symmetric solutions where ¢ is a function
only of time and the radius 7, so only the d¢/dr term in the
Laplacian is nonzero. The spherically symmetric waves satisfy
the homogeneous wave equation
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19 29[, t) 1 9%¢(r, t)
\ — 2l TN 32
pr 1) r2 or (T or ] 2 a2 (32)

where the space variable is the radius  rather than the position
vector r. To solve this equation, we substitute

o(r,8)=E(r, )7 (33)
and obtain

o 19%) (34)
r|ort  v? or?

Because the term in brackets is the scalar wave equation in one
dimension, any function of the form &= f{r  vz) satisfies Eqn 34
when r# 0. Thus any function of the form

olr, t)=f(tzrlv)lr (35)

is a spherically symmetric solution to the scalar wave equation.

This solution describes spherical wave fronts centered about
the origin r = 0, whose amplitude depends on the distance from
the origin. When the minus sign is used, Eqn 35 represents
waves diverging outward from a source at the origin, with the
amplitude decaying as 1/7. The plus sign yields an incoming
spherical wave, growing in amplitude as 1/r and converging at
the origin. It is common to impose a radiation condition that
waves not enter the region of study from far away, and thus to
discard the incoming wave solution.

However, Eqn 35 is not a solution to the homogeneous
equation everywhere in space, because it is infinite at r = 0.
Physically this is because a wave spreading out from a point
must have been generated by a seismic source there. Thus the
outgoing wave, ¢(r, t) = f{¢ — r/v)/r, is actually a solution to the
inhomogeneous wave equation

1 %9(r 1) _

V2o(r, t) -
o(r, ) R

—4mS(r)f(2). (36)

This represents a point source at the origin with a time function
#(2). The delta function 6(r) (Section 6.2.5) is zero except at
r = 0, but its integral over a volume including the origin is 1.
Thus, integrating over a volume including the origin shows
that Eqn 35 is a solution to the inhomogeneous scalar wave
equation (36) even at the origin. Hence, in seeking a solution to
the homogeneous equation that yielded spherical waves, we
have found a solution to the inhomogeneous equation which is
used to study waves radiated by a seismic source.

The fact that the spherical wave solution (Eqn 35) repres-
ents an outgoing wave generated at the origin explains the
distance-dependent amplitude factor 1/r, which had no coun-
terpart for the plane wave solution. As a spherical wave
propagates away from its source, the area of the wave front,
47r?, increases. Because, as we will see shortly, the energy per
unit area of the wave front transported by a propagating wave

--Local plane wave
approximation

Spherical
--~" " wave
front

Source

Fig. 2.4-2 As a spherical wave front moves far from the source, it can be
locally approximated by a plane wave front due to the decreased curvature
of the spherical wave.

is proportional to the amplitude squared, the energy per unit
wave front decays as 1/72. This decay, called geometric spread-
ing, conserves energy. Similarly, the energy of spherical light -
waves decays with distance from a lamp as 1/72.
A plane wave can be regarded as a limit of a spherical wave
far from the source, because the spherical wave front becomes
almost planar (Fig. 2.4-2). This approximation is often used in
seismology when seismometers are far from an earthquake.

2.4.4 P andS waves

We found earlier in this section (Eqn 13) that the displacement
can be separated into a scalar potential corresponding to P
waves that satisfies the scalar wave equation

1 9%p(x, t)
V3i(x, t) = PERNEVR (37)

and a vector potential corresponding to S waves that satisfies
the vector wave equation

V2X(x, £) = RECA G (38)
B o

To understand the displacements caused by the two types of
waves, consider a plane wave propagating in the z direction.
The scalar potential for a harmonic plane P wave satisfying
Eqn37is
9lz, 1) = A exp (it - k2)), (39)
so the resulting displacement is the gradient

u(z, t)=Vo(z, )= (0, 0,-ik) A exp (i(wt - kz)), (40)

which has a nonzero component only along the propagation
direction z (Fig. 2.4-3). The corresponding dilatation is nonzero,
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FE?

Onset of waves

propagation and a volume change. §

s produce displacement perpendicular

direction of wave propagation and

(‘z:,‘ 1) =-k2A exp (i(wt - kz)), (41)

a volume change occurs. As the wave propagates, the dis-
cements in the direction of propagation cause material to be
ternately compressed and expanded. Thus the P wave gener-
d by the scalar potential is called a compressional wave.

By contrast, for the S wave, or shear wave, described by the
tor potential

2 t) =(A,, Ay, A,) exp (i(wt - kz)), (42)

rhose component along the propagation direction z is zero
Fig. 2.4-3). Thus the only displacement associated with a
ropagating shear wave is perpendicular to the direction of
ave propagation. A shear wave causes no volume change,
cause the dilatation, V - u(z, t), is zero.

Comparison of the displacements for the P and § waves
illustrates that a wave is characterized by two directions. One
‘the direction in which the wave propagates; the other is
e direction in which the field that propagates changes. A com-
tessional wave is an example of a longitudinal wave, because
the propagating displacement field varies in the direction of
ropagation. A familiar example is a sound wave in air, which
can'be described as a compressional (elastic) wave in an ideal
fluid. By contrast, a shear wave is an example of a transverse
wave, because the propagating displacement field varies at
ght angles to the direction of propagation. The waves we
considered on the string were transverse waves, because waves
moved along the string, but their displacement was normal to
the string. Electromagnetic waves are another familiar example
f transverse waves.

‘The component of Y'(z, ¢) in the direction of wave propaga-
tion (A,) has no effect on the displacement field because
taking the curl discards it. Thus, setting A . to zero to satisfy the

P waves: ground motion is parallel to wave direction

requirement that V « Y(z, t) = 0 imposes no additional re-
striction on the displacement. Only A and A, contribute to the
displacement. Because each component of the displacement
depends on only one of these terms, there can be two independ-
ent shear wave fields. For example, if A or A, is zero, there will
be only a y or an x component of displacement. Thus shear
waves can have two independent polarizations, as is the case
for other transverse waves, such as light.

In real applications, we often define the z axis as the vertical
direction and orient the x—z plane along the great circle con-
necting a seismic source and a receiver. Plane waves traveling
on the direct path between the source and the receiver thus pro-
pagate in the x—z plane. The shear wave polarization direc-
tions are defined as SV, for shear waves with displacement in
the vertical (x-z) plane, and SH, for horizontally polarized
shear waves with displacement in the y direction, parallel to the
earth’s surface. Both have displacements perpendicular to the
propagation direction and the other polarization (Fig. 2.4-4,
overleaf ). Although we could choose any two orthogonal
polarizations in the plane of the shear wave displacements,
using SV and SH is particularly convenient. We will see that
P and SV waves are coupled with each other when they interact
with horizontal boundaries, whereas SH waves remain
separate.

Seismometers record horizontal motions in the north-south
and east—west directions, which rarely correspond exactly to the
SH and SV polarizations. As a result, data from the horizontal
components of seismometers are often rotated. The direction
connecting the source and the receiver, corresponding to SV
displacements, is called the radial direction, so a seismo-
gram rotated to this direction is called the radial component.
Similarly, the orthogonal direction corresponding to SH dis-
placements is called the transverse direction, so a seismogram
rotated to this direction is called the transverse component.

Because seismograms record components of the displace-
ment vector, they can be rotated to give their components in a
new coordinate system using Eqn A.5.9. If the back azimuth
direction from the receiver to the source (Section A.7.2) is {’,
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Source Receiver

Surface

Wave propagation
direction k

Fig. 2.4-4 Displacement fields for plane P and S waves propagating in the
x-z plane containing the source and the receiver, where the z axis is
vertical. The P-wave displacement is along the wave vector k. The S wave
can be decomposed into two polarizations, SV and SH, perpendicular

to the wave vector. The SH displacement is purely horizontal (in the y
direction, out of the page), whereas the SV displacement is in the x—z plane.

we rotate the north-south (NS) and east-west (EW) compon-
ents into radial (R) and transverse (T) components using

ug |_[ cos@ sin6||upy (44)
Ur —sin 8 cos 8 )ty

North-south

East-west

SP

Vertical

PS

Radial
SKS

Transverse

sSdiff

» Sdiff

A
A

500s

with 8=3n/2 - {’. Figure 2.4-5 shows seismograms recorded at
an angular distance of 110° from a deep earthquake, where the
top three traces are the components recorded at the station, and
the bottom two are the radial and transverse components,
Various P and S wave phases (Section 3.5), corresponding to
different ray paths between the source and the seismometer,
can be seen. Because the back azimuth is 323°, SH and SV
energy is evenly distributed between the north-south and east-
west components, so the S-wave phases are roughly com-
parable on both components. When rotated, however, phases
like SKS, SKKS, and PS that involve conversions from P waves
to SV waves appear primarily on the radial component. Con-
versely, phases like S that involve primarily SH energy are
largest on the transverse component.

The relative amplitudes on the radial and transverse com-
ponents are shown by a particle motion plot of the amplitudes
as a function of time (Fig. 2.4-6). As shown for two time seg-
ments from Fig. 2.4-5, the SKS and SKKS waves are primarily
on the radial or SV component, whereas S is primarily on the
transverse or SH component.

The definitions of the P-wave velocity, termed o or vp,

o= [(A+2u)/p]"? = [(K +4u/3)/p]*2, (45)

Fig. 2.4-5 Seismograms for a deep (597 km)
earthquake on August 23, 1995, in the Mariana
trench, recorded 110° away at Harvard,
Massachusetts. P-wave phases are best seen on the
vertical component, SV-wave phases are best seen

55 on the radial component, and SH-wave phases are
best seen on the transverse component.
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Transverse

g.2.4-6 Particle motion plots for two time
gments of the radial and transverse components
own in Fig. 2.4-5. SKS and SKKS, which are
marily SV waves, are strongest on the radial
component (lefz), whereas § difr i primarily an

SHwave, and so is strongest on the transverse L
mponent (right).

and S-wave velocity, termed Bor v,

B=(uip)*?,

show that the seismic velocities depend in different ways on the
elastic constants of the material. Because the rigidity £ and the
bulk modulus K (Eqn 2.3.74) are positive, P waves travel faster
“than § waves. Thus the first wave arriving from an earthquake
is.always a compressional wave. As a result, the nomencla-
ture P originally denoted the first-arriving, “primary” wave,
whereas S denoted the “secondary” wave.
- Although both velocities depend on the rigidity, the shear
velocity does not depend on the bulk modulus K, because these
waves involve no volume changes. Because the shear velocity
_is proportional to the square root of the rigidity, shear waves
cannot propagate through an ideal (y = 0) fluid. However,
compressional waves propagate in an ideal fluid with a velocity
_proportional to K2, Thus only compressional waves can
_travel through the earth’s outer core or the ocean.’
- To get a feel for these wave velocities, consider typical values
- for various parameters. The earth’s crust is approximately a
_ Poisson solid, with elastic constants 4~ =~ 3 x 10!! dyn/cm?.
Thus, for a density of 3 g/cm3, the P-wave velocity is 5.5 x
10° cm/s, or 5.5 km/s. Similarly, the S-wave velocity is 3.2 x
10% cm/s, or 3.2 km/s. Hence a P wave propagating with a
~ velocity of 5.5 km/s and a period of 2's has a wavelength
(Section 2.2) of (5.5km/s x 2s) or 11 km. The frequency
is 0.5 s7! (the unit s~ is called a Hertz, or Hz), and the
wavenumber is 272/11 = 0.57 km™. On the other hand, a wave
~with a period of 10 s and the same velocity has a wavelength of
55 km, and a frequency of 0.1 Hz. The longer-period wave has
a longer wavelength and a lower frequency.

* The transverse waves we see at a beach are not seismic waves in the water, but
instead propagate at the water surface and involve a rolling motion in two dimensions
similar to Rayleigh waves (Section 2.7.2).
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Fig. 2.4-7 Seismic spectrum showing the frequencies at which various
analyses are conducted.

The “seismic spectrum,” showing seismic waves of various
frequencies and types, is shown in Fig. 2.4-7. Studies of earth-
quakes typically use the period range from approximately 0.1 s
to more than 3000 s, or frequencies from 10 Hz to 3 x 107* Hz
(0.1 mHz). Higher-frequency waves of 20-80 Hz generated by
explosions or other artificial sources are used in reflection
seismology to explore the earth’s crust. Still higher frequencies,
3-12 x 103 Hz (3-12 kHz), propagating primarily in the ocean,
are used by marine geophysicists to map the sea floor. At the
other end of the spectrum, ground motions with periods longer
than 10 s are due to slow crustal motions (Section 4.5) rather
than propagating seismic waves.

Earthquake sources generate both P and § waves, with the
S waves generally significantly larger. Figure 2.4-8 shows
seismograms of the three components (vertical, or up—down,
north—south, and east-west) of ground motion from seismic
waves generated by an earthquake ~280 km beneath two
seismic stations in Japan. The seismic waves are coming up
vertically toward the surface. The first arrival, a P wave, has
displacement along the direction of propagation, and therefore
appears primarily on the vertical component. The large later
arrival, a shear wave, has displacement perpendicular to the
direction of propagation, and thus appears most on the hori-
zontal components.



60  Basic Seismological Theory

i

U
P KT F—D——WVM\NMMMWWMWW\AWWWJ
Q——LWM’P«\*WM — /\/\/\,M\,WWN
S S
E
S W
P

Fig. 2.4-8 Three-component seismograms
S at two stations from an earthquake beneath
Japan. Because the stations are nearly above
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the earthquake, the P wave has its largest
amplitude on the vertical (U-D, “Up”-
“Down”) components. (Ando et al., 1983,
J. Geophys. Res., 88, §850-64, copyright
by the American Geophysical Union.)

Fig.2.4-9 Three-component seismogram of
a magnitude 4.9 shallow-focus earthquake
recorded 64 km away at Mina, Nevada. The
difference in the arrival times of the Pand S
waves, tg— tp, can be used to estimate the
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These data also show an interesting effect. The S wave
on the north-south components arrives earlier than on the
east-west components. This observation has been interpreted
as indicating that material beneath the seismic stations is
~5% anisotropic, such that in this region shear waves with
displacements in the N=S direction propagate faster than those
with displacements in the E-W direction. The anisotropy
(Section 3.6) may reflect the presence of the mineral olivine,
in which seismic waves propagate at different speeds depend-
ing on their direction with respect to the crystal structure.
If enough olivine crystals are oriented in a consistent fashion,
significant anisotropy can result. A second effect that could
cause significant anisotropy is the presence of a region of
aligned cracks.

distance between the earthquake and the
seismometer.

Figure 2.4-9 shows a different type of seismogram: a record
of a shallow earthquake in Nevada from a seismic station
within 100 km of the source. The times when the P and S waves
arrive can be measured from the seismograms. With a number
of such observations at different locations, we will see (Chapter
7) that the location and origin time of the earthquake can be
determined. Even with one seismic station, something about
the location of the earthquake can be learned. Although the
arrival times of the seismic waves cannot be converted to travel
times without knowing when the earthquake occurred, we can
learn something from the difference between the P and S arrival
times. For typical values of the compressional and shear velo-
cities in the crust, a = 5.5 km/s and 8 = 3.2 km/s, the times
required for S and P waves to travel a distance of x km are




x/3;2, t,=x/5.5. (47)

he dlfference in travel times, which is also the difference in
| times,

x(1/3.2-1/5.5)=x/7.6, (48)

s a function of the distance between the source and the
1ver Because the S wave arrives about 8 s after the P wave,
e earthquake is about 60 km away, in agreement with the d1s—
ce found by an earthquake location program using arrival
mes from many seismic stations. This S — P travel time tech-
que gives an estimate of the distance from the seismometer to
e earthquake, but does not yield the azimuth and hence the
ition.! Given S — P times at several stations, the location can
ound from the requirement that the earthquake must be a
ific distance from each station. Schematically, this method
n be thought of as locating the point on a map where arcs
ircles with the appropriate radii intersect. The problem is
1ally more interesting, because the earthquake need not
have occurred at the earth’s surface.

2.4.5 Energyin a plane wave

Like waves on a string (Section 2.2.4), seismic waves transport
energy both as kinetic energy and as strain, or potential, energy.
To find this energy, consider harmonic plane S and P waves
traveling in the z direction. An SH wave with displacement in
they direction is

u(z, 1) =B cos (0t - kz), (49)
where this expression is written directly in terms of displace-
ment, rather than potential. We will see shortly that this is a
_ useful approach for SH waves.

- The kinetic energy in a volume V is the integral of the sum
of the kinetic energy associated with each component of the
_displacement

2

s ] ou,

KE== —L1dV, 50

EESI P, (50)
v

~ because the mass is m = pdV. Hence for the plane wave

;(Eqn 49), the kinetic energy per unit wave front averaged over a
wavelength Ais

A

KE = x pB2w? | sin? (wt — kz)dz =

22 Bw?p/4.
24 2

1
B2
2 - P

0 (51)

! An analogous method is used to estimate that a thunderstorm is a mile away for
every S s between seeing lightning and hearing thunder, because light travels much

faster than sound (about 330 m/s in air).
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The strain energy (Eqn 2.3.88) is

W= % 0,e;dV. (52)

v
Because the only nonzero strain components are

ou
ey =y;= %f?zy' = Bk sin (o1 - k2)12, (53)

The only nonzero stress components are
03, = 0y3 = Bk sin (@t - kz), (54)

and the strain energy per unit area of wave front averaged over
a wavelength in the propagation direction is

A
W= 5—1—/{ UB2k? sin? (wt — kz)dz = uB*k*/4=B*w?p/4,  (55)
0
where the last expression used the fact that u = B*p and
Bk = . Thus the strain energy and kinetic energy averaged
over a wavelength are equal, as we found for the string. Hence
the total energy averaged over a wavelength is

E=KE+ W=B2w?p/2, (56)

and the average energy flux in the propagation direction is
found by multiplying by the velocity

I = B2w?pp2. (57)

The total energy and flux are proportional to the square of
the amplitude and the frequency, so for waves of the same
amplitude, the higher-frequency wave transports more energy.

Similarly, a plane P wave propagating in the z direction,
described by the scalar potential

oz, t) = A exp (i(@wt L kz)) (58)

has a displacement which is the gradient of the potential,

u(z, 1) = Ve(z, )= (0, 0, —ik) A exp (i(wt - kz)), (59)
with real part
u(z,t)= Ak sin (0t - kz). (60)

Using Eqn S0, the kinetic energy per unit wave front averaged
over a wavelength is
A
1
KE= e pAZR2w? | cos? (wt — kz)dz = A*w?k*p/4. (61)
0
To find the strain energy (Eqn 52), we note that the only
nonzero stress component is

0,=(A+2ue,=pa’e,, (62)
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Fig. 2.4-10 Seismograms showing the ground displacement at two
locations in the Marina district of San Francisco from a magnitude

5 aftershock of the 1989 Loma Prieta earthquake. The shaking on the
filled land is about an order of magnitude larger than on bedrock.
(Courtesy of the US Geological Survey.)

where the last form eliminates the Lamé constant A and lets us
reserve the symbol A for wavelength. Thus the strain energy per
unit wave front averaged over a wavelength is

A
W= %f patA2k* cos? (wt — kz)dz = A2w?k*pl4, (63)

0

which equals the kinetic energy. Hence the total energy averaged
over a wavelength is

E=KE+ W=A0?k?*p/2, (64)

and the average energy flux in the propagation direction is
found by mutiplying by the P velocity

E=A2w?k2pal/2. (65)

These expressions differ from those for the energy of the SH
wave by a factor of k2, because A is the amplitude of the poten-
tial, whereas in Eqns 56 and 57 B is the amplitude of the dis-
placement. If we used the potential amplitude for a shear wave,
the k2 factor would be needed.

The energy flux gives insight into how waves behave when
they change media. For example, as water waves travel into
shallower water, their velocities decrease, so their amplitudes
increase to conserve energy. Eventually the amplitudes exceed
a critical level, and the wave breaks. Similarly, when seismic
waves pass from bedrock into soft soil with lower velocity and
density, their amplitudes increase. This effect is shown by
Fig. 2.4-10, comparing seismograms of an aftershock of the
Loma Prieta earthquake from the Marina district of San Fran-
cisco. The ground motion recorded by a seismometer located
on a layer of soft landfill (bottom) is much larger than thaton a
nearby seismometer installed on bedrock (top). As a result,
earthquake damage varies between structures built in soils and

bedrock.

2.5 Snell’s law

2.5.1 The layered medium approximation

In the last section, we saw that the equation of motion for 3
homogeneous elastic medium has solutions in which the dis-
placement is described by potentials satisfying the wave equa-
tion. We now begin to use these solutions to describe seismic
wave propagation in the earth. Applying results derived for
an infinite homogeneous medium to a real planet with a com-
plicated internal structure might seem like a large leap. None-
theless, some significant problems can be explored using this
approach.

