AN INTRODUCTION
TO SEISMOLOGY,
EARTHQUAI(ES
AND EARTH

;; : STRUCTURE



5 Seismology and Plate Tectonics

The acceptance of continental drift has transformed the earth sciences from a group of rather unimaginative studies based on pedes-
trian interpretations of natural phenomena into a unified science that bolds the promise of great intellectual and practical advances.

5.1 Introduction

Two of the major advances in the earth sciences since the 1960s
have been the growth of global seismology and the develop-
ment of our understanding of global plate tectonics. The two
are closely intertwined because seismological advances pro-
vided some of the crucial data that make plate tectonics the
conceptual framework used to think about large-scale pro-
cesses in the solid earth.

The theory of plate tectonics grew out of the earlier theory
of continental drift, proposed in its modern form by Alfred
Wegener in 1915, The idea that continents drifted apart was an
old one, rooted in the remarkable fit of the coasts of South
America and Africa. Still, without compelling evidence for
motion between continents, the idea that such motions were
physically impossible prevented most geologists from accept-
ing Wegener’s ideas. By the 1970s the story was very different.
Geologists accepted continental drift in large part because
paleomagnetic measurements, based on the geometry and his-
tory of the earth’s magnetic field, showed that continents had in
fact moved over millions of years. Combination of these obser-
vations with results from seismology and marine geology and
geophysics led to the realization that all parts of the earth’s
outer shell, not just the continents, were moving.

Plate tectonics is conceptually simple: it treats the earth’s
outer shell as made up of about 15 rigid plates, about 100 km
thick, which move relative to each other at speeds of a few cm
per year.! The plates are rigid in the sense that little (ideally
no) deformation occurs within them, so deformation occurs
at their boundaries, giving rise to earthquakes, mountain
building, volcanism, and other spectacular phenomena. These
strong plates form the earth’s lithosphere, and move over the

1 This is about the speed at which fingernails grow.

J. Tuzo Wilson, Continents Adrift and Continental Aground, 1976

weaker asthenosphere below. The lithosphere and astheno-
sphere are mechanical units defined by their strength and the
way they deform. The lithosphere includes both the crust and
part of the upper mantle.

Figure 5.1-1 shows the three basic types of plate bound-
aries. Warm mantle material upwells at spreading centers,
also known as mid-ocean ridges, and then cools. Because the
strength of rock decreases with temperature (Section 5.7.3),
the cooling material forms strong plates of new oceanic litho-
sphere. The cooling oceanic lithosphere moves away from the
ridges, and eventually reaches subduction zones, or trenches,?
where it descends in downgoing slabs back into the mantle, re-
heating as it goes. The direction of the relative motion between
two plates at a point on their common boundary determines
the nature of the boundary. At spreading centers both plates
move away from the boundary, whereas at subduction zones
the subducting plate moves toward the boundary. At the third
boundary type, transform faults, relative plate motion is paral-
lel to the boundary.

As discussed in Section 3.8, seismology shows that the
structure of the mantle and the core varies with depth, due to
changes in temperature, pressure, mineralogy, and composi-
tion. Plate tectonics describes the behavior of the lithosphere,
the strong outer shell of the mantle, which is the cold outer
boundary layer of the thermal convection system involving the
mantle and the core that removes heat from the earth’s interior.
Although much remains to be learned about this convective
system, especially in the lower mantle and the core (Fig. 5.1-2),
there is general agreement that at shallow depths the warm,

2 Boundaries are described either as mid-ocean ridges and trenches, emphasizing

their morphology, or as spreading centers and subduction zones, emphasizing
the plate motion there. The latter nomenclature is more precise, because there are
elevated features in the ocean basins that are not spreading ridges, and spreading
centers like the East African rift exist within continents.
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and hence less dense, material rising below spreading centers
forms upwelling limbs, whereas the relatively cold, and hence
dense, subducting slabs form downwelling limbs. Although
the lithosphere is a very thin layer compared to the rest of the
mantle (100 km is 1/29 of the mantle’s radius), it is where
the greatest temperature change occurs, from about 1300° to
1400°C at a depth of 100 km to about 0°C at the surface. For
this reason, the lithosphere is called a thermal boundary layer.
Because of this temperature change, the lithosphere is much
stronger than the underlying rock, and so is also a mechanical
boundary layer. This strong boundary layer is thought to be a
primary reason why plate tectonics is much more complicated
than expected from simple convection models. Moreover,
the lithosphere, which contains the crust, is also a chemical
boundary layer distinct from the remainder of the mantle. Con-
tinental lithosphere is especially distinct: although individual
plates can contain both oceanic and continental lithosphere,
the latter is made of less dense rock than the former (recall the

differences between granitic and basaltic rocks discussed in
Section 3.2), and so does not subduct. The oceanic lithosphere
is continuously subducted and reformed at ridges, and so never
gets older than about 200 Myr. The continental lithosphere,
however, can be billions of years old.

Put another way, plate tectonics is the primary surface mani-
festation of the heat engine whose nature and history govern
the planet’s thermal, mechanical, and chemical evolution.?
Earth’s heat engine is characterized by the balance between
three modes of heat transfer from the interior: the plate tectonic
cycle involving the cooling of oceanic lithosphere; mantle
plumes, which are thought to be a secondary feature of mantle
convection; and heat conduction through continents that are
not subducted and hence do not participate directly in the
oceanic plate tectonic cycle. Based on estimates from sea floor
topography and heat flow, discussed shortly, terrestrial heat

3 It has been said that heat is the geological lifeblood of planets.
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loss seems to occur primarily (about 70%) via plate tectonics,
with about 5% via hot spots (mantle plumes). By contrast,
Earth’s grossly similar sister planets, Mars and Venus, seem to
function quite differently, because large-scale plate tectonics
appears absent, at least at present.

Plate tectonics is also crucial for the evolution of Earth’s
ocean and atmosphere, because it involves many of the primary
means (including volcanism, hydrothermal circulation through
cooling oceanic lithosphere, and the cycle of uplift and erosion)
by which the solid earth interacts with the ocean and the atmo-
sphere (Fig. 5.1-3). The chemistry of the oceans and the atmo-
sphere depends in large part on plate tectonic processes, and
many long-term features of climate are influenced by moun-
tains that are uplifted by plate convergence and the positions of
continents that control ocean circulation. In fact, the presence
of plate tectonics may explain how life evolved on earth (at
mid-ocean ridge hot springs) and be crucial for its survival (the
atmosphere is maintained by plate boundary volcanism, and
plate tectonics raises the continents above sea level).

As a result, plate tectonics is heavily studied by earth scient-
ists. Our goal in this chapter is to introduce some of the ways
in which seismology contributes to these studies. Some sources
for more general and more detailed treatments of these topics
are listed at the end of the chapter.

Seismology plays several key roles in our studies of plate
tectonics. The distribution of earthquakes provides strong
evidence for the idea of essentially rigid plates, with deforma-
tion concentrated on their boundaries. Figure 5.1-4 shows
maps of global seismicity covering the time period 1964-97.
Such maps did not become available until the early 1960s,
when the World Wide Standardized Seismographic Network
(WWSSN) allowed accurate locations for earthquakes of
magnitude S or greater anywhere in the world. The map shows
several remarkable patterns.

The mid-ocean ridge system, where the oceanic lithosphere
is created, is beautifully outlined by the earthquake locations.
For example, the Mid-Atlantic ridge and East Pacific rise can be
followed using epicenters for thousands of kilometers. The loca-
tions of the trenches, where oceanic lithosphere is subducted,
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are even more apparent in the lower panel showing earth-
quakes with focal depths greater than 100 km, because mid-
ocean ridge earthquakes are shallow and thus do not appear.

It is especially impressive to plot the locations of earthquakes
on cross-sections across trenches (Fig. 5.1-5). Inclined zones of
seismicity delineate the subducting oceanic plates, which travel
time and attenuation studies show to be colder and stronger
than the surrounding mantle. These zones, identified before
their plate tectonic significance became clear, are known as
Wadati-Benioff zones after their discoverers.*

The interplate earthquakes both delineate plate boundaries
and show the motion occurring there. We will see that the
direction of faulting reflects the spreading at mid-ocean ridges
and subduction at trenches. The earthquake locations and
mechanisms also show that plate boundaries in continents are
often complicated and diffuse, rather than the simple narrow
boundaries assumed in the rigid plate model that are a good
approximation to what we see in the oceans. For example,
seismicity shows that the collision of the Indian and Eurasian
plates creates a deformation zone which includes the Hima-
layas but extends far into China. Similarly, the northward
motion of the Pacific plate with respect to North America
creates a broad seismic zone, indicating that the plate boundary

* zone spans much of the western USA and Canada.

In addition, intraplate earthquakes occur within plate
interiors, far from boundary zones. For example, Fig. 5.1-4
shows earthquakes in eastern Canada and central Australia.
Such earthquakes are much rarer than plate boundary zone
earthquakes, but are common enough to indicate that plate
interiors are not perfectly rigid. In some cases these earth-
quakes are associated with intraplate volcanism, as in Hawaii.
Intraplate earthquakes are studied to provide data about where
and how the plate tectonic model does not fully describe tec-
tonic processes.

4 Kiyoo Wadati (1902-95) discovered the existence of deep seismicity and its

geometry under Japan; Hugo Benioff (1899-1968), also known for important
contributions to seismological instrumentation, discussed the global nature of deep
earthquakes and their relation to surface features (Fig. 1.1-10).
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Fig. 5.1-4 Global seismicity (1964-97). Top: Earthquakes (1, = 5, all depths) clearly delineate most plate boundaries, and show that some (e.g., India-
Eurasia) are diffuse. Many intraplate earthquakes show internal plate deformation. Bottom: The locations of seismicity (of all magnitudes) below 100 km
indicate the subduction zones.
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Fig. 5.1-5 Seismicity cross-section perpendicular to the New Hebrides
trench showing the Wadati-Benioff zone. This dipping plane of
earthquakes indicates the position of the subducting plate. (Isacks and
Barazangi, 1977. Island Arcs, Deep Sea Trenches and Back Arc Basins,
99-114, copyright by the American Geophysical Union.)

In summary, seismology provides crucial information
about both plate kinematics, the directions and rates of plate
motions, and plate dynamics, the forces causing plate motions.
As we will see, seismicity is one of the major tools used to
identify and delineate plate boundary zones, and earthquake
mechanisms are among the primary data used to determine the
motion within plate boundary zones. The mechanisms also
provide information about the stresses acting at plate boundar-
ies and within plates, which, together with earthquake depths
and seismic velocity structure, are important in developing
ideas about the forces involved and the physical processes by
which rocks deform and cause earthquakes. Conversely, plate
motion data are used to draw inferences about the locations
and times of future earthquakes and their societal risks. Thus it
is often hard, and sometimes pointless, to decide where seismo-
logy ends and plate tectonics begins, or vice versa.

5.2 Plate kinematics

Understanding the distribution and types of earthquakes
requires an understanding of the geometry of plate motions, or
plate kinematics. In this section we sketch some basic results,
of which we assume most readers have some knowledge. As
full exploration of this topic is beyond our scope, readers are
encouraged to delve into the suggested literature.

5.2.1 Relative plate motions

A basic principle of plate tectonics is that the relative motion
between any two plates can be described as a rotation about an
Euler pole! (Fig. 5.2-1). This condition controls the types of
boundaries and the focal mechanisms of earthquakes resulting
from relative motions, as discussed later. Specifically, at any

L This term comes from Euler’s theorem, which states that the displacement of any

rigid body (in this case, a plate) with one point (in this case, the center of the earth)
fixed is a rotation about an axis.
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Fig. 5.2-1 Geometry of plate motions. Linear velocity at point r is given
by v;= @, xr. The Euler pole is the intersection of the Euler vector with
the earth’s surface. Note that west longitudes and south latitudes are
negative.

point r along the boundary between plate i and plate j, with
latitude A and longitude y, the linear velocity of plate j with
respect to plateiis

V= @ XT. (1)

This is the usual formulation for rigid body rotations in
mechanics. r is the position vector to the point on the bound-
ary, and @;;is the angular velocity vector, or Euler vector. Both
vectors are defined from an origin at the center of the earth.

The direction of relative motion at any point on the bound-
ary is a small circle, a parallel of latitude about the Euler pole
(not a geographic parallel about the North Pole!). For example,
in Fig. 5.2-2 (top) the pole shown is for the motion of plate 2
with respect to plate 1. The convention used is that the first
named plate (j=2) moves counterclockwise (in a right-handed
sense) about the pole with respect to the second named plate
(i=1). The segments of the boundary where relative motion is
parallel to the boundary are transform faults. Thus transforms
are small circles about the pole, and earthquakes occurring on
them should have pure strike-slip mechanisms. Other segments
have relative motion away from the boundary, and are thus
spreading centers. Figure 5.2-2 (bottom) shows an alternative
case. The pole here is for plate 1 (7 = 1) with respect to plate 2
(i =2), so plate 1 moves toward some segments of the bound-
ary, which are subduction zones.

The magnitude, or rate, of relative motion increases with
distance from the pole because

|v;|=|®;|]r|siny, (2)

where yis the angle between the Euler pole and the site (corres-
ponding to a colatitude about the pole). All points on a plate
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Fig. 5.2-2 Relationship of motions on plate boundaries to the Euler

pole. Relative motions occur along small circles about the Euler pole
(short dashed lines) at a rate that increases with distance from the pole.
Note the difference the sense of rotation makes: @, is the Euler vector
corresponding to the rotation of plate j counterclockwise with respect to 7.

boundary have the same angular velocity, but the magnitude of
the linear velocity varies from zero at the pole to a maximum
90° away.

The components of the vectors can be written in Cartesian
(%, y, ) coordinates (Fig. 5.2-1). The position vector is

r=(a cos A cos U, a cos Asin i, a sin A}, (3)

where a is the earth’s radius. Similarly, if the Euler pole is at
latitude 8 and longitude ¢, the Euler vector is written (neglect-
ing the 7/ subscripts for simplicity) as

o= (|@]|cos Bcos ¢,| @] cos Osin ¢, |@]sin 6), 4)

where the magnitude, |@|, is the scalar angular velocity or
rotation rate. To find the Cartesian components of the linear
velocity v, we evaluate the cross product (Eqn 1) using its
definition (Eqn A.3.28), and find

V= (Ux, Uy; Uz)n

v,=a|@|(cos @sin ¢sin A—sin O cos A sin y)
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v,=a|@|(sin 6 cos A cos jL—cos 6 cos ¢ sin A)

v,=a|®|cos 8cos Asin (L~ ¢). (5)

At the point r, the north-south and east—west unit vectors
can be written in terms of their Cartesian components using
Eqn A.7.4,

8NS = (—sin A cos p1, —sin Asin i, cos ),

éE\W

=(-sin g, cos 4, 0), (6)
so we find the north-south and east-~west components of v by
taking dot products of its Cartesian components (Eqns 5) with
the unit vectors (Eqns 6), and obtain

vN=a|@|cos Osin (u-9),

vE¥=g|@|[sin Ocos A—cos Osin A cos (u— ¢)]. (7)

We can then find the rate and direction of plate motion,

rate=|v| = /©N)? + WEV)?

azimuth=90° —tan! [(vN)/(vEY)], (8)

such that azimuth is measured in the usual convention, degrees
clockwise from North.

In evaluating these expressions, it is important to be careful
with dimensions. Although rotation rates are typically reported
in degrees per million years, they should be converted to
radians per year. The resulting linear velocity will have the
same dimensions as Earth’s radius. By serendipity, converting
radius in km to mm and Myr to years cancel out, so only the
degrees to radians (x 7/180°) conversion actually needs to be
done to obtain a linear velocity in mm/yr. Plate motions are
often quoted as mm/yr, because a year is a comfortable unit
of time for humans and 1 mm/yr corresponds to 1 km/Myr,
making it easy to visualize what seemingly slow plate motion
accomplishes over geologic time.

To see how this works, consider Fig. 5.2-3, which shows the
North America—Pacific boundary zone. The map is drawn in a
projection about the Euler pole, so the expected relative motion
is parallel to small circles like the one shown. By analogy to
Fig. 5.2-2, this geometry predicts NW-SE-oriented spreading
along ridge segments in the Gulf of California, which are rifting
Baja California away from the rest of Mexico. Further north,
the San Andreas fault system is essentially parallel to the
relative motion, so is largely a transform fault. In Alaska, the
eastern Aleutian arc is perpendicular to the plate motion, so
the Pacific plate subducts beneath North America. Thus this
plate boundary contains ridge, transform, and trench portions,
depending on the geometry of the boundary.? In addition, the

2 A good way to visualize the plate motion is to photocopy Fig. 5.2-3, cut along
the boundary of the Pacific plate, and then photocopy the “Pacific” onto another
piece of paper. Putting the “Pacific” beneath “North America” and rotating around a
thumbtack through the pole shows the ridge, transform, and trench motions both
forward and backward in time.
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for a portion of the North America-Pacific
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North America. The velocity scale is shown
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boundary zone contains the small Juan de Fuca plate, which
subducts beneath the Pacific Northwest at the Cascadia
subduction zone.

Equation 8 lets us find how the motion varies. The predicted
motion of the Pacific plate with respect to the North American
plate at a point on the San Andreas fault (36°N, 239°E) has
a rate of 46 mm/yr at an azimuth of N36°W. The predicted
direction agrees reasonably well with the average trend of
the San Andreas fault, N41°W. Thus, to first order, the San
Andreas is a Pacific-North America transform plate boundary
with right-lateral motion. However, there are some deviations
from pure transform behavior. As we will see, the rate on the
San Andreas fault is less than the total plate motion because
some of the motion occurs elsewhere within the broad plate
boundary zone. In addition, in some places the San Andreas
trend differs enough from the plate motion direction that dip-

2002 by Academic Press, reproduced by
permission of the publisher.)

280°

slip faulting occurs. Hence we think of the San Andreas as the
primary feature of the essentially strike-slip portion of the plate
boundary zone.

Similarly, at a point on the Aleutian trench near the site
of the great 1964 Alaska earthquake (Fig. 4.3-15) (62°N,
212°E), we predict Pacific motion of 53 mm/yr at N14°W with
respect to North America. This motion is into the trench, which
is a Pacific-North America subduction zone. It is worth noting
that for a given convergent relative motion either plate can be
subducting. However, the relative direction is important, so the
plates cannot be interchanged: if N14°W were the direction of
motion of North America with respect to the Pacific, the mo-
tion would be away from the boundary, which would then be
a spreading center with the same rate. As for the San Andreas,
the actual boundary zone shown by earthquakes and other
deformation is wider and more complicated than the ideal.
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Earthquake focal mechanisms within the boundary zone are
consistent with the overall plate motions and illustrate some of
their complexities. In the Gulf of California we see both strike-
slip faulting along oceanic transforms and normal faulting on
ridge segments. The San Andreas fault system, composed of the
main fault and some others, has both pure strike-slip earth-
quakes (Parkfield) and earthquakes with some dip-slip motion
(Northridge (Section 4.5.3), San Fernando, and Loma Prieta)
when it deviates from pure transform behavior. The seismicity
also shows that the plate boundary zone is quite broad.
Although the San Andreas fault system is the locus of most
of the plate motion (Fig. 4.5-13) and hence large earthquakes,
seismicity extends as far eastward as the Rocky Mountains. For
example, the Landers earthquake shows strike-slip motion east
of the San Andreas, and the Borah Peak earthquake illustrates
the extensional faulting that occurs in the Basin and Range.
These focal mechanisms are consistent with the motions shown
by space-based geodetic measurements, discussed shortly, and
with geologic studies.

5.2.2  Global plate motions

The relative plate motions show how the plate boundary geo-
metry is evolving and has evolved. The Juan de Fuca plate is
subducting under North America faster than new lithosphere
is being added to it by sea floor spreading at its boundary with
the Pacific plate, so this plate was larger in the past and is
shrinking. Rotating the Pacific plate backwards with respect
to North America shows that 10 million years ago the Gulf of
California had not yet begun to open by sea floor spreading.
These changes are part of the evolution of the plate boundary
in western North America, in which the large oceanic Farallon
plate that used to be between the Pacific and North American
plates began subducting under North America at about
40 Ma,? leaving the Juan de Fuca plate as a remnant and
forming the San Andreas fault.

At this point you may be wondering how Euler poles are
found. Until recently, this was done by combining three dif-
ferent types of data from different boundaries. The rates of
spreading are found from sea floor magnetic anomalies, which
form as the hot rock at ridges cools and acquires magnetization
parallel to the earth’s magnetic field. Because the history of
reversals of the earth’s magnetic field is known, the anomalies
can be dated, so their distance from the ridge where they
formed shows how fast the sea floor moved away from the
ridge. The directions of motion are found from the orientations
of transform faults and the slip vectors of earthquakes on trans-
forms and at subduction zones. Euler vectors are found from
the relative motion data, using geometrical conditions we have
discussed. The process is easy to visualize. Because slip vectors
and transform faults lie on small circles about the pole, the pole
must lie on a great circle at right angles to them (Fig. 5.2-2).
Similarly, the rate of plate motion increases with the sine of

3 “Ma” is often used to denote millions of years before the present.
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the distance from the pole (Eqn 2). These constraints make it
possible to locate the poles. Determination of Euler vectors for
all the plates can thus be treated as an overdetermined least
squares problem whose solution (Section 7.5) gives a global
relative plate motion model. Because these models use spread-
ing rates determined from magnetic anomaly data that span
several million years, they describe plate motions averaged
over the past few million years.*

Table 5.2-1 gives such a model, known as NUVEL-14,°
which specifies the motions of plates (Fig. 5.2-4) with respect
to North America. The vectors follow the convention that each
named plate moves counterclockwise relative to North America.
Although the table lists only Euler vectors with respect to
North America, the motion of plates with respect to other
plates is easily found using vector arithmetic. For example,

Wy==0j, 9)
so we reverse the plate pair using the negative of the Euler
vector. The pole for the new plate pair is the antipole, with
latitude of opposite sign and longitude increased by 180°. The
magnitude (rotation rate) stays the same. We can also reverse
the plate pair by keeping the same pole and making the rota-
tion rate negative (clockwise rather than counterclockwise).
Although we usually use positive rotation rates, negative ones
sometimes help us visualize the motion. For example, the table
shows the Pacific-North America pole at about —49°N, 102°E,
so the North America—Pacific pole is at about 49°N, (102 + 180
= 282)°E, which is in southeastern Canada. Thus, about this
pole, North America rotates counterclockwise with respect to
the Pacific, or the Pacific rotates clockwise with respect to
North America, as shown in Fig. 5.2-3.

For other plate pairs we assume that the plates are rigid, so
all motion occurs at their boundaries. We can then add Euler
vectors,

Wy = 0+ Oy, (10)

because the motion of plate j with respect to plate k equals
the sum of the motion of plate j with respect to plate i and the
motion of plate i with respect to plate k. Thus if we start with a
set of vectors all with respect to one plate, e.g., i, we use

W= O = O, (11)

to form any Euler vector needed. These operations are easily
done using the Cartesian components (Eqn 4), as shown in
this chapter’s problems. We can also perform the analogous
operations on linear velocity vectors at a specific site.

4 The most recent magnetic reversal occurred about 780,000 years ago, so any plate
model based on paleomagnetic data must average at least over that interval.

5 NUVEL-1 (Northwestern University VELocity) was developed as a new
(“nouvelle”) model (DeMets e al., 1990). The multiyear development prompted
the suggestion that “OLDVEL” might be a better name. Due to changes in the
paleomagnetic time scale the model was revised to NUVEL-1A (DeMets et al., 1994).
This change caused a slight difference in the rates of relative motion, but not in the
poles and hence directions of relative motion.
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Table 5.2-1 Euler vectors with respect to North America (NA).

Plate Pole latitude (°N) Longitude (°E) |w | (°/Myr)
Pacific (PA) —-48.709 101.833 0.7486
Africa (AF) 78.807 38.279 0.2380
Antarctica (AN) 60.511 119.619 0.2540
Arabia (AR) 44,132 25.586 0.5688
Australia (AU) 29.112 49.006 0.7579
Caribbean (CA) 74.346 153.892 0.1031
Cocos (CO) 27.883 ~120.679 1.3572
Eurasia (EU) 62.408 135.831 0.2137
India (IN) 43.281 29.570 0.5803
Nazca (NZ) 61.544 -109.781 0.6362
South America (SA) ~16.290 121.876 0.1465
Juan de Fuca (JF) -22.417 67.203 0.8297
Philippine (PH) ~43.986 -19.814 0.8389
Rivera (RI) 22.821 -109.407 1.8032
Scotia (SQ) ~43.459 123.120 0.0925
NNR* 2.429 93.965 0.2064

Source: After DeMets et al. 1994.
*No net rotation, defined in Section 5.2.4.

Fig.5.2-4 Relative plate motions for the NUVEL-1 global plate motion model. Arrow lengths are proportional to the displacement if plates maintain their
present relative velocity for 25 Myr. Divergence across mid-ocean ridges is shown by diverging arrows. Convergence is shown by single arrows on the
underthrust plate. Plate boundaries are shown as diffuse zones implied by seismicity, topography, or other evidence of faulting. Fine stipple shows mainly
subaerial regions where the deformation has been inferred from seismicity, topography, other evidence of faulting, or some combination of these. Medium
stipple shows mainly submarine regions where the nonclosure of plate circuits indicates measurable deformation; in most cases these zones are also
marked by earthquakes. Coarse stipple shows mainly submarine regions where the deformation is inferred mostly from the presence of earthquakes. The
geometry of these zones, and in some cases their existence, is under investigation. (Gordon and Stein, 1992. Science, 256, 333-42, copyright 1992
American Association for the Advancement of Science.)

Such vector addition is important because we only have  vectors, only the direction of motion is directly known at
certain types of data for individual boundaries (Fig. 5.2-5).  subduction zones. As a result, convergence rates at subduction
Although spreading centers provide rates from the magnetic ~ zones are estimated by global closure, combining data from all
anomalies and azimuths from both transform faults and slip  plate boundaries (Section 7.5 ). Thus the predicted rate at which
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Fig. 5.2-5 Global plate circuit geometry for the NUVEL-1 plate motion
model. Relative motion data are used on the boundaries indicated.
(De Mets et al., 1990. Geophys. J. Int., 101,425-78.)

the Cocos plate subducts beneath North America, causing
large earthquakes in Mexico, depends on the measured rates of
Cocos-Pacific spreading on the East Pacific rise and Pacific-
North America spreading in the Gulf of California. In some
cases, such as relative motion between North and South Amer-
ica, no direct data were used because the boundary location and
geometry are unclear, so the relative motion is inferred entirely
from closure. Not surprisingly, the motions of plate pairs based
on both rate and azimuth data appear to be better known.

Figure 5.2-4 shows the predicted relative motions at plate
boundaries around the world. As shown for the Pacific-North
America boundary in Fig. 5.2-3 and discussed in general terms
in later sections, the predicted motions correspond to the earth-
quake mechanisms. Moreover, we can use the plate motions to
make inferences about future earthquakes. For example, even
though we do not have seismological observations of large
earthquakes along the boundary between the Juan de Fuca
and North American plates, the plate motions predict that
such earthquakes could result from the subduction of the Juan
de Fuca plate beneath North America. Evidence for this sub-
duction is given by the presence of the Cascade volcanoes (such
as Mount Saint Helens and Mount Rainer) and paleoseismic
records (Section 1.2.5) that are interpreted as evidence of large
past earthquakes.

Figure 5.2-4 also illustrates that boundaries between plates
are often diffuse. Seismicity, active faulting, and elevated topo-
graphy often indicate a broad zone of deformation between
plate interiors. This effect is evident in continental lithosphere,
such as the India—Eurasia collision zone in Asia or the Pacific—
North America boundary zone in the western USA, but can
also sometimes be seen in oceanic lithosphere, as in the Central
Indian Ocean. Plate boundary zones cover about 15% of the
earth’s surface, and about 40% of the earth’s population lives
within them.
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Earthquakes are among the best tools for investigating plate
boundary zones and other deviations from plate rigidity. They
provide one of the best indicators of the location of boundary
zones, so new earthquakes often change our views. We also
use plate motion data, many of which are earthquake slip vec-
tors. For example, Fig. 5.2-4 shows zones of seismicity in the
Central Indian Ocean (Section 5.5.2) as boundaries between
distinct Indian and Australian plates, rather than as within a
single Indo-Australian plate, because spreading rates along the
Central Indian Ocean ridge are better fit by a two-plate model.
A similar argument justifies the assumption of a small Rivera
plate distinct from the Cocos plate. Another approach is to use
the global plate circuit closures (Fig. 5.2-5). Recall that forming
a Buler vector from two others (Eqn 10) assumes that all three
plates are rigid. Hence this assumption can be used to test for
deviations from rigidity. To do this, we form a best-fitting vec-
tor for a plate pair, using only data from that pair of plates’
boundary, and a closure fitting vector from data elsewhere in
the world. If the plates were rigid, the two vectors would be
the same. However, a significant difference between the two
indicates a deviation from rigidity, or another problem with
the plate motion model. For example, such analysis shows
systematic deviations along some subduction zones, suggesting
that the slip vectors of the trench earthquakes do not exactly
reflect plate motions because a sliver of forearc material in the
overriding plate moves separately from the remainder of the
overriding plate (Section 5.4.3).

A variant of this approach is to examine the Euler vectors for
three plates that meet at a #riple junction, compute best-fitting
Euler vectors for each of the three plate pairs, and sum them.
For rigid plates, Eqn 10 shows that the sum should be zero.
However, when this was done for the junction in the Central
Indian Ocean, assuming that it was where the African, Indo-
Australian, and Antarctic plates met, the Euler vector sum dif-
fered significantly from zero, indicating deviations from plate
rigidity. As plate motion data improve, it seems that what
was treated as a three-plate system may include as many as
six resolvable plates (Antarctica, distinct Nubia (West Africa)
and Somalia (East Africa), India, Australia, and Capricorn
(between India and Arabia)). Hence models of plate
boundaries and motions improve with time (Fig. 1.1-9). For
example, although the model in Fig. 5.2-4 has a single African
plate, recent models seek to resolve the motion between Nubia
and Somalia (Fig. 5.6-2).

5.2.3  Space-based geodesy

New plate motion data have become available in recent years
due to the rapidly evolving techniques of space-based geodesy.
Using space-based measurements to determine plate motions
was suggested by Alfred Wegener when he proposed the theory
of continental drift in 1915. Wegener realized that proving
continents moved apart was a formidable challenge. Although
geodesy — the science of measuring the shape of, and distances
on, the earth — was well established, standard surveying
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Fig. 5.2-6 Comparison of rates determined by space geodesy with those
predicted by the NUVEL-1 global plate motion model. The space geodetic
rates are determined from sites located away from plate boundaries to
reduce the effects of deformation near the boundaries. The slope of the
line is 0.94, indicating that plate motions over a decade are very similar to
those predicted by a model averaging over 3 million years. (Robbins ez al.,
1993. Contributions of Space Geodesy to Geodynamics, 21-36, copyright
by the American Geophysical Union.)

methods offered no hope of measuring slow motions between
continents far apart. Wegener thus decided to measure the dis-
tance between continents using astronomical observations.®
However, because measuring continental drift called for meas-
urement accuracies far greater than ever before to show small
changes in positions over a few years, Wegener’s attempts
failed, and the idea of continental drift was largely rejected.

By the 1970s the story was very different. Geologists ac-
cepted continental drift, in large part because paleomagnetic
measurements showed that continents had in fact moved over
millions of years. It thus seemed natural to see if modern
space-based technology could accomplish Wegener’s dream of
measuring continental motions over a few years. Three basic
approaches were attempted. Each faced formidable technical
challenges — and all succeeded. Hence, using the techniques
discussed in Section 4.5.1, plate motions can now measured to
a precision of a few mm/yr or better, using a few years of data
from systems including Very Long Baseline Interferometry
(VLBI), Satellite Laser Ranging (SLR), and the Global Position-
ing System (GPS).

Space geodesy measures both the rate and the azimuth of the
motions between sites, and can thus be used to compute rela-

6 Using an extraterrestrial reference has a long history; in about 230 B¢ Eratosthenes

found the Earth’s size from observations of the sun’s position at different sites, and
navigators have found their positions by observing the sun and stars.

tive plate motions. One of the most important results of space
geodesy for seismology is that plate motions have remained
generally steady over the past few million years. This is shown
by the striking agreement between motions measured over a
few years by space geodesy and the predictions of global plate
motion models that average over the past three million years
(Fig. 5.2-6). The general agreement is consistent with the idea
that although motion at plate boundaries can be episodic, as
in large earthquakes, the viscous asthenosphere damps out
the transient motions (much like the damping element in a
seismometer, Section 6.6) and causes steady motion between
plate interiors. This steadiness implies that plate motion
models can be used for comparison with earthquake data.

Space geodesy surmounts a major difficulty faced by models
like NUVEL-1A: namely, that the data used (spreading rates,
transform azimuths, and slip vectors) are at plate boundaries,
so the model provides only the net motion across a boundary.
By contrast, space geodesy can also measure the motion of sites
within plate boundary zones. For example, Fig. 5.2-3 shows
the motions of GPS and VLBI sites within the North America—
Pacific boundary zone. Sites in eastern North America move
so slowly — less than 2 mm/yr — with respect to each other that
their motion vectors cannot be seen on this scale. These sites
thus define a rigid reference frame for the stable interior of the
North American plate. Sites west of the San Andreas fault move
at essentially the rate and direction predicted for the Pacific
plate by the global plate motion model. The site vectors show
that most of the plate motion occurs along the San Andreas
fault system, but significant motions occur for some distance
eastward. The geodetic motions are consistent with the focal
mechanisms and geological data. Thus, as discussed further in
Section 5.6, the different data types are used together to study
how the seismic and aseismic portions of the deformation vary
in space and time in the diffuse deformation zones that charac-
terize many plate boundaries. This is done both on large scales,
as shown here, and for studies of smaller areas and individual
earthquakes (Section 4.5).

Space geodesy is also used to study the relatively rare, but some-
times large, earthquakes within plates. Global plate motion
models give no idea where or how often intraplate earthquakes
should occur, beyond the trivial prediction that they should not
occur because there is no deformation within ideal rigid plates.
Space geodesy is being combined with earthquake locations,
focal mechanisms, and other geological and geophysical data
to investigate the motions and stresses within plates and how
they give rise to intraplate earthquakes (Section 5.6.3).

5.2.4  Absolute plate motions

So far, we have discussed the relative motions between plates,
which have traditionally been of greatest interest to seismolog-
ists because most earthquakes reflect these motions. However,
in some applications it is important to consider absolute plate
motions, those with respect to the deep mantle.

In general, both plates and plate boundaries move with
respect to the deep mantle. To see this, assume that the African
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Fig. 5.2-7 Top: llustration of the formation of a volcanic island chain by
plate motion over a fixed hot spot. Botzom: Ages, in millions of years, of
volcanoes in the Hawaiian-Emperor chain.

plate were not moving with respect to the deep mantle. In this
case, as lithosphere was added to the plate by sea floor spread-
ing at the Mid-Atlantic ridge (Fig. 5.2-4), both the ridge and the
South American plate would move westward with respect to
the mantle. Conversely, as the African plate lost area by sub-
duction beneath the Eurasian plate in the Mediterranean, the
trench would “roll backward,” causing both it and Eurasia to
move southward relative to the mantle. Such motions can have
important consequences for processes at plate boundaries (e.g.
Fig. 5.3-10).

Absolute plate motions cannot be measured directly. Hence
we infer these motions in two ways. One uses the hot spot
hypothesis, in which certain linear volcanic trends result from
the motion of a plate over a hot spot, or fixed source of volcan-
ism, which causes melting in the overriding plate (Fig. 5.2-7). If
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the overriding plate is oceanic, its motion causes a progression
from active volcanism that builds the islands, to older islands,
to underwater seamounts as the sea floor moves away from
the hot spot, cools, and subsides. This process leaves a broad,
shallow, topographic swell around the hot spot and a charac-
teristic volcanic age progression away from it, as shown for the
Hawaiian-Emperor seamount chain. The ages of volcanism
range from present, on the currently active island of Hawaii, to
a few million years on the other Hawaiian islands,’ to about 28
Ma at Midway island, and about 70 Ma where the seamount
chain vanishes into the Aleutian trench. Thus the direction and
age of the volcanic chain give the motion of the plate with
respect to the hot spot. For example, the bend in the Hawaiian—
Emperor seamount chain has been interpreted as indicating
that the Pacific plate changed direction about 40 million years
ago. Hence using hot spot tracks beneath different plates, and
assuming that the hot spots are fixed with respect to the deep
mantle (or move relative to each other more slowly than
plates), yields a hot spot reference frame.

It is often further assumed that hot spots result from plumes
of hot material rising from great depth, perhaps even the core-
mantle boundary (Fig. 5.1-2). The concepts of hot spots and
plumes are attractive and widely used, but the relation between
the persistent volcanism and possible deep mantle plumes re-
mains a subject of active investigation because there are many
deviations from what would be expected. Some hot spots
move significantly, some chains show no clear age progression,
evidence for plate motion changes associated with bends like
that in Fig. 5.2-7 is weak, and oceanic heat flow data show little
or no thermal anomalies at the swells. Seismological studies
find low-velocity anomalies, but assessing their depth extent
and relation to possible plumes is challenging. However, the
hot spot reference frame is similar to one obtained by assuming
there is no net rotation (NNR) of the lithosphere as a whole,
and hence that the sum of the absolute motion of all plates
weighted by their area is zero. Thus despite unresolved ques-
tions about the nature and existence of hot spots and plumes,
NNR reference frames are often used to infer absolute motions.