For seismological purposes, we characterize the internal
structure of the solid earth by the distribution of physical prop-
erties that affect seismic wave propagation and can be studied
using seismic waves. We thus deal with the distribution of elas-
tic properties and density, or, equivalently, of seismic velocities
and density. A seismological model of elastic earth structure is
the set of functions «(r), B(r), p(r) showing how the velocities
and density depend on the position vector r, and hence the
radius, latitude, and longitude. Seismological results indicate
that this distribution is complicated and difficult to charac-
terize. For example, downgoing slabs of lithosphere extend
to considerable depths at subduction zones. Fortunately, we
can often make a series of useful approximations (Fig. 2.5-1).
Because the solid earth’s physical properties vary significantly
more with depth than they do laterally, they can be approxim-
ated as spherically symmetric functions ofr), B(r), p(r) that
depend only on the radius 7. A medium whose properties vary
only with depth is called laterally homogeneous or stratified, in
contrast to a laterally heterogeneous medium where velocities
vary laterally as well as with depth.

When the characteristic length of the region under consid-
eration is small compared with the radius of the earth—as, for
example, in local crustal studies—the earth’s curvature can be
neglected. The earth is thus further approximated as a laterally
homogeneous halfspace, with velocities and density character-
ized by functions «(z), B(z), p(z) varying only with the depth z.
A further useful simplification is to treat the earth as a halfspace
consisting of finite thickness layers, each of uniform properties
%, B> pi-

An attractive feature of the layered model is that the solu-
tions of the equation of motion discussed in the last section
apply exactly only to a homogeneous medium. When a layered
earth model is appropriate, it is possible to take the homo-
geneous medium solutions in each layer and “patch” them
together at the interfaces to account for the propagation of seis-
mic waves between layers. This can be done when plane waves
adequately represent the wave fronts, an assumption that
applies far enough away from the source that wave fronts
can be considered planar. Treating a stratified medium as a set
of uniform layers is analogous to the way we divided a string
into uniform segments and matched solutions across their
boundaries.
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ig. 2.5-1 Schematic illustration of some types of earth models used in
seismology. The most accurate model, a laterally heterogeneous sphere,
often approximated as being spherically symmetric, with properties
varying only with radius. A spherically symmetric model can be further
approximated for many purposes as a stratified halfspace, in which
- properties vary only with depth, or as a layered halfspace composed
- of discrete uniform layers.

The real earth is not laterally homogeneous, much less com-
osed of uniform layers, and seismic wave fronts do not extend
_as planes to infinity. The test of whether these approximations
are useful is whether results derived by applying them to
seismological data yield geologically meaningful inferences.
We will see that this is surprisingly often the case. Laterally
homogeneous models are thus useful both as representations
of average earth structure and as starting models for more
detailed investigations.

2.5 .2 Plane wave potentials for a layered medium

Qur first goal is to analyze what happens when a plane P or §
wave is incident on the boundary between two halfspaces of
homogeneous and isotropic elastic materials with different
elastic constants and hence seismic velocities. We will derive
Snell’s law, the famous relation that describes the bending of
wave fronts as a plane wave goes from one medium to the
other. Once we can handle a single boundary, we generalize
this solution to a stack of homogeneous layers. The layered
approximation can be used, even when the elastic properties
‘vary smoothly, by using a large number of thin layers.
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Fig. 2.5-2 Two halfspaces in contact, composed of materials with
different elastic properties. The horizontal interface is in the x—y plane.

The geometry of the problem is shown in Fig. 2.5-2. We
consider a plane wave with its direction of propagation, and
thus wave vector, in the x—z plane. The displacements can be
written using potentials that are functions only of x and z. Two
halfspaces of different materials are in contact along a bound-
ary that is the x—y plane, and the z axis, the normal to the inter-
face, is positive downwards. This geometry has the attractive
feature that the shear waves can be separated into the two
polarizations discussed in the previous section: SV waves,
whose displacement is only in the x-z plane, and SH waves,
whose displacement has only a y component. Moreover, the
displacement and hence potentials do not vary with y, and so
can be written as functions of x, z, and 2.

In Eqn 2.4.13 we saw that the displacement field can be
decomposed into a scalar potential describing P waves and a
vector potential for S waves. To separate the SV and SH waves,
we split the vector potential Y into two terms,

Y(x,z, t>=‘P(xaz; t>+V><Z(x: 2, L), (1)

The displacement vector can now be written using the scalar
potential, ¢(x, z, £), and the two vector potentials:

u(x,2,2)=Vo(x,2,t) + VXY (x,2,1)
=Vo(x,z, 1)+ Vx¥(x, 2, 1) + VXV x x(x, 2, 1). (2)

We choose the vector potentials to be

Y¥(x,z,t)=(0, wix,2,2),0) and
x(xa 2, t):(OaX(xa 25 £),0). (3)

Each potential has zero for its x and z components, and the y
components are the scalar functions y(x, z, ) for SV waves
and x(x, z, t) for SH waves. Thus the displacement vector is
described by three scalar functions, one for each potential.

To find the resulting displacements, we carry out the vector
operations in Eqn 2. Because the two vector potentials have
only a y component, and neither ¢, y, nor x depend on y, the
y derivatives are zero. Hence the P, SV, and SH terms give rise
to displacement vectors with (x, y, z) components
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e N A

(P) Vo(x, 2, 1) = o, % t),O, 99, 2, ,ﬁJ
ox 0z
(V) Vxwlx g o=| 2¥EB20 o a‘l/(x,z,t))
0z dx
82X(x, 2, t) 9?2 (x 2, 1)
SH) VXV s % b= O)’“ ,O .
(SH)V x V x (x. 2. 1) [ t . } ]
(4)

Thus P and SV contribute to the x and z components of dis-
placement, whereas SH contributes only to the y component.
The divergences V- ¥ and V - y equal zero because only their
y components are nonzero, and d/9y of these components is
zero. Hence, as expected, neither SH nor SV gives rise to a
volume change.

The components of the displacement vector are found by
grouping the components from Eqn 4:

Mx(x’ zZ, t) — a¢(x> 2y t) _ ay/(x, Z, t)
ox 9z
Mz(x’ 2, t) — a¢('x5 2y t) 4 al//(x, z, Z‘)
0z x
= azl(x; 2, t) az (x 2, )
uy(xa 2, t) = —[ ) P v (x’ 2, t). (5)

These equations demonstrate that P-SV waves are independent
of SH waves. The x and z components of displacement depend
on both the P-wave potential ¢ and the SV-potential y. Thus
for waves propagating in the x~z plane, the P and SV waves
form a coupled system, which gives rise to two components
of displacement. Neither the P nor the SV potentials contribute
to the y component of displacement. Hence SH waves, which
alone contribute to the y component of displacement, are
decoupled from P and SV waves.

This coupling and decoupling persists when these waves
interact with a horizontal interface parallel to the x—y plane.
The boundary conditions at the interface constrain the dis-
placements and tractions (Section 2.3.10). Because the normal
to the interface has only a z component,

1=(0,0,1), n,':6/'3: (6)
the tractions on the interface are given by
T,= 03n,= 0= (0,5 O, O ). (7)

The P-SV system gives rise to nonzero components of dis-
placement 2, and u, and hence tractions o, , and o,,. For these
waves, both u, = O and o,, = 0. By contrast, the SH waves
contribute only a y component of displacement, and their only

nonzero traction component is O Thus, at the interface, the

P-SV waves have no effect on the SH waves, and vice versa,
so there is no coupling between P-SV waves and SH waves,
However, P waves and SV waves are coupled, because both
affect the same components of displacement and traction. Thyg
at interfaces, P waves convert to SV waves, and vice versa,
whereas SH waves do not convert to either P or SV waves.

When treating the earth as a horizontally layered medium,
we assume that P-SV and SH waves propagating between
any two points are decoupled and can be treated separately.
The situation is more complicated when dipping interfaces are
present. P~-SV and SH are coupled at a dipping interface if its
normal is not in the plane of propagation, the vertical plane
containing the source and the receiver. Thus, for dipping inter-
faces, the waves will be coupled for most pairs of source and
receiver positions.

As a result, in most applications we treat the P~SV system of
propagating waves as distinct from SH. In the last section, we
saw that P waves are described by the scalar potential that
satisfies the scalar wave equation (Eqn 2.4.37), whereas the §
waves are described by the vector potential Y satisfying the
vector wave equation (Eqn 2.4.38). To see that the SV and
SH potentials each satisfy the vector wave equation separately,
we substitute Eqn 1 into it:

2

V¥ )+ VXl ] = 2 (B )
£V x (%, 2, 1)), (8)
and regroup the terms:
2
V(x-S T D)
=-V2[V . 1o \Y/ 9
- [ XX(A,,Z, )]+ 'ﬁ_zé—f[ Xx(x,z, )], ( )

so the two potentials can be treated separately. Thus the P-SV
system is described by

1 9%9(x, 2,2)
o o2

1 Pylx, 2, 1)
B? o2 ’
(10)

V2¢(x9 <5 t) = ) Vzll[(xa 25 t) =

Both of these are scalar wave equations, because yis the scalar
function forming the y component of the SV vector potential
(Egn 3).

For SH waves we have two choices. Interchanging the curl
and the other derivatives in the right side of Eqn 9 shows that
the scalar function y, the y component of the SH vector poten-
tial, satisfies a scalar wave equation. Alternatively, we can take
the curl and recognize that by Eqns 4 and §

u,=VxVxg(x,z1), (11)




hat
| 1 u(x, 2,1
2, (%, 2 2) = Ef—y—a?_' (12)

hus the SH-wave displacement satisfies a scalar wave equa-
on, and can be found without using the SH potential.

.3 Angle of incidence and apparent velocity

. now consider P-SV waves propagating in the x—z plane
at are described by harmonic plane wave solutions of the
alar wave equations (10),

¢lx,2,t)=Aexp (i(a)t—kxxikz(ZZ)) (13)
(SV) wix,z,1)=Bexp (i(wt-kxLk, ).

The direction of wave propagation is described by the wave
ector, which is the normal to the wave fronts. For pro-
pagation in the x—z plane, the direction is given by k, and &,
because ky is zero. Thus Eqn 13 represents waves propagating
 the +x direction (because of the negative sign in —&,x), and
both the +z and —z directions.

ubscripts on k and k_ are needed because the magnitude of
the wave vector differs for P and SV waves. We will see shortly
that in this geometry &, is the same for the P and the SV waves.
he components of the wave vectors satisfy

|k, =R+ k2 =wXo? | ks P=k2+k2 = 0B (14)

Because ky =0, k, is the horizontal component of the wave
vector.

~ The direction of propagation can also be expressed by the
angle of incidence that the wave vector makes with the vertical
(Fig. 2.5-3). Because the wave vectors, and therefore incidence
angles, differ for P and S waves, we adopt the convention that
itefers to P-wave incidence angles and j to S-wave incidence
angles. Thus

ke ke L ke ke
Rk )R kgl

- sini=

(15)

.We will see shortly that plane waves change direction when
they cross an interface into a material with different seismic
velocity (Fig. 2.5-4), so the orientation of the wave vector and
the angle of incidence change. Hence the propagation of a
plane wave is characterized by the changing orientations of the
wave vector. We thus speak of a seismic ray that follows this
ray path. Figures like Fig. 2.5-4 are often drawn showing only
the ray paths and omitting the wave fronts that are normal to
the ray.

It is useful to define the apparent velocity, c,, the velocity
at which a plane wave appears to travel along a horizontal
surface. Figure 2.5-3 shows that in a time Az a plane wave with
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Fig. 2.5-3 The wave vector, k, is normal to the wave front and points in
the direction of propagation. Top: For a plane wave traveling in the

x—z plane, the propagation direction is given by the wave vector (k,, k,)

or the incidence angle, i, between the wave vector and the vertical. Ina
time increment Az the wave front moves a distance vAt, where v is the
medium velocity, and sweeps out a distance along the surface ¢, Ar, where
¢, is the apparent velocity along the surface. Middle: For a plane wave
traveling vertically, the incidence angle ;= 0°, k equals k,, and ¢, is infinite.
Bottom: For a plane wave propagating horizontally, i= 90°, k equals

k., and ¢, equals the medium velocity.

incidence angle i in a medium with velocity v moves forward a
distance vAt and moves across the horizontal surface a distance
¢, At. Thus the horizontal apparent velocity is

¢, =vlsin i. (16)

The apparent velocity is always greater than or equal to the
medium velocity, « for P waves and 3 for S waves. A horizont-
ally propagating wave, with 7 = 90°, has an apparent velocity
equal to the medium velocity. A vertically incident plane wave
arrives everywhere on the surface at the same time, so it has an
infinite apparent velocity.

The horizontal apparent velocity! can be written in terms of
the horizontal component of the wave vector using Eqns 15
and 16:

! Because seismological observations are made at the earth’s surface, the apparent
velocity along the earth’s surface is sometimes written as ¢ rather than c,, and k is
sometimes used to denote k,.
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Wave fronts

Fig.2.5-4 A plane wave changes direction as it enters a material with different seismic velocity. The change in direction is represented by the change in
the orientation of the wave vector k, or by a ray path showing successive orientations of the wave vector. The wave fronts, which are often not shown,

are normal to the ray path.
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Fig. 2.5-5 Snell’s law for plane waves propagating into a higher-velocity medium. Left: An incoming P wave generates transmitted and reflected P and

SV waves. The reflected P wave has the same incidence angle, i,, as the incoming P wave. Because in each medium the P-wave velocity exceeds the S-wave
velocity, j; <#, and j, <i,. Right: The same situation for an incoming SV wave. The incidence angles of the incoming and reflected SV waves, j,, are equal.
The relationships between the other incidence angles are the same as for an incident P wave.

c,=wlk,. (17)

Thus we define the ratios of vertical to horizontal wave-
numbers as

ro=k, /R, = (Zla* = 1) =cot i,

rﬁ=kzﬂ/kx=(c£/[)’2—1)1/2=cotj, (18)
so that the potentials (Eqn 13) can be written
(P)  @(x,z,t)=Aexp (i(wt -k xtk,7,2))
(SV)  w(x,2,t)=Bexp (i(wt—k,x Tk, 752)). (19)

2.5.4 Snell’s law

We now consider the relation between the angles of incidence
for transmitted and reflected harmonic plane P-SV waves
at an interface. In the geometry of Fig. 2.5-5, an interface at

z=0 separates medium 1 with P and S velocities ; and f3; from
medium 2 that has velocities o, and ,. We first assume that
oy <oy and B < B,.

A P wave incident from medium 1 generates reflected and
transmitted P waves. In addition, part of the P wave is con-
verted into a reflected SV wave and a transmitted SV wave.
Each of these waves can be described by an appropriate poten-
tial. In medium 1 we have upgoing and downgoing P waves
and an upgoing SV wave, so the potentials are

¢(x, 2, ) = incident P + reflected P
=A, exp (i(wt—k,x— eralz))
+A,exp (ot -k x+ eralz))
v(x, 2, t) =reflected SV=B, exp (i(wt -k, x+ erﬁﬂz))' (20)
The form of each potential describes the wave. Terms like k.7, ,

the z component of the wavenumbers, indicate which medium
(1 or 2) and what wave type (P or ) this potential describes.




direction of propagation for each wave is given by the
onents of the wave vector k. For example, the signs of
t and k.7, terms show that the incoming P wave with
plitude A, travels in the +x and +z directions as time in-
<es. Similarly, the reflected P wave with amplitude A, and
oflected SV wave with amplitude B, travel in the +x and
jrections.

he downgoing P wave and SV waves in the second
um are given by the potentials

, 1) =transmitted P= A" exp (i(wt -k x— erazz))

z,t)=transmitted SV =B exp (i(wt -k, x - erﬁzz)). (21)

d B are the amplitudes of the transmitted P and SV waves,
travel in the +x and +z directions. We generally write
plitudes of P waves as A and the amplitudes of S waves

We can find the incidence angles of the transmitted and
ected waves from the incidence angle of the incoming wave.
. boundary conditions for the solid-solid interface at z =0
¢ that the components of the displacement and traction
tors are continuous (Section 2.3.10). Because all of the
entials contain the phase factor, exp (i(wt — k, x)) times a
or independent of x and ¢, all of the displacement and trac-
components have this phase factor. For the displacement
ind traction to be continuous at the interface for all x and all z,
ot — k,x) must be equal for each of the potentials. Thus the
izontal wavenumber &, and hence the apparent velocity
ng the interface ¢, = w/k,, must be the same for each wave.
a result, the waves travel along the interface at the same
eed and stay in phase.

his condition and the definition of ¢, (Eqn 16) give the
imiliar form of Snell’s law:

=0‘1:ﬁ1_a2_ﬂ2 (22)

.. e
sSin 5y Sin 74 S 7, s 7,

the ratio of the sine of the angle of incidence for each wave to
the corresponding velocity is constant. Hence the incident and
reflected P waves have the same incidence angle 7;. The trans-
mitted P and S waves change direction by a factor depending on
the velocities in the two media. A change in direction upon
transmission into a medium with a different velocity is called
fraction, so the waves in the second medium are called
refracted or transmitted waves. Figure 2.5-5 illustrates the ray
aths for the different waves.

The S wave reflected from the boundary satisfies

sin j; =sin i;(B,/0y). (23)

Because in any medium P waves travel faster than S waves,
Snell’s law requires that j; < #;. Hence the reflected S ray is
closer to the vertical, or further from the interface, than the P
ray in the same medium. Physically, this is because the S wave

~ i N\ AN
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must be closer to the vertical than the P wave to have the same
apparent velocity along the interface.

The angle of incidence for the refracted P wave is related to
that for the incident P wave by

sin i, =sin i; (0, /0y). (24)

If the second medium has a higher velocity, then i, > i;, so the
transmitted ray is further from the vertical than the incident
ray. It travels more horizontally, so the apparent velocities
along the interface are equal. On the other hand, if o > a,,
then the refracted P wave would be closer to normal incidence.
(This effect, for light waves, makes a pencil appear to bend at
the surface of a glass of water.)
The transmitted S wave satisfies

sin j, =sin 4;( B,/ o). (295)

Hence for 3, > B, we get j, > j;, so the transmitted S wave
is more nearly horizontal than the reflected § wave. Similar
relations apply for an incident SV wave (Fig. 2.5-5). The
reflected P ray is bent further from the normal than the incid-
ent or reflected SV rays.

The fact that an incident P wave generates both P and SV
waves, and vice versa, is a consequence of the displacement
and traction boundary conditions at the interface, as we will
see in Section 2.6. Some insight into why this should be can be
obtained by considering Fig. 2.5-6, in which an incident SV
wave disturbs the boundary, which then generates P waves in
addition to the transmitted and reflected SV waves.

2.5.5 Critical angle

When a P wave impinges on a horizontal boundary, Eqn 24
shows that the incidence angle for the transmitted P wave in the
second medium is

iy=sin"! [sin iy (e, /0t;)], (26)

where the notation sin™! indicates the inverse sine function.
If the second medium has a higher velocity, the transmitted
P ray is further from the vertical than the incident ray. As the
angle of incidence increases, the transmitted ray approaches
the horizontal interface (Fig. 2.5-7, overleaf). Eventually, the
incidence angle 7, reaches a value i_ where i, = 90° and the argu-
ment of the sin~! term becomes 1, so

sini(oy/oq)=1 or sini =oy/a,. (27)

Thus for a wave incident at this critical angle of incidence, the
transmitted wave grazes the interface.

Once the incidence angle exceeds the critical angle, which isa
situation called postcritical incidence, no transmitted plane
wave exists in the second medium. This phenomenon is some-
times called total internal reflection. In this case, as we will see
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Fig. 2.5-6 Cartoon demonstrating how an SV wave (shown by the

light grey wave front) incident at a boundary generates reflected and
transmitted P (dark grey wave front) and SV waves, for the case shown

in the bottom half of Fig. 2.5-5. a: The incident SV wave disturbs the
boundary. b: The displaced boundary generates reflected and transmitted
P and SV waves. ¢c: As the incident SV wave advances, its intersection with
the boundary moves, continuously generating reflected and transmitted
waves.
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Fig. 2.5-7 Hlustration of the critical angle 7, for P waves incident on a
faster medium. The transmitted S and the reflected P and S waves are not
shown. As the angle of incidence increases, the incoming waves become
more nearly horizontal, and the refracted P waves approach the interface.
For waves incident at an angle exceeding (more horizontal than) the
critical angle, no traveling P wave is transmitted into medium 2.

in the next section, the P-wave potential for the second medium
has a z-dependent real exponential term, exp (—k,z), instead of
a purely imaginary exponential term, exp (—ik,z). Hence the
displacement in the second medium is not a propagating plane
wave, but occurs as an evanescent wave that travels along the
interface and decays away from the interface.

Although for angles of incidence beyond the critical angle
there is no transmitted P wave, there can still be a transmitted
S wave. If the S velocity in medium 2 is greater than the P velo-
city in medium 1 there is a second critical angle

sin i, =oy/p, (28)
beyond which no transmitted P or § waves occur.