To compute absolute motions, we recognize that motions
in an absolute reference frame correspond to adding a rotation
to all the plates. Thus we use the Euler vector formulation and
treat the absolute reference frame as mathematically equival-
ent to another plate. We define €, as the Euler vector of plate i
in an absolute reference frame. For example, Table 5.2-1 gives
the NNR Euler vector relative to the North American plate
(@ NNRoNa)» SO its negative (@y,_nng) is the absolute Euler
vector Q,, for North America in the NNR reference frame.
The linear velocity at a point r is found by analogy to Eqn 1:

V= Q. (12)

Thus we find the motion of North America with respect to
the hot spot thought to be producing the volcanism and
earthquakes in Yellowstone National Park (44°, —110°) to be

7 This age progression was recognized by native Hawaiians, who attributed it to the
order in which the volcano goddess Pele plucked the islands from the sea.
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Fig. 5.2-8 Comparison of the predicted absolute motion of North
America to the Snake River Plain basalts, which are thought to be the
track of a hot spot now producing volcanism in Yellowstone National
Park. (After Smith and Braile, 1994. J. Volcan. Geotherm. Res., 61,
121-87, with permission from Elsevier Science.)

18 mm/yr directed N239°E. This motion is along the trend
connecting the present volcanism in Yellowstone to the
Snake River Plain basalts (Fig. 5.2-8), which are thought to be
its track, a continental analogy to the Hawaiian-Emperor
seamount chain.

Relative and absolute Euler vectors are simply related because

0,=2,-2, (13)

the relative Euler vector for two plates, is the difference
between their absolute Euler vectors. Thus, if we know one
plate’s absolute motion, we can find all the others from the
relative motions. For example, the absolute motion of the
Pacific plate can be found from Table 5.2-1, which gives its
vector relative to North America, using

Qpy=0py_nat+2na- (14)

Absolute motions are important in several seismological
applications. Seismology is used to study hot spots and their
effects, including the resulting intraplate earthquakes like
those associated with the volcanism in Hawaii. For example,
Fig. 2.8-5 illustrated the use of surface wave dispersion to study
the velocity structure under the Walvis ridge, which is thought
to be the track produced by a hot spot under the Mid-Atlantic
ridge. A second application involves seismic anisotropy in the
mantle (Section 3.6), which is thought to reflect flow of olivine-
rich material in a direction that is often consistent with the pre-
dicted absolute plate motions. Thus seismic anisotropy, seismic
velocities, and absolute motions are being combined to model
mantle flow.
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Fig. 5.3-1 Possible tectonic settings of earthquakes at an oceanic
spreading center. Most events occur on the active segment of the
transform and have strike-slip mechanisms consistent with transform
faulting. On a slow-spreading ridge, like the Mid-Atlantic, normal fault
earthquakes also occur.

5.3 Spreading centers

Because the lithosphere forms at spreading centers, we begin
with an overview of such systems and the earthquakes within
them. We will see that seismological observations both de-
monstrate and reflect the basic kinematic model for ridges
and transforms. Moreover, they provide key evidence for the
thermal-mechanical processes that control the formation and
evolution of the oceanic lithosphere.

5.3.1 Geometry of ridges and transforms

Mid-ocean ridges are marked by earthquakes, which provide
important information about the sea floor spreading process.
Figure 5.3-1 is a schematic diagram of a portion of a spreading
ridge offset by transform faults. Because new lithosphere forms
at ridges and then moves away, transform faults are segments
of the boundaries between plates, across which lithosphere
moves in opposite directions. A given pair of plates can have
either right- or left-lateral motion, depending on the direction
in which a transform offsets the ridge; both reflect the same
direction of relative plate motion. This motion across the
transform is not what produced the offset of the ridge crest. In
fact, in the usual situation such that spreading is approxim-
ately symmetric (equal rates on either side), the length of the
transform will not change with time. This is a very different
geometry from a transcurrent fault, where the offset between
ridge segments is produced by motion on the fault and in-
creases with time.

The focal mechanisms illustrate these ideas. Figure 5.3-2
(top) shows a portion of the Mid-Atlantic ridge composed of
north-south-trending ridge segments that are offset by trans-
form faults such as the Vema transform that trend approxim-
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Fig. 5.3-2 Maps contrasting faulting on slow- and fast-spreading
centers. Top: The slow Mid-Atlantic ridge has earthquakes on both the
active transform and the ridge segments. Strike-slip faulting on a plane
parallel to the transform azimuth is characteristic. On the ridge segments,
normal faulting with nodal planes parallel to the ridge trend is seen.
Bottom: The fast East Pacific rise has only strike-slip earthquakes on the
transforms. (Stein and Woods, 1989.)

ately east-west. Both the ridge crest and the transforms are
seismically active. The mechanisms show that the relative
motion along the transform is right-lateral. Sea floor spread-
ing must be occurring on the ridge segments to produce the
observed relative motion. For this reason, earthquakes occur
almost exclusively on the active segment of the transform fault
between the two ridge segments, although an inactive exten-
sion known as a fracture zone extends to either side. Although
no relative plate motion occurs on the fracture zone,! it is
often marked by a topographic feature due to the contrast
in lithospheric ages across it.

1 Unfortunately, some transform faults named before this distinction became clear

are known as “fracture zones” along their entire length.
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Fig. 5.3-3 Cross-section through the Mid-Atlantic ridge. The fault plane
inferred from the focal mechanisms of large earthquakes is consistent with
the locations of microearthquakes (dots) determined using ocean bottom
seismometers. Dashed lines show P-wave velocity structure. (Toomey
etal.,1988.]. Geophys. Res., 93, 9093-112, copyright by the American
Geophysical Union.)

Earthquakes also occur on the spreading segments. Their
focal mechanisms show normal faulting, with nodal planes
trending approximately along the ridge axis. These normal
fault earthquakes are thought to be associated with the forma-
tion of the axial valley. For example, Fig. 5.3-3 shows a cross-
section through the Mid-Atlantic ridge. The fault planes
inferred from teleseismic focal mechanisms and the locations
of microearthquakes determined using ocean bottom seismo-
meters are consistent with normal faulting along the east side of
the valley. Slip on this fault over 10,000 years would be enough
to produce the observed geometry, including the eastward tilt
of the valley floor.

The seismicity differs along the East Pacific rise. Here (Fig.
5.3-2, bottom) earthquakes occur on the transform faults with
the expected strike-slip mechanisms, but few earthquakes occur
on the ridge crest. This is probably because the East Pacific rise
has an axial high, rather than the axial valley that occurs at
the Mid-Atlantic ridge.? This difference appears to reflect the
spreading rates: ridges spreading at less than about 60 mm/yr
usually have axial valleys, whereas faster-spreading ridges have
axial highs and thus do not have ridge crest normal faulting.

These examples show the spreading process at its simplest,
but there can be complexities. Spreading can be asymmetric
(one flank faster than the other) or oblique, such that the
spreading is not perpendicular to the ridge axis. In addition, the
geometry of a ridge system can change with time, as discussed
in Section 5.3.3.

5.3.2  Evolution of the oceanic lithosphere

To understand the difference between fast- and slow-spreading
ridges, and the nature of the earthquakes associated with
them, it is important to understand the evolution of the oceanic

2 This is often shown incorrectly on older maps.
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Fig. 5.3-4 Model for the cooling of an oceanic plate as it moves away from the ridge axis (left). Because a column moves away from the ridge faster than
heat is conducted in the horizontal direction (right), the cooling in the vertical direction can be treated as a one-dimensional problem. (After Turcotte

and Schubert, 1982.)

lithosphere. This process can be described using a simple, but
powerful, model for the formation of the lithosphere by hot
material at the ridge, which cools as the plate moves away.

In this model, material at the ridge at a mantle temperature
T,, (1300-1400 °C) is brought to the ocean floor, which has a
temperature T,. The material then moves away at a velocity v,
while its upper surface remains at T, (Fig. 5.3-4). Because the
plate moves away from the ridge faster than heat is conducted
horizontally, we can consider only vertical heat conduction.
Mathematically, this is the same as the cooling of a halfspace
originally at temperature T = T,,, whose surface is suddenly
cooled to T at time £ =0.

The temperature as a function of depth and time is given
by the one-dimensional heat flow equation, which relates the
temperature change with time in a piece of material to the rate
at which heat is conducted out of it,

Tlat) _ k T _ 3T

: : (1
ot pC, oz 0z

x, known as the thermal diffusivity, is a property of the
material that measures the rate at which heat is conducted. It
has units of distance squared divided by time, and is defined as
k=k/pC,, where k is the thermal conductivity, p is the density,
and C, is the specific heat at constant pressure.

The well known solution to Eqn 1 is

z
T(z,t)=T,+(T,—T,) erf , (2)
(2, 2) ( ) (2\/@]
where
erf(s) = 2 e do (3)
=
0

is known as the error function. Figure 5.3-5 (right) shows how
this function varies between erf (0) = 0 and erf (3) = 1. Thus
cooling starts at the surface and deepens with time (Fig. 5.3-5,
left).

Assuming that any column of oceanic lithosphere cools this
way, and that the sea floor temperature is T, = 0 °C, then

Temperature ———»
t=0

Fig. 5.3-5 Left: Cooling of a halfspace as described by the one-
dimensional heat flow equation. The surface is cooled at time zero, and
then the interior cools with time. Righ#: The error function, which
controls the cooling solution shown.

T(z,#) =T, exf ( z__) (4)
2kt

gives the temperature at a depth z for material of age z. The
lithosphere moves away from the ridge at half the total spread-
ing rate, so the age of the lithosphere is t = x /v, its distance from
the ridge divided by the half-spreading rate v. Thus the tem-
perature (Eqn 4) as a function of distance and depth is

T(x,2)=T,, erf ( (5)

2z
2~xxlv }
It is useful to think of isotherms, lines of constant temperature,

in the plate. An isotherm is a curve on which the argument of
the error function is constant,

zC
2kt

so that the depth to a given temperature increases as the square
root of the lithospheric age.

This is an example of a general feature of heat conduction
problems: setting ¢ = 1 and examining Fig. 5.3-5 for erf (1)

=¢, or z, =2ckt, (6)
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Fig. 5.3-6 The increase in ocean depth with lithospheric age due to the
cooling of the lithosphere can be modeled using isostasy, the assumption
that the mass in a vertical column is the same for all ages.

shows that most of the temperature change has propagated a
distance Z\flc-t in a time t. For example, after a lava flow erupts,
it cools as the square root of time. Such square root of time
behavior occurs for any process described by a diffusion equa-
tion, of which the heat equation is an example.

The concept that the lithosphere cools with time such that
isotherms deepen with the square root of age has many observ-
able consequences. The simplest is that ocean depth should
vary with age, which makes sense, because spreading centers
are ridges precisely because the ocean deepens on either side.
To model this effect, we consider the mass in two columns, one
at the ridge and one at age 7, and invoke the idea of isostasy,
which means that the masses in the two columns balance
(Fig. 5.3-6).3

Assume that the lithosphere, defined by the T=T,, isotherm,
has thickness zero at the ridge and z = m(¢) at age ¢, where the
water depth is h(t). Similarly, we assume that the astheno-
sphere is at temperature T, and has density p,,. However, the
temperature and thus density in the cooling lithosphere vary,
such that at the point (2, #) the temperature is T{(z, ) and the
corresponding density is

o) T 1= ,
pz,t)=p,,+ 3T [T(z,t) =T, ]1=p,, + P2, t). (7)

The change in density due to temperature, at constant pressure,
is given by the coefficient of thermal expansion,

Lo L(av) __1foe 8
VioT ;P aT ),

(the minus sign is because dp/ 9T is negative). Thus the density
perturbation for the halfspace cooling model is

3 Isostasy is the general idea that topography results from equal masses in different
columns. Here we consider thermal isostasy, in which density changes produced by
temperature variations cause topographic differences. Another common model, Airy
isostasy, is used to explain the relation between crustal thickness variations and to-
pography, such as crustal roots under mountains.
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2kt

p'(z,t)=ap, [T, Tz, )] =op, T, |1 - erf (%)

If the density of water is p,, equal mass in the two columns
requires that

m(t)

Prlt) = p,h(t) + J [P+ P'(2, 1)]dz, (10)
b)

which gives the isostatic condition for ocean depth,

(t)

h(t) Pz, t)dz. (11)

B 1
(O = P
(t)

=

Because temperature and density in the plate are defined for all
values of z (the thickness of the plate is defined as some chosen
isotherm), let 2’ =z — h(t) and m(z) — oo. Then

’

P L 1—erf| -2

(P = P) 2kt
0

bit) = dz’. (12)

To evaluate the integral, substitute s = z’/ZJEf and integrate by
parts (try it!) to show that

oo

[1—erf (s)] ds=11/x. (13)
0

Thus ocean depth should increase as the square root of plate
age,

b =2 \/Ez _op, T, (14)
T (P, — P,)

The cooling of the lithosphere should also cause heat flow
at the sea floor to vary with age. By Fourier’s law of heat con-
duction, the heat flow at the sea floor is the product

dT

q:kgz— at z=0 (15)

of the temperature gradient at the sea floor and the thermal
conductivity k.* An easy approximation to see how heat flow
varies with age is to consider the T, isotherm as the base of the
lithosphere, so that the thickness of the lithosphere increases

4 Normally, this equation requires a minus sign because heat flows from hot objects
to cold ones. Without this sign, hot objects would get hotter. There is none here be-
cause of our customary but inconsistent definitions: heat flow is measured upward
whereas depth is measured downward.
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with the square root of age. Approximating the gradient at the
surface by the average gradient through the lithosphere,

AT kT
C](f)zkzz—gm (16)
y

predicts that the heat flow decreases as the square root of age.
The same result can be obtained by differentiation of the tem-
perature structure (Eqn 4) using

s

d d 2 2 2 zdS

—erf(s)=——=| e do=—"=e5 2, 17
2 dzﬁje NER™ w7

0
which gives
—z2
0= 3L p 2w e ] _ KL, (18)
dz | _, Jr 2kt |, 7Kt

This model, which predicts that lithospheric thickness, heat
flow, and ocean depth vary as the square root of age for all ages
is called a halfspace model (Fig. 5.3-7, upper left). In it, the
lithosphere is the upper layer of a halfspace that continues
cooling for all time. (In reality, oceanic lithosphere never gets
older than 200 million years old because it gets subducted.)
The model does a good job of describing the average variation
in ocean depth and heat flow with lithospheric age.

However, because ocean depth seems to “flatten” at about
70 Myr, we often use a modification called a plate model
(Fig. 5.3-7, lower left), which assumes that the lithosphere
evolves toward a finite plate thickness L with a fixed basal tem-
perature T, . In this model,

50 100 150

Lett., 22,1913-16, copyright by the
American Geophysical Union.)

(19)

2 B.x)| . | nrz
T(x,2)= T,|~+ Y ¢ exp | -2 222,
(x,2)=T, 3 c exp[ i Jsm[ L]

n=1

where ¢, =2/(nn), B,=(R?>+n*z*)"2 - R, R =vL/(2x). The con-
stant R, known as the thermal Reynolds number, relates the
rates at which heat is transported horizontally by plate motion
and conducted vertically. In this model isotherms initially
deepen as the square root of age, but eventually level out. The
flattening reflects the fact that heat is being added from below,
which the model approximates by having old lithosphere reach
a steady-state thermal structure that is simply a linear geotherm
(Fig. 5.3-8, top). As a result, the predicted sea floor depth and
heat flow also behave for young ages like in the halfspace
model, but evolve asymptotically toward constant values for
old ages. Both have simple interpretations: the heat flow is pro-
portional to the geotherm, and thus T, /L, whereas the depth is
proportional to the thermal subsidence and hence heat lost
since the plate formed at the ridge, and thus the product T,L.
The model parameters can be estimated by an inverse problem,
finding those that best fit a set of depth and heat flow data
versus age (Fig. 5.3-8, bottom).

Comparison with data shows that the plate thermal model
is a good, but not perfect, fit to the average data because pro-
cesses other than this simple cooling are also occurring. For
example, ocean depth is also affected by uplift associated with
hot spots (Section 5.2.4). Water flow in the crust transports
some of the heat for ages less than about 50 Ma, making the
observed heat flow lower than the model’s predictions, which
assume that all heat is transferred by conduction. Some topo-
graphic effects, including the spectacular volcanic oceanic
plateaus, result from crustal thickness variations. Because these
and other effects vary from place to place, the data vary about
their average values for a given age.
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Fig. 5.3-8 Top: Asymptotic thermal structure for old lithosphere in

a plate model. The sea floor subsidence from the ridge, and thus ocean
depth, is proportional to the shaded area between the geotherm and
T=T,, whereas heat flow is proportional to the geotherm. A schematic
adiabatic temperature gradient (Section 5.4.1) is shown beneath the plate.
(Stein and Stein, 1992. Reproduced with permission from Nature.)
Bottom: Fitting process used for thermal model parameters. The misfitto a
set of depth and heat flow data has a minimum at the point labeled GDHI,
a plate thermal thickness of 95 + 15 km and basal temperature of 1450 +
250°C. (Stein and Stein, 1996. Subduction, 1-17, copyright by the
American Geophysical Union.)

We can view ocean depth, heat flow, and several other
properties of the oceanic lithosphere as observable measures
of the temperature in the cooling lithosphere. Because the
observables depend on different combinations of parameters
(Table 5.3-1), they can be used together to constrain individual
parameters (a halfspace model corresponds to an infinitely
thick plate). The depth depends on the integral of the temper-
ature (Eqn 11), whereas the heat flow depends on its derivative
at the sea floor (Eqn 15). Similarly, the slope of the geoid, a
function of the gravity field depending on a weighted integral of
the density, also varies with age in general agreement with the
plate model’s prediction (Fig. 5.3-7).

In addition, the elastic thickness of the lithosphere in-
ferred from the deflection caused by loads such as seamounts
(Fig. 5.3-9a), the maximum depth of intraplate earthquakes
within the oceanic lithosphere (Fig. 5.3-9b), and the depth to
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Table 5.3-1 Constraints on thermal models T(z, #).

Observable Proportional to Reflects

Young ocean depth JT(Z, t)dz k2T,

Old ocean depth JT(z, t)dz aTl, L

Old ocean heat flow oz 1) kT /L
0z 20

Geoid slope kaT,, exp (-kt/L?)

% J zT(z, t)dz

Source: Stein and Stein (1996).
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elastic thickness corresponds approximately to the 400 °C
isotherm, whereas the low-velocity zone begins approximately
below the 1000 °C isotherm (Fig. 5.3-9c). These differences,
discussed in Section 5.7, likely result from rock being stronger
for more rapid deformation. All of these thicknesses, however,
only approximate what we would like to know but cannot
directly measure: the depth of the base of the moving plate,
which is likely to be a gradational rather than a distinct
boundary.

5.3.3 Ridge and transform earthquakes and processes

Seismology makes important contributions to understanding
the properties and behavior of spreading centers. Ocean
bottom seismometers yield locations of microearthquakes and
data for travel time and waveform studies. Larger earthquakes
are also studied using teleseismic body and surface waves. The
seismological results are being integrated with marine geo-
physical and petrological data to develop better models. For
example, Fig. 5.3-10 (top) shows a geological interpretation of
a multichannel seismic study (Section 3.3) that used air gun and
explosive sources to image velocity structure under the East
Pacific rise to a depth of about 10 km. A low-velocity region
under the axis is interpreted as a hot melting region capped by a
magma lens. Other studies using ocean bottom seismometers
and distant earthquake sources map the structure to greater
depth, including inferring flow directions under the ridge axis
using anisotropy (Fig. 5.3-10, bottom). Such studies are find-
ing interesting features of the spreading process. For example,
the broad region of low velocity presumed to be the primary
melting area extends further west than east of the axis. This
asymmetry may occur because the westward absolute motion
of the Pacific plate is much faster than the eastward absolute
motion of the Nazca plate, causing the ridge to migrate west-
ward relative to the deep mantle. Thus the spreading process,
which depends on the relative plate motion (spreading rate),
also seems affected by the absolute motion.

Some effects of the spreading rate are illustrated by a model
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Fig. 5.3-11 Thermal and petrological model for the difference between fast-spreading (left) and slow-spreading (right) ridges. (Sleep and Rosendahl,
1979. ]. Geophys. Res., 84, 68319, copyright by the American Geophysical Union.)

shown in Fig. 5.3-11. At a given distance from the ridge, faster
spreading produces younger lithosphere and isotherms closer
to the surface than does slow spreading. If the region beneath
the 1185 °C isotherm and above the Moho depth of 5 km is
considered to be a magma chamber, a fast ridge has a larger
magma chamber. Hence crust moving away from a fast-
spreading ridge is more easily replaced than that moving away
from a slow ridge. Thus, in contrast to the axial valley and
normal faulting earthquakes on a slow ridge, a fast ridge has an
axial high and an absence of earthquakes. Similarly, both the
depths and the maximum seismic moments® of ridge crest
normal faulting earthquakes decrease with spreading rate
(Fig. 5.3-12). These observations are consistent with the fault
area decreasing on faster-spreading and hotter ridges, because
faulting requires that rock be below a limiting temperature,
above which it flows (Section 5.7). The idea that the faulting
depends on temperature is also implied by the increase in the
maximum depth of oceanic intraplate earthquakes with age
(Fig. 5.3-9b).

Transform fault earthquakes also depend on thermal struc-
ture. The temperatures along a transform fault should be essen-
tially the average of the expected temperature on the two sides;
coolest at the transform midpoint and hottest at either end
(Fig. 5.3-13). As expected from the area available for fault-
ing, the maximum seismic moment for transform earthquakes
decreases with spreading rate (Fig. 5.3-14), consistent with the
idea of faulting limited to a zone bounded by the isotherms.

An interesting question is how the seismic moments of trans-
form earthquakes relate to the plate motion. The average slip
rate from earthquakes can be inferred from the total seismic
moment released on a transform, assuming that

N total seismic moment
seismic slip rate = ————— — (20)
(fault area)(rigidity)(time period)

5 Recall (Section 4.6) that the seismic moment is the product of the rigidity, the slip

in the earthquake, and the fault area.
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Fig. 5.3-14 Seismic moment versus spreading rate for oceanic transforms.
The maximum moment decreases with spreading rate, as expected from
thermal considerations. (After Solomon and Burr, 1979. Tectonophysics,
35,107-26, with permission of Elsevier Science.)
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Fig. 5.3-15 The Easter microplate on the East Pacific rise. Top: Seismicity
(dots) and focal mechanisms in the microplate region. Note the normal
faulting on the southern boundary. (After Engeln and Stein, 1984.)
Bottom: Schematic model for the evolution of a rigid microplate between
two major plates by rift propagation. Successive isochrons illustrate the
northward propagation of the east ridge, slowing of spreading on the west
ridge, the rotation of the microplate, the reorientation of the two ridges,
and the conversion of the initial transform into a slow and obliquely
spreading ridge. (Engeln et al., 1988. J. Geophys. Res., 93,2839-56,
copyright by the American Geophysical Union.)
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Using this relation requires inferring the fault area, which
depends on both the transform length and the depth to which
faulting occurs. Assuming the area above the 600-700 °C
isotherms fails seismically, the seismic slip rate for major
Atlantic transforms is generally less than predicted by the plate
motion. Thus, if the time period sampled is long enough to
be representative — a major question — some of the plate
motion occurs aseismically. The issue of how much slip occurs
seismically remains unresolved, as we will see when we discuss
subduction zones (Section 5.4.3) and intraplate deformation
zones (Section 5.6.2).

In addition, seismology helps study how ridge-transform
systems evolve. For example, the East Pacific rise near Easter
Island contains two approximately parallel sections (Fig. 5.3-
15, top). Earthquakes occur on these ridges, but not between
them, suggesting that the area in between is an essentially rigid
microplate. The normal fault earthquakes on the microplate’s
southern boundary are surprising because the East Pacific
rise here is a very fast-spreading (15 cm/yr) ridge, which should
not have normal fault earthquakes (Fig. 5.3-12). Magnetic
anomalies show that the east ridge segment is propagating
northward and taking over from the old (west) ridge segment.
Figure 5.3-15 (bottom) shows a simplified model of this pro-
cess. Because finite time is required for the new ridge to transfer
spreading from the old ridge, both ridges are active at the
same time, and the spreading rate on the new ridge is very slow
at its northern tip and increases southward. As a result, the
microplate rotates, causing compression (thrust faulting) and
extension (normal faulting) at its north and south boundaries,
respectively. Ultimately the old ridge will die, transferring
lithosphere originally on the Nazca plate to the Pacific plate,
and leaving inactive fossil ridges on the sea floor. Both V-
shaped magnetic anomalies characteristic of ridge propagation
and fossil ridges are widely found in the ocean basins, showing
that this is a common way that ridges reorganize. Even for
smaller (a few km) propagating ridge systems, studies of the
associated earthquakes can yield useful information about the
propagation process.

5.4 Subduction zones

We have seen that earthquakes at spreading centers, which at
shallow depths are upwelling limbs of the mantle convection
system, reflect the processes forming oceanic lithosphere there.
In a similar way, earthquakes at subduction zones, downwell-
ing limbs of the convection system, reflect the processes by
which oceanic lithosphere reenters the mantle. Plate conver-
gence takes different forms, depending on the plates involved.
Figure 5.4-1 shows the basic model for a situation where
oceanic lithosphere of one plate subducts beneath oceanic
lithosphere of the overriding plate. Typically, a volcanic island
arc forms, and sea floor spreading occurs behind the arc,
forming a back-arc basin or marginal sea. Earthquakes occur
both at the trench and to great depth, forming a dipping
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Wadati-Benioff zone. By contrast, when oceanic lithosphere
subducts beneath a continent, a mountain chain like the Andes
forms on the continent, and the oceanic lithosphere forms
a Wadati-Benioff zone. Finally, because continental crust
cannot subduct, convergence between two continental plates,
as in the Himalayas, causes crustal thickening, mountain build-
ing, and shallow earthquakes but does not create a Wadati—
Benioff zone.

Subduction zones have a wide variety of earthquakes with
different focal mechanisms and depths. There are shallow (less
than 70 km deep), intermediate (70-300 km deep), and deep
(more than 300 km deep) focus earthquakes.! These earth-
quakes occur in different tectonic environments. The inter-
mediate and deep earthquakes forming the Wadati-Benioff
zone occur in the cold interiors of downgoing slabs. The shallow
earthquakes are associated with the interaction between the
two plates. The largest and most common of these shallow
earthquakes occur at the interface between the plates, and
release the plate motion that has been locked at the plate inter-
face. In addition, shallow earthquakes can occur within both
the overriding and the subducting plates. Figure 5.4-2 shows
some features of seismicity observed in subduction zones. Not
all features have been observed at all places. For example, the
dips and shapes of subduction zones vary substantially. Some
show double planes of intermediate or deep seismicity, whereas
others do not.

In discussing subduction zones, we follow an approach
similar to that used in the last section for ridges. We introduce
thermal models for subduction, then use them to gain insight
into earthquake and seismic velocity observations. We will see
that seismological observations, thermal models, and calcula-
tions of the behavior of materials at high temperature and pres-
sure are combined to investigate these complicated regions. In
general, the seismological observations are fairly clear, but they
can be interpreted in terms of a variety of models. As a result,
subduction zone studies remain active, fruitful, and exciting.

1 Slightly different definitions have been used for these depth ranges; for example,

325 km has also been used as the upper limit for deep earthquakes.

Fig. 5.4-1 Schematic diagram of processes
associated with the subduction of one
oceanic plate beneath another.

Small earthqualies Bending earthquakes
. — few, small
4

Great thrust earthquakes

- often, but not always = =~

-e.g., 1960 Chile,
1964 Alaska

Normal fault earthquakes
- few, large
~e.g., 1933 Sanriku,
1965 Rat Island,
1977 Indonesia
- not observed everywhere

Intermediate
earthquakes .
~near slab top *
- primarily
down-dip tension Deep seismic zone
- - = = —either single or double
~ primarily down-dip compression
- dip may vary considerably
- depth may vary considerably

Fig. 5.4-2 Composite subduction zone showing some earthquake types.
Not all are observed at all subduction zones.

$.4.1 Thermal models of subduction

The essence of subduction is the penetration and slow heating
of a cold slab of lithosphere as it descends into the warmer
mantle. As we will see, slabs subduct rapidly compared to the
time needed for heat conducted from the surrounding mantle
to warm them up. Thus they remain colder, denser, and me-
chanically stronger than the surrounding mantle. Consequently,
slabs transmit seismic waves faster and with less attenuation
than the surrounding mantle, making it possible to map slabs
and to show that deep earthquakes occur within them. More-
over, the negative thermal buoyancy of cold slabs appears to be
the primary force driving plate motions and provides a major
source of stress within them that causes deep earthquakes.

To explore the thermal evolution of slabs, we use two
approaches. First, we discuss a simplified analytic thermal
model that allows insights into the physics. We then discuss
numerical models that incorporate additional effects in the
hope of providing a more realistic description. We highlight
some significant points, and more complete information can be
found in the references.
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Fig. 5.4-3 An analytic model for
temperatures in a subducting plate.

Left: model geometry. Right: Results,
showing the cold slab heating up as it
descends through the hotter surrounding
mantle.

The analytic model (Fig. 5.4-3) considers a semi-infinite slab
of thickness L subducting at rate v. The surrounding mantle is
at temperature T, and the plate enters the trench with a linear
temperature gradient from T'= 0 at its top to T, at its base. We
define the x axis down the dip of the slab, and the y axis across
the slab. The evolution of the region is given by a slightly more
complicated version of the heat equation (Eqn 5.3.1) used to
model the cooling of the lithosphere as it moves away from the

ridge. This version,
pcpﬁ%z—ww]:v-(kwne, (1)

describes the evolution of the temperature field, T(x, v, £}, as a
function of time and the two space coordinates. In addition to
the heat conduction term V - (kVT), Eqn 1 includes a vVT texrm
describing the transfer (or advection) of heat by movement of
material, and the & term representing additional sources or
sinks of heat such as radioactivity and phase changes. This
form allows key parameters such as the density p, specific heat
Cp thermal conductivity k, and heat sources or sinks € to vary
Wlth position. For a simple analytic solution, we assume that
the problem is steady state (97/d¢ = 0) and neglect heat sources
and sinks (€= 0). We further assume that the physical propert-
ies of the material (p, C,, k, and hence the thermal diffusivity
k=k/pC,) are independent of position.
With these simplifications, Eqn 1 becomes

2 2
PorL aT _ 9T *T 8 T 2)
ox 9x? By

which has a series solution
T(x,y)=T,[1+ 22 ¢, exp (=B,x/L) sin (nmy/L)], (3)

n=1

“1y/(nm), B,=(R2+n*m2)2—R, R=vL/(2x).
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R, the dimensionless thermal Reynolds number, is the ratio of
the rate at which cold material is subducted to that at which it
heats up by conduction. This solution resembles the temperat-
ure field in the plate model of cooling lithosphere (Eqn 5.3.19),
because both models describe the thermal evolution of a plate
of finite thickness with temperature boundary conditions at the
top, bottom, and one end. In the previous case the plate cools,
whereas in this case it heats up.

To find how far along the slab a given isotherm penetrates,
we approximate the series by its first term and use the fact that
R>m, so
T(x,y) =T, [1 - (2/m) exp (~n2%c/(2RL)) sin (my/L)]. (4)
Solving for the point where dT/dy = 0 yields y = L/2, the middle
of the slab. In fact, taking additional terms shows that this
point is actually closer to the colder top (Fig. 5.4-3). Using the
first-term approximation, a temperature T, goes furthest into
the subduction zone at

Ty(xgs L/2) = T, [1 - (2/7) exp (~m2xo/(2RL)], (5)

and reaches a maximum down-dip distance
xo=-vL(n*k) In [n(T,,— To)/(2T,,)]. (6)

To convert this distance to depth in the mantle, we multiply by
sin 8, where & is the slab dip. This correction converts the
subduction rate v to the slab’s vertical descent rate v sin 6.
Thus an isotherm’s maximum depth is proportional to the
subduction rate and the square of the plate thickness, so faster
subduction or a thicker slab allows material to go deeper before
heating up. If we assume that the square of the plate thickness is
proportional to its age, the maximum depth to an isotherm in
the downgoing slab is proportional to the vertical descent rate
times the age, ¢, of the subducting lithosphere.

This idea can be tested by assuming, as we did for spreading
center earthquakes, that the maximum depth of earthquakes
is temperature-controlled, so earthquakes should cease once
material reaches a temperature that is too high. To compare



310 Seismology and Plate Tectonics

Thermal parameter versus maximum earthquake depth
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Fig. 5.4-4 Maximum earthquake depths for different subduction zones
as a function of thermal parameter, the product of vertical descent rate
and lithospheric age. If earthquakes are limited by temperature, this
observation is consistent with the simple thermal model’s prediction
that the maximum depth to an isotherm should vary with the thermal
parameter. (After Kirby et al., 1996b. Rev. Geophys., 34,261-306,
copyright by the American Geophysical Union.)

various subduction zones, we examine the maximum depth of
earthquakes as a function of their thermal parameter

¢=tvsin 6. (7)

Figure 5.4-4 shows that the maximum depth increases with
thermal parameter, and deep earthquakes below 300 km occur
only for slabs with a thermal parameter greater than about
5000 km.

However, the fact that the earthquakes stop does not mean
that the slab has equilibrated with the surrounding mantle.
Figure 5.4-5 shows the predicted minimum temperature within
a slab as a function of time since subduction, assuming it
maintains its simple planar geometry and does not buckle or
thicken. The coldest portion reaches only about half the mantle
temperature in about 10 Myr, which is about the time required
for the slab to reach 660 km. Thus the restriction of seismicity
to depths shallower than 660 km does not indicate that the slab
is no longer a discrete thermal and mechanical entity. From a
thermal standpoint, there is no reason for slabs not to penetrate
into the lower mantle, an issue we discuss shortly. If a slab
descended through the lower mantle at the same rate (in fact,
it would probably slow down due to the more viscous lower
mantle), it would retain a significant thermal anomaly at the
core-mantle boundary, consistent with some models of that
region (Section 3.8.4).2

The thermal model can be improved with simple modific-
ations. Although we assumed that the slab subducts into an
isothermal mantle, temperature should increase with depth,

2 The oceanic lithosphere takes about 70 Myr to cool to equilibrium with the mantle
below, and so takes about half that time to heat up again from both sides after it
subducts.

Slab equilibration
T T

Minimum slab/mantle temperature

I 1 ] 1
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Fig. 5.4-5 Minimum temperature within a slab as a fraction of the mantle
temperature, as a function of the time since subduction, computed using
the analytic thermal model (Fig. 5.4-3). The coldest portion reaches half
the mantle temperature in about 10 Myr, by which time a typical slab is
approximately at 670 km depth, and 80% of it in 40 Myr, by which time
aslab that continued descending at the same rate would reach the core—
mantle boundary. Slabs can thus remain thermally distinct for long
periods of time. (Stein and Stein, 1996. Subduction, 1~17, copyright

by the American Geophysical Union.)

as the material is compressed due to increasing pressure from
the overlying rock. Because the mantle below the lithosphere
is thought to be convecting, it is often assumed that self-
compression occurs adiabatically, such that material moving
vertically neither loses nor gains heat. In this case, equilibrium
thermodynamics requires that the effects of temperature and
pressure changes exactly offset each other,

C
dS=—=t4r - % 4p -, (8)
T P

so that the entropy S does not change. This condition gives the
adiabatic temperature gradient, or adiabat, as

dT
===, (©)
dP . rC,

where a is the coefficient of thermal expansion. Because pres-
sure increases with depth as dP/dz = pg, temperature increases
with depth as

dar =% (10)
dz ) Cp

We can thus correct the temperatures for the isothermal mantle
case to include adiabatic heating. Using the entropies requires
using absolute (Kelvin) temperatures, equal to the Celsius
temperature plus 273.15°. Thus if the absolute temperature at
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depth z,, the base of the plate, is TX, we integrate Eqn 10 to find
the absolute temperature at depth z,

TX(z) = Tj exp [(ag/C,)z = 2)]- (11)

Another possibly important effect is that of heat sources and
sinks. For example, the olivine to spinel transition, which gives
rise to the 410 km discontinuity outside the slab, should release
heat as it occurs in the slab. Heat might also be generated by
friction at the top of the downgoing slab. The heat produced
is the product of the subduction rate and the shear stress on
the slab interface. The magnitude of this effect is difficult to
estimate. It should not be significant unless the shear stress is
greater than a few kilobars. As discussed later (Section 5.7.5),
the stress on faults is unknown. A further complexity results
from the fact that the viscosity of the mantle, which controls
the stress, decreases exponentially with temperature. Thus, if
frictional heating raises the temperature at the slab interface,
viscosity, and hence stress, would decrease, tending to counter-
act the effect.

To address these complexities, we use numerical models to
solve the heat equation at every point in the slab. These models
allow parameters such as density to vary with position. In addi-
tion, heat sources and sinks such as radioactive heating, phase
changes, and frictional heating can be incorporated. The
results of such calculations are similar to those of the analytic
model and are used to explore how temperatures should
vary between subduction zones. For example, Fig. 5.4-6 com-
pares models for a relatively younger and slower-subducting
slab (thermal parameter about 2500 km), approximating the
Aleutian arc, and an older, faster-subducting slab (thermal
parameter approximately 17,000 km), approximating the
Tonga arc. As expected, the slab with the higher thermal
parameter warms up more slowly, and is thus colder. This
prediction is consistent with the observation that Tonga has
deep earthquakes, whereas the Aleutians do not (Fig. 5.4-4).

Although we can compute such thermal models, a question is
whether they make sense. We test them using two seismological
datasets: earthquake locations and seismic velocities. Travel
time tomography (Section 7.3) across subduction zones shows
high-velocity slabs (Fig. 5.4-7). These results are compared to
the velocities predicted using a thermal model of the sub-
ducting slab and laboratory values for the variation in velocity
with temperature. The model predicts coldest temperatures in
the slab interior where the earthquakes occur. Because the
tomographic inversion finds the velocity within rectangular
cells, the model is converted to that grid and then “blurred”
because the seismic rays do not uniformly sample the slab. As
shown by the hit count, the number of rays sampling each cell,
most rays go down the high-velocity slab, yielding a somewhat
distorted image. The fact that this image and the tomographic
result are similar suggests that the model is a reasonable de-
scription of the actual slab. A similar conclusion emerges from
the observation that the tomographic result also resembles
parts of the model image that are artifacts, velocity anomalies
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Fig. 5.4-6 Comparison of thermal structure for a relatively younger,
slower-subducting slab (50 Myr-old lithosphere subducting at 70 mm/yr;
thermal parameter about 2500 km), which approximates the Aleutian arc,
and an older, faster-subducting slab (140 Myr-old lithosphere subducting
at 140 mm/yr; thermal parameter about 17,000 km) which approximates
the Tonga arc. (Stein and Stein, 1996. Subduction, 1-17, copyright by the
American Geophysical Union.)

that are not present in the original model. These artifacts, gen-
erally of low amplitude, cause the slab to appear to broaden,
shallow in dip, or flatten out. Hence, although slab thermal
models are simplifications of complicated real slabs, and many
key parameters are not well known, it seems likely that the
models are reasonable approximations (perhaps accurate to a
few hundred degrees) to the temperatures within actual slabs.
Seismology provides other tools to study the contrast
between the cold, rigid, downgoing plate and the hotter, less
rigid material around it. Figure 3.7-20 showed that a cold slab
transmits seismic energy with less attenuation than its sur-
roundings. Figure 5.4-8 shows some of the earliest data for this
effect: seismograms from a deep earthquake are contrasted at
stations NIU, to which waves travel through the downgoing
plate; and VUN, to which waves arrive through the surround-
ing mantle. The VUN record shows much more long-period
energy, especially for S waves, than that at NIU. Thus the
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Fig. 5.4-7 Comparison of a seismic tomographic image of a subducting slab, indicated by the velocity anomaly and earthquake hypocenters (dots) (upper
left) to the image (lower left) predicted for a slab thermal model. The seismic velocity anomaly predicted by the thermal model (upper right) is imaged by a
simulated tomographic study using the same seismic ray path sampling as the data. The hit count (lower right) shows the number of rays sampling each cell
used in the inversion. As a result of ray geometry and noise, the slab model gives a somewhat distorted image (lower left), showing how the model would
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for hit count, showing values as logarithm to base 10; the white region in the hit count plot is densely sampled and off scale. (Spakman et al., 1989.
Geophys. Res. Lett., 16,1097-110, copyright by the American Geophysical Union.)

high-frequency components were more absorbed on the
path to VUN due to higher attenuation (lower Q) than on the
more rigid slab path to NIU. In addition, the sharp contrast in
seismic velocity at the top of slabs can be detected using
reflected and converted seismic waves (Fig. 2.6-15).

5.4.2  Earthquakes in subducting slabs

The deep and intermediate earthquakes forming the Wadati-
Benioff zone extend in some places to depths of almost 700 km
(Fig. 5.4-9). These are the deepest earthquakes that occur:
away from subduction zones, earthquakes below about 40 km
are rare. The Wadati-Benioff zone earthquakes illustrate that
material cold enough to fail seismically (rather than flow) is
being subducted, and give our best information about the
geometry and mechanics of slabs.

The number of earthquakes as a function of depth illustrates
why we distinguish intermediate and deep earthquakes; seis-
micity decreases to a minimum near about 300 km, and then
increases again. Deep earthquakes, those below about 300 km,

are thus generally treated as distinct from intermediate earth-
quakes. Deep earthquakes peak at about 600 km, and then
decline to a minimum before 700 km. The focal mechanisms
also vary with depth; those shallower than 300 km show gen-
erally down-dip tension, whereas those below 300 km show
generally down-dip compression (Fig. 5 4-10).

Various explanations for this distribution of earthquakes
and focal mechanisms are under consideration. One is that
near the surface the slab is extended by its own weight, whereas
at depth it encounters stronger lower mantle material, caus-
ing down-dip compression. Another possible factor may be
mineral phase changes that occur at different depths in the cold
slab than in the surrounding mantle.

It is generally assumed that the most crucial effect is the
negative buoyancy (sinking) of the cold and dense slabs. The
thermal model gives the force driving the subduction due to
the integrated negative buoyancy of a slab resulting from the
density contrast between it and the warmer and less dense
material at the same depth outside. Because the slab does not
have a discrete lower end in the analytic model, the net force is
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Le
F= j fg[p(x, Y)=p,ldxdy. (12)

00

If material outside the slab is at temperature T, and density p,,,
material in the slab at the point (x, y) has density

Pl ) =p, + %—[T(x, V=T, ]=p, + 0% y). (13)

As for the cooling plate (Eqn 5.3.9), the density perturbation is

P'(x,3)=ap,,[T, - T(x,y)], (14)

so for the analytic temperature model ( Eqn 3) the integral over
the slab yields a force

3
F= _——*ga";fm”L : (15)
K

This force, known as “slab pull,” is the plate driving force
due to subduction. Specifically, it is the negative buoyancy
associated with a cold downgoing limb of the convection
pattern. Its significance for stresses in the downgoing plate and
for driving plate motions depends on its size relative to the
resisting forces at the subduction zone. There are several such
forces. As the slab sinks into the viscous mantle, the material
displaced causes a force depending on the viscosity of the man-
tle and the subduction rate. The slab is also subject to drag
forces on its sides and to resistance at the interface between the
overriding and downgoing plates, which is often manifested
as earthquakes.

To gain insight into the relative size of the negative buoy-
ancy (“slab pull”) and resistive forces, we consider the stress
in the downgoing slab and the resulting focal mechanisms.
Figure 5.4-11 shows a simple analogy, the stress due to the
weight of a vertical column of length L of material with density
p- Using the equilibrium equation (Eqn 2.3.49), we equate the
stress gradient to the body force,

90,(z)
0z

= —pg, (16)

so the stress as a function of depth is found by integration,
0,(2)=—pgz+C, (17)

where C is a constant of integration. To determine C, and thus
the stress in the column, the boundary conditions must be
known.

First, suppose the stress is zero at the top, 2 = 0. In this case
C=0and

0, (2)=—pgz, (18)
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Fig.5.4-11 Stress within a vertical column of material under its own
weight, a simple analogy to stress within a downgoing slab. For the same
body force, different stress distributions result from different boundary
conditions. If the load is supported at the bottom, the column is under
compression; if the support is at the top, the column is under tension.

A combination of the two produces a transition.

which is negative, corresponding to compression everywhere.
The forces required at the top and the bottom to maintain equi-
librium are given by the relation between the traction, stresses,
and outward normal vector on a surface (Eqn2.3.8),

T,=0,n (19)

RZ”

Atthe top T,(0) =0, whereas at the bottom a force
T,(L)=-pgL (20)

holds the column up. This situation is like a column of material
sitting on the earth’s surface, under compression everywhere.

Alternatively, suppose the stress is zero at the bottom. In this
case the constant is chosen so that

O (2) = pg(L - z) (21)

and the column is in extension ( o, positive) everywhere. The
force at the bottom is zero, and the force at the top,

T,(0)=pgL, (22)

supports the column, because n, points in the —z direction. This
situation corresponds to the material hanging under its own
weight.

If the column is supported equally at both ends, the forces at
cither end are equal, so we find the stress from the condition
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Fig. 5.4-12 The absolute velocity of lithospheric plates increases with the
fraction of the plate’s boundary formed by subducting slabs, suggesting
that slabs provide a major driving force for plate motions. (Forsyth and
Uyeda, 1975.)

T(0)=-T,(L), (23)
which gives
0,,(2) = pg(LI2~7). (24)

Thus the column is in extension in its upper half, z < L/2, and in
compression below this point.

The stress in the column shows how the body force due to
gravity is balanced by forces on the boundaries. By analogy, if
the downgoing slab were in tension, the negative buoyancy
force must exceed the resistive forces at the subduction zone,
and the slab would be “pulling” on and supported by the
remainder of the plate outside the subduction zone. In fact,
most earthquakes in the deeper portions of the slab show
down-dip compression, whereas the intermediate earthquakes
show down-dip tension (Fig. 5.4-10). This situation is like the
column supported at both ends.

These ideas about the forces within subduction zones are
consistent with two important pieces of data. First, the average
absolute velocity of plates increases with the fraction of their
area attached to downgoing slabs (Fig. 5.4-12), suggesting
that slabs are a major determinant of plate velocities. Second,
as discussed in Section 5.5.2, earthquakes in old oceanic
lithosphere have thrust mechanisms, demonstrating deviatoric
compression. Thus the net effect of the subduction zone on the
remainder of the plate is not a “pull,” so the term “slab pull”
is misleading. Instead, as implied by the slab stress models,
the “slab pull” force is balanced by local resistive forces, a com-
bination of the effects of the viscous mantle and the interface
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Fig. 5.4-13 Phase diagram for transitions in olivine with increasing depth.
The phase boundaries as functions of temperature and pressure are known
as Clapeyron curves. The downwelling and upwelling lines contrast
conditions in slabs and plumes, respectively, to those in the ambient
mantle. A reaction with a positive slope, such as the olivine (¢ phase) to
spinel (f phase) change thought to give rise to the 410 km discontinuity
outside the slab, is displaced upward (to lower pressure) within the cold
slab. By contrast, the y spinel to perovskite plus magnesiowustite (pv +
mw) transition has a negative slope, so the 660 km discontinuity should
be deeper in slabs than outside. (After Bina and Liu, 1995. Geophys.

Res. Lett., 22,2565-8, copyright by the American Geophysical Union.)

between plates. This situation is like an object dropped in a
viscous fluid, which is accelerated by its negative buoyancy
until it reaches a terminal velocity determined by its density and
shape and the viscosity and density of the fluid.

An interesting possible complication is that slabs are not just
thermally different from their surroundings; they are probably
also mineralogically different. Slabs extend through the mantle
transition zone, where mineral phase changes are thought to
occur (Section 3.8). However, because a downgoing slab is
colder than material at that depth elsewhere, phase changes
within the slab are displaced relative to their normal depth.
The displacement can be calculated using the thermodynamic
relation, known as the Clapeyron equation, for the boundary
between two phases as a function of pressure and temperature.
If AH and AV are the heat and volume changes resulting from
the phase change, then a change dT in temperature moves the
phase change by a pressure dP given by the Clapeyron slope
(the reciprocal of Eqn 9),

y= 4L A (25)
dT TAV

For example, the 410 km discontinuity is attributed to the
phase change with increased pressure from olivine to a denser
spinel structure (the f phase, wadsleyite) described by a phase
diagram like that in Fig. 5.4-13. Because the spinel phase is
denser, AV is less than zero. This reaction is exothermic (gives
off heat), so AH is also negative, causing a positive Clapeyron
slope. If we know the depth (pressure) and temperature at
which a phase change occurs in the mantle, the Clapeyron
equation gives its position in the slab. The slab is colder than
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the ambient mantle (dT < 0), so this phase change occurs at a
lower pressure (dP < 0), corresponding to a shallower depth.
Converting the pressure change to depth, the vertical displace-
ment of this phase change is

4z _ v (26)
T pg

By contrast, the ringwoodite (7 spinel phase) to perovskite plus
magnesiowustite transition, thought to give rise to the 660 km
discontinuity, is endothermic (absorbs heat), so AH is positive,
Because this is a transformation to denser phases (AV less than
zero), the Clapeyron slope is negative, and the 660 km discon-
tinuity should be deeper in slabs than outside. These opposite
effects — upward deflection of the 410 km and downward
deflection of the 660 km discontinuities (Fig. 5.4-14) — have
been observed in travel time studies. An interesting way to
think about these is to note that the negative buoyancy asso-
ciated with the elevated 410 km discontinuity helps the sub-
duction, whereas the positive buoyancy associated with the
depressed 660 km discontinuity opposes the subduction. The
reverse effect should not occur at the 660 km discontinuity for

subduction. Negative buoyancy favors subduction,
whereas positive buoyancy opposes it. (Stein and
Rubie, 1999. Science, 286, 909~10, copyright 1999
American Association for the Advancement of
Science.)

upcoming plumes, however, because the phase diagram shows
that at these higher temperatures the Clapeyron curve for the
perovskite plus magnesiowustite transition is vertical, so the
transition is not displaced (Fig. 5.4-13).

The position of the olivine-spinel phase change may be further
affected. The Clapeyron slope predicts what happens if a phase
change occurs at equilibrium. However, the phase change actu-
ally occurs by a process in which grains of the high-pressure
phase nucleate on the boundaries between grains of the lower-
pressure phase and then grow with time (Fig. §.4-15 ). Studies
of mineral nucleation and growth rates suggest that in the
coldest slabs the phase transformation cannot keep pace with
the rate of subduction, causing a wedge of olivine in the cold
slab core to persist metastably to greater depths (Fig. 5.4-14).

is expected because the relatively colder temperatures in slabs should inhibit reaction
rates. This effect explains why diamonds, which are unstable at the low pressures of
earth’s surface, survive metastably rather than transform to graphite. The situation in
slabs is similar to that of supercooled water, which persists as a liquid at temperatures
below its equilibrium freezing point.
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g.5.4-15 Diagram showing the carly
stages of a phase transformation. Grains of
the new phase (shaded) nucleate on grain
boundaries and grow by consuming the
original phase until none remains. (Kirby
stal., 1996b. Rev. Geophys., 34,261-306,
copyright by the American Geophysical

nion.)

The deflections of the phase boundaries have several pos-
sible consequences. First, phase changes affect the thermal
structure of the slab due to the heat of the phase change. Thus
the exothermic olivine-spinel change should add heat to
labs. This effect is simulated in thermal models by increas-
ing the temperature at the phase change. Second, the phase
boundaries are probably important for the buoyancy and
stresses within slabs. We have already discussed the idea that
the cold slabs are denser than their surroundings, causing
negative thermal buoyancy, which favors sinking. The phase
- boundaries cause additional mineralogical buoyancy. For
example, if the olivine~-spinel boundary is uplifted in the slab,
the presence of slab material denser than at that depth outside
causes additional negative buoyancy. However, if a wedge of
- metastable olivine exists, it would be less dense than material at

that depth outside and produce positive buoyancy (Fig. 5.4-14)
in addition to that caused by the downward deflection of the
660 km discontinuity. Although the net buoyancy must be
negative because slabs subduct, the details of the buoyancy can
be important. For example, metastable olivine may help regu-
late subduction rates. Faster subduction would cause a larger
wedge of low-density metastable olivine, reducing the driving
force and slowing the slab.

A third possibility is that a phase change causes deep
earthquakes. Although this idea is a natural consequence of
the observation that deep earthquakes occur at transition
zone depths, it was not given serious consideration for a long
time because deep earthquake focal mechanisms show slip
on a fault, rather than isotropic implosions (Section 4.4.6).
However, laboratory studies now suggest that an instability
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called transformational faulting can cause slip along thin shear
zones where metastable olivine transforms to denser spinel.
Such faulting can occur for the exothermic olivine to spinel
transition, but not for the endothermic spinel to perovskite plus
magnesiowustite transition, so deep earthquakes would occur
only in the transition zone. Because the metastable wedge’s
lower boundaries are essentially isotherms, this model offers a
physical mechanism for the observation (Fig. 5.4-4) that the
depth of earthquakes increases with thermal parameter. This
idea is attractive, but to date seismological studies show no
evidence for a metastable wedge, and large deep earthquakes
occur on fault planes thatappear to extend beyond the bounda-
ries of the expected metastable wedge. If such wedges exist,
earthquakes may nucleate by transformational faulting, but
then propagate outside the wedge via another failure mecha-
nism.

Together these ideas offer several possible explanations
for features of slab earthquakes. One key feature is the depth
variation in seismicity and focal mechanisms. The first ex-
planation is that the depth distribution and stresses are largely
due to the negative thermal buoyancy of slabs and their en-
countering either a region of much higher viscosity or a barrier
to their motion at the 660 km discontinuity. Numerical models
(Fig. 5.4-16) predict stress orientations similar to those implied
by the focal mechanisms. Moreover, the magnitude of the
stress varies with depth in a fashion similar to the depth dis-
tribution of seismicity — a minimum at 300-410 km and an
increase from 500 to 700 km. Alternatively, numerical models
including the buoyancy effects of the phase changes (Fig. 5.4-
14) also predict a similar variation in stress magnitude and
orientation with depth (Fig. 5.4-17), without invoking a
barrier or higher viscosity in the lower mantle. Thus, in such
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models, deep earthquakes need not be physically different from
intermediate ones, because the minimum in seismicity reflects
a stress minimum.

A second key issue is how deep earthquakes can occur at all.
As discussed in Section, 5.7, the strength of rock that must be
exceeded for fracture increases with pressure. The pressures
deep in a subducting slab should be high enough to prevent
fracture. One possibility is that the slabs become hot enough
that water released by decomposition of hydrous minerals
lubricates (reduces the effective stress on) faults. Another
possibility, mentioned earlier, is transformational faulting in
metastable olivine. It is also possible that the earthquakes occur
by very rapid creep, possibly associated with weakening due to
unusually small spinel grains formed in the coldest slabs.

The different explanations offered by these models all have
attractive features and may be true in part. However, although
such simple models based on idealized slabs explain some gross
features of deep earthquakes, none fully explains the com-
plexity of deep earthquakes. As shown by Fig. 5.4-18, a cross-
section along the subduction zones of the Northwest Pacific,
deep seismicity is “patchy” and variable. For example, it
shallows dramatically at the cusps between the Marianas,
Izu-Bonin, NE Japan, and Kuril-Kamchatka arcs. Moreover,
the largest earthquakes occur at the edges of the regions of deep
seismicity, as especially evident at the northern edge of the
Izu-Bonin seismicity. These sites may reflect tears in the down-
going lithosphere at the junctions between arcs, where hot
mantle material penetrates slabs. A further complexity is that
some deep earthquakes occur in unusual locations off the
down-dip extension of the main Wadati-Benioff zones and
have focal mechanisms differing from those of the deepest
earthquakes in the main zone (Fig. 5.4-19). Some other deep
earthquakes are isolated from actively subducting slabs. Such
unusual earthquakes may occur in slab fragments where meta-
stable olivine survives, and thus have mechanisms related to
local stresses rather than those expected for continuous slabs.

700

Fig. 5.4-19 Seismicity cross-section for the Fiji subduction zone, showing
“outlier” deep earthquakes. Lines through symbols show P axes, which
often differ from those for the main Wadati-Benioff zone. (Lundgren

and Giardini, 1994. J. Geophys. Res., 99,15, 833-42, copyright by the
American Geophysical Union.)

Another interesting observation from precise earthquake
locations in some subduction zones (Fig. 5.4-20) shows that
the Wadati-Benioff zone is made up of two distinct planes,
separated by 30-40 km. The upper plane seems to coincide
with the conversion plane for ScSp (Fig. 2.6-15), a sharp
velocity contrast that is presumably near the slab top. Focal
mechanisms suggest that the upper plane is in down-dip com-
pression and the lower one in down-dip extension. A variety of
models have been proposed. One is that the double plane re-
sults from “unbending” of the slab — the release of the bending
stresses produced when the slab began to subduct. Another
model is that the slab “sags” under its own weight, because at
depth it runs into a more viscous mesosphere, while at inter-
mediate depths it encounters a less viscous asthenosphere.
Explaining the phenomenon is complicated by the observation
that only some subduction zones have double zones.

The nature of deep earthquakes, especially the mechanism
restricting them to the transition zone, has implications for
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mantle flow. The simplest explanation for the cessation of deep
seismicity is that slabs cannot penetrate the lower mantle,
However, as shown in Fig. 5.4-21, tomographic studies (Chap-
ter 7) indicate that although some slabs are deflected at
660 km, they eventually penetrate deeper. Hence models in
which earthquakes stop either because the stress is not high
enough or because the phase changes causing them no longer
occur seem more likely. The issue is important because heat
and mass transfer between the upper and lower mantles have
major implications for the dynamics and evolution of the earth
(Section 3.8). At present, most models favor some degree of
communication between the two (Fig. 5.1-2). Slabs are some-
times deflected at the 660 km discontinuity, where they warm
further, lose any buoyant metastable wedge, and then penetrate
into the lower mantle. Thus the slab geometry we see likely re-
flects a complex set of effects. To cite another, some flat-lying
slabs at the 660 km discontinuity may be caused by the trench
“rolling backward” in the absolute (mantle) reference frame.
There has also been considerable discussion about the nature
of intermediate depth earthquakes. Figure 5.4-22 shows g

Fig.5.4-21 Tomographic images across Pacific
subduction zones with deep earthquakes. Horizontal
lines are at 410 and 660 km depth. White dots are
earthquake hypocenters. The Wadati-Benioff zone
seismicity generally coincides with the high-velocity
anomaly (dark regions) due to the cold subducting slab.
Slabs are deflected at the base of the transition zone
before penetrating into the lower mantle. (van der Hilst
etal., 1998. The Core—Mantle Boundary Region, 5-20,
copyright by the American Geophysical Union.)

Fig. 5.4-22 Schematic model for intermediate depth
earthquakes. Earthquakes are assumed to occur in
subducting crust and be associated with the dehydration
of mineral phases and the gabbro to eclogite transition.
(Kirby ez al., 1996a. Subduction, 195-214, copyright

by the American Geophysical Union.)




schematic model in which the earthquakes are presumed to
occur in subducting oceanic crust, rather than throughout the
subducting mantle that makes up most of the slabs, because
detailed location studies show that the earthquakes are close to
the top of the subducting slabs. The crust should undergo two
important mineralogical transitions as it subducts. Hydrous
(water-bearing) minerals formed at fractures and faults should
warm up and dehydrate. Eventually, the gabbro transforms to
eclogite, a rock of the same chemical composition composed
of denser minerals.* Under equilibrium conditions, eclogite
should form by the time slab material reaches about 70 km
depth. However, travel time studies in some slabs find a low-
velocity waveguide interpreted as subducting crust extending
to deeper depths. Hence it has been suggested that the eclogite-
forming reaction is slowed in cold downgoing slabs, allowing
gabbro to persist metastably. Once dehydration occurs, the
freed water weakens the faults, favoring earthquakes and
promoting the eclogite-forming reactions. In this model the
intermediate earthquakes occur by slip on faults, but the phase
changes favor faulting. The extensional focal mechanisms may
also reflect the phase change, which would produce extension
in the subducting crust. Support for this model comes from the
fact that the intermediate earthquakes occur below the island
arc volcanoes, which are thought to result when water released
from the subducting slab causes partial melting in the overlying
asthenosphere.

The fact that various explanations are under discussion illus-
trates the difficulty in understanding the complex thermal
structure, mineralogy, rheology, and geometry of real slabs.
We can think of the deep subduction process as a chemical
reactor that brings cold shallow minerals into the temperature
and pressure conditions of the mantle transition zone, where
these phases are no longer thermodynamically stable (Fig. 5.4~
23). Because we have no direct way of studying what is happen-
ing and what comes out, we seek to understand this system by
studying earthquakes that somehow reflect what is happening.
This is a major challenge, and we have a long way to go.

5.4.3  Interplate trench earthquakes

Much of what is known about the geometry and mechanics of
the interaction between plates at subduction zones comes from
the distribution and focal mechanisms of shallow earthquakes
at the interface between the plates. These include the largest
earthquakes that occur, as illustrated by Fig. 5.4-24, showing
the largest earthquakes (surface wave magnitude greater than
8.0) during 1904-76. Among these are the two largest earth-
quakes ever recorded seismologically: the 1960 Chilean (M, 2
% 1030 dyn-cm, M, 8.3) and 1964 Alaska (M, 5 x 10** dyn-cm,
M, 8.4) earthquakes. Figure 5.4-25 shows the geometry of the
Chilean earthquake: 21 meters of slip occurred on a fault

4

Most of the oceanic crust consists of gabbro, the intrusive version of the extrusive
basalt seen at mid-ocean ridges (Section 3.2.5). With increasing pressure, gabbro
becomes eclogite as feldspar and pyroxene transform to garnet.
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Fig. 5.4-23 Cartoon of subducting slabs in the transition zone as a
chemical reactor. (Kirby et al., 1996b. Rev. Geophys., 34,261-306,
copyright by the American Geophysical Union.)

800 km long along strike, and 200 km wide down-dip. The
mechanism shows thrusting of the South American plate over
the subducting oceanic lithosphere of the Nazca plate. The
aftershock zone was 800 km long, and the surface deformation
was dramatic, reaching 6 meters of uplift in places. Thrust
earthquakes of this type, although smaller, make up most of the
large, shallow events at subduction zones. Such interplate
earthquakes release the plate motion that has been locked at
the plate interface. As we saw in Section 4.6.1, these can be
much bigger than the largest earthquakes at transform fault
boundaries like the San Andreas. For example, even the 1906
San Francisco earthquake was tiny (100 times smaller seismic
moment) compared to the 1964 Alaska earthquake, although
both occurred along different segments of the same plate
boundary. The difference reflects the fact that faulting occurs
only when rock is cooler than a limiting temperature. Thus a
vertically dipping transform like the San Andreas has a much
shorter cold down-dip extent than the shallow-dipping thrust
interfaces (sometimes called megathrusts) at subduction zones.

Major thrust earthquakes at the interface between sub-
ducting and overriding plates directly indicate the nature of
subduction. In most cases, their focal mechanisms show slip
toward the trench, approximately in the convergence direction
predicted by global plate motion models or space-based geo-
desy (Section 5.2) (Fig. 5.2-3). However, in some cases when
the plate motion is oblique to the trench, a forearc sliver moves
separately from the overriding plate (Fig. 5.4-26). This effect,
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subduction zones and result from thrust faulting at the interface between the two plates, (Kanamori, 1978. Reproduced with permission from Nature.)

.-\\__ Main shock Continental lithosphere

Foreshock

Asthenosphere

\

Aselsmic slip Fig. 5.4-25 Fault geometry and aftershock

distribution (insert) for the 1960 Chilean
earthquake. (Kanamori and Cipar, 1974.
Phys. Earth Planet. Inter., 9,128-36, with
permission from Elsevier Science.)

called slip partitioning, makes earthquake slip vectors at the thrust earthquakes have characteristic patterns in space and
trench trend between the trench-normal direction and the time. For example, large earthquakes have occurred in the
predicted convergence direction, and causes strike-slip motion ~ Nankaj trough area of southern Japan approximately every
between the forearc and the stable interior of the overriding 125 years since 1498 with similar fault areas (Fig. § 4-27)3In
plate. This effect can be seen in plate motion studies and with some cases the entire region seems to have slipped at once; in
GPS data, and can cause misclosure of plate circuits. In the others, slip was divided into several events over a few years.
limiting case of pure slip partitioning, pure thrust faulting
would occur at the trench, and all the Oblique motion would be ° Due to its location where between four and six plates (North America, Pacific,
accommodated by trench-paraﬂel Strike-shp_ Philippine, Eurasia, and perhaps Okhotsk and Amuria) interact, Japan has a high
How the thrust earthquakes release the accumulated plate level of seismicity, which was originally atiributed to the motion of the namazu, a
. . . k .. . giant underground catfish. As a result, Japan has an outstanding tradition of seismo-
motion is both interesting scientifically and important for

: 8 logy and some of the best data in the world for studying subduction-related
assessing earthquake hazards. In many subduction zones, earthquakes,
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Fig. 5.4-26 Schematic illustration of forearc sliver motion when
convergence is oblique. (Courtesy of D. Davis.)

Given such repeatability, it scems likely that a segment of a
subduction zone that has not slipped for some time constitutes
a seismic gap and is due for an earthquake. For example, the
Tokai area (segment D) may be such as case and is the focus of
extensive earthquake prediction studies. However, despite the
intuitive appeal of the gap idea, efforts to predict the location
of future earthquakes using it have not generally been success-
ful (Sections 1.2.5, 4.7.3).

One difficulty is that not all of the plate motion occurs
seismically. Figure 5.4-28 shows that during 195273 a large
segment of the Kuril trench slipped in a series of six major
earthquakes with similar thrust fault mechanism. Seismic
moment studies show that the average slip was 2-3 meters.
Since the previous major earthquake sequence in the area
occurred about 100 years earlier, the average seismic slip rate
is 2-3 cm/yr, about one-third of the plate motion predicted
from relative motion models. The remaining two-thirds of the
slip occurs aseismically, as postseismic or interseismic motion.
Similar studies around the world find that the fraction of plate
motion that occurs as seismic slip, sometimes called the seismic
coupling factor, is generally much less than 1, implying that
much of the plate motion occurs aseismically if the time
interval sampled is adequate.

The Chilean subduction zone shows the other extreme. The
seismic slip rate, estimated from the slip in the great 1960
earthquake and historical records indicating that major earth-
quakes occurred about every 130 years during the past 400
years, exceeds the convergence rate predicted by plate motion
models (Fig. 5.4-29). Because the convergence rate is an upper
bound on the seismic slip rate, the two estimates are inconsist-
ent. One possibility is that the seismic slip is overestimated:
cither the earlier earthquakes were significantly smaller than
the 1960 event or their frequency in the past 400 years is higher
than the long-term average.

More generally, these examples illustrate the difficulty in
inferring seismic slip from historical seismicity, owing to pro-
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Fig. 5.4-27 Time sequence of large subduction zone earthquakes along
the Nankai trough, suggesting both some space and time periodicity
and some variability. (Ando, 1975. Tectonophysics, 27, 119-40, with
permission from Elsevier Science.)

blems including the variability of earthquakes on a given plate
boundary, the issue of whether the time sample is long enough,
and the difficulty in estimating source parameters for earth-
quakes that pre-dated instrumental seismology. Given the un-
certainties in estimating the slip in an earthquake even with
seismological data (Section 4.6), doing so without such data is
particularly challenging. An alternative approach to estimating
plate coupling, discussed in Sections 4.5.4 and 5.6.2, uses GPS
geodesy to measure the deflection of the overriding plate,
which will be released in future large earthquakes. This deflec-
tion depends on the mechanical coupling at the interface, so
directly measures what we infer indirectly from the earthquake
history. However, the GPS data sample only the present earth-
quake cycle, which may not be representative of long-term
behavior.

Perhaps for similar reasons, efforts to interpret the seismic
slip fraction in terms of the physical processes of subduction
have not yet been successful. Although the term “seismic
coupling” implies a relation between the seismic slip fraction
with properties such as the mechanical coupling between the
subducting and overriding lithospheres, this has been hard
to establish. This relation was originally posed in terms of
two end members: coupled Chilean-type zones with large
earthquakes and uncoupled Mariana-style zones with largely
aseismic subduction. The largest subduction zone earthquakes
appear to occur where young lithosphere subducts rapidly
(Fig. 5.4-30, top), where we might expect the minimum “slab
pull” effects and hence the strongest coupling. However,



324 Seismology and Plate Tectonics

Fig. 5.4-28 Rupture areas for a sequence
of large subduction zone earthquakes along
the Kuril trench. Different segments of the
boundary slip seismically over time. Arrows
show the direction and rate of seismic slip
and plate motion. If such sequences occur
about every 100 years and this time sample
is representative, the seismic slip is only
about one-third of the plate motion.
(Kanamori, 1977b. Island Arcs, Deep Seq

Repeat time
~100yr

L Honshu

Chile 40°s Nazca-South America
Seismic slip 7
(Kanamori, 1977)
30 7//
Plate motions
--=- RM1 11.0cm/yr 25
€ 00 . Chase 10.8 cm/yr /
o | e RM2 9.1 cm/yr /
A NUVEL-1 8.7 cm/yr
10
1

100 200
Repeat time (yr)

Fig. 5.4-29 Comparison of seismic slip rate and plate motions for the
area of the great 1960 Chilean earthquake. Shaded region gives slip rate
estimated from slip in the 1960 event and recurrence of large trench
earthquakes in the last 400 years. The estimated slip rate exceeds that
predicted by any of the four plate motion models shown. (Steinezal.,
1986. Geophys. Res. Lett., 13,713-16, copyright by the American
Geophysical Union.)

efforts to correlate the seismic slip fraction with subduction
zone properties such as convergence rate or plate age find no
clear pattern (Fig. 5.4-30, bottom). It has also been suggested
that seismic coupling may be lowest for sedimented trenches
and where normal stress on the plate interface is low, although
these plausible ideas have vet to be demonstrated. Thus, al-
though seismic coupling can be defined from the seismic slip
fraction, its relation to the mechanics of plate coupling is still
unclear. It appears that most subduction zones have significant
components of aseismic slip, as do oceanic transforms and
many continental plate boundaries (Section 5.6.2). Hence,
even given the considerable uncertainties in such estimates, it
appears common for a significant fraction of plate motion to
occur aseismically.

Trenches and Back Arc Basins, 16374,
copyright by the American Geophysical
Union.)

Velocity (cm/yr)

The difficulty in estimating seismic coupling and under-
standing the process of aseismic plate motion has consequ-
ences for estimating the recurrence of carthquakes on a plate
boundary and the seismic gap concept. It may be difficult to
distinguish between gaps and areas where much of the slip is
aseismic. For example, we would not want to say both that
areas with recent major seismicity have high seismic hazard
and that areas with little recent seismicity are gaps with high
seismic hazard.® Moreover, as discussed in Sections 1.2 and
4.7.3, the process of earthquake faulting may be sufficiently
random that it is hard to use the plate motion rate and seismic
history to usefully predict how long it will be until the next
large earthquake.

Although most shallow subduction zone seismicity is at the
plate interface, some earthquakes occur within either plate.
Some appear to result from flexural bending of the downgoing
plate as it enters the trench (Fig. 5.4-31). Focal depth studies
show a pattern of normal faulting in the upper part of the plate
toa depth of 25 km, and thrusting in its lower part, between 40
and 50 km. These observations constrain the position of the
neutral surface dividing the mechanically strong lithosphere
(Section 5.7.4) into upper extensional and lower compres-
sional zones. In some cases the normal fault earthquakes are so
large that they may be “decoupling” events due to “slab pull”
that rupture the entire downgoing plate (Fig. 5.4-32). After-
shock distributions and studies of the rupture process indicate
that faulting extended through a major portion, and perhaps
all, of the lithosphere. Rupture through the entire lithosphere
favors the decoupling model. If only a portion of the litho-
sphere breaks, the interpretation is more complicated. Rupture
may have been restricted to one side of the neutral surface (in
the flexural model) or reflect the material below being too hot
and weak for seismic rupture. In the latter case, the entire
lithosphere could have failed, with the deeper rupture being
aseismic.

¢ The observation that more recent grizzly bear attacks have occurred in Montana

than in lllinois might indicate either a perilous “gap” in Illinois or a greater intrinsic
hazard in Montana.
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Fig. 5.4-32 Large normal faulting earthquakes at trenches, such as the
1965 M, 7.5 RatIsland earthquake, may be due to flexure or failure of the
lithosphere under its own weight. The extent of aftershocks, which appear
not to cut the entire lithosphere, may reflect the extent of rupture or be a
temperature effect. (Wiens and Stein, 1985. Tectonophysics, 116, 143-62,
with permission from Elsevier Science.)
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5.5 Oceanic intraplate earthquakes and tectonics

The vast majority of earthquakes — especially when measured
in terms of seismic moment release — occur on plate boundaries
and reflect the relative plate motions there. However, intra-
plate earthquakes, those within plates, also provide important
tectonic information. We discuss intraplate earthquakes that
occur in oceanic lithosphere in this section, and then discuss
their counterparts in continental lithosphere in the next.

5.5.1 Locations of oceanic intraplate seismicity

Figure 5.5-1 illustrates the distribution of earthquakes in the
Atlantic Ocean, excluding those along the Mid-Atlantic ridge.
Although these earthquakes are rarer than those along the
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Fig. 5.5-1 Distribution of earthquakes in the Atlantic Ocean other than
those on ridge and transform segments of the Mid-Atlantic ridge system.
(Wysession et al., 1995. © Seismological Society of America. All rights
reserved.)

ridges and transforms making up the Mid-Atlantic ridge plate
boundaries, there are enough to justify interest. They nicely
illustrate that plates deviate from the ideal case of perfect rigid-
ity without internal deformation, such that all motion occurs at
narrow boundaries. Instead, as noted in Section 5.2, real plates
are complicated entities that have both internal deformation
and diffuse boundary zones.

One way to think about these earthquakes is to consider a
hierarchy, from slow-moving plate boundaries, to recognizable
weak structures, and then to apparently isolated earthquakes.
For example, the Atlantic portion of the boundary between the
Eurasian and African plates, which stretches from Gibraltar to
the Azores, is poorly defined by topography and seismicity
compared to the Mid-Atlantic ridge. However, the focal
mechanisms (Fig. 5.5-2, top) show a transition from extension
at the Terceira Rift near the Azores, to strike-slip along a
segment that includes the mapped Gloria transform fault, to
compression near Gibraltar, and then into the Mediterranean.
This transition reflects the fact that the Euler pole is close
enough that the relative motions are small and change rapidly
with distance (Fig. 5.5-2, bottom). For example, near the triple
junction the NUVEL-1A model (Table 5.2-1) predicts 4 mm/yr
of extension resulting from the small difference between
Eurasia-North America (23 mm/yr at N97°E) and Africa—
North America (20 mm/yr at N104°E) spreading across the
Mid-Atlantic ridge. Even in the western Mediterranean, the
motions are too slow to generate a well-developed subduction
zone like those of the Pacific, but instead cause a broad con-
vergent zone indicated by large earthquakes like the 1980 M,
7.3 El Asnam, Algeria, earthquake.