2.5.6  Snell’s law for SH waves

Snell’s law also applies to SH waves. Because for SH waves the
displacement satisfies the wave equation, SH waves in the first
medium are described by

uy(x,z, ) =By exp (i(wt— k,x— erﬂ]z))

+B, exp (i(a)t—kxx%-erﬂlz)), (29)
where By and B, are the amplitudes of the incoming and
reflected SH waves (Fig. 2.5-8). In the second medium, the
transmitted SH wave is
u,(x,z2, t)=B"exp (i(wt—kxx~erl32z)). (30)

As before, Snell’s law

¢, =By/sinj,=B,/sin j, (31)
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fF;g 2.5-8 An SH wave propagating in the x—z plane creates only
transmltted and reflected SH waves when incident on a solid-solid
nterface in the x—y plane. The incident and reflected waves have the
ame incidence angle, ;. For 8, > B, j, > ;.

pplies, because (@t -k, x) must be equal for all three waves for
he traction and dlsplacement to be continuous at the interface.
he critical angle for SH waves is thus

sinj.=By/f- (32)

2.5.7 Ray parameter and slowness

A useful way to characterize a wave’s ray path is via its ray
_parameter, p, the reciprocal of the horizontal apparent velocity,

p=lc, =sinilv=k /o, (33)

where i is the incidence angle of either a P or an S wave, and v
is the corresponding velocity. The harmonic plane wave solu-
tion can be written in terms of the ray parameter. To illustrate
this, consider the potential for a P wave propagating in the
x-z plane, and factor out the angular frequency:

exp (i(wt—k x -k r,2)) =exp (iw(t— (k/w)x -

=exp (io(t—px ~1,2))
=exp (io(t—s - x)). (34)

(k. /0),2))

Here we define the slowness vector,

$=(p, Ng)s (35)

whose components are the ray parameter p and 1,= (k, /@) 7, =
pry=r,lc,=(la?—pH)2,

We can interpret 7, geometrically using the components of
the wave vector, because by Eqn 18 7,,= kza/ k., so0
na=kza/a)=kza/(| k, |o)=cos i/ (36)
n,and the ray parameter p are closely related because both are
functions of the angle of incidence divided by the velocity.
Hence the magnitude of the slowness vector is
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Half-space

Fig. 2.5-9 Geometric interpretation of P-wave propagation in terms of the
relation between the angle of incidence, 7, the wave vector, k , the
slowness vector, s, the ray parameter or horizontal slowness, p, and the
vertical slowness, 77,,. '

I's|=(p*+n2)2=(sin? i/a®+cos? i/o*) 2 = 1/o. (37)

Thus the reciprocal of the velocity, 1/0, is called the scalar
slowness, an apt term because a low-velocity medium is very
slow (has a high slowness), whereas a fast-velocity medium has
low slowness. The slowness vector (Fig. 2.5-9) is directed along
the ray (parallel to the wave vector) with a magnitude equal
to the slowness, and can be written s = k,/a. Its compon-
ents are the ray parameter p, also called horizontal slowness,
and 1, called the vertical slowness. Similarly, for S waves the
slowness is

s=(p, g =ky/p,
=(Up*-p*) 2 =cos jIB=prg=rg/c,. (38)

Writing a harmonic plane wave in terms of slowness gives
several insights. In the argument of the exponential in Eqn 34
(io{t — s-x)), the slowness term, s-x, has the dimension
of time, and shows the net travel time due to the vertical and
horizontal propagation times, each of which is described by
the corresponding component of the slowness. The slowness
formulation also gives another view of Snell’s law. We derived
Snell’s law by considering a harmonic plane wave incident
on a horizontal interface and the resulting reflected and trans-
mitted plane waves. The horizontal component of the wave
vectors k_, and hence the horizontal apparent velocity c,, were
contmuous at the interface. By contrast, the terms related to
the vertical component of the wave vectors like k, = k7, varied
between layers and for P and S waves. The corresponding
formulation in terms of slowness says that the ray parameter or
horizontal slowness p is the same for the incident, reflected, and
transmitted waves, whereas the vertical slowness depends on the
medium and the wave type. Snell’s law can thus be stated as: p
is constant for a ray and any rays that it produces at interfaces.

An important application of the ray parameter is in describ-
ing the evolution of a ray that encounters a number of inter-
faces (Fig. 2.5-10). Each of the four rays generated at the first
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Fig. 2.5-10 A P wave incident on a stack of flat layers generates four
waves, two reflected and two transmitted, at each interface. Each of these
waves generates four more at each interface, and so on. All these waves
have the same ray parameter, so their paths can be traced by applying
Snell’s law at each interface.

interface in turn generates another four rays at the next inter-
face, and so on. Because Snell’s law applies at each interface, all
these rays have the same ray parameter. As a result, p is
constant along any ray path, no matter how many transmis-
sions, reflections, or conversions the ray has undergone. This
gives a way of tracing the ray path for a ray that began its
travels with a certain ray parameter. In doing this on a com-
puter, an advantage of the ray parameter is that it is zero for a
vertically incident wave, whereas ¢, is infinite.

2.5.8 Waveguides

Snell’s law is one of seismology’s most important tools,
because seismic waves encounter variations in velocity due to
changes in the physical properties of the materials, including
the effects of composition, temperature, and pressure. In gen-
eral, the velocity increases with depth, so seismic waves turn
toward the horizontal as they go deeper. Eventually the ray
“bottoms,” turns upward, and reaches the surface (Fig. 1.1-3).
Such ray paths can be modeled using Snell’s law, either with
many layers or with a version (Section 3.4) accommodating
velocities that vary smoothly with depth and so give smooth
ray paths. The ray path and the travel time along it thus provide
information about the distribution of seismic velocities and
physical properties with depth.

However, in some regions velocity decreases with depth,
yielding a low-velocity medium between higher-velocity media
(Fig. 2.5-11, top). If seismic waves are generated in the low-
velocity medium, then total internal reflection will trap much
of the seismic energy in the low-velocity channel, which acts
as a waveguide.” One such waveguide occurs in the oceans,
because the speed of sound in seawater is proportional to both
temperature and pressure. The combination of temperature
decreasing with depth and pressure increasing with depth

2 Similarly, fiber optic cables transmit light signals by trapping them in a low-

velocity material surrounded by high-velocity materials.
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Fig. 2.5-11 Top: A low-velocity layer surrounded by high-velocity
material acts as a waveguide. Rays incident on either interface at angles
exceeding the critical angle undergo total internal reflection. Bottom:
The SOFAR channel, a low-velocity zone (right) in the ocean, acts asa
waveguide, as shown by ray paths from a source in the channel (lef?).
Note the non-SI units for distance and velocity. (Ewing et al., 1957)

produces a low-velocity region known as the SOFAR (SOund
Fixing And Ranging) channel at a depth of ~1000 meters. Rays
leaving a source in the channel at angles up to £12° from the
horizontal are internally reflected (Fig. 2.5-11, bottom). The
ray paths are curved because of the smooth velocity structure.
The SOFAR channel transmits sound very efficiently, allowing
explosions, submarines, and whales to be detected at great
distances. As a result, the speed of sound waves in the channel
is being used to search for changes in ocean temperature that
may be due to global warming. Similarly, earthquakes can be
studied using seismic waves in the SOFAR channel that cause
arrivals called T waves (Fig. 2.5-12, top), that can be detected
by hydrophones in the water, or by seismometers when a T
wave hits land. The ringing quality of T waves (Fig. 2.5-12,
bottom) is due to the internal reflections within the SOFAR
channel. Waveguides are also associated with fault zones due
to their low velocities relative to the surrounding rocks.

2.5.9 Fermat’s principle and geometric ray theory

As our discussions so far show, we can gain insight into the beha-
vior of seismic waves by considering the ray paths associated
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Depth (km)

Fig. 2.5-12 Top: A P wave generated by an
earthquake and reflected between the ocean
floor and surface is trapped in the SOFAR
channel and propagates as a T wave.
Bottom: T waves recorded in Tahiti from -
an earthquake in Tonga. The amplitudes L
exceeded the gain on the seismometers,
causing them to clip at the top and bottom. \ | ) )

Hypocenter

SOFAR channel

The high-frequency ringing of the T waves 176°W
distinguishes them from body and surface
waves. (Talandier and Okal, 1979.
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with them. This approach, studying wave propagation using
ray paths, is called geometric ray theory. Although it does not
fully describe important aspects of wave propagation, it is
widely used because it often greatly simplifies the analysis and
gives the correct answer or a good approximation.

The most obvious application of rays is for computing travel
times. To find when a plane wave generated at one position will
arrive at another, we use the travel time, which is the length
of the ray path divided by the velocity. Thus, if waves follow
complicated paths, their travel time is the sum of the travel
times for each portion of the ray path. The travel time for a ray
that has traveled through several media, sometimes as a P wave
and sometimes as an S wave, is found using the appropriate
path length and velocity for each segment.

The concept underlying this approach is Fermat’s principle,
a famous result from optics, the study of light. Fermat’s prin-
ciple states that the ray paths between two points are those
for which the travel time is an extremum, a minimum Or max-
imum, with respect to the nearby possible paths. The simplest
case is two points in a homogeneous halfspace; the time needed
to traverse the straight line connecting the points is less than
for adjacent paths (Fig. 2.5-13). A second ray path for which
the time is a minimum compared to adjacent paths is that of the
reflected ray satisfying Snell’s law. The direct ray path cor-
responds to an absolute minimum of the travel time, whereas
the reflected ray corresponds to a local minimum.

Snell’s law can be derived from Fermat’s principle. Consider
the possible ray paths (Fig. 2.5-14) between the point (0, 4) in
medium 1, with velocity v, and the point (b, —¢) in medium 2,
with velocity v,. The ray paths can be parametrized by the
point (x, 0) where they cross the interface. The travel time as
a function of x is

x 5500 at 1 Hz, 21000 at 3 Hz

vaw‘sﬁﬂ/‘mfvvw\f\f\/‘

Source

Fig. 2.5-13 Two ray paths (solid lines), one for the direct ray and
one for the reflection obeying Snell’s law, connecting two points in a
homogeneous halfspace. The travel time for these paths is less than
for nearby paths (dashed), in accord with Fermat’s principle.

(0, a)

Medium 1

Medium 2

(b, =0

Fig. 2.5-14 Derivation of Snell’s law for refraction using Fermat’s
principle. The ray path between points on opposite sides of the interface
is that for which the travel time is a minimum.
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T(x) _ (az + x2)1/2 . ((b - x)l + 62)1/2 . (39)
41 )

To find the path for which the travel time is an extremum, we
differentiate with respect to x and set the result equal to zero,

dT(x) x i (b-=x)
dx (@ + 322 uy((b - x)? + )2
_sing _sing 0, (40)
v vy
which yields Snell’s law
v,/sin iy =v,/sin i,. (41)

In most seismological applications the ray paths and travel
times derived using Smell’s law yield results in reasonable
accord with observations, because most seismic energy propag-
ates as though it followed ray paths. However, geometric ray
theory is only an approximation to the solutions of the elastic
equation of motion that describes the generation and propaga-
tion of seismic energy. As a result, ray theory has two major
limitations. First, it does not directly provide information
about wave amplitudes. Hence, although deriving Snell’s law
using ray theory gives the angles of the reflected and transmit-
ted waves, we need wave theory to find their amplitudes. In
some cases, this limitation can be circumvented by tracing rays
from a source and using the resulting density of rays to infer
amplitudes (Sections 2.8.4, 3.4.2, 3.7.3). Second, in other
applications, as discussed next, geometric rays fail to describe
the wave’s behaviour.

2.5.10 Huygens’ principle and diffraction

In some applications treating propagating waves as geomet-
ric rays fails to explain what we observe. For example, waves
bend or diffract around the earth’s core and so reach places
to which Snell’s law predicts no ray path. Similarly, although
ray theory says that no energy is transmitted when a wave is
incident on an interface at an angle greater than the critical
angle, some energy is in fact transmitted. Addressing such
issues requires explicitly considering the fact that seismic
energy propagates as waves. To do this, we draw on results
from both seismology and other wave phenomena, especially
light waves, which are easier to study and have been invest-
igated for many years.

One important approach, known as Huygens’ principle, is
illustrated in Fig. 2.5-15. Each point on a wave front is consid-
ered to be a Huygens’ source that gives rise to another circular
wave front. These wave fronts interfere constructively to give
a circular wave front, and interfere destructively everywhere
else. In three dimensions, the wave fronts are spherical.

t=0

Fig. 2.5-15 Figure adapted from Huygens’ original (1690) analysis
showing how circular wave fronts can be generated by treating each point
on the initial wave front as a point source of wave energy. (Reprinted from
Huygens, Treatise on Light, trans. S. P. Thompson (Dover, New York).)
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Fig. 2.5-16 Demonstration of Huygens’ principle for the propagation

of a straight wave front. Successive wave fronts are generated by drawing
a circular wave from each point on the previous wave front and then
drawing a line tangent to the circles. The circular wave fronts are assumed
to interfere destructively everywhere else.

Although the point sources, known also as diffractors or
scatterers, need not have a physical interpretation, in some
cases they do. For example, heterogeneities in the crust and
mantle scatter incident seismic waves. Hence, migration
methods in exploration seismology (Section 3.3.7) improve
images of the subsurface by undoing this scattering. Similarly,
seismic energy that arrives before PKP waves that traverse the
earth’s core is thought to have been scattered by heterogeneities
in the mantle.

Huygens’ principle gives another way of thinking about
phenomena we have discussed. It explains why a straight wave
front generates subsequent straight wave fronts, as shown in
Fig. 2.5-16. It is also another way of deriving Snell’s law.
Assume, as in Fig. 2.5-17, that a wave front A-A” in medium 1
is incident upon a boundary with medium 2. When the wave
front reaches point A, energy begins to radiate outward, but if
the velocity in the second medium is less, the radius of the cir-
cular wave front some time later is smaller in medium 2. Sim-
ilarly, as the wave front reaches other points along the interface
(for example, point B), circular wave fronts of different sizes
spread out in the two media. By the time the initial wave front
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Fig. 2.5-17 Derivation of Snell’s law using

Huygens’ principle. As an incident plane
wave A-A’ interacts with the boundary, the
Huygens’ sources combine to form a reflected
wave front C-C’ and a transmitted wave front
C-D. Because the radii of the circular wave
fronts are proportional to the velocity in each
medium, the angles of the incident (O-A),
reflected (A-C’), and transmitted (A-D)

rays yield Snell’s law.

reaches point C, one planar wave front, drawn as the tangent
to the circular wave fronts in medium 1, is the reflected wave,
and another gives the refracted wave. The directions of the
waves, taken as the perpendiculars to the planar wave fronts,
are those expected from Snell’s law. Thus we have three ways
of understanding how Snell’s law comes about: Huygens’ prin-
ciple, Fermat’s principle (Section 2.5.9), and the application of
the interface boundary conditions to plane waves (Section
2.5.4). Each approach offers different insight into the phenom-
enon of reflection and refraction.

Huygens® principle also explains the phenomenon of dif-
fraction, in which waves bend around obstacles. Although the
phenomenon is complicated, the simple example of diffraction
ataslit (Fig. 2.5-18, top) gives considerable insight. We assume
that an incident planar wave front acts like a set of Huygens’
sources, so the transmitted wave field is the superposition of
waves from these sources. In front of the slit, the sources
combine to give a planar transmitted wave front. In addition,
energy propagates to the sides, and thus can be detected around
the corners, although there is no geometric ray path to there.
The analogous process occurs with shear waves that cannot
pass through the liquid outer core, and so diffract around it
(Section 3.5.2).

Although evaluating the amplitude of the diffracted waves
requires going beyond Huygens’ principle, a simple construc-
tion (Fig. 2.5-18, middle) shows some important aspects. If the

Transmitted
wave v

slit has width d, then waves from either side of the slit will be
out of phase by 90° and so interfere? destructively at distance
D when the path difference is a half wavelength. Hence the
amplitude will be zero at a distance x, or an angle 6, from the
middle of the slit. By this condition

M2=dsin 0= dxy/D, (42)
assuming D >> d. Thus the amplitude decays from its max-
imum at 6 = 0 to zero at x, = AD/2d. A more sophisticated
analysis* shows that the amplitude varies as
(sin §)/{, where {=2mdx/AD, (43)
which is shown in Fig. 2.5-18 (bottom). This function has
a central lobe of width 2x, and a series of decreasing side lobes.
The slit illustrates general properties of diffraction, because
diffraction around an obstacle is in many ways similar. An
important point is that diffraction depends on the wavelength,
so longer wavelengths have broader lobes and thus are more

3 Interference and diffraction are terms for closely related wave phenomena between

which there is no sharp distinction. Effects involving a few sources are typically called
interference, whereas those involving many sources are often called diffraction.

4 This analysis uses Fourier transforms, and so yields the (sin {)/{ function that
commonly appears in Fourier analysis, as we will see in Section 6.3.
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Fig. 2.5-18 Top: Use of Huygens’ sources to describe waves diffracting at
a slit. Energy diffracts around the corners to reach areas with no geometric
ray paths leading to them. (Klein and Furtak, 1986. Copyright © 1986.
Reprinted by permission of John Wiley & Sons, Inc.) Middle: Geometry
for the analysis of diffraction by a slit of width d, observed at a distance D.
Bottom: The (sin {)/¢ function describing the amplitude of the diffracted
wave, showing the central lobe and side lobes.

affected by diffraction. For example, we can hear around open
doorways but not see around them, because sound has a wave-
length of about 0.1 m, compared to 10~ m for visible light.
Similarly, seismic waves that diffract around the core lose their
high-frequency components. Hence the longer the wavelength,
the poorer an approximation geometric ray theory becomes.

Specifically, the diffraction depends on the ratio of the wave-
length to the slit width. If the slit is less than a half wavelength
wide, the side lobes vanish. Hence, if an obstacle is less than
half a wavelength wide, waves impinging on it are insensitive to
the details of its structure. Conversely, if the slit is very wide
compared to the wavelength, diffraction occurs only at the slit’s
edges. Thus, for example, seismic reflection images show waves
that diffracted around the ends of interfaces (Section 3.3.7).

Similar effects occur when wave fronts encounter a circular
(or spherical) obstacle (Fig. 2.5-19a). Geometric ray theory
predicts that no energy will arrive behind the obstacle, so a hole
in the wave front will develop and never close. In reality, the
wave diffracts around the sphere, closing the gap behind it. The
successive wave fronts illustrate why it is difficult to seismically
observe an obstacle or a low-velocity zone. As the wave fronts
continue after passing the sphere, the break in the wave front
fills in with energy from either side until at large distances the
delay from the obstacle is no longer observable. This process,
called waveform annealing, also occurs if the obstacle has a
lower velocity (Fig. 2.5-19b), so much of the energy arriving
behind the obstacle diffracts around the obstacle rather than
passing slowly through it. This effect can also be interpreted
using Fermat’s principle, because the resulting wave is that
which traveled for the least time.

This example illustrates one possible reason why it has
proved very difficult to seismologically observe plumes, up-
wellings from deep in the mantle that have been proposed
to give rise to island chains like Hawaii. A seismic wave
front encountering a narrow conduit of hot, slow rock
diffracts around it, causing little travel time delay. By contrast,
anomalously fast rock is easy to “see” seismologically. Hence
seismology is very good at detecting subducting lithosphere at
trenches (Section 5.4), because the cold material has a higher
seismic velocity. This effect is illustrated by Fig. 2.5-19¢, which
shows a spherical anomaly faster than the surrounding
material. By Fermat’s principle, the anomaly is the fastest path
between a source and a receiver. From the Huygens’ principle
view, the wave front moves further ahead through the fast
material, and then spreads out laterally, advancing the rest of
the wave front. The waves thus lose their planar appearance
and appear to have emanated from a point source.

These analyses show that Huygens’ principle describes the
general features of diffraction. However, it does not provide
direct information about amplitudes. For instance, although
the wave fronts in Fig. 2.5-19 lose amplitude as they diffract
around the sphere, this decay cannot be obtained from
Huygens’ principle. To go further requires an extension of
Huygens’ principle known as the Kirchhoff integral, which is
beyond our scope.
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b. Spherical slow anomaly ¢. Spherical fast anomaly

Fig. 2.5-19 Waves interacting with a

spherical anomaly. a: A straight wave front

diffracts around a circular or spherical

obstacle, as described by Huygens’ principle.

Only the leading wave front is shown. This

formulation shows the locations of the wave

fronts, but not their amplitudes. b: Plane

waves interacting with a low-velocity

anomaly 30% slower than the surrounding

material. The waves slow within the

anomaly and diffract around it. After passing

the obstacle, the wave front shows little

perturbation, illustrating the difficulty

of seismically observing low-velocity

anomalies. c: Plane waves interacting with an \

anomaly 50% faster than the surrounding

material. The overall speed of the wave field

increases, demonstrating that seismically fast

anomalies are easy to observe.