Even slower motion appears to be why sea floor topography
shows no clear evidence for the boundary between the North
American and South America plates shown by the dashed
line in Fig. 5.5-1, despite a diffuse zone of seismicity in this
area. This zone is considered to be a plate boundary, based on
detailed studies of plate motions. These studies invert plate
motion data (spreading rates, transform fault directions, and
earthquake slip vectors; Section 5.2.2) to find Euler vectors
under two different assumptions: either there is a single Amer-
ican plate, or there are two. The Euler vectors derived by assum-
ing there are two plates fit the data better, which would be
expected, because a model with more parameters always fits
data better. However, statistical tests (Section 7.5.2) show that
the fit to the data improves more than expected purely by
chance due to the additional parameters, implying that the two
plates are distinct.

The North America-South America Euler vector that results
from inverting the data is not well constrained, because it is
not derived directly from data recording the motion between
North America and South America, but is estimated from
closure of the plate circuit (Fig. 5.2-5). Thus the estimate of
motion results from the difference between North America—
Africa and South America~Africa motions, which are quite
similar (if they were not, the data would clearly show two dis-
tinct American plates). The predicted motion along the North
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America-South America boundary is only about 1 mm/yr —
much slower than the approximately 20 mm/yr along the Mid-
Atlantic ridge. The North America~South America boundary
is thus considered a diffuse, slow-moving boundary zone,
although its location and motion are not well constrained.
Another reason for treating this as a boundary zone is that
paleomagnetic reconstructions find that over the past 70 Myr
the two plates have moved relative to each other as the Atlantic
Ocean opened.

In general, 1-2 mm/yr is an approximate lower limit for
plate boundary deformation. Regions with motions faster
than this are generally viewed as plate boundaries, and slower
deformation is generally treated as intraplate. However, there
is no generally accepted criterion, and evidence from seismicity
and topography is also considered. Put another way, in many
cases one can regard a region as either a slow-moving plate
boundary zone or a zone of intraplate deformation, and
“intraplate” earthquakes are often just ones not on an obvious
plate boundary.

The Atlantic example (Fig. 5.2-1) shows that in addition
to the North America-South America boundary zone, some
intraplate seismicity is concentrated in other areas associated
with tectonic features. For example, seismicity between Green-

land and North America is likely related to the former spread-
ing ridge that opened this part of the Atlantic (the Labrador
Sea). Although this spreading stopped about 43 Myr ago, the
fossil ridge appears to remain a weak zone along which
intraplate stresses cause some motion. Intraplate seismicity is
often associated with such fossil structures. Concentrations of
seismicity are also associated with the Bermuda (32°N, 65°W),
Cape Verde (17°N, 25°W), and Canary (26°N, 17°W) hot
spots. Focal mechanism studies are consistent with the earth-
quakes reflecting heating of the lithosphere by the hot spots.
Hawaii, the most impressive hot spot trace in the oceans
(Fig. 5.2-7),! provides the best example of intraplate earth-
quakes associated with hot spot processes (Fig. 5.5-3). Small
earthquakes are associated with magma upwelling in the rift
zones. Larger earthquakes, which occur on a time scale of tens
of years, reflect sliding of the volcanic edifice on subhorizontal
faults that are thought to be a layer of weak sediments at the
top of the old oceanic crust on which the volcanic island
formed. These earthquakes can be quite large — the 1975

! Numerical models that infer the amount of upwelling mantle material from how

elevated the sea floor is relative to the normal depth-age curves estimate that Hawaii
has a buoyancy flux 5~10 times greater than that of Bermuda (Sleep, 1990).
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Fig. 5.5-3 Schematic model for large intraplate earthquakes below the
island of Hawaii. Small earthquakes are associated with magma upwelling
in the rift zones. Larger earthquakes, at dates shown, reflect sliding of the
volcanic edifice on subhorizontal faults. The portion of the basal fault

that has not ruptured in historic time may be a seismic gap. (Wyss and
Koyanagi, 1992. © Seismological Society of America. All rights reserved.)

Kalapana earthquake had M, 7.2, caused a tsunami that
killed two campers on the seashore, and did considerable
property damage. The earthquake was followed by a small
volcanic eruption near the summit of Kilauea, perhaps because
the ground shaking triggered an eruption of shallow magma.
Curiously, some earthquakes occur to considerable depths
under Hawaii, including a magnitude 6.2 earthquake at 48 km
depth.

Although many oceanic intraplate earthquakes are associated
with tectonic features, some appear to occur far from plate
boundaries, hot spots, or major bathymetric features. Thus the
stresses generated by plate driving forces and other sources,
including mantle flow near hot spots, appear to reactivate weak
zones in the plate resulting from small-scale structure acquired
during the lithosphere’s evolution.?

These earthquakes can be dramatic. For example, the
enormous (M,, 8.2) intraplate earthquake that occurred near
the Balleny Islands in an oceanic part of the Antarctic plate
(63°S, 149°E) in March 1998 was the largest earthquake that
had occurred on earth for several years. The fault inferred from
waveform modeling (Section 4.3) followed no observable linea-
ments and cut straight across existing fracture zones. More-
over, in the previous hundred years, no other earthquakes
had been located in this region. It is not clear what caused the
earthquake or whether this area has any special properties or
stress acting there. Although the earthquake occurred south of
a puzzling hypothesized deformation zone in the extreme
southeast corner of the Australian plate (Fig. 5.2-4), its fault
plane solution is inconsistent with its being on the boundaries
of a microplate. It is thus unclear whether this area is now any

% This situation is analogous to timbers creaking as a wooden boat rocks in the

waves.

more prone to future earthquakes than other areas, and
what the recurrence time of such earthquakes might be. Sim-
ilar issues arise in considering the intraplate seismicity and
associated seismic hazard in the more structurally complex
continents.

Oceanic intraplate seismicity often occurs in swarms.
Regions without previously known seismicity sometimes be-
come active for several years, with hundreds of teleseismically
located earthquakes.® The seismicity then dies out, and seems
not to recur. For example, during 19813, an intraplate earth-
quake swarm occurred near the Gilbert Islands in Micronesia.
A total of 225 earthquakes were detected, mostly over a 15
month period, with 87 above 12, 5. No major tectonic features
are known in this area, and a ship survey found no bathymetric
anomalies. Before and after the swarm, no other earthquakes
have been recorded in this region. The swarms thus differ from
plate boundary seismicity, which occurs on features that re-
main active for long periods even if there are intervening quiet
intervals. Moreover, the intraplate swarms often appear not
to have a single well-developed fault, and no event is signific-
antly bigger than the others. By contrast, plate boundary
earthquakes usually have one or two main ruptures and many
aftershocks, perhaps reflecting local adjustments to the stress
field after the mainshock has ruptured the entire fault.

These swarms raise an interesting issue. We can assume that
these areas are analogous to plate boundaries in having special,
if not yet understood, tectonic significance. If so, they are likely
to be the sites of future swarms. Alternatively, perhaps all areas
of oceanic lithosphere are equally susceptible to such swarms.
In this case, over time, swarms will occur in many places, and
future swarms are no more likely in one place than another. We
will see that similar issues surface in trying to estimate seismic
hazards due to intraplate earthquakes within continents.

5.5.2  Forces and stresses in the oceanic lithosphere

In addition to using oceanic intraplate seismicity to investigate
the specific processes acting at individual sites, we study the
seismicity to learn about plate-wide processes. For example,
Fig. 5.5-4 shows the variation of mechanism type with
lithospheric age. Most of the oceanic lithosphere seems to be in
horizontal deviatoric compression, as shown by thrust and
strike-slip mechanisms. This compression is in approximately
the spreading direction, and is thought to be related to “ridge
push”: the plate driving force due to lithospheric cooling and
subsidence. The major exceptions are the extensional events
occurring in the central Indian Ocean. Although originally re-
garded as intraplate, these earthquakes now appear to be in
a diffuse plate boundary zone (Section 5.2.2). In the model
shown, the focal mechanisms (Fig. 5.5-5) reflect counterclock-
wise rotation of Australia with respect to India, causing normal
fault earthquakes in the young lithosphere near the Euler pole

3 There may be many more smaller earthquakes associated with these swarms, but

because the swarms often occur in remote regions, only the larger events are detected.
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for oceanic intraplate earthquakes. Older oceanic lithosphere is in
compression, whereas younger lithosphere has both extensional and
compressional mechanisms. Extensional events are located primarily in
the central Indian Ocean. (Wiens and Stein, 1984. J. Geophys. Res., 89,
11, 442—-64, copyright by the American Geophysical Union.)

and thrust and strike-slip earthquakes to the east. These earth-
quakes reach magnitude 7 on the Ninetyeast ridge.*

The general trend of compressive mechanisms in the oceanic
plates is consistent with the plate driving force due to the cool-
ing of the oceanic lithosphere. Consider a plate, defined as the
area above the m(z) isotherm, out to age #, where the water
depth is A(t) (Fig. 5.5-6). The plate is cooler, and thus denser,
than material below. The thermal model we used for ocean
depth and heat flow also predicts the resulting force.

The total horizontal force on the base of the lithosphere, F,,
equals the integrated horizontal pressure force of the astheno-
sphere at the ridge, because the material is in hydrostatic
equilibrium:

3

(t)

Fi= | p,g2dz=p,glm(1)}/2. (1)

O;ﬁ

Similarly, F,, the horizontal force due to water pressure on the
plate, equals the integrated horizontal pressure force of the

water,
4 Although hot spot tracks like the Ninetyeast and Chagos-Laccadive ridges have
been termed “aseismic” ridges, to distinguish them from spreading ridges, these two
are more seismically active in terms of moment release than many spreading ridges.
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Fig. 5.5-5 Schematic map of earthquake mechanisms in the central
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the Indian and Australian plates. Later studies have refined the location
and geometry of the boundary zone (Fig. 5.2-4) and pole (triangle) (Wiens
etal., 1985. Geophys. Res. Lett., 12,429-32, copyright by the American
Geophysical Union.)

Ridge push force

Fig. 5.5-6 Derivation of the “ridge push” force.

h(t)

Fy= | p,gzdz=p,g(h(1))*2. (2)

0
F; is the remaining horizontal force due to lithospheric pressure
P(z, 1),

(t)

Fy= | P(z,1)gzdz, (3)

h(
where the pressure depends on the density perturbation due to
lithospheric cooling (Eqn 5.3.7),

z

t)

P(z,t)=p,gh(t)+g | [p,,+p'(z',t)ldz". (4)

h(t)
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Fig. 5.5-7 Geometry for a simple model of intraplate stresses.

If the plate is not accelerating, the force difference is
balanced by a net horizontal force

FRzFl“Fz‘Fy (5)

For the cooling halfspace temperature structure (Eqn 5.3.2),
this force is

Fy=gop, T, xt, (6)

whereas for a plate model it approaches a constant value
for old lithosphere. The convention of calling this force “ridge
push” is confusing because it is zero at the ridge and increases
linearly with plate age. It results not from force at the ridge but
from the total force due to the density anomaly within the
cooling plate out to any given age.

The expression for the “ridge push” force is similar to that
for the “slab pull” force (Eqn 5.4.15) because both are thermal
buoyancy forces due to the density contrast resulting from the
temperature difference between the plate and its surroundings.
The two depend in the same way on the gop, T term that
describes the force due to the density contrast, but differently
on k because faster cooling increases ridge push whereas faster
heating decreases slab pull. Although it is useful to think of
the forces separately, both are net buoyancy forces due to the
mantle convection system of which the plates are a part.’

To discuss the stresses within the oceanic lithosphere, we
compare the ridge push force to the other forces applied at the
boundaries of the plate. These include forces at the plate base
and forces at the subduction zone. As for the downgoing slab,
earthquake focal mechanisms constrain the relative size of the
forces. Here, we use the observation (Fig. 5.5-4) that stress in
the spreading direction is typically compressive at all ages.

Consider a simple model of stress in the oceanic lithosphere,
using the geometry of Fig. §.5-7. Using the stress equilibrium
equation (Eqn 2.3.49) in the spreading (x) direction, we relate
the deviatoric stresses to the body force f(x, z), which is the
contribution to ridge push from the material at (x, 2),

do,, (%, 2) . d0,,(x, 2)

=0. 7
o - +flx,2)=0 (7)

* Verhoogen (1980} offers the analogy that rain occurs because of the negative

buoyancy of the drops relative to the surrounding air, as part of the process by which
solar heat evaporates water which rises as vapor due to positive buoyancy and is
transported by wind to the point where it cools, condenses into drops, and then falls.

L ———

. AN\ A —

Integrating first with respect to x and then with respect to g
from z = 0 to the base of the lithosphere 7m(x) yields the force
balance

_ 0,x — Fp(x)

O (%) +0,. (8)

m(x)

Here the stress in the spreading direction is given by its vertical
average 0, (x); 0, = G, (0) characterizes the strength of the
ridge; the drag force at the base of the plate is given by the basal
shear stress o,; and Fg(x) is the net ridge push force

m(t) x

Fy(x) = J Jf(x, 2)dxdz. 9)

0 0

Written in terms of plate age, ¢,

_ O’bUt - FR(t)

6xx (t) m(t)

+0, (10)

where v is a half spreading rate, assumed constant. A useful
form for comparing different plates comes from the usual
assumption that the basal drag force equals the product of
absolute velocity # and drag coefficient C (0, =Cu),

_ Cuvt — Fp(t)
N m(t)

5xx (t)

+o, (11)

Thus a drag depending on absolute velocity is applied over
an area proportional to the spreading rate. For simplicity, we
assume that v = u, spreading rate equals absolute velocity (the
ridge is fixed with respect to the mantle), so the net drag force is
proportional to velocity squared.

A subduction zone would provide a boundary condition on
the oldest lithosphere. For example, if focal mechanisms in the
lithosphere near trenches were extensional, an extensional con-
dition could be imposed. Because such mechanisms are not
seen, it is often assumed that the negative buoyancy of slabs
(slab pull) is balanced by local resistive forces (Section 5 4.2).
Thus, although the ridge push force is probably smaller than
the slab pull forces, the thrust fault mechanisms suggest that it
is more crucial for determining stress in oceanic lithosphere.

Although this stress model is schematic and does not
describe any individual plate, it lets us use focal mechanism
observations to estimate several important quantities. Fig-
ure 5.5-8 shows the predicted intraplate stress as a function
of plate age and drag coefficient. For zero dra the stress is
purely compressive (G, <0) and varies as t, because the
force increases linearly with age, whereas the plate thickens as
its square root. For larger drag coefficients, &, follows +/t
curves corresponding to less and less compression, until the
lithosphere is in extension for all ages. All lithospheric plates
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Fig. 5.5-8 Intraplate stress in the spreading direction as a function of
lithospheric age and assumed basal drag coefficient for slow-moving

(1 cm/yr, top) and fast-moving (10 cm/yr, bottom) plates. The
compressional stresses in old oceanic lithosphere place an upper bound
on the drag coefficient of 4 MPa/(m/yr). (Wiens and Stein, 1985.
Tectonophysics, 116, 14362, with permission from Elsevier Science.)

appear to be in compression, so a rapidly moving plate (such as
the Pacific, which moves at about 10 cm/yr) constrains the drag
coefficient to less than about 4 MPa/(m/yr). Similar results
emerge for a cooling plate model.

This model assumes a zero stress boundary condition at the
ridge axis, so the axis has no tensile strength. The predicted
stress in young lithosphere, especially the location of a possible
transition from compression to extension in the direction of
spreading, would be sensitive to the strength of the ridge
(Fig. 5.5-9). Models with substantial strength at the axis pre-
dict a wide band of extension in the spreading direction. Since
such a zone of normal-faulting earthquakes is not observed,
the axis seems weak.

Although this simple model describes only a hypothetical
average plate, more sophisticated models use realistic plate
geometries to calculate the stresses expected from ridge push,
slab pull, and basal drag forces. These models’ predictions can
be compared to earthquake focal mechanisms and other data
for specific areas. For example, Fig. 5.5-10 shows stresses
predicted for the Indian Ocean region. Although the model
was calculated assuming a single Indo-Australian plate, it pre-
dicts stresses in the region now considered a diffuse boundary
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Fig. 5.5-9 Intraplate stress in the spreading direction as a function of
lithospheric age computed for several values of ridge strength. The age of
the transition from ridge-normal extension to compression increases with
the strength of the ridge. (Wiens and Stein, 1984. J. Geophys. Res., 89, 11,
442-64, copyright by the American Geophysical Union.)

zone (Fig. 5.5-5) that are generally consistent with the focal
mechanisms and the folding seen in gravity and seismic reflec-
tion data.

3.5.3 Constraints on mantle viscosity

The last section’s analysis relating earthquake mechanisms
to drag at the base of the lithosphere also gives insight into the
viscosity of the mantle. The viscosity,® the proportionality
constant between shear stress and the strain rate (or velocity
gradient), controls how the mantle flows in response to applied
stress, and is thus crucial for mantle convection. If the drag on
the base of a plate is due to motion over the viscous mantle,
compressive earthquake mechanisms in old lithosphere con-
strain the viscosity.

Consider a simple two-dimensional geometry where mass
flux due to the moving plate is balanced by a return flow at
depth (Fig. 5.5-11, top). The drag coefficient is proportional to
the viscosity and inversely proportional to the flow depth. Fig-
ure 5.5-12 shows that the basal drag constraint from the focal
mechanism data, C <4 MPa/(m/yr), requires an average mantle
viscosity less than 2 x 102 poise if flow occurs to a depth of
700 km in the upper mantle, or 10?! poise if flow occurs in the
entire mantle. These values are lower than the 1-5 x 1022 poise
typically estimated from glacial rebound, earth rotation, and
satellite orbits.

This discrepancy can be reconciled by assuming that the plate
is underlain by a thin, low-viscosity asthenosphere (Fig. 5.5-11,
bottom). The low-viscosity layer, in which only a fraction of the
return flow occurs, decouples the plates from the underlying

¢ Viscosity, defined in Section 5.7, is given in cgs units as poise (dyn-s/cm?) or in SI

units as Pascal-seconds (1 poise= 0.1 Pa-s).
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different viscosity. The upper, low-viscosity layer decouples the plates
from the underlying mantle. (McKenzie and Richter, 1978.)
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Fig. 5.6-1 Schematic illustration of the
Wilson cycle, the fundamental geological
process controlling the evolution of the
continents. (a)-(b): A continent rifts, such
that the crust stretches, faults, and subsides.
(c): Sea floor spreading begins, forming a new
ocean basin. (d): The ocean widens and is
flanked by sedimented passive margins. (e):
Subduction of oceanic lithosphere begins on
one of the passive margins, closing the ocean
basin (f) and starting continental mountain
building. (g): The ocean basin is destroyed by
a continental collision, which completes the
mountain building process. At some later
time, continental rifting begins again.

mantle. Viscosity values that satisfy the focal mechanisms are
consistent with constraints from gravity and glacial isostasy,
and such decoupling is consistent with the lack of correlation
between oceanic plate area and absolute velocity (Fig. 5.4-12).

5.6 Continental earthquakes and tectonics

Although the basic relationships between plate boundaries,
plate interiors, and earthquakes apply to continental as well as
oceanic lithosphere, the continents are more complicated. The
continental crust is much thicker, less dense, and has different
mechanical properties from the oceanic crust. As a result, plate
boundaries in continental lithosphere are generally broader and
more complicated than in the oceanic lithosphere (Fig. 5.2-4).
Studies of continental plate boundaries, which rely heavily
on seismology, provide important insights into the funda-

(@) Continental collision

mental geological processes controlling the evolution of the
continents. The basic process, known as the Wilson cycle,! is
illustrated in Fig. 5.6-1. A continental region undergoes
extension, such that the crust is stretched, faulted, and sub-
sides, yielding a rift valley like the present East African rift.
Because the uppermost mantle participates in the stretching,
hotter mantle material upwells, causing partial melting and
basaltic volcanism. Sometimes the extension stops after only a
few tens of kilometers, leaving a failed or fossil rift such as the
1.2 billion-year-old mid-continent rift in the central USA. In
other cases the extension continues, so the continental rift
evolves into an oceanic spreading center (identifiable from sea
floor magnetic anomalies), which forms a new ocean basin like

! Named after J. Tuzo Wilson (1908-93), whose key role in developing plate tec-
tonic theory included introducing the ideas of transform fauits, hot spots, and that the
Atlantic had closed and then reopened.



334 Seismology and Plaze Tectonics

-~ NN

the Gulf of Aden or the Red Sea. With time, the ocean widens
and deepens due to thermal subsidence of oceanic lithosphere
(Section 5.3.2), and thick sediments accumulate on the con-
tinental margins, such as those on either side of the Atlantic.
These margins are not plate boundaries — the oceanic and
continental crust on the two sides are on the same plate — and
are called passive margins, to distinguish them from active con-
tinental margins, which are plate boundaries. Subduction often
begins along one of the passive margins, and the ocean basin
closes, such that magmatism and mountain building occur, as
along the west coast of South America today. Continental colli-
sion like that currently in the Himalayas occurs eventually, and
the mountain building process reaches its climax. If the con-
tinental materials on either side cease to move relative to each
other, this process leaves a mountain belt within the interior
of a single plate. At some future time, however, a new rifting
phase can begin, often near the site of the earlier rifting, and a

Ocean about 270 million years ago, and remain despite the
opening of the present Atlantic Ocean during the past 200 Myr.

As a result, continental and oceanic crust have very different
life cycles. Because the relatively less dense continental crust is
not subducted, the continents have accreted over a much longer
time than the 200-million-year age of the oldest oceanic crust.
Hence the continents preserve a complex set of geologic struc-
tures, many of which can be sites of deformation, including
earthquake faulting. Thus both plate boundary and intraplate
deformation zones within continents are more complex than
their oceanic counterparts.

Earth scientists seek to understand the continenta] evolution
process for both intellectual and practical reasons. The process
is fundamental to how the planet works, but also provides
information about geologic hazards (earthquakes, volcanism,
uplift, and erosion) and mineral resources. In addition, the
large mountain belts haye major impacts on earth’s climate.

and geological data to form an integrated picture of the com-

5.6.1 Continental plate boundary zones

As for oceanic boundaries, we seek to first describe the motion
(kinematics) within boundary zones, and then to combine
the kinematics with other data to investigate their mechanics
(dynamics). One example is the East African rift (Fig. 5.6-2),
a spreading center between the Nubian (West Africa) and
Somalian (East Africa) plates. The extension rate is so slow,
less than 10 mm/yr, that it is hard to resolye in plate motion
models, and the two plates are often treated asone (Fig. 5.2-4),

U\

However, the rift topography, normal faulting, and seismicity
distribution show the presence of an extensional boundary
zone broader, more diffuse, and more complex than ¢ a
mid-ocean ridge. For example, the seismicity ends in southerp
Africa and has no clear connection to the southwest Indian
ridge, where the plate boundary must 80. A recent estimate ig
that the northern East Africa rift opens at about 6 mm/yr,
whereas the southern part opens at about half that, becayse the
Euler pole is to the south. Some of the complexity of such
continental extensional zones results from the fact that, unlike

rifts that, although active for some time, failed to develop into
oceanic spreading centers and simply died. As we will see, these
fossil rifts can be loci for intraplate earthquakes.

The earthquakes also indicate that the thermal and mech-
anical structure of continental rifts is more complicated than
on mid-ocean ridges. Normal-faulting earthquakes extend to
depths of 25-30 km, considerably deeper than ar mid-ocean
ridges. Hence the lower Crust appears to be surprisingly
stronger and colder than might be expected in an active rift.

Continental transforms are also more complicated than their
oceanic counterparts. As we saw In Section 5.2, the transform

kilometers wide (Fig. 5.2-3), in contrast to widths of less than
10km for oceanic transforms. Thus the foca] mechanisms
show primarily strike-slip motion on the San Andreas fault
itself and demonstrate complexities including thrust faulting
for events like the 1971 San Fernando and 1994 Northridge
earthquakes and norma] faulting due to the regional extension
in the Basin and Range province. The carthquakes and space-
geodetic data show that although most of the motion occurs
along the San Andreas (Fig.4.5-13) and nearby faults, a reason-
able fraction of the motion occurs elsewhere (Figs. 5.6-3 and
5.2-3). The boundary zone is further complicated by volcanism

The breadth of continental plate boundary zones has im-
portant implications for seismic hazards within them. Because
ground shaking decays rapidly with distance (Fig. 1.2-5),
nearby smaller earthquakes within 3 boundary zone, but not
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on the main boundary fault, can be more damaging than larger
but more distant ones on the main fault. Hence the Los Angeles
area is vulnerable to both nearby earthquakes like the 1994
Northridge (M,, 6.7) or 1971 San Fernando (M, 6.6) earth-
quakes and larger ones on the more distant San Andreas Fault,
such as a recurrence of the 1857 Fort Tejon earthquake which
is estimated to have had M, about 8. Similarly, the earthquake
hazard in the Seattle area involves both great earthquakes at
the subduction interface and smaller, but closer, earthquakes
in the subducting Juan de Fuca plate (like the 2001 M, 6.7
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Nisqually earthquake) or at shallow depth in the North
American plate.

Of the three boundary types, continental convergence zones
may be the most complicated compared to their oceanic coun-
terparts. One primary difference is that because continental
crust is much less dense than the upper mantle, it is not
subducted, and a Wadati-Benioff zone is not formed. As 2
result, continental convergence zones in general do not have
intermediate and deep focus earthquakes. However, the plate
boundary tectonics occur over a broader and more complex
region than in the oceanic case.

A spectacular example is the collision between the Indian
and Eurasian plates. This area is the present type example of
mountain building by continental collision, which has pro-
duced a boundary zone extending thousands of km north-
ward from the nominal plate boundary at the Himalayan front
(Fig. 5.6-5). The total plate convergence is taken up in several
ways. About half of the convergence occurs across the locked
Himalayan frontal faults such as the Main Central Thrust
(Fig. 5.6-6), and gives rise to large destructive earthquakes.
These faults are part of the interface associated with the under-
thrusting Indian continental crust, which thickens the crust
under the high Himalayas. However, the earthquakes also show
normal faulting behind the convergent zone, in the Tibetan
plateau, presumably because the uplifted and thickened
crust spreads under its own weight. GPS data (Fig. 5.6-5) show
that this extension is part of a large-scale process of crustal
“escape,” or “extrusion,” in which large fragments of con-
tinental crust are displaced eastward by the collision along

Fig. 5.6-5 Summary of crustal motions
determined using space geodesy in the
India~Eurasia plate collision zone. Large
arrows indicate velocities relative to
Eurasia. Arrows in circles show velocities
with no significant motion with respect

to Eurasia. Small arrows show local
relative deformation. (Larson et al., 1999.
J. Geophys. Res., 104, 1077-94, copyright
120 E by the American Geophysical Union.)
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Fig. 5.6-7 Demonstration of the deformation of Asia, modeled by a striped block of plasticine, as the result of a collision with a rigid block simulating the
Indian subcontinent. The plasticine is constrained on the left side, so the impact forces blocks to be extruded to the right, analogous to the eastward motion
of blocks in Indochina and China. (Tapponnier et al., 1982. Geology, 10, 611-16, with permission of the publisher, the Geological Society of America,
Boulder, Co. © 1982 Geological Society of America.)

major strike-slip faults. This extrusion has been modeled assum-  intracontinental mountain belt, 1000-2000 km north of the
ing that India acts as a rigid block indenting a semi-infinite ~ Himalayas, accommodates almost half the net plate conver-
plastic medium (Asia), giving rise to a complicated faultingand ~ gence in the western part of the zone.

slip pattern (Fig. 5.6-7). The extent of the collision is illustrated In addition to providing data about a collision region’s
by GPS data and focal mechanisms showing that the Tien Shan  kinematics, seismological studies provide insight into its mech-
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Fig. 5.6-8 GPS observations of motions relative to Eurasia (a), focal mechanisms (b), and tectonic interpretation (c) for a portion of the Africa~Arabia-
Eurasia plate collision zone. Note strike-slip along the North Anatolian fault, extension in western Anatolia and the Aegean region, and compression in the
Caucasus mountains. Rates are in mm/yr. (McClusky et al., 2000. ]. Geophys. Res., 105, 5695-5719, copyright by the American Geophysical Union.)

anics. The collision process is thought to involve a complex
interplay between forces due directly to the collision, gravita-
tional forces due to the resulting uplift and crustal thickening,
and forces from the resulting mantle flow. Earthquake depths
and studies of seismic velocity, attenuation, and anisotropy are
providing data on crustal thicknesses, thermal and mechanical
structures, and mantle flow. For example, P-wave travel time
tomography shows high velocity under the presumably cold
Himalayas, which contrasts with low velocity under Tibet.
These and other seismological data are consistent with the idea
that Tibet deforms easily during the collision.

An equally complicated situation occurs in the eastern Medi-
terranean collision zone involving the African, Arabian, and
Eurasian plates. Combining GPS and focal mechanism data
shows the complex motions. Figure 5.6-8 (a) shows the motions
of sites in the western Mediterranean relative to Eurasia.
Northern portions of Arabia move approximately N40°W,
consistent with global plate motion models. Western Turkey
rotates as the Anatolian plate about a pole near the Sinai pen-
insula. Anatolia is thus “squeezed” westward between Eurasia
and northward-moving Arabia (Fig. 5.6-8, c).? The motion
across the North Anatolian fault, about 25 mm/yr, gives rise to

2 Consider a melon seed squeezed between a thumb and a forefinger.

large right-lateral strike-slip earthquakes (Fig. 5.6-8, b) such
as the 1999 M, 7.4 Izmit earthquake, which occurred about
100 km east of Istanbul and caused more than 30,000 deaths.
To the west, the data show interesting deviations from a rigid
Anatolian plate. The increasing velocities toward the Hellenic
trench, where the Africa plate subducts below Crete and
Greece, show that western Anatolia and the Aegean region are
under extension, consistent with the normal fault mechanisms.
This region may be being “pulled” toward the arc, perhaps by
an extensional process similar to oceanic back-arc spreading,
as the trench “rolls back” (Section 5.2.4). By contrast, eastern
Turkey is being driven north-ward into Eurasia, causing
compression that appears as the thrust fault earthquakes in
the Caucasus mountains. The Dead Sea transform separates
Arabia from the region to the west, sometimes viewed as
the Sinai microplate. Strike-slip motion along this fault gives
rise to the earthquakes mentioned in the Bible that repeatedly
destroyed famous cities like Jericho.

$5.6.2 Seismic, aseismic, transient, and permanent
deformation

The examples in the previous section illustrate that earthquakes
give powerful insights into the crustal deformation shaping the
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Fig. 5.6-9 Schematic illustration of how crustal deformation on various
time scales is observed by different techniques.

continents. Other approaches to studying this deformation,
including various geodetic and geological means, sample the
deformation in different ways on various time scales (Fig. 5.6-
9). Hence, considerable attention goes into understanding how
what we see with these different techniques are related. For
example, as discussed earlier (Sections 4.5.4, 5.4.3), in many
places only part of the plate motion seems to occur as earth-
quakes, and the rest takes place as aseismic slip. A related ques-
tion is how the deformation shown by earthquakes, which has
atimescale of a few years, is related to the longer-term deforma-
tion that is recorded by topography and the geologic record.

To explore these ideas, consider the distribution of motion
within the boundary zone extending from the stable interior
of the oceanic Nazca plate, across the Peru—Chile trench to
the coastal forearc, across the high Altiplano and foreland
thrust belt, and into the stable interior of the South American
continent. Figure 5.6-10 shows GPS site velocities relative to
stable South America, which would be zero if the South Amer-
ican plate were rigid and all motion occurred at the trench plate
boundary. However, the site velocities are highest near the
coast and decrease relatively smoothly from the interior of the
Nazca plate to the interior of South America.

Figure 5.6-10 (bottom) shows an interpretation of these
data. In this model, about half of the plate convergence
(approximately 35 mm/yr) is locked at the subduction inter-
face, causing elastic strain of the overriding plate that will be
released in large interplate thrust earthquakes (Section 4.5.4)
like those whose focal mechanisms are shown. Thus the locked
fraction of the plate motion corresponds to the seismic slip rate,
perhaps via a process in which only a fraction of the interface
is locked at any time. Approximately 20 mm/yr of the plate
motion occurs by stable sliding at the trench, which does not

plate
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Fig. 5.6-10 Top: GPS site velocities relative to stable South America
(Norabuena et al., 1998. Science, 279, 358-62, copyright 1998 American
Association for the Advancement of Science), and selected earthquake
mechanisms in the boundary zone. Rate scale is given by the NUVEL-1A
vector. Bottom: Cross-section showing approximate velocity distribution
inferred from GPS data. (Stein and Klosko, 2002. From The Encyclopedia
of Physical Science and Technology, ed. R. A. Meyers, copyright 2002 by
Academic Press, reproduced by permission of the publisher.)

deform the overriding plate. This portion of the plate motion
corresponds to aseismic slip. The rest occurs across the sub-
Andean foreland fold-and-thrust belt, causing permanent
shortening and mountain building, as shown by the inland
thrust fault mechanisms. This portion of the plate motion
would be considered aseismic slip if we considered only the
fraction of the plate motion that appears in the trench seismic
moment release, whereas in reality it occurs as inland deforma-
tion. These interpretations come from analyzing the GPS data
in the convergence direction relative to the stable interior of
South America (Fig. 5.6-11). If all the convergence were locked
on the interplate thrust fault, the predicted rates would exceed
those observed within about 200 km of the trench. However, if
only about half of the predicted convergence goes into locking
the fault, the predicted rates near the trench are less, because
only the portion of the slip locked at the interface deforms the
overriding plate. Similarly, the data farther than about 300 km
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from the trench are better fit by assuming that about 10 mm/yr
motion is locked on thrust faults in the eastern Andes. The lock-
ing and shortening rates are the best-fit parameters for this sim-
ple model, which does not include other possible complexities
such as deformation in the Altiplano.

The idea that about 40% of the plate motion at the trench
occurs by aseismic slip seems plausible, because studies using
the history of large earthquakes at trenches often estimate that
only about half the slip occurs seismically (Fig. 5.4-30). Given
the problems of estimating source parameters of earthquakes
from historical data, it is encouraging that the geodetic answer
seems similar.

The relation between the shortening rate in the thrust belt
inferred from GPS data and that implied by the earthquakes
can also be studied. Assessing the seismic slip rate is a little
more complicated than for transform faults (Section 5.3.3) or
subduction zone thrust faulting (Section 5.4.3), because in
continental deformation zones earthquakes occur over a dis-

60 90
Slip rate locked on interplate thrust (mm/yr)

tributed volume, rather than on a single fault, and have diverse
focal mechanisms. Thus we sum the earthquakes’ moment ten-
sors (Section 4.4) to estimate a seismic strain rate tensor? using

é;= D M/(2uVz), (1)

where ¢ is the time interval, and g is the rigidity. V, the assumed
seismic source volume, the product of the length and width of
the zone of seismicity and the depth to which seismicity ex-
tends. For example, the thrust belt can be assumed to be ap-
proximately 2000 km long, 250 km wide, and faulting extends
to about 40 km depth. We can then diagonalize the result and
consider the eigenvalue associated with the P axis. Scaling this
value by the assumed zone width gives an estimate of the short-
ening rate. The resulting value, less than 2 mm/yr, is signifi-
cantly less than the approximately 10 mm/yr indicated by the

3 Strain rates are often written using a dot to indicate the time derivative.
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GPS data. Thus, even given the usual problem that the seismic
history is short and may have missed the largest earthquakes,
an effect one can attempt to correct for using earthquake
frequency-magnitude data (Section 4.7.1), it looks like much
of the shortening occurs aseismically.

An interesting question is how what we see today with earth-
quakes and GPS data relates to what occurs over geologic time.
Figure 5.6-12 shows the results of geological studies, in which
the arrows indicate the deformation that occurred over the
past 10 Myr as the Andes formed. The directions and rates are
similar to what are seen today, suggesting that the mountain
building process has occurred relatively uniformly, although
there have been some rate changes.

Putting all this together gives some ideas about how the dif-
ferent measures of crustal deformation are related in this area.
The first issue involves the relative amounts of seismic and
aseismic deformation. It appears that about half of the plate
motion at the trench occurs seismically. Similar fractions are
also seen in other subduction zones (Fig. 5.4-30), implying that
stable sliding at trenches is relatively common. Moreover, only
about 10-20% of the shortening in the foreland thrust belt
appears to occur seismically. Thus aseismic, and presumably
permanent, deformation of rocks in the thrust belt seems like
a major phenomenon. Similar results have also been observed
for other continental deformation zones (Fig. 5.6-13). The next
issue is that of permanent versus transient deformation. In the
model of Fig. 5.6-11, the deformation of the South American
plate due to the locked slip at the trench is transient, and will be
released in the upcoming large trench earthquake. However,
it seems likely that the deformation of the foreland thrust belt
is permanent, and goes into faulting and folding rocks. Over

* The similarity of the focal mechanism, GPS, and geological data illustrates the

principle of uniformitarianism, that studying present processes gives insight into the
past, a tenet of geology since Lyell and Hutton’s seminal work almost two centuries ago.

Fig. 5.6-12 Comparison of shortening
across the Andes with respect to stable

150 South America from GPS data (left)
and geological studies (right). The dashed
GPS vectors reflect elastic strain due to the
earthquake cycle at the trench, and are not
directly comparable to the permanent

20° shortening in the geological data. Motion
decreases toward the eastern extent of
the mountain range, shown by the solid line.
The geological vectors are largest at about
18°S and decrease to the north and south,

25% showing how the variation in shortening
that built the Andes bent them and made
them widest about this point. (Hindle
etal.,2002.)

time, this permanent displacement adds up (Fig. 5.6-12) to
build the mountains.

Similar studies are going on around the world, and should
lead to an improved understanding of the partitioning between
seismic, aseismic, transient, and permanent deformation. Models
are being developed to explore these issues (Section 5.7), which
are important both for understanding continental evolution
and for earthquake hazard assessment, because an apparent
seismic moment deficit could indicate either overdue earth-
quakes or aseismic deformation.

5.6.3 Continental intraplate earthquakes

Another important application of earthquake studies deals
with the internal deformation of the continental portions of the
major plates. Although idealized plates would be purely rigid,
intraplate earthquakes reflect the important and poorly under-
stood tectonic processes of intraplate deformation. As in the
oceans (Section 5.5.1), there appears to be a hierarchy of places
that have such earthquakes. There are areas like the East
African rift that can be thought of as either slow-moving plate
boundaries or intraplate deformation, less active zones associ-
ated with either fossil structures or other processes like hot
spots, and then intraplate earthquakes that are not easily cor-
related with any particular structure or cause.

One example is the New Madrid area in the central USA,
which had large earthquakes in 1811-12 and has small earth-
quakes today. Other continental interiors, including Australia,
western Europe, and India, have also had significant intraplate
earthquakes. Because motion in these zones is at most a few
mm/yr, compared to the generally much more rapid plate
boundary motions, seismicity is much lower (Fig. 5.6-14) and
thus harder to study. This difficulty is compounded by the fact
that, unlike at plate boundaries, where plate motions give in-
sight into why and how often earthquakes occur, we have little
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Fig. 5.6-13 Estimates of seismic deformation fractions for areas in the Mediterranean and Middle East. Seismicity appears to account for most or all of
the deformation in western Turkey, Iran, and the Aegean, much of the deformation in the Caucasus and eastern Turkey, and little of the deformation in

the Zagros and the Hellenic trench. (Jackson and McKenzie, 1988.)

idea of what causes intraplate earthquakes, and no direct way
to estimate how often they should occur. As a result, progress
in understanding these earthquakes is much slower than for
earthquakes on plate boundaries, and key issues may not be
resolved for a very long time.

Geodetic data illustrate the challenge. For example, com-
parison of the absolute velocities of GPS sites in North America
east of the Rocky Mountains to velocities predicted by model-
ing these sites as being on a single rigid plate shows that the
interior of the North American plate is rigid at least to the level
of the average velocity residual, less than 1 mm/yr (Fig. 5.6-15).
Similar results emerge from studies across the New Madrid
zone itself and for the interiors of other major plates, show-
ing that plates thought to have been rigid on geological time
scales are quite rigid on decadal scales. For example, 1 mm/yr
motion spread over 100 or 1000 km distance corresponds to
strain rates of 1078 and 1072 yr! (3 x 106 and 3 x 10717 s71),
respectively. Because the geodetic data include measurement
errors due to effects including instabilities of the geodetic
markers, it seems likely that the tectonic strains are even smal-
ler. However, over long enough time, even such small motions
can accumulate enough slip for large earthquakes to occur.

This idea is consistent with what is known about large
intraplate earthquakes. Although there is little seismological
data for such events because they are rare, insight can be
obtained from combining the seismological data with geodetic,
paleoseismological, and other geological and geophysical data.

For example, intensities estimated from historical accounts
of the 1811-12 New Madrid earthquakes (Fig. 1.2-4) suggest
magnitudes in the low 7 range. Paleoseismic studies (Section 1.2)
indicate that several previous large earthquakes, presumably
comparable to those of 1811-12, occurred 500-800 years
apart. Thus, in 500-1000 years (Fig. 5.6-16, top) steady strain
accumulation less than 2 mm/yr could provide up to 1-2 m of
motion available for future earthquakes, suggesting that they
would be about magnitude 7. A similar view comes from con-
sidering the earthquake history for the area. As discussed in
Section 4.7.1, earthquakes of a given magnitude are approx-
imately ten times less frequent than those one magnitude unit
smaller. Thus, although the instrumental data contain no
earthquakes with magnitude greater than S, both these and a
historical catalog in which magnitudes were estimated from
intensity data can be extrapolated to imply that a magnitude
7 earthquake would occur about once every 1400 + 600 years
(Fig. 5.6-16, bottom). Hence, as expected, major intracon-
tinental earthquakes occur substantially less frequently than
comparable plate boundary events (Fig. 5.6-17). However,
because of the lower attenuation in continental interiors (Sec-
tion 3.7.10), such earthquakes can cause greater shaking than
ones of the same magnitude on a plate boundary (Fig. 1.2-5).
Such earthquakes are generally thought to be due to the
reactivation of preexisting faults or weak zones in response
to either local or intraplate stresses. The New Madrid earth-
quakes, for example, are thought to occur on faults associated
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Fig. 5.6-14 Seismicity (magnitude 5 or greater since 1965) of the continental portion of the North American plate and adjacent area. Seismicity and
deformation are concentrated along the Pacific-North America plate boundary zone, reflecting the relative plate motion. The remaining eastern portion
of the continent, approximately that east of 260°, is much less seismically active. Within this relatively stable portion of the continent, seismicity, and thus
presumably deformation, are concentrated in several zones, most notably the New Madrid seismic zone. (Weber et al., 1998. Tectonics, 17, 250-66,

copyright by the American Geophysical Union.)

with a Paleozoic failed continental rift, now buried beneath
thick sediments deposited by the Mississippi river and its
ancestors (Fig. 5.6-18). As a result, the faults are not exposed at
the surface, so most ideas about them are based on inferences
from seismology and other data. The intraplate stress field
has been studied by combining focal mechanism and fault
orientations with data from drill holes and in situ stress
measurements (Fig. 5.6-19). In general, the eastern USA shows
a maximum horizontal stress oriented NE-SW, consistent with
the predictions of the stresses due to plate driving forces.
Similar stress maps are being developed for other areas and are
being used to investigate both intraplate deformation and plate
driving forces. As noted in Section 3.6.5, it appears that seismic
anisotropy in the lower continental crust may reflect the stress
field that acted during a major tectonic event such as mountain
building.

An intriguing question is why intraplate stresses cause earth-
quakes on particular faults, given that many weak zones could
serve this purpose. Geological and paleoseismic data, together
with the absence of significant fault-related topography, sug-
gest that individual intraplate seismic zones may be active for
only a few thousands of years, so intraplate seismicity migrates.
This possibility is akin to that suggested for intermittent
oceanic intraplate earthquake swarms. If so, there is nothing
special about New Madrid or the other concentrations of
intraplate seismicity we observe now — these zones will die off
and be replaced by others. Moreover, there are enough tectonic
structures available that (typically small) earthquakes will
occur almost randomly throughout continental interiors.

A special case of this phenomenon occurs at passive con-
tinental margins, where continental and oceanic lithospheres
join. Although these areas are in general tectonically inactive,
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Fig. 5.6-15 Locations of continuously recording GPS sites used to estimate a Euler vector for the presumably stable portion of North America. For each,
the misfit between the observed velocity and that predicted for a single plate is shown. The average misfit is less than 1 mm/yr, showing that eastern North
America is quite rigid. (Newman et al., 1999. Science, 284, 619-21, copyright 1999 American Association for the Advancement of Science.)

magnitude 7 earthquakes can occur, as on the eastern coast of
North America (Fig. 5.6-20). Such earthquakes may be associ-
ated with stresses, including those due to the removal of glacial
loads, which reactivate faults remaining from the original
continental rifting (Fig. 5.6-1). Although such earthquakes
are observed primarily on previously glaciated margins, they
also occur on nonglaciated passive margins, perhaps due to
sediment loading. In some cases large sediment slides occur,
as was noted for the 1929 M, 7.2 earthquake on the Grand
Banks of Newfoundland, because the slides broke trans-
Atlantic telephone cables and generated a tsunami that caused

27 fatalities.® An interesting unresolved question is whether
tectonic faulting is required for such earthquakes, or whether
the slump itself can account for what is seen on seismograms.
Some studies find that the seismograms are best fit by a double-
couple fault source, whereas others favor a single force consist-
ent with the slump (Fig. 4.4-3). The issue is important because
slumps occur in the sedimentary record along many passive

5 These deaths account for all but one of Canada’s known earthquake fatalities to
date, although this situation could change after a large Cascadia subduction zone
earthquake.
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1999 American Association for the Advancement of Science.)

margins, even those that have not been recently deglaciated.
Stresses associated with the removal of glacial loads may also
play a role in causing earthquakes within continental interiors
such as the northeastern USA and eastern Canada. It has also
been suggested that the huge 1998 Balleny Island intraplate

earthquake (Section 5.5.1) may have been triggered by stresses
due to the shrinking Antarctic ice cap.

As in the oceans, another interesting class of intraplate
seismicity is associated with hot spots. The area near the
Yellowstone hot spot in the western USA shows an intriguing
pattern of seismicity along the margins of the Snake River plain
(Fig. 5.6-21), which is the volcanic track the hot spot produced
as the North American plate moved over it (Fig. 5.2-8).
This seismicity, which includes the 1959 M, 7.5 Hebgen Lake,
Montana,® and 1983 M, 7.3 Borah Peak, Idaho, earthquakes,
forms a parabolic pattern extending southwestward from
Yellowstone itself. It thus stands out from the regional seis-
micity (Fig. 5.2-3) associated with the extensional tectonics of
the eastern portion of the Basin and Range province, termed
the Intermountain Seismic Belt. The absence of seismicity
along the track itself seems likely to be a consequence of the
thermal and magmatic perturbations produced by the hot spot,
although the specific mechanism is still under discussion.
Seismic tomography (Fig. 5.6-21) shows a low-velocity anomaly
in the crust and upper mantle under Yellowstone itself, pre-
sumably due to partial melting and hydrothermal fluids, and a
deeper anomaly that persists along the track.

In summary, although continental intraplate seismicity is a
minor fraction of global seismic moment release, it has both
scientific and societal interest precisely because it is rare. It
provides one of our few ways of studying the limits of plate
rigidity and intraplate stresses, and poses the challenge of
deciding the appropriate level of earthquake preparedness
for rare, but potentially destructive, earthquakes.

5.7 Faulting and deformation in the earth

Because earthquake faulting is a spectacular manifestation of
the processes that deform the solid earth, we seek to under-
stand how earthquakes result from and reflect this deforma-
tion. Valuable insight comes from laboratory experiments
and theoretical models for the behavior of solid materials.
Although the experiments and models are much simpler than
the complexities of the real earth, they allow us to think about
key features. Seismology and geophysics thus exploit research
devoted to material behavior by a range of disciplines, includ-
ing engineering, materials science, and solid state physics. We
touch only briefly on some basic ideas, and more information
can be found in the references at the end of the chapter.

5.7.1 Rbeology

Materials can be characterized by their rheology, the way
they deform. In seismology we typically take a continuum

¢ This earthquake triggered an enormous landslide that buried a campground, caus-

ing 28 deaths and dammed the Madison River, forming Quake Lake. These dramatic
effects are still visible today and make the site well worth visiting. A visitor center and
parking lot are built on the slide.
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Fig. 5.6-18 Schematic tectonic model for the New Madrid earthquakes.
(Braile et al., 1986. Tectonophysics, 131, 1-21, with permission from

Elsevier Science.)

approach, considering the earth to be a continuous deformable
material. This means that we focus on its aggregate behavior
(Section 2.3) rather than on how its behavior is determined
by what happens at a microscopic scale.

To do this, consider the strain that results from compressing
a rock specimen. The simplest case is shown in Fig. 5.7-1a. For
small stresses, the resulting strain is proportional to the applied
stress, so the material is purely elastic. Elastic behavior happens
when seismic waves pass through rock, because the strains are
small (Section 2.3.8). However, once the applied stress reaches
a value o, known as the rock’s fracture strength, the rock
suddenly breaks. Such brittle fracture is the simplest model
for what happens when an earthquake occurs on a fault. Thus
brittle fracture — a deviation from elasticity — generates elastic
seismic waves.

Other materials show a change in the stress—strain curve for
increasing stresses (Fig. 5.7-1b). For stresses less than the yield
stress, 0,, the material acts elastically. Thus, if the stress is re-
leased, the strain returns to zero. However, for stresses greater
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Fig. 5.6-19 Stress map for North America. (World Stress Map project, 2000. Courtesy of the US Geological Survey.)

than the yield stress, releasing the stress relieves the elastic
portion of the strain, but leaves a permanent deformation
(Fig. 5.7-1c). If the material is restressed, the stress—strain curve
now includes the point of the permanent strain. The material
behaves as though its elastic properties were unchanged, but
the yield strength has increased from o, to o/. The portion of
the stress—strain curve corresponding to stress above the yield
stress is called plastic deformation, in contrast to the elastic
region where no permanent deformation occurs. Materials
showing significant plasticity are called ductile. A common
approximation is to treat ductile materials as elastic-perfectly
plastic: stress is proportional to strain below the yield stress
and constant for all strains when stress exceeds the yield stress
(Fig. 5.7-2).

An important result of laboratory experiments is that at low
pressures rocks are brittle, but at high pressures they behave
ductilely, or flow. Figure 5.7-3 shows experiments where a
rock is subjected to a compressive stress o, that exceeds a con-
fining pressure oj. For confining pressures less than about
400 MPa the material behaves brittlely — it reaches the yield
strength, then fails. For higher confining pressures the material

flows ductilely. These pressures occur not far below the earth’s
surface —as discussed earlier, 3 km depth corresponds to
100 MPa pressure — so 800 MPa is reached at about 24 km.
This experimental result is consistent with the idea that the
strong lithosphere is underlain by the weaker asthenosphere.

A related phenomenon is that materials behave differently
at different time scales. A familiar example is that although an
asphalt driveway is solid if one falls on it, a car parked on it
during a hot day can sink a little ways into it. On short time
scales the driveway acts rigidly, but on longer time scales it
starts to flow as a viscous fluid. This effect is crucial in the
earth, because the mantle is solid on the time scale needed for
seismic waves to pass through it, but flows on geological time
scales.

5.7.2  Rock fracture and friction

The first question we address is how and when rocks break.
In the brittle regime of behavior, the development of faults
and the initiation of sliding on preexisting faults depend on the
applied stresses.
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Fig. 5.6-20 Earthquakes along the passive continental margin of eastern
Canada. These earthquakes may have occurred on faults remaining from
continental rifting. (Stein et al., 1979. Geophys. Res. Lett., 6, 537-40,
copyright by the American Geophysical Union.)

Given a stress field specified by a stress tensor, we use the
approach of Section 2.3.3 to find the variation in normal and
shear stress on faults of various orientations. For simplicity, we
consider the stress in two dimensions. If the coordinate axes
(&,, &) are oriented in the principal stress directions, the stress
tensor is diagonal,

o 0
o; = .

—

To find the stress on a plane whose normal &7 is at an angle of 6
from é,, the direction of o, (Fig. 5.7-4), we transform the stress
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Fig. 5.6-21 Top: Seismicity (1900-85) of the Intermountain area of the
western USA. Superimposed on the regional seismicity are earthquakes
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plain (YRSP), the volcanic track of the Yellowstone hot spot. Boztom:
P-wave velocities across the hot spot track, shown by squares scaled in
size to the differences from a uniform-velocity model. The largest symbols
are +3%, with dark and open symbols showing low and high velocities.
(Smith and Braile, 1994. J. Volcan. Geotherm. Res., 61,121-87, with
permission from Elsevier Science.)
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tensor from the principal axis coordinate system to a new co-
ordinate system using the transformation matrix (Section 2.3.3)

A= cosf siné
—sin@ cosB

so that the stress in the new {primed) system is

(2)

o, 0 [cos@

—sin 6
0 o,){sin® cos@

(0, —0;) sin 6 cos O

' — AcAT = cos@ sin @
i o [—sin 6 cos@

o cos? 0 + o, sin? 0

(0, —0y)sinfcos 6 o sin® O + 0, cos® O
(3)

The normal and shear stresses on the plane vary, depending
on the plane’s orientation. The normal stress component,
denoted by o, is

0=0%,=0, cos’ 0+ 0, sin® 0 = 9, Z %) , 1929 o 26,
(4a)

and the shear component, denoted by 7, is

1=07,=(0,~ ;) sin O cos § = ("%fﬁl sin 26. (4b)

Plastic

Fig. 5.7-1 (a): A material is perfectly elastic
until it fractures when the applied stress
reaches oy. (b): A material undergoes plastic
deformation when the stress exceeds a yield
stress 0,,. (¢): A permanent strain results

Strain, e
-—> — >

Permanent Recoverable N ;
strain elastic from plastic deformation when the stress is
strain raised to o], and released.

Figure 5.7-4 shows o and 7 as functions of 6 for the case of
oy and o, negative (|0, | > |0, |), which corresponds to com-
pression at depth in the earth. A graphic way to show these
is with Mobr’s circle, a plot of o versus 7 (Fig. 5.7-5). Values
for all different planes lie on a circle centered at o= (0, + 6,)/2,
7=0, with radius (o, - 6;)/2. The point on the circle with angle
26, measured clockwise from the —o axis, gives the o, 7 values
on the plane whose normal is at angle 6to o,.!

Laboratory experiments on rocks under compression show
that fracture occurs when a critical combination of the absolute
value of shear stress and the normal stress is exceeded. This
relation, known as the Coulomb-Mobr failure criterion, can be
stated as

(3)

where 7, and 7 are properties of the material known as
the cobesive strength and coefficient of internal friction. (The
minus sign reflects the convention that compressional stresses
are negative.) The failure criterion plots as two lines in the
70 plane, with T axis intercepts 7, and slope +# (Fig. 5.7-6).
If the principal stresses are 0, 0,, such that Mohr’s circle does
not intersect the failure lines, the material does not fracture.
However, given the same o, but a higher o7, Mohr’s circle
intersects the line, and the material breaks.

The failure lines show how much shear stress, 7, can be
applied to a surface subject to a normal stress ¢ before failure
occurs. The cohesive strength is the minimum (absolute value)
shear stress for failure. The coefficient of internal friction indic-
ates the additional shear stress sustainable as the normal stress
increases. Thus, deeper in the crust, where the pressure and
hence normal stress are higher, rocks are stronger, and higher
shear stress is required to break them.

The failure lines and Mohr’s circle show on which plane fail-
ure occurs for a given stress state. To find 6, the angle between
the plane’s normal and the maximum compressive stress (0y)
direction, we write the failure lines as

|t|=1,-no,

Ilefo_GtanQ (6)

! Following the seismological convention of compressive stresses being negative,
Mohr’s circle is shown for ¢ < 0. The opposite convention is often used in rock
mechanics, e.g. Figs. 5.7-3 and 5.7-10.
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For low (< 400 MPa) confining pressures, the material fractures, and its
strength increases with pressure. For higher pressures, the material is
ductile, and its strength increases only slowly with pressure. A semi-brittle
transition regime, in which both microfractures and crystal plasticity
occur, separates the brittle and ductile regimes. (Kirby, 1980. J. Geophys.
Res., 85, 6353-63, copyright by the American Geophysical Union.)

where 7 = tan ¢, and ¢, the angle of internal friction, is formed
by extending the failure line to the o axis (Fig. 5.7-7). Fracture
occurs at point F, where the failure line is tangent to Mohr’s
circle. Considering the right triangle AFB, we see that

6=20-90°, so 0=¢/2+45°, (7)
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For example, in introducing the relation between fault plane
solutions and crustal stresses in Section 2.3.5, we made the
simplest assumption that fracture occurs at 45° to the principal
stress axes, corresponding to the case ¢ = 0°, n =0, 8 = 45°.
Physically, this means that the normal stress has no effect on
the strength of the rock. However, rocks typically have z about
1,50 ¢ =45°, 0= 67.5°, and the fault plane is closer (22.5°) to
the maximum compression (o) direction (Fig. 5.7-8). This idea
is important when using P and T axes of focal mechanisms to
characterize stress directions.

Figure 5.7-7 also shows how to find the stresses when frac-
ture occurs. Consider the point T on the failure line such that
To, is perpendicular to the o axis. Because the angle ATo, is 6
(triangles AFT and Ao, T are congruent),

E=AO'2 cot 6, (8)

or, since Ao, = (0, — 0y)/2,

TG—Z = M cot 6. (9)
2

Similarly,

To,=1,~0,tan ¢ (10)

(the minus sign is because o, is negative), so

(o, —oy)

cot 8=1,— 0, tan ¢. (11)

This relation can be written in terms of the angle of the fracture
plane, using Eqn 7 and trigonometric identities,

_ 29—
tan ¢ = —cot 20 = ——-_ - @ 0 -1 (12)
tan 26 2tan @
yielding
0,=-21,tan 6+ 0, tan” 6. (13)

We will use this relation between the stresses when fracture
occurs to estimate the maximum stresses in the crust.

Similar analyses show when the shear stress is high enough
to overcome friction and cause sliding on a previously existing
fault. The results are similar to those for a new fracture in
unbroken rock, except that at low stress levels the preexisting
fault has no cohesive strength. Thus slip on the fault occurs
when |7| = —po, where 1 is the coefficient of sliding friction,
which can be expressed by an angle of sliding friction

tan k=M. (14)
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Fig. 5.7-6 The Coulomb—Mobhr failure criterion assumes that a material
fractures when Mohr’s circle intersects the failure line.

Figure 5.7-9 shows the Mohr’s circle representation of a rock
with preexisting faults. In addition to the failure line, there is a
frictional sliding line corresponding to

T=—l0=—0 tan O (15)
Because the sliding line starts at the origin, it is initially below

the failure line. Assume that the stresses are large enough that
Mohr’s circle touches the failure line at the point yielding frac-

1o,
61
(03— 092
Fig. 5.7-4 Left: Geometry of a plane with norma]
&/, oriented at an angle 6 from é,, the direction of
the maximum compressive stress 0;. Right: Normal
—(o; = 0y)/2 .
stress, 0, and shear stress, 7, as functions of the
180° angle 6.
T
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Fig. 5.7-7 Fracture occurs at point F, where a material’s failure line,
characterized by its cohesive strength, 7., and angle of internal friction,

9, is tangent to Mohr’s circle. Hence 81is the angle of the plane on which
fracture occurs, and F gives the stresses at fracture. Point A is the center of
Mobhr’s circle, B is where the failure line intersects the oaxis, and 'I—b-'; is
perpendicular to the ¢axis. For simplicity, only the upper failure line for
7> 0 is shown in this and subsequent figures.

No internal friction

sn=1 T

7

Fig. 5.7-8 With no internal friction, fracture occurs at an angle of 45°. For
n=1, the fracture angle is 67.5°, and the fault plane is closer (22.5°) to the
maximum compression (o) direction.
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_ Fig. 5.7-9 Mohr’s circle for sliding on a rock’s preexisting faults. A new
fracture would form at an angle 6, given by the failure line. However,
slip will occur on a preexisting fault if there are any with angles between
6, and 6, given by the intersection of the circle with the frictional
sliding line.

ture on a plane corresponding to an angle 6. Similarly, the
frictional sliding line intercepts the circle at two points, corres-
ponding to angles 6, and 6,,. Thus the rock can fail in several
ways. If there are preexisting faults with angles 6 or 6, , slip on
these faults may occur. Alternatively, a new fracture may form
 onthe plane given by 8. However, because this fracture occurs
athigher shear stress than is needed for frictional sliding on the
_ preexisting faults, sliding is favored over the formation of a
new fracture. Thus, if the stress has gradually risen to this level,
sliding on preexisting faults would probably have prevented a
- new fracture from forming.

- This effect can have seismological consequences. The sim-
_plest way to use focal mechanisms to infer stress orientations is
to assume that the earthquakes occurred on newly formed
faults. However, if the rock had been initially faulted, the
earthquakes may have occurred on preexisting faults. In the
representation of Fig. 5.7-9, if faults exist with normals
oriented between 6, and 6, to the maximum compressive stress,
slip on these faults will occur rather than the formation of a
new fracture. Thus the inferred stress direction will be some-
_what inaccurate. For example, the thrust focal mechanisms
_ along the Himalayan front (Fig. 5.6-6) or eastern Andean fore-
land thrust belt (Fig. 5.6-10) have fault planes that rotate as the
trend of the mountains changes, suggesting that the fault planes
are controlled by the existing structures, so the P axes only
partially reflect the stress field. A similar pattern appears for
T axes along the East African rift (Fig. 5.6-2). In general, stress
~axes inferred from many fault plane solutions in an area seem
 relatively coherent (Fig. 5.6-19). Thus we assume that the crust
_contains preexisting faults of all orientations, so the average
stress orientation inferred from the focal mechanisms is not
seriously biased.
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At this point, it is worth noting other complexities. Both the
failure and sliding curves may be more complicated than
straight lines. These curves, known as Mohr envelopes, can be
derived from experiments at various values of stress. Addi-
tional complexity comes from the fact that water and other
fluids are often present in rocks, especially in the upper crust.
The fluid pressure, known as the pore pressure, reduces the
effect of the normal stress and allows sliding to take place at
lower shear stresses. This effect is modeled by replacing the
normal stress ¢ with 6 = o — Py, known as the effective normal
stress, where Py is the pore fluid pressure.” Because the pore
pressure is defined as negative, the effective normal stress is
reduced (less compressive). Similarly, effective principal stresses
taking into account pore pressure,

c”rlzal—Pf and 6’2=62—Pf, (16)

are used in the fracture theory.

The relations we have discussed can be used to estimate the
maximum stresses that the crust can support. Laboratory ex-
periments (Fig. 5.7-10) for sliding on existing faults in a variety
of rock types find relations sometimes called Byerlee’s larv:

7=~0.856,
7=50-0.66,

|6] < 200 MPa
|6]> 200 MPa. (17)
These relations, written in terms of the normal and shear
stresses on a fault, can be used to infer the principal stress as
a function of depth. To do so, we write the minimum com-
pressive stress as 0y, because we are in three dimensions. We
assume that the crust contains faults of all orientations, and
that the stresses cannot exceed the point where Mohr’s circle is
tangent to the frictional sliding line, or else sliding will occur
(Fig. 5.7-11). At shallow depths where || < 200 MPa, Eqn 17
shows that 7, = 0. Thus Eqn 13, the relation between the
stresses when fracture occurs, yields
6,=6; tan* 6. (18)
Using Eqn 7 for the case of frictional sliding,
0.=a/2+45°, (19)
and the values in Eqn 17 give
p=tan a=0.85, a=41°, 6,=66° tan?66°=5, (20)
so the stresses are related by
5,=56, (21)
At greater depths, where |5|>200 MPa, a=31°and 6, = 60.5°,

so the stresses are related by

6,=-175+3.16;. (22)

2 The role of pore pressure in making sliding easier can be seen by trying to slide an
object across a dry table and then wetting the table.
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Fig. 5.7-11 Mohr’s circle and sliding line for |6 <200 MPa. If the
lithosphere contains fractures in all directions, the stresses cannot
exceed those at the point where Mohr’s circle is tangent to the sliding
line, because sliding would occur.

We assume that one principal stress, o, or o3, is the vertical
stress due to the lithostatic pressure as a function of depth (z),

Oy =—Pgz. (23)

The other principal stress, which must be horizontal, is denoted
oy The pore pressure Py(z) is unknown. One common assump-
tion is that the rock is dry, so P(z)=0. Another is that the pore
pressure is hydrostatic, which is equivalent to assuming that
pores are connected up to the surface, so

Pe(z) =—prgz, (24)

positive. (Byerlee, 1978. Pure Appl.
Geophys., 116, 615-26, reproduced with
the permission of Birkhauser.)

1600 2000

where p;is the density of the fluid, which is usually water, with
pr=1 g/cm3. Alternatively, the pore pressure can be assumed to
be a fixed fraction of the lithostatic pressure (Section 2.3.6).

We now can find the strength of the crust, defined by the
maximum difference between the horizontal and vertical
stresses that the rock can support. At shallow depths where
|6] < 200 MPa, Eqn 21 shows that &; = 565. There are two
possibilities, depending on whether the vertical stress is the
most (6;) or least (G5) compressive. If the vertical stress is the
most compressive,

oy=0y, 0;=0y— Pf =—pgz— Pf(z)

Oy=03, 03=0,/5 =—(pgz+ P(2))/5. (25)

Alternatively, if the vertical stress is the least compressive,

Oy=03, 0O3=0y—Pr=—pgz—Piz)

Oy =0y, 61:5632_5(ng+Pf(z))~ (26)
In the first case,

Oy~ Oy = 03— 0, =0.8( pgz + PA(2)), (27)

corresponds to an extensional (positive) stress. In the second,

corresponds to a compressive (negative) stress that is much
greater in absolute value. Thus, at any depth, the crust can
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Fig. 5.7-12 Horizontal stresses measured in southern Africa. Dots are
for horizontal stresses being the least compressive (03), and triangles are
for horizontal stresses being the most compressive (o,). The lithostatic
stress gradient (26.5 MPa/km) is shown, along with Byerlee’s law (BY)
for zero pore pressure (DRY). The stronger line is for compression,

and the weaker one is for extension. The observed stresses are within the
maximum and minimum BY-DRY lines. (Brace and Kohlstedt, 1980.

J. Geophys. Res., 85, 6248-52, copyright by the American Geophysical
Union.)

support greater compressive deviatoric stress than extensional
deviatoric stress (Fig. 5.7-12).

5.7.3  Ductile flow

When rocks behave brittlely, their behavior is not time-
dependent; they either strain elastically or fail. By contrast, the
deformation of ductile rock depends on time. A common model
for the time-dependent behavior is a Maxwell viscoelastic
material, which behaves like an elastic solid on short time
scales and like a viscous fluid on long time scales. This model
can describe the mantle because seismic waves propagate as
though the mantle were solid, whereas postglacial rebound and
mantle convection occur as though the mantle were fluid.

To see this difference, consider two types of deformation
in one dimension. For an elastic solid subjected to elastic strain

€g=€1p
o=Eey, (29)

where E is Young’s modulus, and ois ;. The simplest viscous
fluid obeys
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where 7 is the viscosity, and ey is the fluid portion of the strain.
This equation defines the viscosity, the property that measures
a fluid’s resistance to shear.?

We often think of an elastic material as a spring, which
exerts a force proportional to distance. Thus stress and
strain are proportional at any instant, and there are no time-
dependent effects. By contrast, the viscous material is though of
as a dashpot, a fluid damper that exerts a force proportional to
velocity. Hence the stress and strain rate are proportional, and
the material’s response varies with time. These effects are com-
bined in a viscoelastic material, which can be thought of as a
spring and dashpot in series (Fig. 5.7-13). The combined elastic
and viscous response comes from the combined strain rate

de _deg dep 1do o (31)
dt  dt dt E dt 27

This differential equation, the rheological law for a Maxwell
substance, shows how the stress in the material evolves after
astrain e, is applied at time ¢ = 0 and then remains constant. At
¢t = 0 the derivative terms dominate, so the material behaves
elastically, and has an initial stress

o,=Ee,. (32)

(¢}

For >0, de/dt=0, so

io;z__E_o-’ (33)
dt 2n

whose integral is
o(t) = o, exp [-(Et/21)]. (34)

Thus stress relaxes from its initial value as a function of time
(Fig. 5.7-13). A useful parameter is the Maxwell relaxation
time,*

2n_n (35)
U

Ty 5
required for the stress to decay to e! of its initial value. For
times less than 7, the material can be considered an elastic
solid, whereas for longer times it can be considered a viscous
fluid.

For example, if the mantle is approximately a Poisson solid
with i = 1012 dyn/cm? and 1 = 1022 poise, its Maxwell time is
about 101%s or 300 years. Although the viscosity is not that
well known, so estimates of the Maxwell time vary, it is clear

3 In familiar terms, viscosity measures how “gooey” a fluid is. Maple syrup is some-
what more viscous than water, and the earth’s mantle is about 10%* times more viscous.
4 Definitions of the Maxwell time vary, but always involve the ratio of the viscosity
to an elastic constant.
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Fig. 5.7-13 (a) Model of a viscoelastic material as an elastic spring and
viscous dashpot in series. (b) Stress response of a viscoelastic material to
an applied strain. The Maxwell relaxation time, 7,,, is the time the stress
takes to decay to 7! of its initial value. (c) Evolution of the deflection and
bending stress produced by a sediment load on a viscoelastic earth. At first
the earth responds elastically, as shown by the long-dashed line, but with
time it flows, so the deflection beneath the load deepens and the stresses
relax. (Stein et al., 1989, with kind permission from Kluwer Academic
Publishers.)
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that we can treat the mantle as a solid for seismologica]
purposes and as a fluid in tectonic modeling. If we model the
mantle as viscoelastic, then a load applied on the surface has ap,
effect that varies with time. Figure 5.7-13c shows the effect of 4
150 km-wide sediment load, as might be expected on a passive
continental margin. Initially, the earth responds elastically,
causing large flexural bending stresses. With time, the mant|e
flows, so the deflection beneath the load deepens and the
stresses relax. In the time limit, the stress goes to zero, and the
deflection approaches the isostatic solution, because isostasy
amounts to assuming that the lithosphere has no strength,
Stress relaxation may explain why large earthqukes are rare
at continental margins, except where glacial loads have been
recently removed (Fig. 5.6-20). Although the large sediment
loads should produce stresses much greater than other sources
of intraplate stress, including the smaller and less dense ice
loads, the stresses produced by sediment loading early in the
margin’s history may have relaxed.

Laboratory experiments indicate that the rheology of
minerals in ductile flow can be described by

e _ 6= (o) Aexp [-(E* + PV*)/RT], (36)

dt

where T'is temperature, R is the gas constant, and P is pressure.
f(o) is a function of the stress difference |0, — 03], and A is
a constant. The effects of pressure and temperature are de-
scribed by the activation energy E* and the activation volume
V*. Observed values of (o) are often fit well by assuming

f(o)=|oy - o3|
é=|0,-03|" Aexp [~(E* + PV*)/RT]. (37)

The rheology of such fluids is characterized by a power
law. If n = 1, the material is called Newtonian, whereas a
non-Newtonian fluid with # = 3 is often used to represent the
mantle. From Eqn 30 we see that for a Newtonian fluid the
viscosity depends on both temperature and pressure:

n=(1/2A) exp [(E* + PV*)/RT]. (38)

Thus the viscosity decreases exponentially with temperature.
This decrease is assumed to give rise to a strong lithosphere
overlying a weaker asthenosphere, and the restriction of earth-
quakes to shallow depths.® For a non-Newtonian fluid, Eqn 30
gives the effective viscosity, the equivalent viscosity if the fluid
were Newtonian.

We think of equations like Eqn 37 as showing the strength,
or maximum stress difference |G, — 03], that the viscous
material can support. This stress difference depends on
temperature, pressure, strain rate, and rock type. The material

5 Temperature-dependent viscosity is an effect familiar to automobile drivers in cold
temperatures, when the engine and the transmission became noticeably sluggish.




is stronger at higher strain rates, and weakens exponentially
with high temperatures. At shallow depths, the small pressure
cffect is often neglected, so the activation volume V* is treated
15 zero. For example, a commonly used flow law for dry olivine

—0.52 MJ/mol
=7x10%|0, — 0, exp| ——"——
, |oy - 03] p RT
for |o,—0;|<200 MPa
2
_5.7% 101 exp —0.54MJ/mol (. [0] — T,]
RT 8500
for |o,-05|>200MPa,  (39)
where éisin s, Similarly, for quartz,
~0.19 MJ/mol
¢=5%x10%|0,— 0, exp| ———
¢ |oy— o3 exp RT
for |0, 0y|<1000 MPa. (40)

At a given strain rate, quartz is much weaker (can sustain a
~smaller stress difference) than olivine. Thus the quartz-rich
continental crust should be weaker that the olivine-rich oceanic
crust, an effect whose tectonic consequences are discussed
next.

S5.7.4  Strength of the lithosphere

The strength of the lithosphere as a function of depth depends
upon the deformation mechanism. At shallow depths, rocks
fail by either brittle fracture or frictional sliding on preexisting
faults. Both processes depend in a similar way on the normal
stress, with rock strength increasing with depth. However, at
greater depths the ductile flow strength of rocks is less than the
brittle or frictional strength, so the strength is given by the flow
laws and decreases with depth as the temperatures increase.
This temperature-dependent strength is the reason why the
cold lithosphere forms the planet’s strong outer layer.