2.6 Plane wave reflection and
transmission coefficients

2.6.1 Introduction

Seismic waves propagating in the earth encounter several types
of interface (Fig. 2.6-1) at which physical properties change
over short distances. For example, the earth’s surface is a free
surface, and the sea floor is a liquid—solid interface. Variations
in velocity and density cause solid—solid interfaces such as the
Mohorovi¢i¢ discontinuity, or Moho, separating the crust and
the mantle (Section 3.2). The upper and lower mantles are
divided by regions of rapid velocity changes (Section 3.5),
which can be described for many purposes as solid-solid inter-
faces. The core-mantle boundary is an interface between the
solid mantle and fluid outer core, and the base of the outer core
is an interface with the solid inner core. Nearly all our know-
ledge of these interfaces comes from observing their effects
on seismic wave propagation.

In the last section we derived Snell’s law, relating the bend-
ing of waves at an interface to the velocity contrast across it.
We now discuss the amplitudes of the reflected and transmitted
waves. We first consider two simple cases, SH waves at a
boundary and P-SV waves at a free surface, and then outline
how the same approach is applied for P-SV waves at an inter-
face between solids. It turns out that although the angles of
reflection and transmission, and hence the ray paths and travel
times, depend only on the velocities, the amplitudes depend on
the elastic constants in a more complicated way. As a result,
the amplitudes of waves provide information beyond that
conveyed by travel times, and so are valuable for studying the
earth’s interior.

Continent

Upper mantle

Transition zone

Lower
mantle

solid-solid

........ solid-liquid

Fig. 2.6-1 Tllustration (not to scale) of some of the interfaces within the
earth that affect seismic waves.
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Fig. 2.6-2 Geometry for an SH wave in medium 1 incident on a solid-solid
interface with medium 2. B;, B, and B’ are the amplitudes of the incident,
reflected, and transmitted SH waves. The displacement is in the y direction.

2.6.2 SHwave reflection and transmission coefficients

We first consider the amplitudes of SH waves reflected and
transmitted at a horizontal interface. Figure 2.6-2 illustrates
the geometry of an SH wave propagating in the x—z plane incid-
ent on a boundary in the x—y plane between media with shear
velocities, rigidities, and densities 3, i;, and p;. For SH waves,
the only nonzero component of displacement, u, satisfies the
wave equation (Eqn 2.5.12), so we write the displacements for
harmonic plane waves on either side of the boundary. Because
z is defined positive downward, exponentials with -k, 752
represent downgoing waves in medium 7, and those with
+erﬁ,~z represent upgoing waves. In medium 1 (z < 0) thereis a
downgoing incident wave with amplitude B, and an upgoing
reflected wave with amplitude B,,

u(x, 2, 1) = By exp (i(wt - k,x— erﬁlz) )
+B, exp (i(cot—kxx+erﬁlz)). (1)

In medium 2 (z > 0) there is only a transmitted wave with
amplitude B,

u;(x, 2, 1) =B exp (i(a)t—kxx—erﬁzz)). (2)

To find the amplitudes, we use the solid-solid interface con-
ditions (Section 2.3.10) that the displacement and traction are
continuous on the boundary z=0 for all x and . The continuity
of displacement requires that

u,(x,0,1)= u; (x,0,12)

(B;+B,) exp (i{wt -k, x)) =B exp (i(wt—k,x)). (3)

When deriving Snell’s law, we found that (@t — k,x) is the same
for all three waves, so we cancel the exponentials and obtain
one condition on the amplitudes,

B,+B,=B. (4)

The other condition comes from the requirement that the
traction vector, T; = oyn;, be continuous. Because the unit
normal vector for the interface is (0, 0, 1), the stress compon-
ents Oy, O,,, O, are continuous. For SH waves #, and u, are
zero, so 0,, = 0, = 0, and 0, is continuous. To use this con-

dition we substitute

ou ou ou
o, =2ue, =pu| —L+—=|=ul 2| 5
ye = 2Hey, = M| = P M, (5)
At points infinitesimally above and below the interface z = 0,
the stress satisfies

0,(x,0,1) =07 (x,0, 1),
ik, 75 (B, — By) exp (i(wt - k,x))
:—,uzierBzB’ exp (i(wt -k, x)). (6)

Canceling the factors common to both sides gives the second
condition

(By~By) = B'{uty75 (41175, 7)

Solving Eqns 4 and 7 simultaneously yields the amplitudes of
the reflected and transmitted waves. First, we eliminate B, and
find the transmission coefficient,

24 8,

D E— (8)
,Ulrﬁ1 + /.Lzrﬂz

B/
Ty=—-=
B,

the ratio of the amplitude of the transmitted wave in medium 2
to that of the incident wave in medium 1. Similarly, eliminating
B’ from Eqns 4 and 7 gives the reflection coefficient

B, s — Ly,
Rpp =2 =—tb—th, (9)
1 Hafp t Holp,

the ratio of the amplitudes of the reflected and incident waves
in medium 1.

The reflection and transmission coefficients depend on the
angle of incidence because, by Eqn 2.5.38

75,= Cx 08 [,/ B;. (10)
Hence, using Eqn 10 and recognizing that from the definition

of the S-wave velocity, y;= p; 7, the reflection and transmission
coefficients can be written

T - 2p, B, cos j
12~ . ]
p1 By cosjy + py B, cos
R, = PPy cosfy — py B,y cosjy (11)

pBy cosjy + p, B, cos, ‘




. Thus the reflection and transmission coefficients depend
on the acoustic impedances p,f3,, as did those for waves on a
string (Section 2.2.3), but with an angle dependence that could
*not occur for a one-dimensional string. If the media are inter-
changed, the reflection coefficient reverses polarity, Ry, =—R,,
and the transmission coefficients satisfy T, + T,; = 2. Due to

the displacement continuity condition (Eqn 3), 1 + Ry, = T,.
Large impedance contrasts favor reflection, whereas small con-
trasts favor transmission. In the limit of identical media there is
no reflection (R, =0), and everything is transmitted (T;, =1).

An interesting effect occurs for an SH wave incident on the
earth’s free surface. Because 8, = 0, the reflection coefficient
equals 1 regardless of the incidence angle, so the displace-
ment is twice that of the upgoing wave. This also occurs at
solid-liquid interfaces, such as the sea floor or the core-mantle
boundary, which act as free surfaces for SH because no SH
waves propagate in the liquid.

The transmission and reflection coefﬁments have a particu-
larly simple form for vertical incidence (j; =7, =0):

2P1,31 , R.= plﬁl - p2ﬁ2 . (12)
piBy+ Py piBy+ P2

12

These vertical incidence forms are easy to remember and are a
useful approximation for nonvertical incidence.

The fact that the transmission and reflection coefficients
depend on the contrast in both density and velocity, whereas
the angles made by the waves depend only on velocity, makes
the amplitudes valuable for studying elastic properties from
seismological observations. Although each medium has three
quantities of interest, f3;, 11;, and p;, only two are independent,
because the velocities depend on the rigidities and densities. For
example, if we regard the velocity and rigidity as independent,
the angles of reflection and transmission give information about
the velocity, and the amplitudes provide additional informa-
tion about the rigidity.

2.6.3 Energy flux for reflected and transmitted SH waves

In some cases the transmission coefficient exceeds 1. For ex-
ample, when an SH wave impinges on a higher-velocity medium
at critical incidence, the transmitted wave becomes horizontal
(j,=90°) and Eqn 11 shows that the transmission coefficient is
2. As for the string (Section 2.2.4), this puzzling effect can be
explained by examining how the incident wave energy divides
between the reflected and transmitted waves.

We saw (Section 2.4.5) that the flux of energy per unit wave
front in the propagation direction associated with a harmonic
SH plane wave u(x, t) = A cos (ot — kx) is the product of the
energy density and the velocity

E=A%0?ppI2. (13)

Because no energy accumulates at an interface, the flux of
energy in the length of wave front incident on an element dx of
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Fig. 2.6-3 The lengths of the incident, reflected, and transmitted wave
fronts contributing to the energy flux though an element dx of an interface
depend on the cosine of the angle of incidence for each wave.

the interface equals that of the reflected and transmitted waves
removing energy from the interface. The length of the wave
fronts contributing to the flux depends on the angles of incid-
ence. Figure 2.6-3 shows that the relevant lengths are cos j,dx
for the incident and reflected waves, and cos j,dx for the trans-
mitted wave. Thus, for an incident wave of unit amplitude, the
energy fluxes for the incident, reflected, and transmitted waves
are

E;= w?p, B, cos jydx/2
Ep=R%,0%p, B, cos j,dx/2
E;=T3,0%p, B, cos j,dx/2. (14)

These satisfy the conservation of energy
E,=E;+E, (15)

as proved in one of this chapter’s problems. The ratios of the
transmitted and reflected energy fluxes to the incident energy
flux are

ET T?_ pZﬁZCOSjZ (16)

—R =R} and =T% 2
P, By cos

T E,
Because the energy ratios are proportional to the squares of
the amplitudes, small amplitudes represent very small energies.
For example, a reflected wave with R, = 0.1 has an energy
ratio of E/E;=0.01.

To see the angle dependence, consider an interface between
media with B, =3.9 km/s, p,; =2.8 g/cm®, and §,=4.5 km/s, p,
=3.3 g/cm?, which approximates the continental Mohorovi¢i¢
discontinuity. Figure 2.6-4 shows the reflection and transmis-
sion coefficients and the ratio of energy fluxes for angles of incid-
ence between vertical and critical (58°). The energy flux ratios
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Fig. 2.6-4 For an SH wave incident on a solid—solid boundary,
displacement reflection and transmission coefficients and the ratios of
reflected and transmitted energy fluxes to that of the incident wave are
given as functions of the angle of incidence of the incident wave. The
critical angle for these values is 58°.

sum to one, so, as the reflected energy increases, the transmitted
energy decreases.

At vertical incidence and for most of the range of incidence
angles less than the critical angle, most of the energy is trans-
mitted. In this range, the vertical incidence reflection and
transmission coefficients and energy flux ratios are good ap-
proximations for nonvertical incidence. The behavior near the
critical angle illustrates the value of considering the energies as
well as the reflection and transmission coefficients. As the angle
of incidence approaches the critical value, the transmission
coefficient goes to 2, but the wave front factor cos j, goes to
zero, so the energy in the transmitted wave vanishes and all of
the energy reflects.!

2.6.4 Postcritical SH waves

The transmitted and reflected waves behave differently for
angles of incidence greater than the critical angle. Snell’s law,

¢, =PBy/sin j; = B,/sin f,, (17)

shows that for incidence angles less than the critical angle, the
apparent velocity exceeds the velocity of the second medium,
B,. At critical incidence, sinj, = 1, so the apparent velocity
equals f,. For incidence angles greater than the critical angle,
sin j; > sin j_, so the apparent velocity ¢, = f;/sin j, is less than
Bifsinj,.=f,.

! The wave angles and amplitudes can be shown by a simple experiment using

beams of light (Klosko et al., 2000).

St o WAVAVAV e _

To see the effect on the transmitted wave of an apparent
velocity less than that of medium 2, recall that the transmitted
wave (Eqn 2) is described by

u;(x, z,t)=B"exp (i(wt—k x - erﬂzz)). (18)
If ¢, < B,, the quantity (Eqn 2.5.8)
rﬁzz(ci/ﬁ%— 1)12 (19)

becomes an imaginary number. As a result, k.75 , the z com-
ponent of the wavenumber, also becomes imaginary, so Eqn 18
no longer describes a plane wave propagating in the +z direc-
tion. The square root, which describes the imaginary number,
has two possible signs. We pick the negative sign and define

15, ==ith, 15,=(1-c2P"* (20)
so that the z term in the displacement,
exp (~ik,75,2) =exp (—k,7},2), (21)

decays exponentially away from the interface in medium 2 as
z —> 0. Thus, instead of being a propagating wave, the trans-
mitted wave becomes an evanescent or inhomogeneous wave
“trapped” near the interface. Choosing the negative sign in
Eqn 20 is a radiation boundary condition, because the opposite
choice gives displacement increasing with depth as z — o, as if
energy originated there.

The behavior of the reflected wave for postcritical incidence
results from the fact that the reflection coefficient (Eqn 9)
becomes a complex number. Using Eqn 20 shows that

_ ﬂlrﬁl + ’.”27732

— (22)
Myt — i,

12

This a complex number divided by its conjugate, so the mag-
nitude of the reflection coefficient is 1, but there is a phase shift
of 2¢:

) r:?
Ry=e?, &=rtan1 20 (23)
a7,

The phase shift depends on the angle of incidence. At critical
incidence, ¢, = f5,,s0 7 =0 and £=0°. As the angle of incidence
increases beyond critical, € increases until grazing incidence,
71 = 90°, where ¢, = f3;, 15, = 0, and e=90°. A 90° phase shift
turns a sine wave into a cosine wave, and vice versa, whereas a
180° phase shift is multiplication by —1. If the incident wave is
made up of different frequencies, the phase shift affects each
frequency, so the reflected wave can be computed using the
Fourier transform. Figure 2.6-5 illustrates how the reflected
wave would appear due to different phase shifts.
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Fig. 2.6-5 The effect of phase shifts on a seismic waveform shown in the
upper trace. (Choy and Richards, 1975. © Seismological Society of
America. All rights reserved.)

2.6.5 P-SVwaves at a free surface

Determining the amplitudes of reflected and transmitted waves
is more complicated for the P-SV system because waves con-
vert from one type to the other. To illustrate this, we consider
the simple case when a harmonic plane P wave incident on a
free surface generates two reflected waves, one P and one SV
(Fig. 2.6-6). To determine their amplitudes, we use potentials
for both P and SV, in contrast to the SH case, where we used
the displacements directly, and find solutions that satisfy the
free surface boundary conditions.

There are two scalar potential terms, one for the upgoing
incident P wave and one for the downgoing reflected P wave,

Oylx, 2, ) + Pg(x, 2, 1) = Ay exp (i(wt— kx+k,r,2))
+A, exp (i(ot—k,x—k,1,2)). (24)

The downgoing reflected SV wave with amplitude B, is de-
scribed by a vector potential with y component

Wp(x,2,t) =B, exp (i(a)t—-kxx—erﬂz)). (25)

Using Eqn 2.5.5, the two nonzero components of the displace-
ment are given by a combination of the P and SV potentials

= ., 30,V (26)
dx Oz dz ox
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Halfspace

Ay

Fig. 2.6-6 Geometry for a P wave in a halfspace incident upon a free
surface. A, A,, and B, are the amplitudes of the incident P, reflected P,
and reflected SV waves.

At the free surface, the traction vector, and hence the stress
COMPONENts Oy, O,,, Oy, MUSt be zero for all x and ¢. o,
automatically zero for P-SV waves in this geometry. Usmg
Eqn 26, we express the other two stress components in terms of

the potentials

du, ou % oy v
o, =2 =pul—2+—=|=pul2 t—
x = “Hx ,u{ 0z ox } L{ o0xdz ox*  9z*
9% 9% 32¢
=0 +2 =A +2 27
“ Hez (ax2 022 ] ”[az Bxaz @7)

We then substitute the wave potentials from Eqns 24 and 25
into Eqn 27 and evaluate them at z=0:

0,(x,0,t)=0
=p2r, (A —Ay) + (rf;~
0,,(x,0,8)=0
= (A1 +72)(A, +Ay) +20(r2(A, + A,)
+rﬂB2)]kx exp (i{wt—k, x)). (28)

1)B,]k2exp (i(wt -k, x))

Regrouping terms shows that the ratios of the amplitudes of
the reflected P and SV waves to that of the incident P wave can
be found by solving the two equations

A B
2r 22 4 (1~ r2) 2 =2r,, (29)
[3 A1 B Al a
A B,
A+2)(1 +72) —2u) =2 +2urg—2%
[(A+2u)(1+7g) - u]Al uﬁA
—(A+2u)(1+72). (30)
Because (1 + r2) = (c2/a?) = c2p/(A+ 24), the last equation can
be simplified to
A,
(czp -2W—*= +2wBA =2u—-cip (31)

1

Solving Eqns 29 and 31 using (1+7§) = (c2/8?)
amplitude ratios

=c2plugivesthe
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Ay Ayt = (r = 1?
A drg + (g 172
B,  4,-1)

Ay A+ (rg =12

These can be written in many forms, including

A, Ap*ngng — (g - p*?

-—-2— =

A ApPnng + (g - p2)*

R, =% 4np® 1) (33)
Ay ApPnng + (mf - p?)?

Ry, =

The last form has the advantage that at vertical incidence the
vertical slownesses are 17, = 1/cc and ng = 1/, whereas r,, and
rpare infinite (Eqn 2.5.36).

These amplitude ratios are the reflection coefficients for the
P and SV potentials. In general, both reflected P and SV result.
At vertical incidence the ray parameter p is zero, and Eqn 33
shows two interesting features. First, none of the incident P
wave converts to reflected SV energy (B, = 0). Second, the
reflected P wave is inverted because A,/A; = —1. These effects
also occur at grazing incidence, = 90°, because 1,,is zero.

The ratios of the displacement for the incident P and re-
flected P and SV waves can be found from the potentials using
Eqn 26:

Incident P: (Mx, uz)p1= ("ikx: iera) ¢I
Reflected P:
Reflected SV:

(ux’ MZ)I’R = (—ikx’ _iertx) ¢R

(thyy ;)5 = (1R, 3, i) Wi (34)

Because the displacements are real numbers, they can be found
by taking the real part of the complex expressions or by adding
the complex conjugates.

Using these expressions, the amplitude of any component of
the displacement can be found from the potential reflection and
transmission coefficients. Thus the ratio of the displacements
can differ by either a sign or a scale factor from the potential
reflection and transmission coefficients. To see this, consider
the ratios of the magnitudes of the displacements. Because the
components of the wave vectors for P and SV waves satisfy

ko= R+ (k)12 = 0la,  kg=[k2+ (k1= wif,  (35)

the ratio of the magnitudes of the displacements for the
reflected and incident P waves is

|#lpr _ kol®r] _ |A2|’ (36)
[#lpr  kolor] A

and the ratio of the magnitudes of the reflected SV and incident
P displacements is

Fig. 2.6-7 The length of the incident and reflected wave fronts
contributing to the energy flux at an element dx of a free surface
depends on the cosine of the angle of incidence for each wave.

[#lsg _ kel Wl _9B|

. (37)
luler ko] BIA]

We can gain further insight by considering how the incident
wave’s energy is partitioned between the two reflected waves.
From Eqn 2.4.65, a harmonic plane P wave has an energy flux
in the propagation direction

E=A%0*kipal2, (38)

and a similar result applies for an SV wave. The lengths of wave
fronts contributing to the flux at an element dx of the free
surface (Fig. 2.6-7) are cos i dx for the P waves and cos j dx for
the S wave. Thus the energy fluxes for the incident, reflected P,
and reflected SV waves are

Ep = At0?k2pocos i dx/2

Byp=A2w?k2poicos i dx/2
Egr = Bjo?kjpp cos j dx/2, (39)

so the ratios of the reflected energy fluxes to the incident energy
flux are

. 2. 2 ) 2
Ep; A Ep, A, ] Bcosi A ),

Because energy does not accumulate at the free surface, these
ratios always sum to 1.

Figure 2.6-8 shows an example of reflection coefficients and
energy flux ratios as a function of the angle of incidence of the
incoming P wave. Although there is no reflected SV wave at
the limits, vertical and grazing incidence, there is a wide range
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Fig. 2.6-8 For a Pwave incident on a free surface, potential reflection and
transmission coefficients and the ratios of reflected and transmitted energy
fluxes to that of the incident wave are shown as functions of the angle of
incidence of the incident P wave.

P —--5

a3 B2 P

Fig. 2.6-9 Geometry for a P wave incident on a solid-solid interface. A,
A,, By, A, and B’ are the amplitudes of the incident P wave, the reflected P
and SV waves, and the transmitted P and SV waves.

of angles over which most of the energy reflects as SV. At two
angles, the incident P wave converts entirely to SV.

2.6.6 Solid-solid and solid-liquid interfaces

The approach we used for P~SV waves at a free surface can be
extended to a solid-solid interface. Consider the usual geo-
metry (Fig. 2.6-9) in which P-SV waves propagating in the x—z
plane interact with a horizontal interface at z = 0. An incident
wave generates two reflected waves and two transmitted waves.
The four ratios of the amplitudes of the reflected P and SV and
transmitted P and SV waves to that of the incident wave are
found from the boundary conditions. There are four equations
because the x and z components of the displacement and trac-
tion are continuous at the interface. The resulting solutions are
complicated and are not given here. Instead, we consider some
general principles and examples.
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Fig. 2.6-10 Directions of propagation (solid line) and displacement
amplitudes (dashes) for vertically incident, reflected, and transmitted
P waves at a solid—solid interface.

The solutions are simple for vertical incidence. For a vertic-
ally incident P wave, no SV waves are generated. The displace-
ment is only in the z direction, and the ratio of the displacement
of the transmitted P wave to that of the incident wave is

Wy o, - 2P% (41)
(1), P10y + Pr0hy

The corresponding ratio for the reflected P wave is

(uz)R - R12 - P10y — Py ; (42)

(o), P10y T POy

These ratios, the vertical incidence transmission and reflection
coefficients for displacements, satisfy 1+ Ry, = Ty,, as required
by continuity of displacements. As for the SH case (Section
2.6.2), the vertical incidence transmission and reflection coeffi-
cients depend only on the acoustic impedances. For the incident
SV case, no P waves are generated, and the ratios of the dis-
placement component %, have the same form, but in terms of
the shear velocity .

Figure 2.6-10 illustrates an intriguing effect that occurs for a
P wave vertically incident on an interface where p, & > p, 0, 50
Ry, is positive. If the incident P wave is a pulse in the +z direc-
tion of propagation with unit amplitude, then the reflected P
wave is a pulse with amplitude R, in the +z direction. Hence
the motion in the incident wave is in its direction of propagation
(+z), whereas the motion in the reflected wave is opposite to
its direction of propagation (-z). Often the motion in a P wave
is called compressional if it is in the direction of propagation,
and dilatational if it is opposite the direction of propagation.
Thus an incident P wave with a compressional motion yields
a reflection with dilatational motion. Sometimes the positive
amplitude of motion for a P wave is defined to be in the
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propagation direction, so the reflection coefficient is defined
with the opposite sign from Eqn 42.

The amplitudes of the reflected and transmitted waves vary
with the angle of incidence, as we illustrate by considering how
the energy is partitioned between the four waves. Figure 2.6-11
shows an example for velocities and densities approximating
the continental Mohorovi¢i¢ discontinuity. Ray paths and
energy flux ratios for P and SV waves incident from above
and below are plotted. The four ratios are between 0 and 1, and
sum to 1 because energy is conserved.

Angle of incidence (°)

incident from above and below.

For a P wave vertically incident from above, the impedances
poy = 19.0, p,or, = 26.4, yield reflection and transmission
coefficients Ry, =—0.16, T, =0.84, and energy flux ratios of

=T, Py% _
Py

F E
E—R =R% =0.03, L= 0.97. (43)
E, E,

These ratios are a good approximation for angles of incidence
less than the critical angle sin™! (/) = 58° because almost

all the energy is transmitted as P. However, as the angle of




incidence approaches the critical value, the transmitted P
energy goes to zero, and most of the energy reflects as P. For
most postcritical incidence angles, up to ~10% of the energy
converts to SV, of which approximately half reflects and half is

transmitted. In the limit of grazing incidence, however, all the
energy is in the reflected P wave.

For a P wave incident from below, the situation is similar
except that there is no critical angle behavior. For vertical incid-
ence, the reflection and transmission coefficients are R, =0.16,
T,, = 1.16, and the energy flux ratios are the same as before,
because

R2, =003, “r_72P% _¢97 (44)
T =A T UUS =1y =77
T E; P&,

At high angles of incidence, >70°, the energy is increasingly in
the reflected P wave.

The behavior of an § wave incident from above is analogous
to that for a P wave incident from above. For this example,
the S wave impedances are p; f; = 10.9, p, B, = 15.2, and the
vertical incidence reflection and transmission coefficients are
the same as for P waves. Hence at vertical incidence, almost all
the energy is transmitted as S, a little reflects as S, and none
converts to P. For near-vertical incidence, < ~20°, this pattern
changes slowly. At shallower angles of incidence, however, the
situation is more interesting, because there are three critical
angles. Approaching the critical angle for the transmitted P
wave, sin™! (B,/a,) = 29°, the transmitted P energy increases
somewhat. Beyond this angle there is no transmitted P wave,
but the reflected P wave behaves in a similar way because it
vanishes for sin™ (B, /) = 35°. For larger angles of incidence,
only the reflected and transmitted S waves exist, and the energy
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in the transmitted S wave falls off to zero at the critical angle
sin™! (B,/B,) = 58°. Beyond this angle, the incident S wave
undergoes total internal reflection.

The final case, an S wave incident from below, is analogous
to that for a P wave incident from below. At vertical incidence
almost all the energy is transmitted as S, a little is reflected as S,
and none converts to P. There is a small reflected P wave near
its critical angle, sin”? (8,/c,) = 35°. More noticeably, the
transmitted P wave is enhanced near the critical angle for the
S-to-P conversion, sin™! (,/;) =42°. At higher angles of incid-
ence, the transmitted S wave decreases as the reflected S wave
increases.

This example bears out the complexity of interactions at a
solid-solid interface. The detailed behavior depends on the four
velocities and two densities. A useful approximation is that for
media with similar impedances, most of the energy goes into
the transmitted wave of the same type (P or S) as the incident
wave. This makes sense, because if the materials were identical,
all the energy would be transmitted. For a wave incident from
a lower-velocity medium, this is approximately the case for
angles of incidence less than the critical angle for those two
waves. For a wave incident from the higher-velocity medium,
most of the energy is transmitted in the same type of wave until
near-grazing incidence. Because the incident wave is not ser-
iously affected by small impedance changes, waves propagat-
ing through the earth change direction continuously according
to Snell’s law, but change amplitude significantly only at inter-
faces where the impedance contrasts are large. If this were not
the case, we would not see distinct arrivals.

The approach used for the reflection and transmission coeffici-
ents at a solid—solid interface can be extended to a solid-liquid
interface. Because there are no shear waves in the liquid, there
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Fig. 2.6-12 Ray paths and energy flux ratios for an interface between the ocean, with o = 1.5 km/s, B; =0.0 km/s, p; =1.0 g/cm?, and an underlying crust
with o, = 5.0 km/s, B, =3.0 km/s, p, =3.0 g/cmd. Three cases, P waves incident from above and P and SV waves incident from below, are shown.
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Fig. 2.6-13 Schematic illustration of a marine seismic experiment, in
which a P wave generated in the water converts to P and § in the crust. The
upgoing crustal S waves partially reconvert to P at the sea floor. Although
no S waves travel through the water, the experiment can determine the
S-wave properties of the crust. Not all reflected and transmitted waves

are shown.

are three amplitude ratios. Similarly, because the fluid’s shear
velocity and rigidity are zero, there are three boundary con-
ditions at the interface: continuity of vertical displacement and
traction, and vanishing of the shear traction in the solid.

Figure 2.6-12 shows the three possible cases at the sea floor:
P waves incident from above and P and SV waves incident from
below. Because the impedance contrast at the sea floor is much
greater than in the Mohorovi¢i¢ discontinuity example, the
relative amplitudes of the reflected and transmitted waves are
quite different from those in Fig. 2.6-11. First, consider a P
wave incident from above. At vertical incidence, R, =~0.82,
T,, = 0.18, so two-thirds of the incident energy reflects and
only one-third is transmitted. As the angle of incidence increases,
the fraction of reflected energy remains approximately the
same, but the transmitted S wave grows at the expense of trans-
mitted P. The first critical angle behavior occurs for transmit-
ted P near sin”! (¢/0,) = 17°. Beyond this angle, a significant
transmitted S wave exists until the critical angle for the P-to-S
conversion, sin™! (e;/B,) = 30°. For larger angles of incidence,
the incident P wave is totally reflected.

Comparison of this case with that of the P wave incident
from above in the Moho example (Fig. 2.6-11) shows several
differences. In both examples P waves impinge on a medium
of higher velocity. Because the sea floor impedance contrast is
much greater, most of the energy reflects at vertical incidence,
and this situation persists for all angles of incidence. By con-
trast, for the Moho example, most of the energy is transmitted
until the critical angle. The critical angle for transmitted P
occurs for much steeper incidence at the sea floor because the P-
velocity contrast is much greater. The transmitted S behavior
is very different in the two examples: ¢t; > 3, for the Moho,
so there is no critical angle for transmitted S. By contrast, at
the sea floor a significant portion of the incident energy is
converted and transmitted for angles less than the critical angle
for transmitted S.

The results for waves incident from below also differ signi-
ficantly between the two examples. A P wave incident on the
sea floor from below is primarily reflected downward, largely
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Fig. 2.6-14 Schematic illustration of a seismic reflection experiment,

in which vertically incident waves reflect from a region with a variable
velocity structure. The vertical ray paths are offset for clarity. The
media have o, =2.6 km/s, p; =2.5 glem?, o, = 1.7 km/s, p, = 2.0 g/em?,
oy =2.2 km/s, p;=2.2 glem®, 0, =2.3 km/s, p, =2.3 g/cm®. Impulse
seismograms showing the arrivals resulting from an incident P-wave
pulse of unit amplitude are plotted with time increasing downward.

The resulting arrivals have amplitudes R, =0.3, T{,R,;T,; =-0.2,
T,3T53R34T5, Ty, =—0.02, and are separated by the time required to
traverse the layers. The corresponding reflection from a point to one side
of the region has amplitude R, =0.1. (After Dobrin, 1976.)

as a P wave for angles less than ~20°, and largely as an S wave
for angles greater than ~30°. Less than one-third of the energy
is ever transmitted. By contrast, for the Moho example, almost
all the incident P energy is transmitted until near-grazing incid-
ence. For an S wave incident from below, all the energy reflects
as S at vertical incidence, because there is no transmitted S in
the water. At low angles of incidence, the fraction of reflected P
increases until near the critical angle sin™! (8,/a,) = 37°. For
most angles of incidence, a significant portion of the incident
upgoing S wave is converted to upgoing P and transmitted.
This strong converted transmission does not occur in the Moho
example.

The facts that P waves incident from the water give rise to
significant S waves in the crust and that S waves incident from
the crust yield substantial transmitted P waves in the water
have important consequences for marine seismology. Seismic
sources in the water can generate transmitted S waves in the
crust, whose propagation can be studied using P waves re-
converted at the sea floor from upcoming S waves. Thus the
oceanic crust and upper mantle can be studied with both P
waves and S waves, using sources that generate only P waves
and receivers that detect only P waves (Fig. 2.6-13).




2.6.7 Examples

Using the amplitudes of reflected, converted, and transmitted
~ waves to study interfaces is common in seismology, as we illus-
trate with two examples. In reflection seismology, P waves gen-
erated by near-surface sources and reflected from interfaces at
depth are used to study the crust and uppermost mantle. We
will see in the next chapter that the downgoing waves impinge
‘on the reflectors at steep angles of incidence, and the data
are often processed to simulate vertical incidence. Because the
impedance contrasts are small, it is common to neglect P-to-$
conversions and estimate the amplitudes of the reflected and
transmitted P waves using vertical incidence reflection and
‘transmission coefficients. The reflection and transmission coef-
ficients inferred from seismic data are combined with the travel
times to yield information about the subsurface geology.

Consider (Fig. 2.6-14) a hypothetical region where natural
gas, oil, and saltwater are trapped in the pores of a sand unit.
To describe the response of this region to a P wave impulse of
unit amplitude, we consider only the first, or primary, reflec-
tion from each layer, because subsequent multiple reflections
would be smaller. The resulting arrivals have amplitudes R,
Ty,Ry3Tyy, and T, T,3R3,T5,T,y, and are separated by the
time required to traverse the layers. By contrast, the corres-
ponding reflection from a point to one side of the region would
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have amplitude R,,. The lateral variation in impedance con-
trasts causes a significant difference in the amplitude of the
reflected waves.

For a second example, consider the downgoing slab of
lithosphere at a subduction zone. As discussed in Chapter S,
the slab is colder than the surrounding mantle, and hence has
higher seismic velocity. Seismic waves propagating in several
geometries (Fig. 2.6-15) are used to study the upper surface of
the slab. In one, Sc§, an § wave reflected at the core—mantle
boundary, is partially converted to a P wave, ScSp, at the slab
surface. The ray paths can be found by using Snell’s law at
the dipping interface. Assume that the downgoing slab and
overlying mantle have velocities ¢, B; and oy, B, and the slab
dips at angle 6. A vertically traveling S¢S wave impinges on
the interface at an angle 7, = 6, so the angles of incidence for
transmitted ScS and ScSp are j, = sin”! [(B,/B;) sinj;] and
iy = sin™ [(o/B;) sinj;]. The amplitude of ScSp is enhanced
because the Sc§ incidence angle is close to the critical angle
for the conversion. ScSp travels faster than ScS and appears
at seismometers primarily on the vertical component, whereas
ScS$ arrives later and is primarily on the horizontal compon-
ent. Additional information is obtained from P waves that
reflect off the interface and appear at seismometers above
the subduction zone later and with higher apparent velocity
(steeper incidence) than the direct arrival. The travel times and
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Fig. 2.6-15 Study of a subducting slab
using seismic waves reflected and converted
at its upper surface. Top: Ray paths for the

conversion of upcoming S¢S to ScSp and the
reflection of P waves. (Helffrich ez al., 1989.
J. Geophys. Res., 94,753-63, copyright by
the American Geophysical Union.) Lower
left: Application of Snell’s law at the
dipping interface for the ScS to ScSp
conversion. Lower right: Seismograms
showing ScS and ScSp recorded in
Hokkaido, Japan, for an earthquake in
Honshu, Japan. ScSp arrives on the vertical E
component before ScS appears on the :
horizontal components. (Snoke et al., A
1979.) ScS

.\
Ji* Normal




86 Basic Seismological Theory

A A \IVV\—-—-\—-"-"\/\/\/\N S

T | T T |
o Rayleigh R

o

X 10+4
1

Love

Saitt

0 A

-10 — Transverse —

x 10+4

L T | T T T T I T | T T l T

10 = Rayleigh —

_._5 e I
- Vertical -

x 10+4

=10 = | 1 | ! | 1 l 1 | ! | 1 | ) | -
X 10+2 10 15 20 25 30 35 40 45

Fig. 2.7-1 Three-component seismogram of a magnitude M, 7.7 shallow earthquake in the Vanuatu trench recorded 12,250 km away at station CCM.
Note the large size of the surface waves compared to the preceding body waves. The Love wave is observed on the transverse component, and the Rayleigh

wave is primarily seen on the vertical and radial components.

amplitudes of these waves are used to estimate the depth to the
interface and the velocity contrast there, and hence to draw
inferences about its thermal and mineralogical state.

2.7 Surface waves

2.7.1 Introduction

After our discussions of P and S waves, we might expect that
the seismogram resulting from an earthquake would consist of
pulses when P and S waves arrive, with later arrivals reflected
and converted at interfaces within the earth. Generally, how-
ever, seismograms (Fig. 2.7-1) are dominated by large longer-
period waves that arrive after the P and S waves. These waves
are surface waves whose energy is concentrated near the earth’s
surface. As a result of geometric spreading, their energy spreads
two-dimensionally and decays with distance r from the source
approximately as 7!, whereas the energy of body waves

spreads three-dimensionally and decays approximately as 7

(Section 2.4.3). Thus, at large distances from the source, sur-
face waves are prominent on seismograms,

Two types of surface waves, known as Love waves and
Rayleigh waves after their discoverers,! propagate near the
earth’s surface. Figure 2.7-1 shows a large surface wave train
arriving on a seismometer’s transverse component, followed by
another wave group on the vertical and radial components. We
will see that the first wave train contains Love waves resulting
from SH waves trapped near the surface. The second wave
group contains Rayleigh waves, which are a combination of
P and SV motions. In our usual geometry (Fig. 2.7-2) of waves
propagating in the x—z plane, the Rayleigh wave displacement
is in this plane, and the Love wave displacement is parallel to

the y axis. In this section, we examine the simplest cases of
! Lord Rayleigh (1842-1919), best known among seismologists for pioneering
work in wave propagation, was awarded the Nobel prize for the discovery of argon.
A. E. H. Love (1863-1940) made fundamental contributions to both seismology and
geodynamics.
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Fig. 2.7-2 Geometry for surface waves propagating in a vertical plane
containing the source and receiver. Rayleigh (P-SV) waves appear on the
vertical and radial components. Love (SH) waves appear on the transverse
component.
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Fig. 2.7-3 Multiple surface waves circle the earth. Right: Odd-numbered
arrivals (Ry, R, etc.) take the shortest path from the earthquake to the
station, whereas even-numbered arrivals (R, R, etc.) travel in the
opposite direction. Left: Travel times for multiple Rayleigh (R,,) and
Love waves (G,,).

Rayleigh and Love waves, and use them to demonstrate some
general ideas about surface waves.

An interesting difference between surface and body waves,
due to their different rates of decay, is that surface waves can
circle the globe many times after a large earthquake. Figure 2.7-
3 shows such multiple surface waves, which are denoted as
Rayleigh waves (R,) and Love waves (G,,). The travel time plot
(Fig. 2.7-3, left) illustrates the increasing time required for
successive paths, indexed by #, from the earthquake to the
station. An important feature of surface waves is dispersion,
the fact that waves of different periods travel at different
velocities. As a result, the surface wave arrivals are not sharp
lines, but are spread out in time. These effects are shown in Fig.
2.7-4 (overleaf) by a record section composed of many vertical
component seismograms at different distances from earth-
quakes, which yields an observed travel time plot. The data show
the arrivals of R;, R,, R3, and R,, and a comparable 6-hour
plot for the transverse component would show G, through G.

w—wvvwvxj\/\/\w
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2.7.2 Rayleigh waves in a homogeneous halfspace

Rayleigh waves are a combination of P and SV waves that can
exist at the top of a homogeneous halfspace. To describe them,
we define the free surface as z = 0, measure z downward, and
use potentials for waves propagating in the x—z plane. We
consider only P and SV waves, because they can satisfy the free
surface boundary conditions and do not interact with SH
waves. The P and SV potentials are

p=Aexp (i(wt—k,x—k,1,2)),
v=Bexp (i(wt -k x—k, 7532)). (1)

For a combination of these potentials to describe energy
trapped near the free surface, two conditions must apply. The
solution must both ensure that the energy does not propagate
away from the surface and satisfy the free surface boundary
conditions.

For the energy to be trapped near the surface, the exponen-
tials exp (~ik,7,z) and exp (——ierﬁz) must have negative real
exponents, so that the displacement will decay as z — co. Because

r,=(c2lar=1)12 rﬁ=(c,2€/,82—1)1/2, (2)
this radiation condition requires that ¢, < ff < ¢, so that both
square roots become imaginary, with a choice of sign such that

ra=—i(1=c2/02)\2, pp=—i(1-c2/p?)\2. (3)

o
Thus c,, the apparent velocity along the surface, must be less
than the shear velocity.

The other condition, the vanishing of traction at the free
surface, arose for the P-SV reflection at a free surface (Section
2.6.5). The difference here is that the boundary conditions are
satisfied with no incident wave. Using Eqn 2.6.28 without an
incident wave shows that when the stress components are ex-
pressed in terms of the potentials, the amplitudes A and B must
satisfy the continuity equations

0,,(x,0,0)=0=2r, A+ (1~ r%)B,

0,(x,0,8)=0=[A(L +72) + 2urZ]A +2unB. (4)
Eliminating the Lamé constants from the second equation
using (1 +72) = c2/a? and the definitions of the velocities azand
B gives a system of two homogeneous linear equations for
AandB,

2(c2la? - 1)12A + (2~ c2/B*)B =0,
(c2/B?-2)A+2(c2/p*~1)"*B =0. (5)

This system has nontrivial solutions if the determinant of the
system is zero (Section A.4.4), such that
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For a halfspace with given velocities o and f, this equation
gives the values of ¢, that satisfy the free surface boundary con-
dition. Of the four roots, one is zero, and only one is consistent
with the requirement that 0 < ¢, < . For a Poisson solid, in
which a?/? = 3, the determinant becomes

(c21B2)[cSIBE — 8cHIB* + (56/3)c2/B* - 32/3] = 0. (7)

If we reject the trivial solution c2/B% = 0, the equation is a
cubic in ¢2/f2, with roots 4, 2 + 2//3 (= 3.155) and 2 - 2/4/3
(= 0.845). Only the last root satisfies ¢, < f, the condition for
waves to be trapped at the surface. Thus the apparent velocity
of the Rayleigh wave in a halfspace that is a homogeneous
Poisson solid is ¢, = (2 — 2/4/3)=0.92 B, slightly less than the
shear velocity.

Fig. 2.7-4 Record section formed from
vertical seismograms at stations of the
IDA (International Deployment of
Accelerometers) network. The R, through
R, arrivals are spread out in time due to
dispersion and contain lines of energy

that cross the largest amplitudes at

small angles. As discussed later, the

lines show the phase velocity, and the
overall amplitude pattern shows the group
velocity. Body wave arrivals appear before
and after R,. (Shearer, 1994. Eos, 75, 449,
451,452. Copyright by the American
Geophysical Union.)