To calculate the strength, a strain rate and a geotherm giving
temperature as a function of depth are assumed. At shallow
depths the strength, the maximum stress difference before
frictional sliding occurs, is computed using Eqns 27 and 28. At
some depth, the frictional strength exceeds the ductile strength
allowed by the flow law, so for deeper depths the maximum
strength is given by the flow law. Figure 5.7-14 shows a
strength plot, known as a strength envelope, for a strain rate
of 10715 57! and a temperature gradient appropriate for old
oceanic lithosphere or stable continental interior. In the
frictional region, curves are shown for various values of 4,
the ratio of pore pressure to lithostatic pressure. The higher

6 Brace and Kohlstedt (1980).
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Fig. 5.7-14 Strength envelopes as a function of depth for various values of
2, the ratio of pore pressure to lithostatic pressure. BY-HYD lines are for
Byerlee’s law with hydrostatic pore pressure. At shallow depths, strength
is controlled by brittle fracture; at greater depths ductile flow laws predict
rapid weakening. In the ductile flow regime, quartz is weaker than olivine.
In the brittle regime, the lithosphere is stronger in compression (right side)
than in extension (left side). (Brace and Kohlstedt, 1980. ]. Geophys. Res.,
85, 624852, copyright by the American Geophysical Union.)

pore pressures result in lower strengths. Ductile flow laws are
shown for quartz and olivine, minerals often used as models for
continental and oceanic rheologies. Strength increases with
depth in the brittle region, due to the increasing normal stress,
and then decreases with depth in the ductile region, due to
increasing temperature. Hence strength is highest at the brittle—
ductile transition. Strength decreases rapidly below this trans-
ition, so the lithosphere should have little strength at depths
greater than about 25 km in the continents and 50 km in the
oceans. The strength envelopes show that the lithosphere is
stronger for compression than for tension in the brittle regime,
but the two are symmetric in the ductile regime. Strength
envelopes are often plotted using the rock mechanics conven-
tion of compression positive.

The actual distribution of strength with depth is probably
more complicated, because the brittle-ductile transition occurs
over a region of semi-brittle behavior that includes both brittle
and plastic processes (Fig. 5.7-3). However, this simple model
gives insight into various observations. In particular, we have
seen that the depths of earthquakes in several tectonic environ-
ments seem to be limited by temperature. This makes sense,
because for a given strain rate and rheology the exponential
dependence on temperature would make a limiting strength for
seismicity approximate a limiting temperature.

To see this, consider Fig. 5.7-15, which shows that as
oceanic lithosphere ages and cools, the predicted strong region
deepens. This result seems plausible because earthquake depths,
seismic velocities, and effective elastic thicknesses imply that
the strong upper part of the lithosphere thickens with age
(Fig. 5.3-9). The strength envelopes are thus consistent with the
observation that the maximum depth of earthquakes within




358 Seismology and Plate Tectonics

o~ A e A Vo VoV N

Lithospheric strength
horizontal-vertical stress

Temperature

z L
=2
iy
I
<
[a] -
Extension Compression
60 L i 1 1
0 60 M P
yr Dry Ore pressure
Hydrostatic
0k 0.7 x Lithostatic R
£
=3
£
2 "~ Strain rate (1/s)
© 40t 10 -
7—50° isotherm

60 1 1 i 1
z L
=3
£
j=
L
] -

60 —- L L

1000 0 -1000 ~2000 0 400 800 1200
Strength (MPa) °C

Fig. 5.7-15 Strength envelopes showing maximum stress difference
(strength) as a function of depth for an olivine rheology, for geotherms
(right) corresponding to cooling oceanic lithosphere of different ages.
Strength in the brittle regime is reduced by higher pore pressure; strength
in the ductile regime is reduced by lower strain rate. The depth range in
which the material is strong enough for faulting increases with age.
(Wiens and Stein, 1983. ]. Geophys. Res., 88, 6455-68, copyright by
the American Geophysical Union.)

the oceanic lithosphere is approximately bounded by the 750°C
isotherm (Fig. 5.7-16). These envelopes are drawn for strain
rates of 10715 and 1078 s, appropriate for slow deforma-
tion within plates. By contrast, a seismic wave with a period
of 15, a wavelength of 10 km, and a displacement of 106 m
corresponds to a strain rate of 10719571, The successively
greater effective elastic thicknesses, depth of the deepest earth-
quakes, and depth of the low-velocity zone are thus consistent
with strength increasing with strain rate.

The strength envelopes give insight into differences between
continental and oceanic lithospheres (Fig. 5.7-17). First, quartz
is weaker than olivine at a given temperature (Fig. 5.7-14),
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Fig.5.7-16 Plots of strength and seismicity versus temperature. The
strength envelopes explain the observation that intraplate oceanic
seismicity occurs only above the 750°C isotherm. (Wiens and Stein, 1985.
Tectonophysics, 116, 143-62, with permission from Elsevier Science.)
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Fig. 5.7-17 Schematic strength envelope for continents. Below the ductile
lower crust may be a stronger zone in the olivine-rich mantle. (Chen and
Molnar, 1983. J. Geophys. Res., 88, 4183-4214, copyright by the
American Geophysical Union.)

consistent with the fact that the limiting temperature for
continental seismicity is lower than for oceanic earthquakes
(Fig. 5.7-18). Second, the strength profiles differ. The strength
of oceanic lithosphere increases with depth and then decreases.
However, in continental lithosphere we expect such a profile in
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Fig. 5.7-18 Limiting temperatures for continental seismicity. These
temperatures are much lower than those for oceanic lithosphere, since the
quartz rheology in continents is much weaker than olivine. (Courtesy of
J. Strehlau and R. Meissner.)

the quartz-rich crust, but also a second, deeper zone of strength
below the Moho, due to the olivine rheology. This “jelly sand-
wich” profile including a weak zone may be part of the reason
why continents deform differently than oceanic lithosphere.
For example, some continental mountain building (Fig. 5.6-6)
may involve crustal thickening in which slices of upper crust,
which are too buoyant to subduct, are instead thrust atop one
another. The weaker lower crust may also contribute in other
ways to the general phenomenon that continental plate
boundaries are broader and more complex than their oceanic
counterparts (Fig. 5.2-4).

5.7.5 Earthquakes and rock friction

It is natural to assume that earthquakes occur when tectonic
stress exceeds the rock strength, so a new fault forms or an
existing one slips. Thus steady motion across a plate boundary
seems likely to give rise to a cycle of successive earthquakes
atregular intervals, with the same slip and stress drop (Fig. 5.7-
19). However, we have seen that the earthquake process
is more complicated. The time between earthquakes on plate
boundaries varies (Fig. 1.2-15), although the plate motion
causing the earthquakes is steady. Earthquakes sometimes
rupture along the same segments of a boundary as in earlier
earthquakes, and other times along a different set (Fig. 5.4-27).
Moreover, many large earthquakes show a complicated rup-
ture pattern, with some parts of the fault releasing more seismic
energy than others (Fig. 4.5-10). Attempts to understand these
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Fig. 5.7-19 Stress and slip history for an idealized earthquake cycle ona
plate boundary, in which all earthquakes have the same stress drop and
coseismic slip. (Shimazaki and Nakata, 1980. Geophys. Res. Lett., 7,
279-82, copyright by the American Geophysical Union.)

complexities often combine two basic themes. Some of the
complexity may be due to intrinsic randomness of the failure
process, such that some small ruptures cascade into large earth-
quakes, whereas others do not (Section 1.2.6). Other aspects of
the complexity may be due to features of rock friction.

Interesting insight emerges from considering an experiment
in which stress is applied until a rock breaks. When the fault
forms, some of the stress is released, and then motion stops. If
stress is reapplied, another stress drop and motion occur once
the stress reaches a certain level. So long as stress is reapplied,
this pattern of jerky sliding and stress release continues
(Fig. 5.7-20).

This pattern, called stick-slip, looks like a laboratory version
of what happens in a sequence of earthquakes on a fault. By
this analogy, the stress drop in an earthquake relieves only part
of the total tectonic stress, and as the fault continues to be
loaded by tectonic stress, occasional earthquakes occur. The
analogy is strengthened by the fact that at higher temperatures
(about 300° for granite), stick-slip does not occur (Fig. 5.7-20).
Instead, stable sliding occurs on the fault, much as earthquakes
do not occur at depths where the temperature exceeds a certain
value. Thus, understanding stick-slip in the laboratory seems
likely to give insight into the earthquake process.

Stick-slip results from a familiar phenomenon: it is harder to
start an object sliding against friction than to keep it going
once it is sliding. This is because the static friction stopping the
object from sliding exceeds the dynamic friction that opposes
motion once sliding starts.” To understand how this difference

7 This effect is the basis of cross-country skiing, where loading one ski makes it grip
the snow, while unloading the other lets it glide.
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Fig. 5.7-20 Force versus slip history for a rock sample. At low
temperature, so long as stress is reapplied, a stick-slip pattern of jerky
sliding and stress release continues. By contrast, stable sliding occurs

at high temperature. (Brace and Byerlee, 1970. Science, 168,1573-5,
copyright 1970 American Association for the Advancement of Science.)

causes stick-slip, and get insight into stick-slip as a model for
earthquakes, consider the experiment in Fig. 5.7-21. It turns
out that if an object is pulled across a table with a rubber band,
jerky stick-slip motion occurs.® Thus a steady load, combined
with the difference in static and dynamic friction, causes an
instability and a sequence of discrete slip events.

We analyze this situation assuming that a block (sometimes
called a slider) is loaded by a spring that applies a force f propor-
tional to the spring constant (stiffness) k£ and the spring exten-
sion. If the loading results from the spring’s far end moving at a
velocity v, the spring force is

f=k({+vt—u), (41)

where # is the distance the block slipped, and { is the spring
extension when sliding starts at # = 0. This motion is opposed
by a frictional force | 7| = —uo equal to the product of o, the
compressive (negative) normal stress due to the block’s weight,
and the friction coefficient, y. By Newton’s second law that
force equals mass times acceleration,

d*u
m——=f~1=k({+vt—u)+ Uoc. (42)
dr?

8 We suggest trying this experiment.
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Fig. 5.7-21 A simple spring and slider block analog for stick-slip as a
model for earthquakes. The slider is loaded by force f due to the spring
end moving at velocity v. Before sliding, the block is retarded by a static
friction force 7= 1,0, but once sliding starts, the friction force decreases
to —{4,0. A series of slip events occur, each with slip Au and force change
(stress drop) Af.

However, the block starts sliding only once the spring force
exceeds the frictional force, so just before sliding starts at £=0,

0=k{+pu.0, (43)

where p is the static friction coefficient. For simplicity, assume
that at the instant sliding starts, the friction drops to its
dynamic value 1, and

d?u
mﬁzk(g—tﬁﬁ"ﬂdﬁ. (44)

Subtracting Eqn 43 from Eqn 44 gives

d*u
m—c-l—;?:—lezw (y— 1) o=—ku+ Ao, (45)

which we can use as the equation of motion for the block’s slip
history u(z) if the loading rate v is slow enough to ignore during
the slip event.
A solution to Eqn 45, with initial conditions #(0) = 0 and
du(0)
dt

=0,is




ut) = —A—/;eg (1—-cos wz) (slip),
dult) Apo . .
= sin wt (velocity),
dt Jkm Y
)
du’lt) = éyg—cos wt (acceleration), (46)
ar? m

where @ = \/W . As shown, the block starts slipping because
the spring force exceeds the friction force. During the slip
event, the spring force decreases as the spring shortens, until it
becomes less than the friction force and the block slows and
eventually stops. The block stops once the shaded area above
the spring force line equals that below the line, or when the
work done accelerating the block equals that which decelerated
it. If the spring end continues to move, loading continues until
the spring force again equals the static friction force and
another slip event occurs.

It is interesting to think of analogies between this model of
slip events and earthquakes. The slip event’s duration fp,
analogous to an earthquake rise time (Section 4.3.2), satisfies

= mJmlk. (47)

The total slip during the event is
Au=u(ty)=2Auclk, (48)

and the drop in the spring force, which is analogous to an
earthquake stress drop (Section 4.6.3), is

Af=2Ap0. (49)

Thus the rise time depends on the spring constant, but not on
the difference between static and dynamic friction. However,
the total slip and stress drop depend upon the friction differ-
ence. None of these depend upon the loading rate, which is
analogous to the rate of plate motion causing earthquakes
on a plate boundary. But the loading rate determines the time
between successive slip events. Thus, in the plate boundary
analogy, the time between large earthquakes depends on the
plate motion rate, but their slip and stress drop depend on the
frictional properties of the fault and the normal stress. Hence
faster-slipping boundaries would have more frequent large
earthquakes, but the slip and stress drop in them would not
be greater than on a slower boundary with similar frictional
properties and normal stress.

Laboratory experiments show that the difference between
static and dynamic friction is more complicated than the con-
stant values assumed in this simple model. We can think of the
lower dynamic friction as showing either velocity weakening,
decreasing as the object moves faster, or slip weakening,
decreasing as the object moves further. Frictional models called
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Fig. 5.7-22 Evolution of friction in a simple rate- and state-dependent
model. If the slip rate increases by a factor of e, friction increases by a,
and then decreases as slip progresses to a steady-state value a — b. (After
Scholz, 1990. Reprinted with the permission of Cambridge University
Press.)

rate- and state-dependent friction with a variable coefficient of
sliding friction, , are used to describe these effects. In a simple
model of this sort,

u=[uy+by+aln (wiv*)], (50)

where (1, is the coefficient of static friction. The friction de-
pends on the slip rate v, normalized by a rate v*, and a state
variable y that represents the slip history

jff’:-(v&)[w In (o)), (51)

where L is an experimentally determined characteristic dis-
tance. The friction also depends on @ and b, which characterize
the material.

Figure 5.7-22 illustrates how friction evolves. If the slip rate
increases by a factor of e, the friction increases by 4, and then
decreases as slip progresses, reaching a new steady-state value.
With time, yreaches a steady-state value given by Eqn 51,

O=—(v/L)[y,+In (v/v*)], wy,=—In(v/v*). (52)

The steady state friction (Eqn 50) is
U =[po+by+aln (vv*)]=[py+(a—b)In (v/iv*)], (53)

and varies with slip rate as

du
s = (a-b), 54
Tl (a-0b) (54)

so after the slip velocity change, the net friction change is (a -
b).If (a — b) is negative, the material shows velocity weakening,
which permits earthquakes to occur by stick-slip. However, for
(a - b) positive, the material shows velocity strengthening, and
stable sliding is expected. Laboratory results (Fig. 5.7-20) show
that a — b for granite changes sign at about 300°, which should
be the limiting temperature for earthquakes. Thus the frictional
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Fig. 5.7-23 Earthquake cycle for a model in which a strike-slip fault with rate- and state-dependent frictional properties is loaded by plate motion. The slip
history for three cycles as a function of depth and time is shown by the lines, each of which represents a specific time. Steady motion occurs at depth, and
stick-slip occurs above 11 km. (After Tse and Rice, 1986. ]. Geophys. Res., 91, 945272, copyright by the American Geophysical Union.)

model predicts a maximum depth for continental earthquakes Spring , Stress
.. . force unclamping
similar to that predicted by the rock strength arguments. O R .

These results can be used to simulate the earthquake
cycle, using fault models analogous to the simple slider model S N W N
(Fig. 5.7-21). Figure 5.7-23 shows the slip history asa function ~ ° | & | Ny |---Nerrcocmmmnne ~Hig0"
of depth and time for a model in which a strike-slip fault is
loaded by plate motion. The fault is described by rate- and A
state-dependent frictional properties as a function of depth,
such that stick-slip occurs above 11 km. Initially from time A
to B, stable sliding occurs at depth, and a little precursory
slip occurs near the surface. The earthquake causes 2.5 m of  Fig. 5.7-24 Modification of a slider block model (Fig. 5.7-21) to include
sudden Slip at shallow depths, as shown by the curves for times the effects of changes in normal stress. Reduced normal stress {lo|<]o’])
B and B'. As a result, the faulted shallow depths “get ahead” r.educes Fhe frictiona.l force, and so “unclamps” the fault and decreases the
of the material below, loading that material and causing  fmeuntil the nextslip event.
postseismic slip from times B’ to F. Once this is finished, the
93-year cycle starts again with steady stable sliding at depth.

Such models replicate many aspects of the earthquake cycle. For earthquakes, the analogy implies that earthquake occur-
An interesting difference, however, is that the models predict ~ rence on a segment of a fault may reflect changes in the stress on
earthquakes at regular intervals, whereas earthquake histories  the fault resulting from earthquakes elsewhere. This concept is
are quite variable. Some of the variability may be due to the ~ quantified using the Coulomb-Mohr criterion (Eqn $) that
effects of earthquakes on other faults, or other segments of  sliding can occur when the shear stress exceeds that on the slid-
the same fault. Figure 5.7-24 shows this idea schematically  ing line (Fig. 5.7-9), or 7> 1o. We can thus define the Coulomb

------------------ -po’

» Slip

for the slider model in Fig. 5.7-21. Assume that after an earth-  failure stress
quake cycle, the compressive normal stress o on the slider is re-
duced. This “unclamping” reduces the frictional force resisting O =T+UC (55)

sliding, so it takes less time for the spring force to rise again to

the level needed for the next slip event. Conversely, increased ~ such that failure occurs when o, is greater than zero. Whether a
compression “clamps” the slider more, and so increases the  nearby earthquake brings a fault closer to or further from fail-
time until the next slip event. In addition, by Eqn 49, the stress  ure is shown by the change in Coulomb failure stress due to the
drop in the slip event changes when o changes. earthquake,




Coulomb stress
change (bars)

Fig. 5.7-25 Predicted changes in Coulomb failure stress due to the

1971 San Fernando earthquake. The Whittier Narrows and Northridge
earthquakes subsequently occurred in regions where the 1971 earthquake
increased the failure stress. (Stein e al., 1994. Science, 265, 1432-5,
copyright 1994 American Association for the Advancement of Science.)

Aoy =At+ Ao (56)

Failure is favored by positive Aoy, which can occur either from
increased shear stress 7 or a reduced normal stress (compres-
sion is negative, so Ac> 0 favors sliding).

Some earthquake observations provide support for this
idea. Figure 5.7-25 shows the predicted Coulomb failure stress
changes in the Los Angeles region due to the 1971 (M, 6.6)
San Fernando earthquake. The stress change pattern reflects
the earthquake’s focal mechanism, thrust faulting on a NW~
SE-striking fault (Fig. 5.2-3). Two moderate earthquakes, the
1987 Whittier Narrows (M; 5.9) and 1994 Northridge (M,,
6.7) earthquakes subsequently occurred in regions where the
1971 earthquake increased the failure stress, suggesting that
the stress change may have had a role in triggering the earth-
quakes. A similar pattern has been found after other earth-
quakes, and some studies have found that aftershocks are
concentrated in regions where the mainshock increased the
failure stress. Stress triggering may explain why successive earth-
quakes on a fault sometimes seem to have a coherent pattern.
For example, the 1999 M, 7.4 Izmit earthquake on the North
Anatolian fault (Fig. 5.6-8) appears to be part of a sequence
of major (M, 7) earthquakes over the past 60 years, which
occurred successively further to the west, and hence closer to
the metropolis of Istanbul.

An intriguing feature of such models is that the predicted
stress changes are of the order of 1 bar, or only 1-10% of the
typical stress drops in earthquakes (Section 4.6.3). Such small
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stress changes should only trigger an earthquake if the tectonic
stress is already close to failure. However, as in the slider model
(Fig. 5.7-24), stress changes can affect the time until the tec-
tonic stress is large enough to produce earthquakes. It has been
argued that the 1906 San Francisco earthquake reduced the
failure stress on other faults in the area, causing a “stress
shadow” and increasing the expected time until the next earth-
quake on these faults. This is consistent with the observation
that during the 75 years before the 1906 earthquake, the
area had 14 earthquakes with M,, above 6, whereas only one
occurred in the subsequent 75 years. Such analyses may help
improve estimates of the probability that an earthquake of a
certain size will occur on a given fault during some time period.
To date, such estimates have large uncertainties (Section 4.7.3),
in part because of the large variation in the time intervals
between earthquakes. Stress loading models, some of which
incorporate rate- and state-dependent friction because simple
Coulomb friction does not predict large enough changes in
recurrence time, may explain some of the variations and thus
reduce these uncertainties.

This discussion brings out the importance of understanding
the state of stress on faults. On this issue, the friction models
give some insight, but major questions remain. Earthquake
stress drops estimated from seismological observations are
typically less than a few hundred bars (tens of MPa). Yet, the
expected strength of the lithosphere (e.g., Fig. 5.7-14-16)
is much higher, in the kilobar (hundreds of MPa) range. The
laboratory results (Fig. 5.7-20) and frictional models (Fig.
5.7-21) suggest an explanation for this difference, because in
both the stress drop during a slip event is only a fraction of the
total stress.

However, the frictional models do not explain an intriguing
problem called the “San Andreas” or “fault strength” paradox.
As noted in Section §.4.1, a fault under shear stress slipping at
rate v should generate fractional heat at a rate equal to 7v.
Thus, if the shear stresses on faults are as high (kbar or hund-
reds of MPa) as expected from the strength envelopes, signi-
ficant heat should be produced. But little if any heat flow
anomaly is found across the San Andreas fault (Fig. 5.7-26),
suggesting that the fault is much weaker than expected. A sim-
ilar conclusion emerges from consideration of stress orientation
data. Although the Coulomb-Mohr model predicts that the
maximum principal stress directions inferred from focal mech-
anisms, geological data, and boreholes should be about 23°
from the San Andreas fault (Fig. 5.7-8), the observed directions
are essentially perpendicular to the fault (Fig. 5.6-19), implying
that the fault acts almost like a free surface. To date, there is no
generally accepted explanation for these observations. The
most obvious one is that the effective stress on the fault is re-
duced by high pore pressure, but there is discussion about
whether pressures much higher than hydrostatic pressure could
be maintained in the fault zone. An alternative explanation,
that the fault zone is filled by low-strength clay-rich fault
gouge, faces the difficulty that experiments on such material
find that it has normal strength unless pore pressures are high.
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Fig.5.7-26 Observed (squares) heat flow across the San Andreas fault.
The elevated heat flow predicted by shear heating (solid line) is not
observed, except for one point (CJON, Cajon pass), where alternative
interpretations are possible, implying that the fault is weak. (Lachenbruch
and Sass, 1988. Geophys. Res. Lett., 15, 981~4, copyright by the
American Geophysical Union.)

In summary, ideas based on rock friction are providing
important insights into earthquake mechanics. Although many
issues remain unresolved, and some attractive notions remain
to be fully demonstrated, rock friction seems likely to play a
growing role in addressing earthquake issues.
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3.7.6  Earthquakes and regional deformation

The large, rapid deformation in earthquakes is often part of a
slow deformation process occurring over a broader region. As
discussed in Section 5.6.2, there often appear to be differences
between the seismic, aseismic, transient, and permanent
deformations sampled by different techniques on different time
scales. Experimental and theoretical ideas about rheology and
lithospheric dynamics are being used to investigate the relation
between earthquakes and the regional deformations that pro-
duce them.

We have seen that earthquakes often reflect deformation dis-
tributed over a broad plate boundary zone. In this case, we can
think of the lithosphere as a viscous fluid and use earthquakes
as indicators of its deformation. This idea is like the physical
model (Fig. 5.6-7) that used deformable plasticine as an ana-
logy for the deformation of Asia resulting from the Himalayan
collision. Figure 5.7-27 shows such an analysis for part of the
Pacific-North America plate boundary zone in the western
United States. The deformation is assumed to result from a
combination of forces due to the transform plate boundary and
forces due to the potential energy of elevated topography,
which tends to spread under its own weight. To test this idea, a
continuous velocity field has been interpolated from space-
geodetic, fault slip, and plate motion data (Figs 5.2-3 and S.6-
3). The velocity field is treated as being due to the motion of a
viscous fluid, and is converted to a strain rate tensor field. This
is then compared to the magnitude of the stress tensor inferred
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Fig.5.7-27 Left: Estimated velocity field for part of the Pacific—-North America plate boundary zone in the western USA. Right: Effective viscosity
determined by dividing the magnitude of the deviatoric stress tensor by the magnitude of the strain rate tensor. (Flesch ez al., 2000, Science, 287, 8346,
copyright 2000 American Association for the Advancement of Science.)



from topography and plate boundary forces. The ratio of stress
to strain rate at any point, which is the vertically averaged
effective viscosity, varies significantly. Low values along the
San Andreas fault and western Great Basin show that the strain
rates are relatively high for the predicted stress, consistent with
a weak lower crust. The Great Valley—Sierra Nevada block has
little internal deformation, and thus acts relatively rigidly and
appears as a high-viscosity region. Summing seismic moment
tensors (Section 5.6.2) yields a seismic strain rate averaging
about 60% of the inferred total strain. As discussed earlier, this
discrepancy may indicate some aseismic deformation or that
the 150 years of historical seismicity is too short for a reliable
estimate.

Viscous fluid models can be used to study how the litho-
sphere deforms on different time scales. For example, as noted
in Section 5.6.2, GPS data across the entire Nazca-South
America plate boundary zone show faster motion than is
inferred from structural geology or topographic modeling.
The difference probably occurs because the GPS data record
instantaneous velocities that include both permanent deforma-
tion and elastic deformation that will be recovered during
future earthquakes, whereas the lower geological rates reflect
only the permanent deformation. This can be modeled by rep-
resenting the overriding South American plate using a simple
one-dimensional system of a spring, a dashpot, and a pair of
frictional plates (Fig. 5.7-28). This system approximates the
behavior of the crust: the spring gives the elastic response over
short periods, the dashpot gives the viscous response over geo-
logical time scales, and the frictional plates simulate the thrust
faulting earthquake cycle at the trench. As plate convergence
compresses the system, the stress o(t) increases with time
until it reaches a yield strength 0, when an earthquake occurs,
stress drops to oy, and the process repeats. Displacement
accumulates at a rate y, except during earthquakes, when the
displacement drops by an amount Ax. The topography and
geologic data record the averaged long-term shortening rate v,
shown by the envelope of the sawtooth curve, whereas GPS
data record the higher instantaneous velocity v,. The instanta-
neous velocity thus results from the portion of the plate motion
locked at the trench that deforms the overriding plate elastic-
ally (Fig. 4.5-14) and is released as seismic slip in interplate
earthquakes. By contrast, the aseismic slip component at the
trench has no effect because it does not contribute to locking on
the interface and deformation of the overriding plate. Similar
models are being explored for other regions where deformation
appears to vary on different time scales.

Viscous fluid models are also used to analyze other aspects
of the earthquake cycle. For example, Fig. 5.7-29 shows the
strain rate near portions of the San Andreas fault compared to
the time since the last great earthquake on that portion of the
fault. Postseismic motion seems to continue for a period of
years after an earthquake and then slowly decays, presum-
ably due to the steady interseismic motion. A similar picture
emerges from GPS and other geodetic results following large
trench thrust faulting earthquakes. For a number of years, sites
near the trench on the overriding plate move seaward, showing
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Fig. 5.7-28 a: Model for a viscoelastic-plastic crust to describe the
response of the overriding South American plate to the subduction of
the Nazca plate. The dashpot represents a viscous body modeling the
permanent deformation, the spring represents an elastic body modeling
the transient deformation, and the frictional plates represent the
earthquake cycle at the trench. b: Stress evolution for the model.

c: Displacement history for the model. Displacement accumulates at the
instantaneous rate v, except during earthquakes, when slip A occurs.
GPS data record a gradient starting at v, from the trench, whereas the
envelope of the displacement curve v, is the long-term shortening rate
reflected in geological records and topography. (Liu et al., 2000. Geophrys.
Res. Lett., 18,3005~ 8, copyright by the American Geophysical Union.)

postseismic motion consistent with the earthquake focal
mechanism (Fig. 4.5-15). Eventually, however, the sites resume
the landward interseismic motion usually seen at trenches
(Fig. 5.6-10). Such observations are challenging to interpret,
because postseismic afterslip on or near a fault can have effects
at the surface similar to viscoelastic flow of the asthenosphere
(Fig. 5.7-29), but offer the prospect of improving our under-
standing of both earthquake processes and the rheology of the
lithosphere and the asthenosphere. A tantalizing possibility is
that the viscous asthenosphere permits stress waves generated
by large earthquakes to travel slowly for large distances and
contribute to earthquake triggering.

[



366 Seismology and Plate Tectonics

e \/VV\—'—*—‘-"\_/\/'\/\N —

B
hel
©
2
) 1.5F B
o
£
°
g Northern
B San Andreas
wn 1.0F
Southern
San Andreas
05F PR
O 1 1 1 1
0 30 60 90 120 150

Time since last great earthquake (yr)

Fig. 5.7-29 Shear strain rate near portions of the San Andreas fault
compared to the time since the last great earthquake. The data are similar
to the predictions of two alternative models: viscoelastic stress relaxation
(solid curve) and aseismic postseismic slip beneath the earthquake fault
plane (dashed line). (Thatcher, 1983. J. Geophys. Res., 88, 5893-902,
copyright by the American Geophysical Union.)

Further reading

Given the comparatively recent discovery of plate tectonics, its importance
for most aspects of geology, and its crucial role in the earthquake process,
many excellent sources, a few of which are listed here, offer more informa-
tion about this chapter’s topics.

The dramatic development of plate tectonics is discussed from the view
of participants by Menard (1986) and in Cox’s (1973) collection of classic
papers. Basic ideas in plate tectonics are treated in most introductory and
structural geology texts. More detailed treatments include Uyeda (1978),
Fowler (1990), Kearey and Vine (1990), and Moores and Twiss (1995).
Cox and Hart (1986) present the basic kinematic concepts, and global

plate motion models are discussed by Chase (1978), Minster and Jordan
(1978), and DeMets et al. (1990).

Thermal and mechanical aspects of plate tectonics are discussed by
Turcotte and Schubert (1982) and Sleep and Fujita (1997). Mid-ocean
ridge tectonics and structure are discussed by Solomon and Toomey (1992)
and Nicolas (1995). The thermal evolution of oceanic lithosphere is
discussed by Parsons and Sclater (1977) and Stein and Stein (1992);
McKenzie (1969) presents the subduction zone thermal model we follow.
Papers in Bebout et al. (1996) cover many aspects of subduction, and
Kanamori (1986) reviews subduction zone thrust earthquakes. Lay (1994)
treats the nature and fate of subducting slabs, and deep earthquakes are
reviewed by Frohlich (1989), Green and Houston (1995), and Kirby et al,
(1996b). For a derivation of the ridge push force see Parsons and Richter
(1980); Wiens and Stein (1985) discuss its application to oceanic intraplate
stresses. Yeats et al. (1997) cover a wide variety of topics about the relation
of earthquakes to regional geology. Rosendahl (1987) reviews continental
rifting. Papers in Gregersen and Basham (1989) treat aspects of passive
margin and continental interior earthquakes with emphasis on postglacial
effects.

Concepts in continental deformation are treated by Molnar (1988) and
England and Jackson (1989); Gordon (1998) gives an overview of plate
rigidity and diffuse plate boundaries. Applications of space geodesy to
tectonics are reviewed by papers in Smith and Turcotte (1993) and
by Dixon (1991), Gordon and Stein (1992), and Segall and Davis
(1997). Many GPS data and results, including an overview brochure, can
be found on the University NAVSTAR Consortium WWW site http://
www.unavco.org. Stress maps and their interpretations are discussed by
Zoback (1992) and other papers in the same journal issue; stress maps
are available at the World Stress Map project WWW site http:/www-
wsm.physik.uni-karlsruhe.de. )

Mantle plumes in general are reviewed by Sleep (1992); Nataf (2000)
and Foulger et al. (2001) discuss seismic imaging of plumes; Smith and
Braile (1994) discuss the Yellowstone hot spot; and Stein and Stein (1993)
discuss oceanic hot spot swells. Papers in Peltier (1989) treat many aspects
of mantle convection; Silver et al. (1988) explore the relationship between
subduction, convection, and mantle structure; and Christensen (1995)
reviews the effects of phase transitions on mantle convection. The heat
engine perspective on global tectonics is discussed by Stacey (1992), and
Ward and Brownlee (2000) summarize the arguments advocating a crucial
role for plate tectonics in the origin and survival of life on Earth.

Topics involving rock mechanics, flow, and their tectonic applications
are discussed by Jaeger (1970), Weertman and Weertman (1975), Jaeger
and Cook (1976), Turcotte and Schubert (1982), Kirby (1983), Kirby and
Kronenberg (1987), and Ranalli (1987). Scholz (1990) and Marone (1998}
cover topics dealing with the relation of rock mechanics to earthquakes,
with special emphasis on rock friction. Our treatment of the slider
model for faulting follows Scholz (1990). Related topics, including issues
of continental deformation and fault strength, are also treated by papers
in Evans and Wong (1992). Stein (1999) summarizes the concept of stress
triggering of earthquakes.




— Problems ~—

1. Assume that Pacific-North America plate motion along the San
Andreas fault occurs at 35 mm/yr.

(a) If all this motion occurs seismically in earthquakes about
22 years apart, which is a typical recurrence interval for the
Parkfield fault segment, how much slip would you expect in
the earthquakes? From Fig. 4.6-7, estimate likely fault
lengths and magnitudes for such earthquakes.

(b) Give similar estimates if the earthquakes occur about
132 years apart, as at Pallett Creek.

2. Assume that all the earthquakes in the Pallett Creek sequence (Fig.
1.2-15) involved 4 m of seismic slip. Using the time interval from
the present to the 1857 earthquake, calculate the seismic slip rate
on this portion of the San Andreas fault. Next, do so by averag-
ing the recurrence intervals for the past two earthquakes (1857
and 1812), the past three, and so on for the entire earthquake
history. What are the implications of this simple experiment for
seismic slip estimates? What other sources of uncertainty should
also be considered, and how might they affect this estimate?

3. (a) Use Table 5.2-1 to find the rate that the Juan de Fuca plate

subducts beneath North America at 46°N, 125°W.

(b) If all this motion occurs in large earthquakes, how often would
you expect an earthquake if the slip in each were 5 m? How
would this estimate change if the slip were 10 or 20 m?

(¢) How would the answers to (b) change if only 25% or 50% of
the plate motion occurred by seismic slip?

(d) Paleoseismic observations and historic records of a tsunami
imply that this subduction zone has had very large earthquakes
approximately S00 years apart. Suggest some possibilities in
view of parts (a)-(c). How might you attempt to distinguish
between them?

(e) The crust subducting at this trench is about 10 million years
old. Given the convergence rate and the observations from
other trenches in Fig. 5.4-30, what might you infer about the
moment magnitude of the largest earthquake expected here?
Find the corresponding seismic moment and suggest a plaus-
ible fault geometry and amount of slip that would also be con-
sistent with the paleoseismic and plate motion observations.

4. For rigid plates, Eqn 5.2.10 shows that we can find the angular
velocity vector of one plate from the sum of two others. Show that
ata point we can also do this for the linear velocity vectors.

5. The news media sometimes ask “How large would the largest
possible earthquake be?” Estimate the seismic moment and
moment magnitude by assuming that all the trenches in the world
(48,000 km) slip at the same time, that 10 m of slip occurs, and the
fault width is 250 km.

6. Estimate the thermal Reynolds number R defined in Eqns 5.3.19
and 5.4.3, assuming that k= 107¢ m?s™1. What does this estimate
imply about the processes of plate cooling and subduction?

7. Assume that oceanic lithosphere has a thermal conductivity of
3.1 Wm'°eC-1.

(a) Find the heat flow for old oceanic lithosphere, assuming a
linear temperature gradient (Fig. 5.3-8), a basal temperature
0f 1450°C, and a plate thickness of 95 km.

(b) How would this value change for a basal temperature of
1350°C and plate thickness 125 km?

(c) If the lithosphere under a midplate region were thinned to
50 km while the basal temperature remained 1350°, what
would the heat flow be, assuming a linear temperature
gradient?
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8. A way to get insight into the physics of subduction is to use a
classic result from fluid mechanics, called Stokes’ problem, which
describes the terminal velocity v at which a sphere of radius @ and
density p sinks due to gravity in a fluid with viscosity 1 and lower
density p’. The result is v=2ga*(p — p')/97. Estimate the subduction
velocity of a slab assuming the slab is a sphere with radius equal to
half its thickness. To do this, estimate the density contrast from the
thermal model (Eqn 5.4.14) and a coefficient of thermal expansion
o =3 x 1075 °C~L. Use a mantle viscosity from Section 5.5.3.
Because this is a back-of-the-envelope calculation, there is no cor-
rect answer, but you should be able to come up with something
reasonable (within an order of magnitude or two of reality).

9. The result that a subducting slab that reaches the core should still
be thermally distinct (Fig. 5.4-5) may seem surprising. For another
estimate, use the one-dimensional cooling equation in Section
5.3.2 to estimate how long a slab should need to warm up to 90%
of the ambient lowermost mantle temperatures, assuming that
it were immediately transported to the base of the mantle and that
k=107 m?s7L.

10. Using the definition of the slab pull force (Eqn 5.4.15):

(a) Werite the force in terms of the age of the subducting plate.

(b) Explain whether this force would be greater or smaller, and
why, for increased values of subducting plate age, coefficient
of thermal expansion, and thermal diffusivity.

11. Assume that in a subducted slab the depth of the spinel-perovskite

phase transition deepens from its usual 660 km outside the slab

to 700 km, and that the core of the slab is 800° colder than the
surrounding mantle. What is the Clapeyron slope of the phase
change?

The surface of Venus is much hotter (450°C) than that of Earth. If

Venus had plate tectonics and the rocks were similar, so that the

temperature gradient in old lithosphere there were the same as on

Earth, how would the thickness of the “oceanic” lithosphere

differ? How would the slab pull and ridge push forces differ? What

other differences might you expect?

13. Express the ratio of the slab pull (Eqn 5.4.15) and ridge push
(Eqn 5.5.6) forces. Explain why this ratio depends on thermal
diffusivity. Estimate this ratio near a trench where old oceanic
lithosphere is subducting, assuming that k= 1076 m?s™".

14, To see if momentum can be responsible for the Indian plate’s
northward motion long after its collision with Asia began, estimate
the momentum of the Indian plate and that of an ocean liner, and
compare the two.