Range (°)

The coefficients of the potentials (Eqn 1), which can be found
fromEqn S, are

B=A(2—c;’;/[32)/(2rﬂ) (8)

and can be substituted into the potentials and used to find
the displacements (Eqn 2.6.26). Taking the real parts of the
exponentials and using the numerical values of ¢ /f and ¢ /&
for a Poisson solid gives

u,= Ak, sin (ot -k, x)[exp (-0.85 k, z)
-0.58 exp (-0.39 k,.2)],
u,= Ak, cos (wt—k, x)[-0.85 exp (-0.85 k_2)
+1.47 exp (-0.39 k,2)]. 9)

The displacement can be characterized by its variation in
depth and distance along the surface. Both components are
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_ Fig. 2.7-5 Varijation with depth of the x and z components of
displacement for a Rayleigh wave in a halfspace composed of a Poisson
solid. Both components decay with depth, plotted here normalized by the
horizontal wavelength.

sinusoidal functions of (@ — k,x), and thus harmonic waves
propagating in the +x direction. Because the harmonic wave
solution applies only in the x direction, the meaningful
wavelength is the horizontal wavelength along the surface,
A, =2m/k,. The displacement decays with depth as exp (-&,2)
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(Fig. 2.7-5), so the depth to which a Rayleigh wave has signific-
ant displacement is proportional to its horizontal wavelength.
At the surface, =0, and the displacement components are

u, =042 Ak, sin (ot -k, x),

u,=0.62 Ak, cos (0wt -k x). (10)
To visualize these, consider the motion of a particle of material
at x = 0 as a function of time. At £ =0, #_ is a maximum (2 is
positive downward), and #, = 0. As time increases, the x and 2
displacements combine to give counterclockwise, or “retro-
grade”, motion about an ellipse (Fig. 2.7-6, left). For a Poisson
solid, the maximum vertical displacement at the surface is
about 1.5 times the maximum horizontal displacement. The
particle motion becomes “prograde” below a depth of about a
fifth of the wavelength, because the decaying exponential term
in #, becomes negative.

The phase relation between the horizontal and vertical com-
ponents of Rayleigh wave motion can be seen on seismograms,
as shown in Fig. 2.7-6 (right). When the vertical displacement
is at a negative maximum (e.g., about 785 s), the radial dis-
placement is zero, corresponding to ¢ = 0 in Fig. 2.7-6 (left). A
quarter-period later (e.g., about 790 s) the vertical displacement
is zero, and the radial displacement is at its positive maximum,
corresponding to ¢ = T/4.

Rayleigh waves also exist when the medium is more complic-
ated than a homogeneous halfspace. In this case, rather than
having a single apparent velocity for all frequencies, ¢, is a
function of frequency. We illustrate this idea next using Love
waves.

Direction of wave propagation -~ Rayleigh wave phase relationships: vertical and radial components
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Fig.2.7-6 For a Rayleigh wave, the horizontal (radial) and vertical components of ground motion are out of phase in a characteristic fashion.

Left: Because the components are out of phase, the particle motion at a point on the free surface as a function of time is a retrograde ellipse. The particle
moves opposite the direction of wave propagation at the top of the ellipse. Right: Comparison of the displacement components from seismograms of an
earthquake in the Kuril Islands recorded in Micronesia, showing that one peaks when the other is zero.




90 Basic Seismological Theory

e WM\W

Free surface

B, Py
B2, p2

Wave front

Fig.2.7-7 Layer over a halfspace geometry for Love waves. Love waves
exist if the layer’s shear wave velocity is less than the halfspace velocity.
The waves can be treated as constructive interference between SH waves
incident on the interface beyond the critical angle.

2.7.3 Lovewaves in a layer over a halfspace

A second type of surface wave, a Love wave, results from the
interactions of SH waves. The simplest geometry (Fig. 2.7-7) in
which a Love wave occurs is a layer of thickness » of material
with velocity B;, underlain by a halfspace of material with a
higher velocity f3,. Love waves require a velocity structure that
varies with depth, and so cannot exist in a halfspace, in con-
trast to Rayleigh waves.

To describe the Love waves, we write the SH-wave displace-
ment in the layer as the sum of an upgoing and a downgoing
wave:

1 (x,2,t) =By exp (i(wt—kx~ /exrﬁlz))
+B, exp (i(cot—kxx+erﬁ1z)). (11)

In the halfspace we need only one term:
u’;(x, z,t)=B"exp (i(a)t—kxx—erﬁzz)). (12)

As before, we impose a radiation boundary condition that
ensures that energy not travel into the halfspace as a pro-
pagating wave. Energy will be trapped near the interface
if exp (—ik +7,%) is a negative real exponential that decays as
2 — oo. This condition occurs if the apparent velocity is less
than the shear velocity in the halfspace, c, < B,, so

= (/B3 — 1) 2 =—i(1 - 2B 2 =it . (13)

The amplitudes By, B,, and B’ are found using the boundary
conditions at the free surface and at the interface between the
layer and the halfspace. At the free surface, z = 0, the traction
must be zero for all x and ,

ouy
O‘yz(xn O: t) = ;ul "—a—z_ (x: Oa t)

:ul(ierﬁl)(B2~Bl) exp (i(wt—k,x)) =0, (14)

so B, = B,. At the interface z = b, the displacement must be
continuous for all x and £, so

B,[exp (—ierﬁlb) +exp (i/exrﬁlh)] =B’ exp (—ierﬁzh). (15)

Similarly, the stress component o,, must also be continuous at
the interface for all x and ¢, so

,ul(—ierﬁl)Bl[exp (—-z'erﬁ]h) —exp (i/axrﬂlb)]
= [y (~ik, 75 ) B’ exp (—ik,1g h). (16)

By combining the complex exponentials into sine and cosine
functions (Eqn A.2.10), conditions 15 and 16 can be written

2B, cos (erﬁlh) =B’ exp (—ierﬁzh),
Zi,ulrﬁlBl sin (erﬁlh) = ——uzrﬁzB’ exp (——ierﬁ]h). (17)

Dividing the second condition by the first gives

tan (k,7p,h) = (~Hy 75, Wity 75) = (Ha 73 M R 7). (18)

This equation has a special significance. It gives a relation
between the horizontal wavenumber, k,, and the horizontal
apparent velocity, ¢, that must be satisfied for the Love
wave to exist. Because ¢, = w/k,, this means that, for a given
horizontal apparent velocity, Love waves must have specific
horizontal wavenumbers and thus angular frequencies. Altern-
atively, for a particular period or angular frequency, Love
waves can have only certain horizontal apparent velocities
or wavenumbers. Hence different frequencies have different
apparent velocities, a phenomenon that is called dispersion.
Relations like Eqn 18, which give the apparent velocity, c,,
as a function of w or k_, are called dispersion relations, or
period equations.

Before examining the dispersion relation further, we derive
it in a different way. The apparent velocity condition ¢, < f3,
(Eqn 13) also arose (Section 2.6.4) for SH waves incident on an
interface at angles exceeding the critical angle, sin™ (8,/8,). In
the geometry of Fig. 2.7-7, these waves are totally reflected
both at the interface and at the free surface, and so are trapped
in the layer.

Consider the portion of the ray path ABQ along which a
downgoing wave with incidence angle 7, reflects at the interface
and then at the free surface. If the phase of the wave changes by
an integral multiple of 27, the downgoing wave front normal
to the ray path at Q will be in phase with, and thus interfere
constructively with, the downgoing wave front normal to the
ray path at A. The phase change in going from A to Q consists
of two terms, one due to the reflections and one due to the
propagation. By Eqn 2. 6 23 the postCLitical reflection causes a
phase change of 2 tan™ [y, V/ ], whereas the free sur-
face reflection does not change the pﬁase In addition, because
the wave propagated a distance AB + BQ, the phase changes by
~(AB +BQ)kg . The distance can be written as

AB+BQ =BQ cos 2j, +hlcos j,
= (cos 2j; + 1)(hlcos j;) = 2h cos j;, (19)
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using cos 2/, =cos? j; — 1. The condition for constructive inter-
ference is thus that the total phase change

~2kﬁ1h cosj +2 tan™! [(uzr;'gz)/(,ulrﬂl)] =2nm, (20)
or, because tan (nx) =0,
tan (kﬁlb cos j;) =tan (erﬁlh) = (Uyr ) (1q75,)- (21)

Thus the Love wave dispersion relation that we derived from
the boundary conditions can also be viewed as an interference
criterion for critically reflected SH waves, corresponding to
propagating waves in the layer and an evanescent wave in the
higher-velocity halfspace.

2.7.4 Love wave dispersion

The dispersion relation (Eqn 21) can be written as a function
of any two of the three related parameters ¢, , and k.. To
find solutions, we write it in terms of frequency and apparent
velocity as

11— 2/ 2\1/2
tan [(whlc,)(cH/BE-1)12] = % (22)

Because the tangent function is defined for real values, the
square roots must be real, so the apparent velocity is bounded
by B, <¢, < B,. A graphical solution can be derived by defining a
new variable,

&= (hlc ) (c2Ip3—1)", (23)

so that over the allowable range of the apparent velocity,
{=0atc =p,and &, =h(1/p7 -1/ at ¢, = B,. Hence,
Eqn 23 becomes

tan (&) = [MJ(L] (24)
t N

As shown in Fig. 2.7-8, the left side of the equation, tan (@),
has zeroes at { = nm/w and goes to infinity at { = 7/20, 37/2 0,
etc. The right side of the equation, which has a hyperbolic ap-
pearance because of the 1/ dependence, is infinite for ¢, = f;,
where {=0, and decays monotonically to zero at ¢, = 3,, where
{=¢ .. Solutions exist where the two curves intersect, giving
the values of {and thus ¢, for which a Love wave with a given @
occurs. The solutions are called modes, so that for a given fre-
quency there are several modes, each with a different apparent
velocity. The leftmost solution, with the lowest ¢, is called the
fundamental mode; the others are higher modes, or overtones,
numbered 1 through #.

Figure 2.7-8 illustrates Eqn 24 for three different periods
using a model for the continental crust and mantle of a 40 km-
thick layer with ; = 3.9 km/s and p; = 2.8 g/cm? underlain by
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Fig. 2.7-8 Graphical solution of the dispersion relation for Love waves
in a layer over a halfspace. The left side of Eqn 24 is represented by

the solid curves, tan (@{), with zeroes at nz/@. The decreasing dashed
hyperbolas represent the right side of Eqn 24. The intersections of the
curves (dots) are the roots of the equation and give the apparent velocities
for a given period. The apparent velocities range between the shear
velocities of the layer (B;) and the halfspace (3,). For longer periods there
are fewer solutions and thus fewer modes.

a halfspace with f3, = 4.6 km/s and p, = 3.3 g/cm?. For waves
with a period of S s, there are three solutions within the allowed
apparent velocity range: ¢, = 3.92,4.13,and 4.55 km/s.
Consider now what happens for longer periods or lower fre-
quencies. The zeroes of the tangent curve { = na/w increase,
so the spacing between the tangent curves, 7/, also increases.
As a result, there are fewer tangent curves within the allowable
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Fig. 2.7-9 Dispersion curves giving the relationship between apparent
velocity and period for Love waves in a layer over a halfspace. For each
mode, the apparent velocities range from the layer velocity B, to the
halfspace velocity 8,. The bottom curve is the fundamental mode branch,
and the overtone branches are above it, with higher velocities for any
period. Dots show the modes from Fig. 2.7-8.

range of ¢, which is nw/w < {_, .. Thus, because the decaying
curve does not depend on @, there are fewer solutions, c,, for
longer periods. For any given angular frequency, the solution
with the largest possible value of £ occurs when the #% solution

is ,s0 ¢, = f3,.In this case, tan @ =0,s0 { .. =nm, and

max: max

w=a,,=n/[b(1/52 - 1/pH)1]. (25)

This angular frequency, called the cutoff angular frequency for
the 7™ higher mode, is the lowest @ at which this mode exists.
Tangent curves with larger values of # are beyond the allowed
range of {. Thus, for sufficiently long periods, only the funda-
mental mode exists.

Using this method, we can compute the apparent velocity
values for different periods. Figure 2.7-9 shows the resulting
curves, known as mode or overtone branches, for the funda-
mental mode and the first two higher modes. At the longest
periods only the fundamental mode exists, whereas for shorter
periods higher modes occur. For example, at a period of 5s
there are three modes, for 10 s there are two modes, but at 30 s
only the fundamental mode occurs. The longest-period modes
for each branch have ¢, — f,, so their apparent velocity
depends on the shear velocity in the halfspace and is essentially
unaffected by the shear velocity in the layer. Thus at long
periods the branches in Fig. 2.7-9 approach the velocity in the
halfspace, B, = 4.6 km/s. Similarly, the shortest-period modes
for each branch have ¢, — B, = 3.9 km/s, so their apparent
velocity approaches the layer velocity.

This variation in apparent velocity reflects differences in dis-
placement among the modes. In the layer, because the ampli-
tudes B, and B, of the upgoing and downgoing waves are
equal, the displacement (Eqn 11) can be written

uy(x,2,t)=2B; exp (i(wt -k, x)) cos (k75 z). (26)

In the halfspace, the displacement (Eqn 12) is

uy(x,2,t) =B’ exp (i(wt - k,x)) exp (=R, 7} 2), (27)
$0, by the continuity of displacement at the interface z =5,
B’=2B, cos (erﬁlb)/exp (—erg.zh). (28)

Thus, in both the layer and the halfspace, we have a wave
propagating in the x direction, with horizontal wavenumber
k, = 2n/A, = wl/c,. In the layer, the displacement varies with
depth as cos (/exrﬁlz), and so oscillates. In the halfspace, the dis-
placement decays exponentially with depth as exp (k. 75,2).

The variation in displacement in the x and z directions is
illustrated in Fig. 2.7-10 for the three periods whose apparent
velocities were found in Fig. 2.7-8. The horizontal variation
is shown in the upper panels. Because the apparent velocity
increases with period (Fig. 2.7-9), the horizontal wavelength
increases with period for a given branch. Thus, for the funda-
mental mode (# = 0) cases shown, the longest period (30s)
has the highest apparent velocity and thus the longest hori-
zontal wavelength. At a given period (Fig. 2.7-9), the higher
the mode, the higher the apparent velocity, and thus the longer
the horizontal wavelength. Hence for the three modes shown
for period 5 s, 7 =2 has the longest horizontal wavelength.

The variation with depth, known as the mode’s vertical
eigenfunction, is different for each mode. For a given branch,
the depth of penetration in the halfspace increases with period,
so, of the fundamental mode periods shown, the longest (30 s)
“sees” deepest into the higher velocity halfspace, and thus has
the highest apparent velocity. Conversely, the shortest period
modes on a given branch penetrate to the shallowest depth, and
thus have the lowest apparent velocity. At a given period, the
higher modes oscillate more rapidly with depth in the layer,
and so change sign more frequently. In the halfspace, however,
the higher modes decay more slowly and penetrate deeper. The
eigenfunction for a mode with order » has » zero crossings, or
nodes, with depth.

The fact that the displacement behaves differently with depth
for various modes and periods makes Love waves dispersive.
In our derivation, the intrinsic shear velocities of the layer
and halfspace do not depend on frequency. Nonetheless, the
resulting apparent velocity along the free surface depends on
frequency. This dispersion results from the fact that Love waves
of different periods have different displacements with depth,
and the intrinsic medium velocity varies with depth. As a result,
surface wave dispersion is valuable for studying earth structure.

By contrast, the halfspace Rayleigh wave does not show this
dispersion. This wave is a “true” surface wave because it can
exist in a homogeneous halfspace due to the interaction of P
and SV waves. By contrast, the Love wave in a layer over a
halfspace exists because the properties of the medium vary with
depth, and so cause interference between SH waves. Dispersive
Love waves and Rayleigh waves also occur in media whose
properties vary with depth in a more complicated way. The dis-
persion curves for Love and Rayleigh waves in such media can
be calculated by several methods. One approach is to extend
the method used in Section 2.7.3 by treating the medium as a
set of homogeneous layers underlain by a halfspace. As for the
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one layer case, we assume that the displacement in each layer is
given by the exponential solutions, and find combinations of
frequency and horizontal apparent velocity that satisfy the
boundary conditions at the free surface, at each layer bound-
ary, and in the halfspace. Another approach is to view surface
waves as the normal modes of the spherical earth (Section 2.9).

2.8 Dispersion

2.8.1 Phase and group velocity

In the last section, we saw that the Love wave was dispersive,

because its apparent velocity along the surface varied with
frequency. To explore dispersion further, we first consider the
simplest example, the net effect of two harmonic waves with
slightly different frequencies and wavenumbers. We next con-
sider dispersion in general terms, and discuss some features of
surface wave and tsunami dispersion.
Consider the sum of two harmonic waves with slightly dif-

ferent angular frequencies and wavenumbers

u(x, t) =cos (@t — kyx) +cos (0,1 — kyx).

(1)

The angular frequencies and wavenumbers can be written in
terms of the differences from their average values wand k:
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0, =0+00, 0,=0-00, ©>> 0,
ky=k+0k, k,=k—0k, k> ok. (2)

Using this substitution, we add the two cosines and simplify,
yielding

u(x, t) = cos (@t + 6wt — kx — Okx)
+cos (ot — 6wt — kx + Okx)
=2 cos (wt — kx) cos (6wt — Skx). (3)

Thus the sum of the two harmonic waves is a product of two
cosine functions (Fig. 2.8-1). By their arguments, both corres-
pond to propagating harmonic waves. Because 8w is less than
®, the second term has a lower frequency, and so varies more
slowly with time than the first. Similarly, because 6k is less than
k, the second term varies more slowly in space. Thus we have a
carrier wave with angular frequency @ and wavenumber &, on
which a slower varying envelope with angular frequency 6w
and wavenumber 8k is superimposed.’

Examination of when the phase of each term remains con-
stant shows that each describes waves traveling at a different
speed. The envelope, or beat pattern, propagates at the group
velocity

U= Sw/dk, (4)
whereas the carrier moves at the phase velocity,
c=wlk. (5)

The difference between these two velocities is illustrated by
Fig. 2.8-1. Comparison of the signal at different times shows
that the envelope propagates at a different speed from the car-
rier. This difference explains why in the surface wave data of
Fig. 2.7-4 individual lines had a slope (phase velocity) differing
from the slope (group velocity) of the overall wave pattern.

2.8.2 Dispersive signals

Because dispersive waves of different frequencies propagate at
different speeds, this process is best viewed by using Fourier
analysis to decompose a wave into the frequencies that
compose it. Hence, although we discuss Fourier analysis in
Chapter 6, we introduce some key concepts here without
proof. For a function of time f(#), multiplication by the com-
plex exponential ¢7®* and integration over all time yields a
function of angular frequency w:

Flw)= J}‘(t)e“i“”dt (6)

! This derivation also describes the amplitude modulation (AM) transmission
method used in radio, where the amplitude of the carrier is changed or modulated by
the envelope, the signal of interest.

(a) cos (w4t — kqX) @, = o+ 6w, k,=k+ 6k

€0s (@,t — koX) W, =0~ 6w, k,=k- 6k

4

Carrier

Envelope

X L

Fig. 2.8-1 Two sinusoidal waves with slightly different frequencies and
wavenumbers (a). Their sum as a function of time (b) yields a beating
pattern, or long-period envelope, which propagates at the group velocity,
U. The carrier, the high-frequency oscillation whose amplitude is
modulated by the envelope, propagates at the phase velocity, c.

known as the Fourier transform of f{t). Because the integral
involves a complex exponential, F(w) is generally a complex
function. Similarly, f(¢) and F(®) are related by the inverse
Fourier transform:

Flw)e'dw. (7)

>
=
i
[\
Sl
3 —— 3

Thus the time function f{#) can be written as an integral over
angular frequency of the complex exponentials e’®, weighted
by the value of the transform at that angular frequency, F(®).
Because the Fourier transform is complex, it can be written

F(w) = A(w)e™®) (8)

in terms of its magnitude, A(w) = | F(®) |, and phase, ¢(m).
Thus the Fourier transform represents a time series by two real
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functions of angular frequency: the amplitude spectrum, A(w),
and the phase spectrum, ¢(®).

The inverse Fourier transform lets us express a displacement
field u(x, t) as an integral over harmonic plane waves of all
frequencies

u(x, t)= ——JA(CO) exp i[wt - k(w)x + ¢{w)]dw. (9)

In this formulation, the wavenumber k() and the amplitude
A{w) of each harmonic plane wave are functions of the angular
frequency. At each angular frequency, the phase

D(w) = 0t —k(w)x + ¢, (o) (10)

has two parts. The term @z — k(w)x gives the variation in the
phase due to the propagation of the harmonic wave. Hence,
as shown in Fig. 2.2-3, the propagation depends on both time
(ot) and space (k(w)x). Surfaces of constant phase travel with a
phase velocity

c(w) = w/k(w) (11)

that may vary as a function of angular frequency. The other
phase term, ¢,(®), includes effects such as the initial phase of
the wave when it was generated by a seismic source, which
depends on the earthquake focal mechanism.