15. Use Mohr’s circle to show why

(a) Rocks at depth do not fracture under lithostatic pressure
alone.

(b) The deviatoric stress needed for fracture increases at greater
depth.

16. Suppose that a rock is stressed close to its brittle limit. Show
graphically which will make the rock fracture sooner: (a) increas-
ing o) or (b) decreasing o, by the same amount (assume a two-
dimensional case where o, and o, are both negative, and internal
friction exists).

17. Suppose that the fracture line for a particular rock is 7=80-0.50,
where stresses are in MPa. What angle would the normal to a frac-
ture plane make with o,? If o, is 400 MPa at failure, what is 0,?

18. For the slider block earthquake model in Section 5.7.5:

(a) Derive an expression for the time between successive slip
events.

12
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(b} Sketch the force-slip diagram for two different spring con-
stants, and use the sketch to explain how the slip and force
drop in a slip event change and why.

(c) For the slider block model, formulate a quantity analogous
to an earthquake’s seismic moment, and explain why it
depends on each term. What is the major difference between
this quantity and the seismic moment?

(d) Recall the observation (Fig. 4.6-11) that earthquake stress
drops are similar for a wide range of earthquakes. If the
slider block model is relevant, what does this imply?

(e) What conditions might correspond to aseismic slip, which
could be viewed as the limit of a continuous series of very
small slip events?

Computer problems

C-1. (a) Write a subroutine to compute the rate and azimuth of plate
motion at a point, given the location and an Euler vector in
the form (pole latitude, longitude, magnitude).

(b) Use the Euler vector in Table 5.2-1 to test your program on
the San Andreas and Aleutian site examples in Section 5.2.1.

C-2. (a) Find the rate and azimuth of Cocos—North America plate
motion at 18.3°N, 102.5°W.

(b) This location is the epicenter of a large 1985 Mexican earth-
quake, whose mechanism had nodal planes whose strike and
dip are (127°, 81°) and (288°, 9°). Infer from the tectonics of

C-3.

C-4.

S\ N e

the Middle American trench which plane was the fault plane, -
Using the methods of Section 4.2, determine the azimuth of
slip during the earthquake. How does this compare to your
predicted azimuth?

(a) Write a subroutine to add and subtract two Euler vectors
given in the form (pole latitude, longitude, magnitude). The
output should be a Euler vector in the same form.

(b) Use your program to determine the absolute Euler vector for
the Pacific plate using Table 5.2-1.

(c) Determine the rate and azimuth of absolute plate motion at
Hawaii (Fig. 5.2-7). Compare the direction to the Hawaiian—
Emperor seamount chain.

Write a program to plot the temperature distribution in the

oceanic lithosphere as a function of age using the cooling half-

space thermal model (Eqn 5.3.4). Compute erf(s) (Eqn 5.3.3)

using either available software or numerical integration as

discussed in problem 4C-6.

- (a) Write a program to plot the temperature distribution in a

subducting slab using the analytic thermal model (Eqn 5.4.3).
Compute it for a plate subducting at 80 mm/yr at an angle of
45°. Make assumptions that seem reasonable and justify them.

(b) Change the program to make the age of the subducting plate a
parameter and generate temperature fields for different slabs,
as in Fig. 5.4-6.

(c) Using the results of (b) and Fig. 5.4-4, estimate a temperature
above which deep earthquakes are not observed.




Seismograms as Signals

We shall introduce the concepts of signal and noise. We define the signal as the desired part of the data and the noise as the umwanted

part. Our definition of signal and noise is subjective in the sense that a given part of the data is “signal” for those who know how to
analyze and interpret the data, but it is “noise” for those who do not. For example, for many years the times of the first arrivals of
P- and S-waves were the only signals conveyed by an earthquake, and the rest of the seismogram, such as surface waves and coda
waves, bad to be considered as useless until appropriate methods of interpretations were found.

Thus, through the application of a new technique to old data, an analyst can experience a moment of discovery as joyful as a data

gatherer does using a new observational device.

6.1 Introduction

Seismology uses various techniques to study the displacement
field as a function of position and time associated with elastic
waves in the earth, and to draw inferences from it about the
nature of seismic sources and the earth. Although some tech-
niques depend on specific aspects of seismic waves in the earth,
others rely on general properties of functions of space and time.

We thus often use a class of techniques known as signal
processing or time series analysis. Signal processing considers
functions of time or space, also called series or signals, in gen-
eral terms without regard to the specific physics involved. As a
result, many wave propagation subjects, including seismology,
radar, sonar, and optics, can be treated in similar ways. The
signals can have different forms. For example, in seismology,
we can treat either a continuous (analog) record of ground
motion or the digital data that result from representing the
ground motion as being sampled at discrete intervals, provid-
ing numbers that can be manipulated using a computer.

In general terms, we can think of filtering a signal, or apply-
ing some operation that modifies the signal. We have already
discussed several examples. A seismometer is a filter, in that it
yields a record of ground motion that differs from the actual
ground motion. Similarly, processes in the earth such as dis-
persion or attenuation have effects that can be described as a
filter acting on the wave field. We can also consciously apply
filters to enhance parts of a seismogram or seismic wave field
and suppress others. In this chapter we extend these ideas by
considering mathematical approaches that are common to
such applications and then seeing how these approaches give

Aki and Richards, Quantitative Seismology, 1980

additional insight into the physical processes. We discuss some
basic concepts and provide references at the end of the chapter
for more extensive treatments.

6.2 Fourier analysis

6.2.1 Fourierseries

In many applications, we use an approach based on the idea
that any time series can be decomposed into the sum or integral
of harmonic waves of different frequencies, using methods
known as Fourier analysis. We derived the properties of seismic
waves using a harmonic wave, a sinusoid of a single frequency,
and noted that any wave could be treated as the sum of
harmonic waves. Thus we showed that waves on a string could
be viewed as the sum of the string’s normal modes, or standing
waves (Section 2.2.5), and that waves in a spherical earth can
be written as the sum of the earth’s normal modes (Section 2.9).
This concept is especially useful when the components with
various frequencies behave differently. For example, surface
waves of different frequencies have different apparent velo-
cities (Section 2.8) and seismic wave attenuation varies with
frequency (Section 3.7). Similarly, we will see shortly that
seismometers respond differently to ground motion of different
frequencies. Fourier analysis lets us decompose the signal
into harmonic waves, consider each harmonic wave separately,
and then recombine the harmonic waves. Thus we use this
approach to analyze situations where the effect of the earthora
seismometer can be described by a filter. We also use Fourier
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Fourier terms

Term number
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Fig. 6.2-1 Successive terms of a Fourier series. Solid lines are sin (2n7#/T);
dashed lines are cos (2nnt/T).

analysis to filter a signal when the part that interests us overlaps
with a part that does not in the time or space domains, but the
two can be separated in the frequency or wavenumber domains.

We first consider the decomposition of a signal with a finite
duration into a Fourier series, or sum of harmonic components
with different frequencies. We will see later that as the duration
of the signal becomes infinite, the Fourier series becomes the
Foutier transform integral.

The Fourier series for an arbitrary function of time £(z)
defined over the interval =T/2 <t < T/2 is

2nmt
T

2nmt
T

f(t)=a0+ian cos (1)

+ Y b, sin
n=1 n=1
This series decomposes f(z) into a sum of Fourier terms that are
sine and cosine functions with different periods, because
sin (2nnt/T) and cos (2nmt/T) are periodic with period T/n, or
frequency n/T (Fig. 6.2-1). Larger values of # correspond to
shorter periods, or higher frequencies. For # = 0, the cosine
term equals 1 for all values of #, and there is no sine term,
because it would be zero.
The sine and cosine Fourier terms are a set of orthogonal
functions, which means that the integral of the product of two
different ones over the interval from —T7/2 to T/2 is always zero:

[y
2mmt 2nrwt T
“in ~ dt=—¢,,(1-6,),
j S U R B 2 Ot~ Ol (2)
-T/2
[y
2mmt 2nmt T
co dt = — 5 1+ 6 ’
T )T 2 Ol o) Y
-T12
T/2
21;7[t 2mrt dt =0 forallm,n, (4)

where the Kronecker delta, 6, equals 1 for m = and 0 other-
wise (Eqn A.3.37). For the special case 7 =7 =0, the integral in
Eqn 2 is zero, and the integral in Eqn 3 is twice the value for any
other m=n.1

To express the Fourier series for a given function, we solve
for the coefficients a, and b, by multiplying both sides of Eqn 1
by the appropriate sine or cosine term and integrating from
—T172 to T/2. For example, to find the coefficient a,, where &
is some particular integer, we multiply by cos (2knt/T) and
integrate to get

/2
2kmt
cos | —— | f(t)dt =
T f(e)
-T2
2
cos 2hnt ag+ Y, a,cos 2nmt + Y b,sin 2nt dt.
T = T = T
-T2

(5)

By the orthogonality relations (Eqns 2~4), the only term in the
sums on the right-hand side whose contribution to the integral
is nonzero is cos (2mkt/T), so the equation simplifies to

T2 T2
cos 2kt flt)dt = a, | cos? 2kt dt = %:—czk(l + 80)»
~T/2 -T72
(6)
which shows that the coefficient g, is
T2
7 _
a,= 2% 2hnt f(t)dt. (7)
T
-T2

! The proofs of Eqns 2-4 are left for the problems.
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Fig. 6.2-2 The first ten terms of the Fourier series for a ramp function.
The terms are weighted by their coefficients and then summed. The first
ten terms give a reasonably good representation of the time function,
but more terms would do better.

The a, term is simply
2
o= | fd (8)
07 )
-T2

which corresponds to the average value of the function. The
coefficients of the sine terms are found similarly by

T/2
2 | sin 3’;—’” £(t) d. 9)

~TI2

Mathematically, what we have done is to consider the
function f{t) as being in a vector space whose basis vectors
(Section A.3.6) are the sine and cosine Fourier terms. The
coefficients a, and b, are the components that describe the par-
ticular vector f(¢). Thus, multiplying each basis function by the
appropriate coefficient and then summing yields the function.
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Similarly, the operation of finding the coefficients using the
integrals in Eqns 7-9 corresponds to finding each component
of a vector by taking the scalar product with the appropriate
unit basis vector (Eqn A.3.27).

Figure 6.2-2 illustrates this idea for a ramp function f(#) =
t/T. Performing the integrations in Eqns 7-9 gives a4, = 0 and
b,=(-1 )&*1/k 7. The cosine terms are zero, because the function
is odd (f(t) =—f(~t)), whereas cosine is an even function (f(t) =
f(~1)). Conversely, if the function were even, the Fourier series
would include only cosine terms. Adding up the first ten sine
terms reproduces the ramp reasonably well. If more terms were
used, the ramp would be reproduced even better. The terms
with small k are longer-period functions, and so describe the
long-period features of the time series, whereas those with
larger k reproduce the shorter-period features.

We used the Fourier series to express waves on a string as the
sum of the string’s normal modes (Section 2.2.5). Each normal
mode has a spatial eigenfunction, which is a Fourier term,
and an eigenfrequency. The amplitude of each Fourier term
depends on the source that generated the waves, so different
waves are represented by differently weighted sums of the
Fourier terms. For the string the Fourier series described the
variation of a function in space along a finite string, whereas
here we use it to describe the variation of a function of time
over a finite period. Because waves are functions of both time
and space, Fourier analysis can be used for either variable
or both. Fourier series are also used in other geophysical ap-
plications to represent functions that vary in space or time
over finite domains. For example, we used Fourier series to
describe the temperature fields in cooling oceanic lithosphere
(Eqn 5.3.19) and in subducting plates (Eqn 5.4.3).

6.2.2 Complex Fourier series

The Fourier series (Eqn 1) can be written in a simpler form.
First, we use the angular frequencies , = 2n7/T, expand the
sine and cosine functions into complex exponentials, and
regroup terms as

f(t) =4y + % i [(an - ibn)eim"t + (an + ibn)e_iwﬂt]' (10)

n=1

Then we use the definitions of the coefficients in Eqns 7-9,
again expanding the sine and cosine functions into complex
exponentials:

Tr/z
(a, —ib)2 = —71: [cos ,t —isin w,t]f(t)dt

J

-T2

’1“((2

=L | o fuyde

T )

~Ti2
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T2
(a, +ib,)/2 = 71; J [cos @, t + isin w,t]f(t) dt

~T/2
112
1

=-C-F—f eOrf(t) dt. (11)

=T/2

Next, we define
F,=(a,—ib)2, Fy=ay, and F_ =(a,+ib)/2, (12)

so that the Fourier series becomes

f(t)=Fy+ Y F,e' + 3 F e o, (13)

n=1 n=1

Because —w, =-2n7/T = w_,and F_, is the complex conjugate
ofF,,(F_, =

_.=F), the negative exponentials can be written

oo

D F et = f E el (14)
=-1

n=1

Making these substitutions in Eqn 10 yields the Fourier series
in complex number form:

fie)= Y Ee, (15)
with components
/2
1 »
E =— | fit)e i®tdr. (16)
T
-1/2

6.2.3 Fourier transforms

The complex Fourier series, which represents a function of time
in terms of a sum over discrete angular frequencies ®,, can
be extended into the Fourier transform that represents the
function as an integral over a continuous range of angular fre-
quencies. Thus, although we used the Fourier series to describe
the discrete normal modes of a finite string and the earth, we
use the Fourier transform in most seismological applications,
because we regard the waves as continuous functions of angu-
lar frequency.
To do this, we write Eqn 15 as

(1) = i E e An (17)

N=—oc0

(because An=1), and define the difference between the success-
ive angular frequencies

Aw=(27/T)An (18)
so that

An=(TAw)/(27) (19)
and

flt)= Y F(T12m)e'® Ay (20)

Next, we let the period T over which £(z) is defined go to infin-
ity, so that the angular frequencies , become close enough
that the discrete ,, can be replaced by the continuous variable
®. As a result, Aw becomes dw, and the sum becomes an
integral. We assert (note the difference between seismology and
mathematics texts) that this can be done such that the product
TF, remains finite and can be replaced by the continuous
function of angular frequency F(w). The Fourier series (Eqn 20)
becomes the integral

oo

flt)=— f Fw)e''dw, (21)

—00

and the expression for the coefficients (Eqn 16) becomes

Flw) = J ft)e- "ot dt. (22)

—co

Equation 22 is called the Fourier transform, and Eqn 21 is the
inverse Fourier transform. These can be defined in alternate
ways by interchanging the signs on the exponentials and pla-
cing the 1/2 7 before either integral.

It may seem strange that by starting with a real function of
time f(z) we obtain the transform F(w), which is a complex
function of angular frequency. The idea of negative angular
frequencies may also seem disturbing. In a sense the two offset
each other — we obtain a real time function by integrating
a complex transform over both positive and negative angular
frequencies.

An important feature of the transform and inverse transform
is that their dimensions are different. For example, if f(¢) is
a seismogram that has the dimensions of displacement, its
transform F(w) has the dimensions of displacement multiplied
by time (from the d¢ term). Thus, if £(¢) gives ground motion
in centimeters, F(cw) gives the transform of ground motion in
centimeter-seconds.

The Fourier transform, a complex-valued function of angu-
lar frequency, can be written in terms of two real-valued func-
tions of angular frequency:

Flw)=|F(w) | "), (23)




6.2 Fourier analysis 373

e N A

Vanuatu earthquake (M; 6.5) time series
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Fig. 6.2-3 Vertical-component seismogram for a moderate-sized (M,=6.5)

waves and a portion of the body waves, obtained by transforming different portions of the seismogram into the frequency d

waves contain longer-period energy than the body waves.

where
|F(0) | = [F(0)F*(0)]"2=[Re? (F(w)) +Im* (F(a)]">  (24)
is called the amplitude spectrum, and

(25)

¢(w) =tan™" (Im (F(w))/Re (F(@)))

is the phase spectrum.?
Both the amplitude and the phase spectra are needed to

fully represent the transform, which is also called the complex
spectrum. In many applications only the amplitude spectrum is
shown, because it indicates how the energy (the square of the
amplitude) in the time series depends on frequency. Figure 6.2-
3 shows a seismogram for a moderate-size earthquake, together
with amplitude spectra for the body and surface wave portions

2 The notations Re and Im indicate the real and imaginary portions of a complex

number (Section A.2).

earthquake recorded in the South Pacific. The amplitude spectra of the surface

omain, show that the surface

of the seismogram. Looking at the seismogram, we see that the
surface waves contain longer-period energy than the body
waves. The spectra demonstrate this: the body wave is domin-
ated by energy with frequencies between 0.1 and 0.08 Hz
(periods of 10-12 s), whereas the surface wave is dominated
by energy with frequencies between 0.07 and 0.05 Hz (periods
of 14-20's). For comparison, Fig. 6.2-4 shows data for a
much larger earthquake. The seismogram, from an instrument
designed to record at long periods, covers seven days after the
carthquake. The large oscillations with periods of about
90,000's are tides within the solid earth. Superimposed on
these is the signal due to the earthquake. The portion of the
amplitude spectrum shown indicates the presence of energy
at long periods (0.002 Hz corresponds to 500 s period). The
energy is concentrated at discrete peaks, corresponding to the
earth’s normal modes.
The Fourier transform F(w) is another way of representing
the time series f(£). We speak of f(#) as being in the “time
domain,” and F(w) as being in the “frequency domain.” The
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Bolivian earthquake (M,, 8.3) time series
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Fig. 6.2-4 Vertical-component seismogram and amplitude spectrum for the great (M,,=8.3) 1994 Bolivian deep earthquake recorded in Arizona. The
time series extends for days after the earthquake, showing the solid earth tide and the signal due to the earthquake. The earth’s normal modes appear as

peaks in the amplitude spectrum.

two representations are equivalent, because we can easily con-
vert data from one domain to the other without losing any
information. We will see that some methods of analyzing seis-
mograms are more easily conducted in the frequency domain,
and that there is a relation between time and frequency domain
operations.

The Fourier transform and inverse transform relate a func-
tion of time f(¢) and its transform F(w), a function of angular
frequency. Similar relations apply between other pairs of vari-
ables. In seismology, the other commonly used pair is distance
and wavenumber. Because the wavenumber is the spatial fre-
quency (Section 2.2.2), it is related to distance in the same
way that angular frequency is related to time. Hence, there are
applications in which a double Fourier transform is taken to
convert a set of seismograms, which describe displacement as
a function of space and time, into a function of wavenumber
and frequency (Section 3.3.5). A triple Fourier transform can
similarly be taken for data in two space dimensions and time.

6.2.4  Properties of Fourier transforms

The Fourier transform has a number of interesting properties
that we often use, whose proofs are left for the problems.

(1) The Fourier transform is linear: if Flw) and G(w) are
the transforms of f() and g(¢), then (aF(w) + bG(w)) is the
transform of (af(¢) + bg(r)). This property makes the Fourier
transform useful in filtering, because it permits us to treat a

signal as the sum of several signals, knowing that the transform
will be the sum of their transforms.

(2) The Fourier transform of a purely real time function has
the symmetry
F-w)=F*(w). (26)
Thus for seismograms (which are real because the motion of
the ground is purely real), the values of the transform for the
negative frequencies can be found from those for positive
frequencies. Hence, in filtering seismograms, we can operate on
only the positive frequencies and compute the value of the
transform at the negative frequencies by taking the conjugate,
thus saving computer time and storage space.

(3) The Fourier transform of a time series shifted in time is
found by changing the phase of the transform: if the transform
of f(t) is F(w), the transform of f( - ) is €' F(@). In analyzing
seismograms it is arbitrary what time we choose as the origin;
the amplitude spectrum stays the same, and the phase changes
in a simple way. This makes sense, because in the absence of
attenuation a wave keeps its shape but changes in phase as
it propagates. Similarly, shifting a Fourier transform in fre-
quency causes a phase change in the corresponding time series:
the inverse transform of F(w — a) is e’@f(t). These relations are
sometimes called shift theorems.

(4) The Fourier transform of the derivative of a time func-
tion is found by multiplication: (im)F() is the transform of




/dt. Similarly, (iw)"F(®) is the transform of d"f(¢)/dt".
_makes differentiation easy on a computer, and is an easy
to change a displacement record into velocity, or veloc-
to acceleration. This property also makes it easy to solve
ferential equations (e.g., Eqn 3.7.8) using the Fourier trans-
_ an approach that is often posed as using a sinusoidal
solution. Hence we sometimes write and operate on the
e equation using the Fourier transform of the wave field
$2.2.34,3.3.74).

) The total energy in a Fourier transform is the same as that

he time series:

8

(27)

Jation known as Parseval’s theorem. This relation arises
use the time series and its Fourier transform are equivalent

-epresentations.

6.2.5 Delta functions

1 using Fourier transforms, we often need to describe a signal
1at is concentrated at a single time or frequency. This is done
1sing the Dirac delta function, an entity that is not truly a func-
>, but rather a generalized function that is the limit of a
sequence of continuous functions. The delta function can be
efined in several ways, each of which offers a different insight
to its nature.

A delta function at ¢ = ¢, written (¢ — £;), is defined as the
limit of a Gaussian function that keeps the area constant (=1)
a5 the width (o) narrows and the height, 1/54/27, increases
(Fig. 6.2-5):

2

& - t—1

8t — o) = lim 1 exp -1 0
00 g/ 271 2 o

(28)

" Thus the Dirac delta function is a continuous function ana-
logous to the Kronecker delta symbol, 5 (Eqn A.3.37) whichis
a function of two discrete variables, i and j. An alternative defi-
nition comes from defining the delta function by how it behaves
when integrated, a property called “sifting.” This is defined as

oo

f()8(t—t,) dt. (29)

f(to) =

—oco

Thus the delta function at ¢ = ¢, “sifts out” the value of a func-
tion at time #, if it is multiplied by the function and integrated
over all time.

A third definition comes from considering a step, or
Heaviside, function H(t — t,) that is 0 for time before ¢ =ty and
equal to 1 afterwards (Fig. 6.2-5). The delta function 8(t—t;) is
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Fig. 6.2-5 Definitions of a delta function at t=t,. Top: 8(¢ —t,) is the limit
of a Gaussian function with width o. The area stays equal to 1 as the width
narrows and the height increases. Bottom: 8(t ~t,) is the derivative ofa
step function H(z—ty) at time £= £, which is zero at all times except near
15, when it goes to infinity.

the derivative of the step, because it is zero except at o, when
it goes to infinity. Because the delta function is located where
its argument is zero, 8(t, — t) is at time #;, whereas 6(¢ + ty)isat
time —%,.

To find the Fourier transform of the delta function, we use
the definition of the transform (Eqn 22) with f(z) = (¢ — Io)s

oo

8(t—to)e i@tdt =", (30)

Flw)=

—o0

and evaluate the integral by the sifting property (Eqn 29).If the
delta function is at time zero,

oo

S(t)e @tdr=1. (31)

Flw)=

Similarly, for a delta function at £=Z, the amplitude spectrum
(Eqn 24) is also
| F(CO) l___(e—iwtoeiwto)llzzl’ (32)

but the phase spectrum (Eqn 25 )is
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Amplitude

|F)| =1

Phase

8-function spectrum

Hw)=-wt,, (33)
as shown in Fig. 6.2-6. This example illustrates one of the
Fourier transform properties noted in Section 6.2.4, that shift-
ing a function by a time ¢, changes its transform by =%,

The delta function’s amplitude spectrum has unit amplitude
atall frequencies. Another way to see this is to write the inverse
transform, using Eqn 21,

8
8

e~z’wz06iwtdw -
2r 27

—o —o0

eiw(t"to)dw = 6(t - to)) (34)

which shows that the delta function is an integral or sum of
sinusoids of all frequencies. These are in phase only at time ts
giving a large amplitude, and are out of phase at all other times,
giving a zero amplitude (Fig. 6.2-7).

a+b+c+d+e

Amplitude
N

Fig. 6.2-7 Because the Fourier transform of a delta function has unit
amplitude at all frequencies, it corresponds to the sum of sinusoids of all
frequencies. These are in phase only at time #,, giving a large amplitude,
and are out of phase at all other times, giving zero amplitude. In this
example, five sinusoids (dashed lines a—e) with unit amplitude (cos [(27 +
1)(t—1,)]) are summed (solid line), giving a peak of amplitude 5 at to-

Fig. 6.2-6 The Fourier transform of a delta
function, 8(z—t,), is e“%. Its amplitude
spectrum has unit amplitude at all

-t frequencies, and its phase spectrum

v has a slope of —¢,.

Although so far we have discussed delta functions only in
the time domain, they are also useful in the frequency domain.
The properties of the frequency domain delta functions are
analogous to those in the time domain. A delta function at
angular frequency @, §(w— ®,), has an inverse transform of

3

. 1 .
8(© - wp)e®dw = — ¢,

(35)
2r 2r

Thus we can express the delta function in terms of its Fourier
transform,

eimote-ia)tdt —_— €i(w0—w)tdt,

2r

—c0 —o0

S — wy) = 51; (36)

showing that it is the integral, or sum, of sinusoids that are in
phase only at frequency w,.

Delta functions in angular frequency give the spectra of
sinusoids with a single frequency. For example, a cosine with
frequency w,, given by

f(2) = cos @yt = (€@t + ¢~ 0t)/2 (37)
0

has a Fourier transform of

oo

8

[eiw0t+ e—iwot]e—ia)zdt — l [ei(a)o—w)z+ e—i(w0+w)t] dt.

(38)

By Eqn 36, this is the sum of two delta functions in the fre-
quency domain,
Flo)=nr[6(w- @y) + 8(w+ wy)]. (39)

Thus the amplitude spectrum of the cosine time function in
Eqn 37 consists of two delta functions, one at @, and one at
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—@,- If the time function were a sine rather than a cosine, the
amplitude spectrum would be the same, but the phase spectrum
would be different. Given the relation between the transforms
of functions shifted in time discussed in the previous section,
this makes sense, because a sine function is a time-shifted
cosine, and vice versa.

This example illustrates one of the reasons for using Fourier
transforms. The frequency domain description of the function
is simpler, because a large number of points are needed to
accurately describe the cosine as a function of time, but only
two complex numbers, the values of the transforms at £ @, are
needed to describe it as a function of frequency. Time series
more complicated than a pure cosine are often more easily
described in the frequency domain, and processes that act on
the time series are also often more easily represented in the
frequency domain. In such cases, it is common to work in the
frequency domain and then use the inverse transform to
generate the final time series.

6.3 Linear systems

Among the uses of Fourier analysis in seismology is modeling
different factors affecting a seismogram. First, a seismogram
is a record of ground motion that includes the effect of the
seismometer. Furthermore, the ground motion combines the
effects of the seismic source and the elastic and anelastic earth
structure along the propagation path (Section 4.3). To charac-
terize the combined effects of these different factors, we use the
idea of a linear system, a general representation of any device
or process that takes an input signal and modifies it. This repre-
sentation treats these processes as mathematical operators
transforming an input signal into an output signal.

6.3.1 Basic model

A linear system is one in which if input signals x(¢) and x,(¢)
produce output signals y(#) and v,(t), the combined input
(Ax,(2) + Bx,(t)) yields (Ay,(t) + By,(¢)) (Fig. 6.3-1). We have
previously referred to this feature as the principle of super-
position. Fortunately, the earth generally behaves this way in
transmitting seismic waves. As a result, linear system models
are used in a wide variety of seismological applications. Fourier
analysis is a natural tool for studying linear systems because the
Fourier transform has these same linear properties (Section 6.2.4).
We characterize a linear system by its response to an impul-
sive delta function in time (Fig. 6.3-2). This impulse response
f(¢) can be used to find the response of the system to an
arbitrary input signal. Viewed in the frequency domain, the
impulse, whose spectral amplitude is equal to 1 at all frequen-
cies, gives rise to an output F(w), which is the transform of
the impulse response, sometimes called the transfer function.
Thus, if the input signal is an arbitrary signal x(¢), with
transform X(w), the resulting output spectrum is just the input
spectrum times the spectrum of the impulse response,
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Axy(t) —> > Ay,()

Linear

system = Ay (D) + By,(t)

Bx,(t) ——> — By,(1)

Fig. 6.3-1 Definition of a linear system.

impulse Linear system: | f(t) Impulse response;
5(0) response f(t) F(w) Transfer function
Arbitrary Linear system: 5 V(6= x(0) = F(0);
x(0) response f(t) Y(0) = X(@)F (@)
Harmonic Linear system: , oot
oot response 7(t) Fleog) €

Fig. 6.3-2 Characterization of a linear system by its impulse response f(z)
and transfer function F(w).

Y(0) = X(w)F(0). (1)

Because the transforms are generally complex numbers, the
phase as well as the amplitude of the input signal is usually
modified.

The output in the time domain y(t) can be found by inverting
the transform,

8

X(w)F(w)e'* dew. (2)

To see that this works, note that for the impulse x(z) = 6(2),
X(w) =1, and y(2) = f(¢#). This equation gives another way to
think of the impulse response. For a harmonic input signal of
unit amplitude ¢’®*, whose transform is the delta function in
frequency

X(w)=2nd(w- w,), (3)

the output is

y(t) = Elw 278(w— p)F(w)e™ dw=F(wy)e'™, (4)
7T

—o0

a harmonic signal of the same frequency with the amplitude of
the transfer function at that frequency.

It is interesting to consider the relation between the input
time function, the impulse response, and the output time
function. To do this, we expand Eqn 2 by writing out the
transforms of X(®) and F(®),

oo oo oo

x(t)e"i0dt flr)eo7de’ | edw,  (5)
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and regrouping terms,

o oo oo

y(t) = J Jx(f)f(r') ——J’e"“’(’”f'“f)da) drdr’. (6)

Using the inverse transform of the delta function (Eqn 6.2.34),

! Je"‘”‘f“’ do =68t -1 -1), (7)
2r

we eliminate the frequency integral and obtain

o oo

yie) = jx(r) J’f(’t')5(t -7’ —1)d7’|dt. (8)

—c0 —o0

Finally, carrying out the inner integration using the sifting
property of the delta function (Eqn 6.2.29) yields

y(t)= Jx(ﬂf(t—r)dt 9)

This integral operation, known as the convolution of the
functions x(#) and f(2), is often written as

y(t)=x(2) *f(2). (10)

The output of a linear system is thus the convolution of the input
signal and the impulse response. Comparison of Eqns 10 and
1 shows the relation between operations in the two domains:
convolution in the time domain corresponds to multiplication

400 Fig. 6.3-3 A simple bandpass filter specified in the
frequency (top) and time (bottom) domains.

in the frequency domain. The reverse is also true: frequency
domain convolution corresponds to time domain multiplication:

We thus have two different ways of implementing any opera-
tion that can be characterized by a linear system. The effect
that the system has on an input signal is specified either by the
impulse response in the time domain or by its transform, the
transfer function in the frequency domain. For example, to
filter a seismogram so that only a certain range of frequencies
remains, we can filter in either the frequency or time domains:
To do this in the frequency domain, we can define a simple
bandpass filter, a function which is 1 in the frequency range
of interest and 0 for all other frequencies. Figure 6.3-3 (op)
shows the amplitude spectrum of the filter, whose phase spec-
trum is defined as zero for all frequencies. To perform the
filtering, we multiply this function by the Fourier transform
of the seismogram, point by point for all frequencies, and
take the inverse transform of the result. The resulting filtered
seismogram has only the desired frequencies. Alternatively,
however, we could find the impulse response of the bandpass
filter by taking the inverse Fourier transform of the amplitude
spectrum in the top of Fig. 6.3-3, and filter the data by con-
volving this impulse response (Fig. 6.3-3, bottom) with the
seismogram in the time domain.

A few points about this simple filter are worth noting. Flrst
although it is typical to plot the transfer function only for
the positive frequencies, the filter is also defined for negative
frequencies, to ensure that the resulting signal is real (Sec-
tion 6.2.4). Second, the peculiar appearance of the impulse
response makes sense when we recall that the impulse response
describes what comes out of the filter when a delta function
comes in (Fig. 6.3-2). The delta function’s amplitude spectrum
is constant for all frequencies, but only some of these frequen-
cies are transmitted through the filter. The lack of high frequen-
cies is particularly noticeable, and results in the noncausa}i
impulse response beginning before time zero. We noted a simi-
lar phenomenon in Section 3.7.8, where anelasticity acted as @




F(t) = x(t) # g(t

) )= x(t)y;, ___, | 9 Flo)X(@) G(w

Fw) Fw)X(w) G(w)

Flg 6.3-4 When a signal goes through two linear systems in succession,
the net output is the convolution of the impulse responses in the time
ain, or the product of the transfer functions in the frequency domain.

Glter, removing high frequencies and thus making the wave-
forms noncausal unless the effects of physical dispersion were
cluded. Third, this filter has sharp “corners” at the edges of
the passband, although in real applications the corners are
moothed for reasons we discuss shortly.

ecause the same effect can be achieved by either time do-
ain or frequency domain filtering, the choice of domain can
‘made for convenience. Surprisingly, the operations of taking
ansforms and inverse transforms are sufficiently fast in com-
putation that it generally makes sense to filter in the frequency
main. An attraction of this method is that filters are usually
er to specify in the frequency domain, because it is clear
which are the desired and undesired parts of the signal. For ex-
ample, in Fig. 6.3-3 (bottom), the corresponding time domain
ter is difficult to visualize intuitively. Similarly, the transfer
function, or instrument response, of a seismometer is more
casily specified in the frequency domain, as we will discuss in

6.3.2 Convolution and deconvolution modeling

inear system ideas are so pervasive in seismology that we
scussed them in applications such as reflection seismology
Section 3.3.6) and earthquake source studies (Section 4.3)
before we justified them mathematically. One reason why these
odels are so useful is that they are easily generalized to mul-
ple linear systems, so quite complicated physical effects can be
described. Specifically, if a signal x(z) goes through two linear
systems in succession (Fig. 6.3-4), with impulse responses f()
nd g(t), the net output is either a convolution in the time domain,

y(t) = x(2) * flz) + g(2), (11)

or the product of the transfer functions in the frequency
domain

((0) =X(0)Fw)G(®). (12)

We can extend this to an arbitrary number of linear systems.

© A common application is to think of a seismogram as the
output resulting from sending a source signal through a set of
linear systems. In the simplest case, the seismogram u(¢) can be
ritten in terms of three basic effects,

u(t) =x(t) = g(t) = i(t), (13)

where x(#) is the source signal, g(t) is the response of an
operator representing the effects of earth structure along the

“ ‘\MM\_/\W
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Instrument Seismogram
i® u(t)

[

Fig. 6.3-5 A seismogram can be modeled as the convolution of the source
signal with operators representing the effects of earth structure and

the seismometer. This can be done in the time domain as a set of
convolutions, #(t) =x(t) # g(¢) # i(t), or in the frequency domain as a set
of multiplications, U(®) = X(®)G(®)I{®). (After Chung and Kanamori,
1980. Phys. Earth Planet. Inter., 23, 134-59, with permission from
Elsevier Science.)
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Fig. 6.3-6 Transfer functions for various seismometers, some of which are
discussed in Section 6.6. SRO is the Seismic Research Observatory, IDA

is International Deployment of Accelerometers, VLP is Very Long Period,
and BRB is Broadband. Transfer functions are the frequency domain
equivalents of the time domain instrument response shown in Fig. 6.3-5
asi(t).

path of the seismic waves, and i(¢) is the impulse response of the
seismometer.

Figure 6.3-5 shows a simple example: a seismogram result-
ing from the convolution of a trapezoidal source function
representing the signal emitted by an earthquake with oper-
ators giving the effects of earth structure and the seismometer.
Each operator can be specified in either domain. For example,
the time domain impulse response of a seismometer reflects the
fact that its transfer function depends on frequency (Fig. 6.3-6).
Once the different effects are characterized by their response
in the time or frequency domain, the seismogram due to their
combined effects can be obtained.

Convolution can be used to describe the response of a system
in space as well as time. For example, probabilistic earthquake
hazard maps like Fig. 1.2-3 can be viewed as two-dimensional
convolutions in space of an assumed distribution of earthquake
sources with an impulse response like Fig. 1.2-5 giving the
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expected ground motion as a function of earthquake magni-
tude and distance.

Often the impulse response is defined in both space and time.
This is the basic approach used to find the response of the earth
to a seismic source (Chapter 4). The displacement at a point x
and time ¢ is

u(x,t)= 1| G(x—x";t—¢') f(x’,¢')dt’dV’, (14)

where G(x — x; t — ¢') is the Green’s function,! the impulse
response to a source at position x” and time ¢/, and f(x’, t’) is
the distribution of seismic sources. Thus the integral gives the
total response due to the distribution of sources. In most cases
the source is limited in space and time, so the integral is done
over the source region. Often the source is at a point in space or
time, so f(x’, t) contains delta functions and is easily integ-
rated using the sifting property. A nice feature of this formula-
tion is that the principle of reciprocity, which says that the
source and the receiver can be interchanged, emerges directly.
The Green’s function in Eqn 14 is for a laterally homogene-
ous medium, so the response depends only on the distance
between the source and the receiver. In a general medium
Eqn 14 becomes

u(x,t)= || G(x, t; X', ¢') f(x', ') dt’dV". (15)

When a system is described by a convolution, we can exam-
ine the effects of the different contributing factors using
deconvolution. We start with the output and one of the time
series that were convolved to form it, and then find the other.
For example, in Section 3.3.6 we discussed using seismic reflec-
tion data to obtain the sharpest resolution of reflectors in the
carth. We assumed that a seismogram s(z) results from con-
volution of a source pulse, or wavelet, w(¢), and an earth struc-
ture operator, 7(t). #(t), known as a reflector series, is presumed
to be a set of delta functions with positions corresponding to
the travel time for a reflection from an interface and amplitudes
corresponding to the amplitude of the reflected arrival. Thus
s)=w(t)*r(¢) and S(w)=W(w)R(w). (16)

If the travel time differences between the arrivals corres-
ponding to individual reflectors are shorter than the duration
of the wavelet, interference can occur, giving a complicated
signal. Hence it would be desirable to have a delta function
source wavelet whose Fourier transform is simply 1, so that
the seismogram would equal the reflector series. Although a
physical source wavelet is not a delta function, we simulate

1 The same entity is commonly termed a Green’s function in physical problems and

an impulse response in time series analysis. In seismology the terms are used essen-
tially interchangeably.

e NVV\-—-—M\_/\/\W

such a wavelet by creating an inverse filter? w™(t), which, when
convolved with the wavelet, yields a delta function:

w(t) = w(t) = 8(2). (17)

Aswe saw in Section 3.3.6, the Fourier transform of the inverse
filter is just 1/W(w), so deconvolution can be done by dividing
the Fourier transforms

S(w)/ W(w)=R(w). (18)

This sometimes works well, but can be problematic at frequen-
cies where the source wavelet spectrum W(w) is small (causing
R(w) to go to infinity), so a minimum amplitude threshold can
be set.