If the harmonic waves of different angular frequencies mak-
ing up the displacement (Eqn 9) propagate with different phase
velocities, the velocity at which a wave group propagates
differs from the phase velocity at which individual harmonic
waves travel. To find the group velocity of energy propagation
in the angular frequency band between o, — Aw and w, + Aw,
we first approximate the wavenumber k(®) by the first term
of a Taylor series about @,

k) = klw,) + —dﬁ
do @,

(0 - wg). (12)
Substituting Eqn 12 in the inverse Fourier transform (Eqn 9)
shows that the displacement due to harmonic waves with angu-
lar frequencies near @, can be approximated by

Wo+AD
ulx, t) = 1 J Alw) exp li [a)t — kwy)x — —d—k— / (o — wy)x
2r dw Wy
Wy~ Aw
+ ¢i(a))]] do. (13)

Adding and subtracting @yt and regrouping gives
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wytAw
1 . dk
u(x, t) = E J A(w) exp [z [(co - w,) (t - —d—a;/% x]
wy—Aw
+ (ot — Kog)x) + ¢i(a))]] do. (14)

The argument of the exponential has three terms, the first
two of which describe traveling waves. The second term, (@t —
k(wg)x), describes a wave with average angular frequency
propagating at the phase velocity ¢(w,) = wy/k(w,). By con-
trast, the first term describes a wave group with average angu-
lar frequency m, propagating at a group velocity U(w) given
by the condition that

t—f& x (15)
dw o

remain constant, so

-1
w41
0

If the signal has energy over a wide range of angular frequen-
cies, similar expansions for each angular frequency band give
the group velocity as a function of angular frequency

_dk

= . 16
do/ w, (16)

_do

Ule) ==

(17)

Although the group velocity can always be defined by Eqn 17,
it does not always yield the velocity of energy propagation as
a function of angular frequency. For example, if the wave-
number is a very rapidly varying function of angular frequency,
then using only the first two terms in the Taylor series (Eqn 12)
may not be adequate, and Eqn 17 may yield negative group
velocities. In this case, the group velocity is no longer a useful
concept. Fortunately, these approximations are generally valid
for seismic surface waves.

At any angular frequency, the group velocity is related to the
phase velocity by

podo_ddb _  pde (18)
dk  dk dk

It is sometimes easier to think in terms of wavelength, restating
Eqn 18 as

U=c—)»~d-c—. (19)
da

If a wave is not dispersive, different wavelengths travel at the
same phase velocity, so dc/dA = 0, and the phase and group
velocities are equal.
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For a dispersive wave, such as the Love wave in the previous
section, the group velocity can be found from the dispersion
relation. If the dispersion relation is

flo, k) =0, (20)

then the change in f for a small change in wand k is given by the
Taylor series,

f(co+dw,k+dk)=f(a),k)+i/ dw+% dk . (21)
oo/ & ok [

Because wand k define a mode, they satisfy the dispersion rela-
tion, f(w, k) = 0. If o+ dw, k + dk, is also a solution, then f(w+
dw, k + dk) must also be zero, so the group velocity is given by

(8]
dk  \ok) [ (9w ),

2.8.3 Surface wave dispersion studies

It is useful to distinguish two types of dispersion. The familiar
case is that of light, where the different frequencies travel
through material such as a lens or a prism at different speeds.
This phenomenon, known as physical dispersion, occurs in the
earth but is a small effect (Section 3.7). In seismology, a more
significant effect is that shown for Love waves in the previous
section, where the apparent velocity along the surface varied
with frequency although the intrinsic shear wave velocity in the
layer and the halfspace did not. This type of dispersion, called
geometrical dispersion, is noticeable and is frequently studied
for surface waves. Because for surface waves the horizontal ap-
parent velocity, ¢, and wavenumber, k,, vary with frequency,
these are sometimes written simply as ¢ and k. Similarly, we
usually speak of “phase velocity” or “group velocity” when we
mean horizontal apparent phase or group velocity.

Figure 2.8-2 illustrates phase and group velocity curves for
the fundamental mode Love wave in the layer over a halfspace
geometry of the previous section. Although the phase velocity
increases monotonically with period, as longer period waves
“feel” the halfspace velocity, the group velocity curve has a
minimum. This minimum occurs at a period (about 15 s) where
the slope of the phase velocity curve becomes very steep. This is
because, by Eqn 19, U decreases when the dispersion term dc/
dAbecomes large.

The fact that the surface wave velocities vary depending on
the depth range sampled by each period makes surface wave
dispersion valuable for studying earth structure. These stud-
ies are conducted both with Love waves, whose dispersion
depends on the shear velocity, and Rayleigh waves, whose dis-
persion depends on both the compressional and the shear
velocities.

Both phase and group velocity dispersion measurements are
used. Group velocities are easier to measure because they are
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Fig. 2.8-2 Fundamental mode Love wave phase and group velocities

for a model of the continental crust and mantle, a 40 km-thick layer with
B,=3.9 km/s, p, =2.8 g/cm? underlain by a halfspace with 3, =4.6 km/s,
p,=3.3 g/lcm?®. The group velocity has a minimum where the phase
velocity curve becomes steep, as longer-period waves sample more of

the velocity in the underlying halfspace.

the velocities at which a wave group visible on a seismogram
travels. As shown by the Love waves in Fig. 2.8-3, the period
can be measured from the time between successive peaks or
troughs. Generally, the waves with longest periods travel fast-
est, and therefore appear first on seismograms. The group velo-
city is found by dividing the distance between the source and
the receiver by the travel time of the wave group. Hence the
wave group with a period of about 45 s arrived about 1145 s
after the earthquake, and thus has a group velocity of about
3.7 km/s (4200 km in 1145 s). The later-arriving wave group
with a period of about 35s has a group velocity of about
3.6 km/s (4200 km in 1170 s). This method can be applied in
a more sophisticated way by using the Fourier transform of
a seismogram to isolate wave groups of different periods
(Fig. 2.8-4). When the original record (zop) is filtered at a suc-
cession of narrow frequency bands, energy is seen arriving at
different group velocities.

To use such data, the results are typically plotted as a func-
tion of period and are compared to theoretical dispersion
curves for different structures. For example, the group velocit-
ies for the seismogram in Fig. 2.8-3 are lower than predicted
for the simple structure in Fig. 2.8-2. A better fit to the data is
obtained for a model with lower layer and halfspace velocities.

This example illustrates a theme that we will encounter
repeatedly: using seismological observations at the earth’s
surface (in this case dispersion curves), to study the velocity at
depth. As noted in Section 1.1.2, this is an inverse problem, in
contrast to the forward problem of predicting the observations
expected for a given velocity structure. Although solving the
forward problem is straightforward, it can be more difficult to
find a model or models consistent with the observations. For
the moment, we assume that such a model can be found, if only
by trial and error, and defer more detailed discussion until
Chapter 7.

Dispersion data are used to study more complicated velocity
structures. Figure 2.8-5 shows the observed dispersion curves
and inferred S-wave velocity structure for a study of the Walvis
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Fig. 2.8-3 Top: Love waves from an earthquake off the coast of
California, recorded on the transverse component at station RSNY in
New York, 4200 km away. Triangles indicate successive peaks and
troughs of the waveform. Bottom: Observed (dots) and predicted

(top line) group velocities for the reference structure in Fig. 2.8-2.

The data are better fit by the predicted velocities (lower line) from a
model with a 40 km-thick layer with shear velocity 3.6 km/s, overlying
a halfspace with velocity 4.4 km/s.

ridge, a linear elevated region in the South Atlantic. There are
noticeable group velocity differences between two paths from
an earthquake on the Mid-Atlantic ridge, one along the Walvis
ridge and one off the ridge. For periods greater than about 20 s
the off-ridge path is faster, indicating the presence of higher-
velocity upper mantle material to a depth of about 45 km. This
difference may reflect the processes that formed the Walvis
ridge, which is thought to have been generated by a hot spot
(Section 5.2.4), a fixed source of magma beneath the Mid-
Atlantic ridge.

For periods less than about 50 s the group velocity increases
with period, because the longer periods sample material whose
velocity increases with depth. By contrast, for periods greater
than about 50s, the group velocity decreases with period.
This decrease is interpreted as evidence for a low-velocity zone
beneath the higher velocity “lid.” The surface wave data thus
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Fig. 2.8-4 Love wave group velocity dispersion shown by a seismogram
from a Mongolian earthquake recorded in Japan (top). The data are
filtered around five successive periods. Longer period energy arrives
earlier, showing higher group velocity. (Kanamori and Abe, 1968.)

provide evidence for the idea that the mechanically strong and
cold (hence higher-velocity) plates of the earth’s lithosphere
are underlain by a low-velocity zone (Section 3.5.3) where
temperatures approach the melting point of rock (Section
3.8.2).

Earth structure is also studied using phase velocities. These
are more difficult to measure than group velocities, because
they are defined for harmonic waves of a single frequency.
Taking the Fourier transform of a seismogram yields the phase
at each angular frequency, ®(®). We assume that this phase,
on a seismogram recorded at a distance x from an earthquake
at time ¢ after the earthquake, has three terms

D(w) =[wt - k(0)x] + ¢,{w) +2n1
=[wt — wx/c(w)] + ¢,(@) + 2n. (23)

The wt — k(@)x term is the phase due to the propagation of the
wave in time and space. The ¢,(®) term includes the initial
phase at the earthquake and any phase shift introduced by the
seismometer. The final term, 2, reflects the periodicity of the
complex exponential, because adding an integral multiple of
2mto the argument yields the same value.

The phase velocity can be found from observations in two
ways. One method uses seismograms recorded at two stations,
at distances x; and x, from an earthquake. If the waves arrive
at times #, and f,, taking the Fourier transform at each station
gives the phase as a function of angular frequency:
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Fig. 2.8-5 Rayleigh wave group velocity study of crust and upper mantle structure along the Walvis ridge. Left: Ray paths from an earthquake on the Mid-
Atlantic ridge. The path to station SDB is along the Walvis ridge, whereas the path to station WIN is similar, but off the ridge. Center: Dispersion curves
for the two paths. Right: Inferred shear wave velocity structure for the two paths, showing lower velocities along the ridge. (Data from Chave, 1979.)

D, (0) = wt, - wx,/c(w)+ ¢,(®) + 2nx,

D,(0) = wt, — wx,/c(®) + ¢;(w) + 2m. (24)
We then form the difference ®,; = ®, — ®,, and solve for the
phase velocity:

c(@)=o(x, —x))/[0(ty,—ty) + 2(m—n)n—- @, (0)]. (25)
The initial phase is common to both stations, so the ¢,(w) term
drops out if the seismometers have the same response, and so
contribute the same phase shift. If the seismometers have dif-
ferent responses, a correction term is added. The 2(m — n)n
term is found empirically by ensuring that the phase velocity at
long periods is reasonable.

Alternatively, a single-station measurement of phase velocity
can be made by predicting the phase at the earthquake from its
focal mechanism (Section 4.3). If ¢,(w) is assumed to be known,
the phase velocity is
c(w) = wx/|wt+ ¢ (@) + 2nr— D(w)]. (26)

Figure 2.8-6 shows an example of using phase velocity data
to study the evolution of the oceanic lithosphere. Various evid-
ence shows that the oceanic lithosphere cools and thickens
as it moves away from the spreading ridge where it formed
(Section 5.3.2). As a result, surface wave velocities depend
on the age of the lithosphere. Thus the Rayleigh wave phase
velocity for the two paths shown is slowest for the path to
TUC, approximately parallel to the East Pacific rise, which
includes primarily young lithosphere. The other path to ARE,
which includes older lithosphere, shows higher velocities. Sim-
ilar effects are observed from group velocities.

Such studies yield an average dispersion curve, and hence
average velocity along the great circle path traveled by the
wave. However, the actual structure varies along the path. To
study the evolution of the lithosphere, we would like to know
the velocity of the lithosphere at each age. Unfortunately, the
distribution of earthquakes and seismic stations is such that
paths between earthquakes and seismic stations are rarely in
lithosphere of a single age. Instead, we measure surface wave
velocity on paths including different ages, as in Fig. 2.8-6.

Determination of the variable velocity structure along a
path is a complicated inverse problem. The simplest approach,
known as the “pure path” method, divides the study area into
regions, in this case regions formed during age intervals, in
which the velocity at each angular frequency is assumed to
be constant. We then take a set of paths between individual
earthquakes and seismic stations, such that the /™ path has
length L,, and determine the phase or group velocity v,(w) for
each path as a function of angular frequency. The total time
required for the wave to travel the entire path is assumed to be
the sum of the times required to traverse each of the regions
along the path. Thus, if path i contains segments of lengths L
in each region j with velocity v(w),

Lilv(w) = i L;lvi(w). (27)
=1

We find the velocity in each region v;(®) by writing this as a
vector-matrix equation
d=Am (28)

where the matrix Ai;’ = L/i and the data vector d; = L,/v(®)
are known, and the model vector m; = 1/v;(@) is to be found.
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Fig. 2.8-6 Application of Rayleigh wave phase velocity data to study

the evolution of the oceanic lithosphere. Top: Sample paths between
earthquakes on the East Pacific Rise and seismic stations, which traverse
lithosphere of various ages, as shown by the isochrons. The hatched
regions are lithosphere younger than 3 million years. Bottom: Dispersion
curves for the paths shown. The path to station TUC is through younger,
hence lower-velocity, lithosphere than the path to ARE. (Data from
Forsyth, 1975.)

Typically, because the study area is divided into a number of re-
gions smaller than the number of paths, the number of observa-
tions exceeds the number of model parameters sought. Hence
the data vector has more elements than the model vector, so the
matrix A has more rows than columns and cannot be inverted.
Such overdetermined systems of equations are common in
seismology, especially in determining earth structure from
observations. As we will see in Chapter 7, the best solution in a
least squares sense to such systems of equations is found by
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premultiplying both sides, first by the transpose matrix and
then by the inverse of A7A,

m=(ATA)1ATd. (29)

The results of such an analysis for Rayleigh wave phase
velocity on many paths crossing the Pacific are shown in
Fig. 2.8-7. As the lithosphere ages, the velocity and the depth
to the low-velocity zone increase, presumably due to the
cooling and thickening of the lithosphere.

Such studies, on both a global and a regional scale, have
contributed greatly to our understanding of the earth’s inter-
ior and processes. As we noted, finding velocity structure as
a function of depth from dispersion data is an inverse problem,
which exploits the fact that waves of different periods sample
the structure at depth differently. The pure-path study illus-
trates a more complicated inverse problem, studying variations
of velocity laterally as well as in depth. Our ability to study
lateral structure comes from the fact that different source—
receiver paths sample different regions. Hence these studies
have the common feature of using observations on the bound-
aries of a region (either laterally or at depth) to learn about the
structure within it, via observations resulting from sampling
the region in different ways. Such approaches are examples of
tomography, which we will discuss in Chapter 7.

2.8.4 Tsunami dispersion

Dispersion is also observed for tsunamis, the water waves
generated by earthquakes that were discussed in Section 1.2.4.
Tsunamis are like wind-driven water waves, in that they involve
gravitational potential energy stored by vertical displacements
of the water.? Although the underlying physics of the propaga-
tion differs, there are similarities in the way tsunamis and
surface waves propagate.

As shown in Fig. 2.8-8 (left), tsunami dispersion is similar to
that of Rayleigh and Love waves, in that the waves with longer
periods travel faster and thus arrive earlier. The dispersion
relations (Fig. 2.8-8, right) show two effects that depend on the
period, and thus on the wavelength. At long periods, where the
wavelengths are much greater than the ocean depth, d, the phase
velocities are essentially nondispersive and are given by

c=ed, (30

where g is the acceleration of gravity. Thus tsunami velocit-
ies depend on ocean depth, as shown. However, at shorter
periods, where the wavelengths are much less than the ocean
depth and so do not “feel” the ocean floor, the tsunami velo-
cities depend on wavelength as

2 Although tsunamis are often called “tidal waves,” they have no connection to
tides.
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Fig. 2.8-7 Left: Rayleigh wave phase velocity dispersion results for five age provinces in the Pacific basin. Right: Shear wave velocity structure derived

from the data. As the lithosphere ages, the phase velocity and depth to the low-velocity zone increase. (Nishimura and Forsyth, 1989.)
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Fig. 2.8-8 Left: Tide gauge record of the tsunami at Hilo, Hawaii, from the great 1960 Chilean earthquake. Dispersion is seen, with the longer-period
waves arriving first. (After Eaton et al., 1961. © Seismological Society of America. All rights reserved.) Right: Theoretical tsunami dispersion curves for
group (U) and phase (C) velocities for different ocean depths. At longer periods the velocity is roughly constant and controlled by the ocean depth, whereas
at shorter periods, where the tsunami waves do not reach to the bottom, the velocities vary with period. (Ward, 1989.)

c=(Agl2m)2, (31)

so shorter-period waves travel more slowly.

Like surface waves, tsunamis travel across the earth’s sur-
face, so their amplitudes decay roughly according to 1/4/7 due
to two-dimensional spreading. However, applying Snell’s law
to their horizontal propagation shows that the paths of surface
waves and tsunamis deviate from the shortest great circle path
if there are large lateral velocity variations. This effect, called
multipathing because waves arrive at a receiver from several

directions, can cause large changes in the waves’ amplitudes
due to the effects of focusing and defocusing (Section 3.7.3). As
a result, the amplitude variations can be inferred from the con-
centration of ray paths that left the source uniformly spaced.
Denser paths show rays focusing and increasing amplitudes,
whereas sparser paths indicate defocusing and lower ampli-
tudes. Figure 2.8-9 shows focusing and defocusing for the
tsunami in Fig. 2.8-8 (left), due to variations in ocean depth.
We will also use this method to study body wave amplitudes in
Chapter 3.
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Fig. 2.8-9 Ray paths for the tsunami in Fig. 2.8-8 (left). Tick marks show
the travel times in increments of hours. Variations in ocean depth, and
therefore in tsunami velocities, cause multipathing that results in large
variations in amplitudes. (Woods and Okal, 1987. Geophys. Res. Lett.,
14,765-8, copyright by the American Geophysical Union.)

2.9 Normal modes of the earth

2.9.1 Motivation

We started this chapter (Section 2.2) by considering the motion
of a string that resulted from applying a force, and saw that the
displacement could be viewed in two ways: either as waves
propagating along the string or as the sum of standing waves,
called normal modes. Both of these descriptions came from
applying Newton’s second law of motion, and are equivalent
because all the features of wave propagation, such as the velo-
cities and amplitudes of the reflected and transmitted waves,
come out the same. This concept, called mode-wave duality,
is useful in seismology because the two formulations provide
different insights and jointly lead to deeper understanding.
Neither formulation is more “real” — both are mathematical
ways of representing the displacement, which is the physical
quantity.

In a similar way, we end this chapter by extending the duality
to the three-dimensional earth. We discuss how all body and
surface waves can be described as the sums of the normal
modes, also called free oscillations, of the spherical earth.
These sums yield not only the reflections and transmissions
from all boundaries, but also waves produced by effects like
diffraction that are difficult to model because geometric optics
fails (Section 2.5.10). However, when we discuss seismological
investigations of earth structure in Chapter 3, it will turn out
that most studies do not use a normal mode approach, for two
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reasons. First, normal mode calculations are more complicated
than those for rays and plane waves. Second, by representing
all seismic waves simultaneously, mode solutions do not select
specific seismic phases. Hence a phase like ScS emerges from
a computation summing many modes, whereas simpler ray or
plane wave calculations often directly give the information (for
example, travel times and amplitudes) that we seek. However,
there are applications in which modal solutions are useful,
making the topic worthy of study for reasons beyond its phys-
ical elegance, although the latter may well be what draws many
seismologists (ourselves included) to it.

2.9.2 Modes of a sphere

The earth’s modes show many features seen for the one-
dimensional string, so we begin by recalling some basic results.
We saw in Section 2.2.5 that once a one-dimensional string is
excited, its motion can be described as

u(x, t) = iAn U,(x, @,) cos (w,,t), (1)
n=0

which is the sum of standing waves or eigenfunctions,
U,(x, ®,), each of which is weighted by the amplitude A,
and vibrates at its eigenfrequency ®,. The eigenfunctions and
eigenfrequencies depend on the physical properties of the
string, whereas the amplitudes depend on the position and
nature of the source that excited the motion. We saw that

. eigenfunctions that satisfy the wave equation in one dimension

are sine and cosine functions. For a homogeneous (uniform)
string of length L and velocity v, the boundary conditions of
zero displacement at the fixed ends require that

U, (x, w,) =sin (nrx/L) =sin (@, x/v), (2)
so the eigenfrequencies are
w,=nmv/L. (3)

Because the frequency, velocity, and wavelength of a traveling
wave are related by @ = 27v/A (Section 2.2.2), Eqn 3 requires
that L = nA/2, so each spatial eigenfunction has an integral
number of half wavelengths along the string. A finite string can
vibrate only in these discrete modes, which satisfy the bound-
ary conditions. The eigenfrequencies are spaced nv/L apart in
frequency, so if the string were infinite, the eigenfrequencies
would be continuous rather than discrete. Finally, we saw that
the amplitudes depend on the value of the eigenfunction at the
point where the source excited the motion.!

1 Representing the displacement as a sum of sines and cosines, where the eigen-
functions have discrete eigenfrequencies, corresponds to a Fourier series, whereas a
continuous distribution of eigenfrequencies corresponds to a Fourier transform. We
use both concepts informally as needed throughout the text, and develop them more
formally in Chapter 6.
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Additional insight into the earth’s modes comes from the
two-dimensional problem of Love waves in a layer over a
halfspace (Section 2.7.3). The medium was semi-infinite,
extending vertically from the surface to all depths, and hori-
zontally in both directions. We wrote a solution of the wave
equation in both the layer and the halfspace as the product of
separate terms describing the vertical and horizontal behaviors.
We then used boundary conditions of zero traction at the free
surface, continuity of traction and displacement at the inter-
face, and energy decaying away from the interface downward,
and found that these conditions require that Love waves have
discrete eigenfrequencies that depend on the thickness of the
layer and the shear velocity of the layer and the halfspace. Each
of these eigenfrequencies thus corresponds to a vertical and
horizontal eigenfunction. Interestingly, the eigenfrequencies
form discrete overtone branches (Fig. 2.7-9), so that for a given
apparent velocity there are several possible eigenfrequencies.
Because the medium is two-dimensional, we need two para-
meters to list all the eigenfrequencies. One parameter, the
overtone number, varies discretely (0, 1, 2, ...) because the
thickness of the layer gives a discrete dimension. The other para-
meter, the frequency, varies continuously along an overtone
branch, because the horizontal dimension is infinite.

To extend one- and two-dimensional ideas to wave propaga-
tion in the three-dimensional spherical earth, we formulate the
normal mode solution in spherical coordinates (Section A.7).
Because waves propagate away from the seismic source, we put
the pole of the coordinate system there (Fig. 2.9-1). We then
write the displacement vector u(r, 6, ¢) = (u,, u,, uy) that satis-
fies the equation of motion (Eqn 2.4.10) as a function of radius
r and surface position (6, ¢). A slight linguistic complication is
that in spherical coordinates the radial direction is the vertical,
whereas for plane waves the term “radial” (Fig. 2.7-2) denotes
the horizontal direction in the vertical plane containing the
source and the receiver. In this spherical geometry, u, is in the
direction analogous to that of plane wave propagation, and u,
is transverse to it.

By analogy to the string (Eqn 1), we write the displacement
as a normal mode sum

ulr, 6,9)= 3 3 > AT, y,(r)x7(6, ¢) et (4)
n | m

Because the medium is three-dimensional, each mode is de-
scribed by its radial (depth) order #, and two surface orders [
and m. All three indices have discrete integer values, because the
earth is a finite body. The eigenfrequency depends on all three,
and the spatial behavior is described by a radial (or vertical)
eigenfunction ,y,(r), which is a scalar, and a surface eigen-
function x7*(6, ¢), which is a vector. The sum depends on the
weights for each eigenfunction, ,A[", which are excitation
amplitudes that depend on the seismic source. Thus a mode’s
displacement varies along the earth’s surface depending on
both the excitation of that mode and the location relative to
the source, which combine to control the value of the surface

Source
X3

- Receiver

Xz

X3

Fig. 2.9-1 Spherical coordinate geometry for normal modes. The
earthquake source is at the pole, so at a receiver the radial displacement
component #, is vertical, #, s in the horizontal direction in the vertical
plane containing the source and the receiver, and # pis in the transverse
direction.

eigenfunction. As with modes on a string, we can think of the
displacement as a vector in a vector space (Section A.3.6)
whose basis vectors are the eigenfunctions, which are weighted
and combined to describe the displacement.

Although Eqn 4 seems abstract, it turns out to be useful. If
we take the Fourier transform of a long seismogram, which
might extend for days or even weeks following a great earth-
quake, we find that the amplitude spectrum? (Eqn 2.8.8) is made
up of normal modes that appear as peaks at certain distinct
frequencies (Fig. 2.9-2). Hence thinking about a seismogram as
a sum of modes gives additional insight into its nature.

Separating the radial and surface eigenfunctions in the nor-
mal mode sum (Eqn 4) has interesting consequences. The earth
is close to being spherically symmetric (sometimes termed
laterally homogeneous), because its structure varies much
more with depth than it does laterally at a given depth. By ana-
logy to Love waves, we expect the surface eigenfunction to be
an analytic form related to the wave equation. Moreover, if
the earth were laterally homogeneous (as assumed in our Love
wave example), the surface eigenfunction would not affect the
eigenfrequency. Thus, for a laterally homogeneous earth, we
can write the eigenfrequencies as 07" = , ;. We will see later
that this useful approximation also assumes that the earth is
perfectly spherical and not rotating.

The eigenfrequency depends on the radial eigenfunction,
which is found by solving the equation of motion in the spher-
ical earth subject to boundary conditions at different depths.
Although the boundary conditions (continuity of stress and
tractions) do not sound unduly formidable, they turn out to be
complicated because the tractions involve stresses and hence

2 Asdiscussed in Section 6.2, the amplitude spectrum is the magnitude of the Fourier

transform, and its square shows how much energy is present at different frequencies.




Fig. 2.9-2 Amplitude spectrum of the

radial component of a 35-hour seismogram
following the great June 9, 1994, deep focus
Bolivia earthquake, recorded at Pasadena,
California. Many peaks are labeled with
several modes, indicating coupling between
modes of similar frequencies. The solid line
is the observed spectrum, and the dashed line
is the spectrum predicted by a three-
dimensional earth velocity model. (Dahlen
and Tromp, 1998. Copyright © by Princeton
University Press. Reprinted by permission of
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Princeton University Press.)

the gradients of displacements. As noted in Section A.7.4, gra-
dients in spherical coordinates require taking the derivatives of
the unit basis vectors that vary with position, unlike those in
Cartesian coordinates that always point the same way. Thus
we leave the problem of finding the radial eigenfunctions, and
hence the eigenfrequencies, for advanced texts, just as we did
for a string and for surface waves. As a result, we will also not
address the issue of computing the excitation, which depends
on the radial eigenfunctions at the source depth.

2.9.3 Spherical harmonics

The surface eigenfunctions are based on spherical harmonics,
functions often used to expand a function on the surface
of a sphere, much as sines and cosines are used in Cartesian
coordinates. Because we use the seismic source as the pole,
0 is the angular distance from the pole, or colatitude, and ¢
is the azimuth around the pole, or longitude (Fig. 2.9-1).

The angular variations are described by a set of functions
called Legendre polynomials, which are indexed by the degree,
or angular order, I,

Bx) = ———(x2 - 1. (5)

The first several polynomials are
Pylx)=1, Pi(x)=x, P,(x)=(1/2)(3x2-1),
Py(x) = (1/2)(5x3 - 3x), (6)

and some examples are shown in Fig. 2.9-3. For a sphere,
x = cos 8, so x ranges from —1 < x < 1. Legendre polynomials
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Fig. 2.9-3 Examples of Legendre polynomials for the interval 0~z used to
describe the displacements associated with normal mode oscillations.

are orthogonal over this interval, and so are a suitable basis set
for describing the angular variations.

The azimuthal variations are included by forming the associ-
ated Legendre functions,

(1 - xl)m/Z dl+m

2 _ 1l
T P | 7

Pp(x) =

where the azimuthal order, m, varies over —I < m < . The
azimuthal functions ¢?”¢ and associated Legendre functions
are combined to give the fully normalized spherical harmonics,
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Fig. 2.9-4 Examples of spherical harmonics. Y (lef?) is a zonal harmonic,
the real part of Y3 (middle) is a sectoral harmonic, and the real part of Y3
(right) is a tesseral harmonic. (After Lapwood and Usami, 1981, reprinted
with permission of Cambridge University Press.)
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A DVC=ml - pocos g)eims, (8)
4 I+ m)!

Y7o, ¢) = (-1

Spherical harmonics are always defined with the P}"(cos 6)e™?
term, but various normalizing factors are used in the literature.

The angular variations from 0 to 7 are either symmetric
(when [+ m is odd) or antisymmetric (when [+ is even) about
the equator (6 = 7/2). The azimuthal variations are periodic
(¢ + 2m = ¢). Because spherical harmonics are generally com-
plex functions, we can plot their real or imaginary parts over
the sphere (Fig. 2.9-4). The angular order, /, gives the number
of nodal lines on the surface. If the azimuthal order 2 is zero,
the nodal lines are small circles about the pole. These are
called zonal harmonics, and do not depend on ¢ (i.e., they are
symmetric about the pole at 8 = 0). The other extreme is for
m = I, where all the surface nodal lines are great circles
through the pole. These are called sectoral harmonics. When
0 < |m]| < [, there are combined angular and azimuthal
(colatitudinal and longitudinal) nodal patterns called tesseral
harmonics (Fig. 2.9-4).

Spherical harmonics are orthogonal,

2r

sin 0 Y2(6, 9) Y7(6, 9)d0do = 8,5, (9)

/15

00

so that the integral of the product of one with the conjugate
of another over the sphere is zero.? The spherical harmonics
therefore form an orthogonal set of basis vectors that can be
used to expand any function on the surface of a sphere, much
as we used sines for the string (and would do so for any
other Cartesian coordinate problem). Spherical harmonics
are used to represent planetary quantities, including lateral
variations in seismic velocity, surface topography, and gravita-
tional and magnetic fields. The shape of the field represented
depends on the amplitudes of the different spherical harmonic
components.

3 Asdefinedin Eqn A.3.37, 6, =0 unless n=m.

> Ynm

2.9.4 Torsional modes

Using spherical harmonics, we can write the normal modes of
a sphere (Eqn 4) explicitly. You may recall that in Cartesian
coordinates we separated the displacements into P-SV and SH
motions, which are decoupled in the sense that they propagate
independently in a medium whose properties vary only in
depth along the plane containing the source and the receiver
(Section 2.5.2). In spherical geometry, we do a similar decom-
position with normal modes.

Analogous to SH waves, we have torsional, or toroidal,
modes. Their surface eigenfunctions are given by the vector
spherical harmonics with (r, 6, ¢) components

1 0Y7(6,¢) —0Y}(0,¢)

| - , . (10)
sinf®  d¢ 26

T7=|0

The vector spherical harmonics are vectors whose components
contain derivatives of spherical harmonics, which arise because
the equation of motion involves spatial derivatives of the
displacements.

The displacement vector u = (x,, 1,, ") that corresponds to
torsional modes is

)
ul(r,0,0)=3 > > AP Wi(r)T7(®, p)e . (11)
n 1

m=-I

The radial eigenfunction , W(r) varies with depth, even though
the resulting displacement has no radial component because #,
is always zero. Thus torsional modes have only horizontal
displacements and are analogous to SH waves. Similarly, their
divergence is zero, so they cause no volume change.

Torsional modes are denoted ,T}”, where # is the radial
order, [ is the angular order, and m is the azimuthal order.
For given radial and angular orders, the 2/ + 1 modes of dif-
ferent azimuthal orders — < m <[ are called singlets, and the
group of singlets is called a multiplet. If the earth were perfectly
spherically symmetric, and not rotating, then all the singlets in
a multiplet would have the same eigenfrequency. This condi-
tion is called degeneracy. For example, the period of , T} would
be the same for ,TF!, T72, T#3, etc. In the real earth, the
singlet frequencies vary, which is an effect called splitting.
However, the splitting is small enough that for most applica-
tions we ignore it, dropping the m superscript and referring
to the entire , T7 multiplet as , T}, with eigenfrequency ,®,.

For torsional modes, the horizontal displacements, #,and Ug
are zero along nodal lines, because the angular displacements
uqvanish where 0Y}/9¢= 0 and the azimuthal displacements #,
vanish where 0Y}"/96 = 0. For example, consider the lowest-
frequency (longest-period or gravest) torsional normal mode
singlet, ,T9 (Fig. 2.9-5). There are no radial motions, and the
angular displacements are always zero, because 2 = 0. To see
this, note, from Eqn 10, that #,is proportional to
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Fig. 2.9-5 Displacement associated with torsional mode ,T9.

——PY(cos G)i(eim¢) = ~71—P3(cos B)(im)e™?® =0.  (12)
sin 6 a9 sin

The only nonzero displacement component is the azimuthal
one, #,, which is proportional to

eim¢a% PY(cos 6) = 3 sin 6 cos 6. (13)

The azimuthal motions vanish at the poles (6 = 0° and 180°)
and at the equator (8= 90°). The motions are in opposite direc-
tions across the equator because sin 6 is an odd function. This
node is the surface expression of a nodal plane that bisects the
earth along the equator. The pattern of oscillations extends
throughout the mantle.*

The radial order describes how the mode varies with radius,
and the angular and azimuthal orders describe how it varies
with latitude and longitude. For torsional modes, # gives the
number of spherical nodal surfaces within the earth. If n =0,
there are no nodal surfaces, and the direction of motion at a
given latitude and longitude is the same at all depths. For tor-
sional modes, / equals one more than the number of nodal lines
on the surface. The shape and distribution of these nodal lines
varies according to the azimuthal order, m, which gives the
number of vertical nodal planes that bisect the earth, passing
through the pole. For m = 0, the nodal lines are small circles
about the pole. If m = [ — 1, the nodal lines are great circles
through the pole.

The T} singlet has a longitudinal great circle node at the
surface (Fig. 2.9-6). The motions are shear displacements

#  Because the outer core is liquid, the core~mantle boundary is a free surface for tor-

sional modes excited by earthquakes. These modes do not propagate into the outer
core, and therefore never reach the inner core, which theoretically has its own set of
torsional modes.
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Fig. 2.9-6 Examples of the displacements for several torsional modes. The
examples for ;T and ; T, schematically show the variation with depth.

about the pole that oscillate toward and away from the nodal
plane. The period of (T, is 44 minutes: 22 minutes rotating
in one direction, then 22 minutes rotating back again. For
higher angular orders /, more nodal planes occur. ;T has two
latitudinal nodal lines at the surface, ;T3 has one, and ;T3 has
none. As [ increases, the number of divisions of the surface
increases.

Torsional modes with # = 0 (,T]") are called fundamental
modes, and have motions at depth in the same direction as at
the surface. This is not true, however, for modes with n > 0,
called overtones. As shown in the cutaway for ;T9, there
is a spherical nodal surface within the mantle across which
displacements reverse. We will see shortly that an overtone
of order # has # radially symmetric nodal surfaces at depths
determined by the velocity structure of the mantle.

You may have wondered what happened to T, and T,
Because the number of nodal planes equals [ — 1, jT} has no
nodal planes. Physically, this corresponds to rigid body rota-
tion. As we will discuss in Section 4.4.4, seismic waves gener-
ated by earthquakes are generally well described by treating the
source as a double couple of body forces, which generates no
net torque, and therefore no change in rotation. In rare cases,
giant earthquakes may cause enough vertical displacement of
rock to affect the rate of the earth’s rotation. However, because
torsional modes do not involve radial motions, even in these
cases conservation of angular momentum demands that T,
be zero. There are, however, overtones with [ = 1 (;Ty, ,T,
etc.). These involve the entire top spherical shell of the earth
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oscillating in one direction, with deeper shells oscillating in
opposing directions. The mode T, has no physical meaning
and is undefined.

2.9.5 Spheroidal modes

P-SV motions are described in a similar way by spheroidal
modes, also known as poloidal modes. These are more complic-
ated than torsional modes, because they combine radial and
transverse motions. The surface eigenfunctions are given by two
other vector spherical harmonics, with (r, 6, ¢) components

7'=(,0,0),

o _ (o 20100) 1 2Yy(e,9)
! 96 ’sin®  9¢ )

(14)

Each corresponds to a different radial eigenfunction, ,U/(r)
and ,V(r), so the displacement vector u = (u,, uy, u,) for
spheroidal modes is '

!
uS(r,6,0)= %, 3, ,APLURTO, §) + V(1) S7H(6, )l eHT".

n 1 m=-|

(15)

Thus the radial eigenfunction ,U,(r) corresponds to radial
motion, and , V() corresponds to horizontal motion.

To see that the mode formulation separates P-SV from SH
and fully represents the displacement in three dimensions, note
that the three vector spherical harmonics are orthogonal,

Ty Sy =T7 - Ry* =Sy - Ry = 0. (16)

Spheroidal modes ,S}” follow a similar nomenclature as tor-
sional modes. The fundamental modes, with no internal nodal
surfaces, are described by # = 0. As » increases, the number of
internal nodal surfaces increases, although, unlike for torsional
modes, # is not the number of nodal surfaces. The angular
order ! equals the number of nodal lines at the surface (rather
than [ - 1 for torsional modes), and # represents the number
of great circle nodal lines passing through the pole. The spher-
oidal radial modes, which have [ = 0 and thus only radial
motions, have no torsional analogue.

Some examples of spheroidal modes are shown in Fig. 2.9-7.
The “breathing” mode S, involves radial motions of the entire
earth that alternate between expansion and contraction. The
gravest {lowest-frequency or longest-period) of earth’s modes
observed to date is ,S,, which has a period of 3233, or
54 minutes.® The (S singlet alternates between an oblate (flat
disk) and prolate (football) shape, and is accordingly referred
to as the “football” mode. Displacements for the (S} and (S5

5 The 8, Slichter mode due to lateral sloshing of the solid inner core through the
liquid iron outer core, which has yet to be observed, should in theory have a period of
about 5.5 hours.

0S? (motion)

0
GSZ

0% +Ss (motion)

050 150

Fig. 2.9-7 Examples of the displacements for several spheroidal modes.

singlets are also shown. There is no ,S; mode, which would
correspond to a lateral translation of the planet. Increasing [
results in more surface nodal lines, as shown for S;, and
increasing # results in more internal nodal surfaces.

2.9.6 Modes and propagating waves

We can gain considerable insight into normal modes by con-
sidering their relation to traveling waves. To do this, we use
a mathematical approximation (that we will not derive) for the
associated Legendre functions. When the angular order
/is much greater than the azimuthal order m,

P7*(cos 0) = (—1)"I"™(2/lx sin 6)Y2 cos [(1+1/2)60
/2 - 7l4)], (17)

so the spherical harmonics behave approximately like
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Fig. 2.9-8 Cartoon of the equivalence of surface waves and normal
modes. Once surface waves from an earthquake make multiple passes
around the earth, they can be viewed as standing waves, or normal modes,
such that the mode with angular order [ has [+ 1/2 wavelengths around
the earth. This example is for ;S,.

Y7(6, §) = A(2/lz sin 0)12 cos [(I+1/2)0]e™?, (18)

where A contains the remaining factors. Using this approx-
imation and representing the cosine as complex exponentials
shows that terms in the mode sums (Eqns 11 and 15), which
involve the products Y76, ¢)e’+®1", give rise to terms corres-
ponding to propagating waves with horizontal wave vector
(Section 2.4.2)

k =(kg,ky), ko=(1/a)[(I+ 1/2)% — m%/sin? 8]12,
k¢=m/(a sin 6), (19)

where the factor of the earth’s radius a converts the angular
terms to wavenumbers along the surface. Hence the mode with
angular order / and frequency ,, corresponds to a traveling
wave with horizontal wavelength

A =27l|k, | =2mal(l+112) (20)

that has [ + 1/2 wavelengths around the earth (Fig. 2.9-8).
These waves travel at a horizontal phase velocity

c.=, 0|k, |=,0a/l+1/2). (21)

This equivalence is easily visualized a while after an earth-
quake, where globe-circling surface waves can be viewed as
standing waves, or modes. Waves corresponding to different
singlets propagate in different directions, as shown by the
various values of m.

This approximation also gives insight into the correspond-
ence between spheroidal and torsional modes and P-SV and
SH waves (or Rayleigh and Love waves). The spheroidal and
torsional mode displacements depend on vector spherical har-
monics, and thus on the derivatives of spherical harmonics.
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Taking derivatives of Eqn 18 shows the ratio of the partial
derivatives,

dY7(6, 9) / Y6, 9) (22)
26 99 ’

because ! was assumed to be much greater than m. For
torsional modes, the T} vector spherical harmonic (Eqn 10)
generally has a ¢ component greater than its 6 component, so
its displacement is primarily perpendicular to the plane con-
necting the source and the receiver, like an SH or a Love wave
(Fig. 2.9-1). By contrast, the spheroidal mode vector spherical
harmonic S}” (Eqn 14) generally has a 8 component greater
than its ¢ component, and so causes displacement primarily in
the plane connecting the source and the receiver, like a P-SV or
a Rayleigh wave.

We can use these ideas to relate modes to specific body and
surface wave phases. A good place to start is to recall that for
Love waves in a layer over a halfspace, the boundary condi-
tions at the free surface and the interface require that the Love
wave have discrete eigenfrequencies that depend on the layer
thickness and the shear velocity of the layer and the halfspace.
We thus obtain a dispersion relation (Section 2.7.3) giving the
phase velocity as a function of frequency for these modes.
Because the dispersion relation depends on the earth structure
assumed in computing it, we can compare the observed dis-
persion of surface waves to the predictions of different earth
models, and invert the observations to derive earth models that
better fit the data (e.g., Fig. 2.8-3).

Analogous computations for the spherical earth predict
the normal mode eigenfunctions and eigenfrequencies, which
depend on the earth model assumed. Figure 2.9-9 shows a plot
of radial eigenfunctions for some modes. As for surface waves,
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