As an alternative, inverse filters can be designed in the time
domain to compress the source wavelet into a function as close
to a delta function as possible. This approach is a special case of
the general problem of finding a shaping filter that converts a
given input into a given output. We will shortly discuss another
approach, which relies not on the convolution, but on the
related cross-correlation operator.

Deconvolution is also used in other applications. A con-
ceptually similar one is modeling seismograms from a distant
earthquake as a sum of secondary arrivals generated when the
upcoming wave encounters interfaces below the receiver
(Fig. 6.3-7). The vertical component is assumed to represent
the direct arrival, and is used as a Green’s function that is
deconvolved from a horizontal component to find a receiver
function characterizing the structure. The receiver function
corresponds to the reflector series in this geometry. Another
application of deconvolution is to take seismograms and de-
convolve the effects of the seismometer to find the true ground
motion, or deconvolve a seismogram to try to find the source
pulse due to an earthquake (Section 4.3.3).

6.3.3 Finite length signals

We have seen that the Fourier transform describes a signal as
the sum of harmonic signals with different frequencies. One
important limitation is that the Fourier transform requires inte-
gration over all time. In reality, we only have data over a finite
interval of time.

To see how this affects our results, consider a window func-
tion b(¢) which selects part of the data. Its effect on the data f(¢)
is represented by multiplying f(#) by b(z). We then ask how the
Fourier transform of the function, including the effect of the
window

8

Glo)= | bl)f(t)e®dt, (19)

—o0

is related to the transform of the original function, F(cw).

2 The notation w(z) does not mean 1/u(t).
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Fig. 6.3-7 Schematic diagram of the receiver function approach. The
receiver function, derived by deconvolving the vertical component from a
horizontal component, should have arrivals corresponding to the times
of seismic wave phases generated when the upcoming wave encounters
interfaces below the receiver and amplitudes reflecting the amplitudes
of these waves. The receiver function can be used to study the depths

of the interfaces and the velocity contrast there. Because a horizontal
component is used, the phases predicted involve P-to-S conversions and
their reverberations, as described by the nomenclature used to identify
phases (e.g., PpPms). Owens et al., 1987. © Seismological Society of
America. All rights reserved.)

This question can be answered by writing b(t) and f(¢) using
their inverse transforms,

oo oo oo

1 i i m? .
G(CO) = —_ B(w/)ezw tdw’ _.1_ Fm)”)eza) tdew” |e-i®t ds
2 2r
1 / 7 l : TN ” ,
=— | Bl@')| | Fl@”)| — | e-iortioio"t gy \dw” |da’,
2 27

(20)

recognizing that the inner integral is the Fourier transform of a
delta function in frequency (Eqn 6.2.36),
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8

B(o')Flo—- o' )do' = —1—B(a))*F(co). (22)
2r 2

Thus the effect of multiplying a time series by a window func-
tion is that the spectrum of the time series is convolved with the
spectrum of the window function. This is an example of the
fact that just as convolution in the time domain corresponds
to multiplication in the frequency domain, so multiplication in
the time domain corresponds to convolution in the frequency
domain.

To see the effect of windowing on the spectrum, consider the
simplest window function, a “boxcar” which describes taking
only the data in a certain time interval (Fig. 6.3-8),

bit)y=1 for-T<t<T,
=0 otherwise. (23)

Its Fourier transform is

T
T ) .
om0t g = _e.'“"t _ 2sinwT _ 2T sinwT 4

i | . @ oT

B(w) =
-T

whose amplitude spectrum |B(w)| has a characteristic shape
with a central lobe and smaller side lobes, and equals zero
where x = @T = 2nzx. The width of the central lobe is 27/T.
This | (sin x)/x | curve, sometimes called a sinc function, is
convolved with, and thus modifies, the spectrum | F(@) |.

For example, if f() is a sine wave (Fig. 6.3-9a) whose ampli-
tude spectrum is described by two delta functions, convolution
with B(w) yields the spectrum of a finite length sine wave, two
sinc functions. Thus, taking a finite length of record “smears”
the delta functions of the infinite length record’s spectrum into
broader peaks with side lobes (Figs 6.3-9b). Taking longer
records (increasing T) yields sharper spectra (more like the
delta function), because the width of the central lobe of the sinc
function is proportional to 1/T.

This effect has an important consequence for analyzing
signals containing different frequencies, as shown in Fig. 6.3-9¢
for a time series with two frequencies. For shorter record
lengths (Figs 6.3-9d and e), the spectral peaks broaden until
they start to overlap and cannot be resolved separately. Once
the width in frequency of the central lobe of the sinc func-
tion exceeds the separation between the two spectral peaks
(Figs 6.3-9¢), they cannot be resolved. Thus the frequency
resolution, the minimum separation in frequency for which
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Fig. 6.3-9 Effects of finite data length on the spectrum. The spectrum

of the sine wave in (a) is “smeared” by taking a short data window (b).
For a time series with two frequencies (c), shorter record lengths cause
the spectral peaks to broaden (d) until they start to overlap and cannot be
resolved separately (e).

=2z 0 2z 4z é6n data in a certain time interval (left). The
T T T T amplitude spectrum (right) has a central
Frequency (@) peak and smaller side lobes.

two peaks can be resolved, is proportional to the reciprocal of
the record length.

This relation between signals in the time and frequency
domains demonstrates a fundamental principle. By taking a
finite length portion of a time function, we broaden and distort
its spectrum in a predictable way. The reverse occurs in the fre-
quency domain; taking a finite portion of the spectrum distorts
the time function, as we discussed in considering Fig. 6.3-3.
For example, because a seismometer only responds to ground
motion in a certain frequency range, the resulting seismogram
is a somewhat distorted record of the ground motion. Sim-
ilarly, physical processes like anelasticity (Section 3.7.8) and
diffraction (Section 2.5.10) that remove high frequencies dis-
tort the resulting waveforms.

Thus we have an “uncertainty principle” that the product of
the “widths” in the two domains is constant; for a time domain
record with duration T, the resolution in the frequency domain
is proportional to 1/7T. Perfect resolution in frequency requires
infinite record length in time, and infinite bandwidth in fre-
quency is needed to represent a time function exactly. These
properties are general features of Fourier transform pairs, so
also apply to distance and wavenumber.?

The sinc or |sin x/x | function, which we used to represent
taking a finite portion of a time series, appears in other similar
applications. We saw that diffraction through a slit, in which
only part of a wave front is transmitted, is described by a sinc
function (Fig. 2.5-18). The sinc function also describes the
spectrum of waves radiated from a finite fault (Section 4.6.2).

In real cases, we do not have infinite lengths of data. More-
over, it is not always desirable to take more data. For example,
the signal of interest on a seismogram eventually decays into
the noise due to attenuation, or is interferred with by a different
signal. We seek the best resolution of the spectrum of the signal
of interest, but as the record length increases, the noise has a
greater effect and increasingly contaminates the spectrum. We
thus select a compromise record length and try to obtain the
best spectrum. This issue arises in estimating seismic attenua-
tion, which broadens spectral peaks (Section 3.7.7) in a way

3 The uncertainty principle also appears in quantum physics, where the position and

momentum of a particle form a Fourier transform pair. Thus, the better we know a
particle’s position, the less we know about its momentum, and vice versa.




similar to that of finite record length. Longer records broaden
the peaks less, and so give better estimates of attenuation up to
the point where the effects of noise degrade the estimates.

Though we can never get around the problem of finite record
length, it can be ameliorated by using a different window func-
tion than a boxcar. A window function whose “corners” are
less “sharp,” known as a taper, reduces the size of the side lobes
and thus the distortion. One simple such function, a cosine
taper, is a boxcar with smoother ends:

W(t)z—l— 1+COSM for-T<t<-T+T;
2| T
=1 for-T+T;<t<T-T,;
-1 1+cosw forT-T,<t<T
2| 1
=0 for other times. (25)

The parameter T, is the tapered fraction of the half-length T.
Figure 6.3-10 illustrates the effect of tapering data, by compar-
ing the spectra of two windows of the same length. The side
lobes for the tapered window are reduced.

Such a taper is often applied in the time domain to data, with
T,/T = 0.1, before taking spectra. Similarly, bandpass filters
are often tapered in the frequency domain. In the frequency
domain, a pure bandpass filter is two boxcar functions for the
positive and negative frequencies in the passband (Fig. 6.3-3).
The corresponding inverse transform thus looks like a sinc
function, and causes “ringing,” analogous to the side lobes, in
the time domain. The ringing can be reduced by tapering the
response at the edges of the passbands. For the same reason,
the spectrum of a theoretical (synthetic) seismogram computed
in the frequency domain is tapered before the inverse Fourier
transform is used to produce a synthetic seismogram in the time
domain.

This example brings out the general point that, in filtering
data, we make certain choices depending on our goals and
accept the consequences. There are no absolute criteria for
what is best. For example, tapering a filter in the frequency
domain reduces the ringing that can produce spurious non-
causal arrivals, at the price of distorting the spectrum and
waveform. We will see in Section 6.6.5 that this issue appears
in designing digital seismometers.

6.3.4 Correlation

Often we want to measure how similar two signals are. A com-
mon application is identifying a reflected arrival by finding the
portion of a seismogram that most resembles a direct arrival or
a function that we believe represents the source. To do this,
we define the part of the signal we seek to identify as f(z), the
remaining portion of the seismogram as x(¢), and form the
integral
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Fig. 6.3-10 Comparison of the spectra of two windows of the same
length. The side lobes for the tapered window are reduced, but the central
peak is less sharp.

T/2

C(L) = lim 1 x(t)f (¢ + L)dz. (26)

T—eo T
=T/2

C(L), the cross-correlation of x(t) and f(t), measures the sim-
ilarity between £(¢) and later portions of x(t) by shifting f(z) by
different lag times, L, and evaluating the integral of the product
as a function of L. The lag for which C(L) is maximum is the
time shift that makes the two functions most similar. Although
T formally goes to infinity, we set T to an appropriate value,
because the data exist only in a finite time range. Thus the /T
factor is a normalization, which is often neglected. Cross-
correlation and convolution are similar operations, the major
difference being the sign of the time shift.

Figure 6.3-11 shows an example of applying cross-correlation
to determine the travel time difference between direct S and
SS phases. The SS phase should be similar to S, once S is cor-
rected to include the effects of the additional attenuation on
the longer ray path and the 7/2 phase shift due to the surface
reflection (Section 3.5.1). Direct S is selected on the seismo-
gram, corrected, and then cross-correlated with the rest of
the seismogram. The peak in the cross-correlation gives the lag
that measures the arrival time difference between the two
phases. Another application of cross-correlation is in explora-
tion seismology, where an assumed Vibroseis source signal is
cross-correlated with seismograms, giving peaks at times when
reflections occur (Section 3.3.6). In these applications, the
cross-correlation is being used to identify reflections, much as
could be done by deconvolution, because the cross-correlation
is similar to the convolution.

A special case of the cross-correlation is the auto-correlation,
the cross-correlation of a time series with itself
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Fig. 6.3-11 Application of the cross-correlation to determine the travel
time difference between direct S and reflected SS phases on a seismogram
(a). The direct S phase (dashed line in (b)) is corrected for attenuation
(solid line in (b)), phase-shifted (c), and then cross-correlated with the rest
of the seismogram (d). The peak in the cross-correlation gives the lag that
measures the arrival time difference between the two phases. (Kuo et al.,
1987.]. Geophys. Res., 92, 6421-36, copyright by the American
Geophysical Union.)

T/2
R(L)= lim % f fOF(t + L)dz. (27)
=T/2

Not surprisingly, the auto-correlation is maximum at zero lag
and is an even function of the lag (Figs 6.3-12 and 3.3-30).
When the cross-correlation is used to identify reflections
(Figs 6.3-11 and 3.3-31), it makes the seismogram look like the
auto-correlation of the signal near the reflection.

f(t)

R(L)

< > -

—
D T > T T

Fig. 6.3-12 Dlustration, for a boxcar function, that the auto-correlation is
maximum at zero lag and is an even function of the lag.

The auto-correlation is significant in the theory of filtering
because it is related to the amplitude spectrum. To see this,
consider a function f(z) that is zero except between —T/2 and
T/2. The auto-correlation

T2
Rm=gg1ffMM+um (28)
-T/2

can be expanded using the inverse Fourier transform and using
the time shift theorem (Section 6.2.4),

T2 oo
1 .
R(L) = lim — 3 Flw)e!®l+L) g t
(L) Jim f() j (w)e o|d
-T2 ~oo ]
I T2 ]
1 . .
= lim — | Flw)e’®L te®tdt | dw
Jim f (w)e f(t)e
—eo -T2 ]

= Jim —— f |Flo) eiLdao, (29)

where the last step uses the fact that F(—w) = F*(w). Thus, if
we define the power spectrum, a normalized version of the
amplitude spectrum,

Pla)= lim —|Flo]]?, (30)

we see that the auto-correlation is the inverse Fourier transform
of the power spectrum:

oo

R(L)= LI |P(@) |e"tdw. (31)
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Fig. 6.3-13 Illustration showing that a function has the same
auto-correlation if it is reversed in time.

As a result, the auto-correlation of a function contains informa-
tion only about its amplitude spectrum, but not about its phase.
Functions with the same amplitude spectrum but different
phase spectra have the same auto-correlation. For example, a
function has the same auto-correlation if it is reversed in time
(Fig. 6.3-13).

6.4 Discrete time series and transforms

The analysis of seismic data using Fourier transforms requires
computers. Thus the ground motion, a continuous function of
time, is represented by a signal consisting of the ground motion
measured, or sampled, at discrete points in time. Early seismo-
meters, which recorded on paper wrapped around a rotating
drum, yvielded continuous analog seismograms which were
digitized to create a discretized seismogram. Modern seismo-
meters typically record the ground motion as a set of amplitude
values measured repeatedly over a constant interval, such as
40 times per second (40 sps, “samples per second”). To work
with digitized seismograms, the transforms and other math-
ematical operations that we formulated in Section 6.3 as con-
tinuous functions of time are replaced by discretized versions.
Working with the discretized data is the subject of digital signal
processing, whose basic ideas we discuss next.

6.4.1 Sampling of continuous data

The operation of sampling a signal at intervals Az can be repre-
sented by multiplying the signal by a series of delta functions
(Section 6.2.5) in time spaced At apart, called a Dirac comb or
Shah function (Fig. 6.4-1):

Vit At) = i 8(t—nAt). (1)

f=—00

6.4 Discrete time series and transforms 385

21
At

Fig. 6.4-1 Sampling a signal at intervals Az (fop) is described by
multiplying the signal by a series of delta functions that are spaced At
apart in time (center), called a Dirac comb. The transform of a Dirac
comb spaced at At in time is a comb spaced 27/At in angular frequency
(bottom).

To see what this does to the spectrum of the signal being
sampled, consider the Fourier transform of the Dirac comb,

oo

J Vit At)e@dr= | Y S(t—nAtje @dt= Y, e, (2)

H=—00 n=—c0

—o0

which was evaluated using the sifting property of the delta
function (Eqn 6.2.29). It turns out that although the Fourier
transform of a single delta function is a complex exponential,
the transform of a Dirac comb is another Dirac comb. To see
this, note that because V(; At) is periodic with period At, it can
be expanded in a complex Fourier series (Section 6.2.2),

Vit;At)= Y Fe'" for , =2mn/At, (3)

m=—c0

whose coefficients are given by

At/2 At/2

Vit At)e i otdr=— | Y 8(t—nAt)e 'Ot dr.
At At e oo
~At/2 ~-At/2 (4)
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Because in the interval (—A#/2, A#/2) only one delta function,
6(t—0), occurs, the Fourier coefficients are

At/2

F,=—~

m

8(t)e " idt = L piano_ —1—; (5)
At At At

~At/2

so the Fourier series for the Dirac comb is
1 & .
V(t; At) = Z— z gi2mmtlAt (6)
VAN

Now, consider a Dirac comb in the frequency domain, V(w;
27/At), which consists of delta functions spaced 27/At apart
in angular frequency,

oo

Viw; 27m/At)= Y, 8(w~n2n/At). (7)

n=—c0

Its inverse transform can be evaluated using the sifting property
to yield

= J V(w; 2n/At)e ' dw = L J Y S(w-n2r/At)e®dw

2 2r | .
:% i eiZnni/At, (8)

which is just A¢/27 times the Fourier series for V(¢; At) (Eqn 6).
Thus the transform of a Dirac comb spaced at At in time is
(27/At)V(w; 21/At), a comb spaced 27/At in angular frequency
with an amplitude of 27/At (Fig. 6.4-1).

The effects of sampling the signal x(¢) at times Az can be
found by writing the sampled signal x(z) as the product of the
signal and the Dirac comb in time,

x(t)=x(t)V(t; At). 9)

Because multiplication in the time domain corresponds to con-
volution in the frequency domain, the transform of the sampled
signal, X(®), can be written as

X(w)=X(w) * (27/At) V(w; 27/AL). (10)

Hence X(w) is convolved with the Dirac comb, causing the
spectrum of the sampled signal X(w) to be periodic in angular
frequency with period (27/At).

To see what this does, suppose that the signal x(¢) is band
limited such that its spectrum X(w) is zero outside the principal
angular frequency band —-7/At < @ < 7/At, the range between
the first delta functions on either side of the origin (Fig. 6.4-
2a). Thus, after sampling, the adjacent X(®) do not overlap
(Fig. 6.4-2b), and the spectrum of the sampled time series is

— A e\ A —

Aliasing in the frequency domain

Spectrum of unsampled
data (band limited) with
signal at [o| < /At

~ /At 0 /At

Spectrum of sampled
data: periodic but no
aliasing

/At 27:/At

Spectrum of sampled
data with signal at

. |o| > /At

Aliased

spectrum

‘\\ Actual spectrum

-b_veriap where

on/At 2mIAL aliasing occurs

Fig. 6.4-2 Effect of sampling on the frequency amplitude spectrum.

The spectrum of the unsampled signal (a) is convolved with a Dirac comb,
making the spectrum of the sampled signal periodic in angular frequency
with period (27/At). If the spectrum of the unsampled signal is zero outside
the principal angular frequency band ~7/At < @ < 7/At, the range between
the first delta functions on either side of the origin, the spectrum of the
sampled signal is the same as that of the original signal in this frequency
range (b). Otherwise the spectra overlap after convolution (c), a
phenomenon called aliasing that makes the sampled spectrum inaccurate.

the same as that of the original time series in the principal
frequency range.

On the other hand, if X(w) is not limited to this range, the
spectra overlap after sampling, so that two adjacent spectra
both contribute at these frequencies (Fig. 6.4-2c). The effect
of the periodicity is that for angular frequencies | @ | > 7/At, or
frequencies | f| > 1/(2At), the spectrum is inaccurate, because
the overlap area is folded into the principal frequency range.
This phenomenon, called aliasing, can be avoided by sampling
the signal sufficiently densely that the spectra do not overlap.
This requires that the sampling interval At be such that the
corresponding frequency, known as the Nyquist frequency,
fu=12A) or wy=nlAL, (11)
is higher than the highest-frequency component of the signal,
so that the spectrum is correctly resolved. The shorter the
sampling interval, the higher the Nyquist frequency, the larger
the interval over which the spectrum is periodic, and thus the
higher the frequency below which the spectrum is correctly re-
solved. In practice, it is desirable to sample even more densely,
perhaps four or more times, than the Nyquist criterion. As
we sample more densely, the sampled signal becomes a better
representation of the signal, and its spectrum becomes a better
representation of the true spectrum.




/ Actual signal

6.4 Discrete time series and transforms 387

Aliased signal

Fig. 6.4-3 In the time domain, aliasing can be viewed by noting that at least two samples per wavelength are needed to reconstruct a sinusoid accurately.
Any higher frequencies are aliased into lower ones. In this case, sampling a sine wave at a sampling interval of four-fifths of the period of the wave results

in an aliased signal with a period that is four times greater.

Another way to see these ideas is to note that at least two
samples per wavelength are needed to reconstruct a sinusoid
accurately. Any higher frequencies are aliased into lower ones
(Fig. 6.4-3)." Aliasing occurs when the data are sampled, and
once this occurs, the data cannot be “unaliased.” As a result,
seismic data are filtered with an analog anti-aliasing filter to
remove frequencies above the Nyquist frequency before sam-
pling to produce a digital seismogram.

6.4.2 The discrete Fourier transform

We now consider the Fourier transform of a sampled time
series. If the function f(z) is sampled at N time points that are
At apart, the function can be represented as

() =fnht) forn=0,1,...,N-1. (12)

To make subsequent derivations easier, we require N to be an
even number. The Fourier transform integral,

flt)e ot dt, (13)

=
g
i
be——g

can be written as a summation:

N-1
Flo)=At Y, f(nAt)e™@nbt, (14)

»n=0

This transform is a continuous function of @ that we
approximate using its values at discrete frequency points.
Because sampling produces a spectrum that is periodic in angu-
lar frequency with period 27/At, or twice the Nyquist angular
frequency wy, we divide this interval into N points as

Flo)=F(kAw) fork=0,1,...,N-1, (15)

1 An illustration of sampling issues is that in Western films, wagon wheels some-
times appear to rotate backwards, stop, or rotate only slowly forward. These effects
result from differences between the wheels’ rotation rate and the movie cameras’
sampling rate, typically 24 frames per second.

with
Aa)=2a)N/N:Zx/NAt=27r/T, (16)

where T= NAt is the total length of the data in time, sometimes
called the record length. This sampled Fourier transform of a
sampled time series is called the Discrete Fourier Transform
(DFT):

N-1 N-1
F(kA®)=At Y, f(nAt)e koondi= At 3 f(nAt)ekn2mN, (17)
n=0 n=0

The DFT gives values at angular frequencies
0,Aw,2Awm, ... (N/2)Aw, ... (N-1)Aw. (18)

The second half of the values represent angular frequen-
cies greater than (N/2)Aw, which equals the Nyquist angular
frequency. These points correspond to the negative angular
frequencies, wrapped around to follow the positive angular fre-
quencies. For example, the first point after the Nyquist angular
frequency occurs for angular frequency

(N/2+1)Aw=(N2)Ao+Aw = wy+A®

N
=—0N+AO= — 5 1|Aw, (19)

where we use the fact that the spectrum is periodic with period
2wy, Each successive point corresponds to an increment of
—A®. Thus, we can consider the DFT to give values at angular
frequencies

0,Aw,2A0, . .. £\7——1 Aw, 0y, — i\I——l Ao, ...,

2 2
2A@,~Ao. (20)
Graphically, we can think of folding the second half of the DFT

about zero frequency to give the values of the spectrum at the
negative frequencies (Fig. 6.4-4).
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Continuous frequency amplitude spectrum
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Discrete
Fourier
transform
(DFT)
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Fig. 6.4-4 Due to the periodicity of the
discrete Fourier transform, the second half
of the values of the frequency amplitude
spectrum, at angular frequencies greater
than the Nyquist angular frequency

i
0 (NI2)Aw
= wN

The fact that the DFT is the sampled spectrum of a sampled
time series has two interesting consequences. The highest
angular frequency that can be resolved is the Nyquist, which
depends inversely on the sampling rate in time, because w, =
/(At). On the other hand, the resolution in frequency, given
by the spacing between successive angular frequency points,
Aw=2r/(NAt), depends inversely on T'= NA¢, the total record
length.

For example, to resolve the singlets making up the normal
mode multiplet S, (Fig. 2.9-16), we would like a frequency
resolution of at least 0.0001 cycles/minute, or 1.7 x 1076 571,
This requires data extending for 1/1.7 x 10~¢ s, or more than
160 hours, after the earthquake. However, because the mode’s
period is 54 minutes, a seismogram sampled every few minutes
would be adequate and give a manageable number of data
points. We need, however, to prevent aliasing due to surface
and body waves that have periods of tens to hundreds of
seconds. An easy way to do this would be to start the analysis
a day or so after the earthquake, when the shorter-period
waves have decayed due to attenuation. This approach uses the
earth’s anelasticity as a natural anti-aliasing filter. By contrast,
reflection seismology requires high temporal resolution to
resolve closely spaced interfaces, so reflection data are sampled
at high rates such as 250 times per second after an anti-aliasing
filter is applied.

(N/2)Aw, represents the negative angular
frequencies.

N—-NDAw

By analogy to the DFT, we write the inverse DFT (IDFT) by
approximating the inverse Fourier transform integral

flt)= —~JF(w)e“‘”dw (21)

in the same way, which gives

N-1
f(nAt)= ..1. 2 FkAw)eiksalndi)p gy
2 k=0
N-1
z P(kAw)eiann:/N
T k=0

_Aw

1 N-1

= —— Y F(kAw)e™ 2N, (22)
NAt i

An interesting feature of the IDFT comes from the fact thatit
samples the spectrum at discrete frequencies Aw. Sampling the
time series at Az causes the phenomenon of aliasing, because the
spectrum is periodic in angular frequency with period 27/(Az).
By analogy, sampling the frequency spectrum at A@ makes the
time series periodic with a period of




2r _ 2m

T (NAY=T, (23)
Aw  2m/(NA?)

which is equal to the original record length.? This wraparound
phenomenon can be important, as we shall see when discussing
the use of DFTs to carry out convolutions.

6.4.3 Properties of DFTs

For simplicity, we write the DFT and the inverse DFT implicitly
assuming a unit sampling interval, Az=1, and define

N-1
F(k)=F(kAw) =Y f(n)e2mikn/N
n=0
forkandn=0,1,...,N-1 04)

f( nAt 27ri/a11/N

ZP

forkandn=0,1,...,N-1. (25)
The two equations are very similar in form and are easy to
evaluate — the forward and inverse transforms differ only
in the sign of the exponential and the 1/N normalization.
This is especially clear if we define the complex exponential as
W=e27/N g0 the definitions of the DFT and IDFT become

N-1

N-1
k)= f(m)W* and f(n)= ZF k)W kn, (26)
n=0

The terms with the complex exponential are periodic in N,

Wkn = = W (N+k)n = Wk N+n (27)

so the DFT and IDFT can be defined for all integers k, 7, j as

fln)=f(jN+mn), F(k)=F(jN+k). (28)
A formal statement of the relation between the negative and
positive frequencies can also be given as

f(=n)

We used this relation when we explained how the second half
of the DFT corresponds to negative frequencies (Fig. 6.4-4).
Using these definitions, we can show that the discrete trans-
forms have properties that we discussed for the continuous
transforms in Section 6.2.4:3
(1) The DFT and IDFT are linear: if A(k) and B(k) are the
transforms of time series a(xn) and b(n), then aA(k) + BB(k) is

=f(N-n), F(-k)=F(N-k). (29)

2 Because of this periodicity, the record length is considered to be NAt rather than
(N-1) Az
3 As for the continuous transforms, the proofs are left for the problems.
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the transform of aa(n) + Bb(n). Thus we can use the discrete
transforms to model lmear systems.

(2) The DFT of a real time series (i.e., one for which f(xn) =
() has the symmetry

F(—k) = F(N—k)=F"(k). (30)

Thus, as with the continuous transform, the values for the
negative frequencies are the conjugates of those for the positive
frequencies.

(3) Shifting a time series in time simply changes the phase of
the DFT: if the transform of f(n) is F(k), the DFT of f(n —
WkiF(k). Similarly, shifting a Fourier transform in frequency
changes the phase of the IDFT: the inverse transform of
F(k —m) is W""f(n)

6.4.4 The fast Fourier transform (FFT)

For these concepts to be useful, the transforms and inverse
transforms must be evaluated on a computer. Moreover, it only
makes sense to carry out filtering using Fourier transforms if
the transform and inverse transform operations are relatively
quick. It turns out that an elegant algorithm known as the Fast
Fourier Transform (FFT) provides a fast way of carrying out
the DFT and IDFT.

The time a computer needs to carry out an algorithm
depends on how many arithmetic operations are needed. We
would expect that evaluating all N points in the DFT, each
of which is the sum of the N terms in the series, would require
approximately N2 operations. The FFT algorithm, however,
requires a much smaller number of operations, approxim-
ately N log, N. The difference is substantial; for N = 4096,
N2 =16,777,216, but N log, N = 49,152 — about 340 times
fewer! As a consequence, the introduction of the FFT made
digital signal processing common in seismology and many
other disciplines.

Entire books have been written about the FFT, so we only
briefly sketch the approach here. The underlying idea is that a
simple method can be used to compute the transform of a series
of points by splitting it in half. We take a series with N points,
f(n) form=0,1,...,N-1 (31)
and form two subseries, one with the odd-numbered points and
one with the even-numbered points:

a(n)=(f(0),£(2),f(4),...)=f(2n)
forn=0,1,...,N/2-1,

b(n)=(f(1),£(3),£(5), ... ) =[(2n+1). (32)

The DFTs of the two subseries are

N2-1
A(R)= Y a(nm)e*™k#/N and
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N/2-1
B(k)= Z b(n)e—4m'kn/N’ (33)
=0

where k goes from 0 to N/2 — 1, and the factor of 4 comes from
the fact that the subseries lengths are N/2.

The DFT of the original series can be written in terms of the
DFTs of the subseries,

N-1
F(k)= 2 f(n)e—ln'ikn/N
=0

N/2-1
- ~27ik(2n)IN ~27ik(2n+1)/N
[a(n)e +b(n)e ]
n=0

=A(k)+e2"NB(k) fork=0,1,...,N/2-1, (34)

giving the first N/2 points of F(k). The second N/2 points come
from replacing k by k& + N/2,

F(k+N/2)=A(k+ N/2) + e 27 kN2VN Bk 4+ N/2), (35)

and noting that, because the DFTs of the subseries are periodic
with a period equal to their length, N/2,

A(k+N/2)=A(k) and B(k+N/2)=B(k). (36)

Because the exponential can be written as

e~27ti(/z+N/2)/N =7 e—27rik/N= _e—Zﬂik/N’ (37)

the second half of the transform can be found from the first,
using

F(k+N/2)=A(k) — e >"*/NB(E), (38)

In terms of W= e 2™/N_ the expressions for the two parts of the
transform (Eqns 34 and 38) have the simple form of

F(k)=A(k)+ W*B(k) and F(k+N/2)=A(k)— WkB(k).
(39)

This method is called doubling — finding the transform of
an N-point series from the transforms of its two N/2-point
subseries. Doubling can be applied recursively, because we
can find the transform of each N/2-point series from that of two
N/4-point series, etc. Ultimately, a series of length N = 2" can be
evaluated via #=log, N such stages. In the final stage, the trans-
form of each 2-point series is found from two 1-point series,
but the transform of a 1-point series is itself. Various methods
can be used to further speed up operations.

Thus, to obtain the FFT of a time series, we treat the data
points as N 1-point series, use doubling to form (N/2) 2-point
series, and so on until the final N-point transform. The same
FFT algorithm can also be used to take the inverse transform.

e N\ A

Commonly, the same computer program is used for both for-
ward and inverse FFTs, except that the sign of the exponential
must be changed and the 1/N normalization remembered (the
last being a traditional bane of students).

In using the FFT to transform data as part of a filtering
operation, the factor of 1/N may be included at any step in the
process. Often, however, we use the FFT to obtain the Fourier
transform of a time series, and compare this to a result derived
in the frequency domain, such as an analytic expression for a
synthetic seismogram as a function of w. In this case, we have to
consider the units of both the forward and the inverse DFT.
The forward DFT is an approximate way of evaluating the
Fourier transform integral (Eqn 13), in which the differential
dt is replaced by the difference At. Thus, the FFT results are
multiplied by Az. Similarly, the IDFT approximates the inverse
transform integral (Eqn 21), with the differential dw replaced
by the difference Aw. Hence the results from inverting the FFT
are multiplied by Aw/(27). The product of these two factors is
AwAt/2r=1/N, as expected.

This discussion assumes that the series length N is a power of
2. If this is not the case, a number of zeroes necessary to obtain
a power of 2 can be added to the end of the time series. Such
zero padding has the effect of sampling the spectrum more
densely, because the sample interval is unchanged, but the
frequency interval Aw=27/(NAt) decreases. Despite the denser
sampling, the real resolution in frequency is not increased
beyond that resulting from the real (nonzero) data length.
Instead, smooth interpolation is done within the range of ac-
tual resolution Aw, , =27/T, . .

Finally, it is worth distinguishing between the DFT and the
FFT. The DFT is the discrete approximation to the Fourier
transform which has the periodic properties we have discussed.
The FFT is a clever method for computing the DFT with many
fewer operations.

6.4.5 Digital convolution

As discussed in Section 6.3.2, the convolution is used in many
seismological applications. This operation has some special
features when carried out with discretized time series and their
transforms.

Given two discrete time series with unit sample period,
x(m) with M points x(0), x(1), ..., x(M — 1) and f(n) with
N points £(0), f(1),..., f(N — 1), the convolution in the
time domain is written, by analogy to the integral definition, as

M-1

y(t)=x(2) % f(t)= Y, x(m)f(t—m). (40)

m=0

We evaluate the summation for each value of ¢ that yields a
nonzero value. Because f(#) is zero for # outside the range (0,
N~ 1) and x(m) is zero for m outside the range (0, M — 1), there
are N+ M — 1 terms in the convolution, and y(z) is defined for
t=0,1,...,N+M-2. For example, if N =3 and M = 4, the
3+4-1=6termsare
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Fig. 6.4-5 Schematic diagram of a time domain convolution of two
sampled time series as a reverse, multiply, and slide operation.

y(0)=x(0)£(0)

(1) =x(0)f(1) +x(1)£(0)

¥(2)=x(0)f(2) +x(1)f(1) +x(2){(0)

y(3)=x(1)f(2) +x(2) (1) +x(3)£(0)

y(4)=x(2)f(2) +x(3)f(1)

y(5)=x(3)f(2). (41)

We can think of this operation as reversing the order of x(m)
and sliding it past f(#), while conducting all nonzero multiplica-
tions (Fig. 6.4-5).

These formulations show that the convolution has more
terms than either of the time series being convolved. This has
some interesting consequences if we do the convolution in the
frequency domain. Because the data are sampled at discrete
intervals, convolution in the frequency domain requires taking
two discrete Fourier transforms, multiplying them, and then
taking the inverse discrete Fourier transform. If Y(k), X(k), and
F(k) are the DFTs of y(¢), x(#), and f(k), then

Y(k)=X(k)F(k) (42)

gives the complex spectrum at each angular frequency. This
brings out an important point; all the DFTs must be defined
at the same frequencies. For a time series of length N with
unit sample period (At = 1), the angular frequencies in the DFT
are

kAw=Fk27/N fork=0,1,...,N-1. (43)
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Because x(m) and f(n) have different lengths, the points in
the two transforms would correspond to different angular
frequencies. To avoid this, the two time series are extended
with zeroes at their ends, so that their lengths equal the same
power of 2.

A further point to bear in mind is that the time series corres-
ponding to the convolution is longer than either of the two
series that are convolved. If the number of points in the DFT
is less than this length, a wraparound phenomenon similar
to aliasing occurs when we invert the transform, due to the
periodicity resulting from the sampled transform. The two time
series thus need to be extended to a length at least that of their
convolution before their DFTs are taken.

6.5 Stacking

Seismology uses data to estimate quantities that describe the
earth and seismic sources. Ideally these estimates are both
accurate and precise. Accuracy measures the deviation of the
estimate from its true value, whereas precision measures
the repeatability of individual estimates. Hence the accuracy
depends on systematic errors that bias groups of estimates,
whereas the precision depends on random errors that affect
individual estimates. Estimates can be precise but inaccurate,
or accurate but imprecise. For example, an estimate of an
earthquake’s location depends on the quality of the travel time
data used and the accuracy of the velocity model. High-quality
travel time data, together with an incorrect velocity model, can
yield a location that is precise in that the data are well fit and
so imply small uncertainty, but inaccurate in that the resulting
location is not where the earthquake occurred. In such a case
the true uncertainty exceeds the formal uncertainty inferred
from how well the model fits the data. Conversely, an accurate
velocity model and poor travel time data can give a location
that is accurate in that it is close to where the earthquake
occurred, but imprecise in that the location has a large uncer-
tainty and there are large misfits to the data.

Approaches to improving the accuracy and precision of
estimates are often couched in terms of measuring a quantity
like the length of a table. Accuracy is improved by using dif-
ferent measuring tools, ideally calibrated against each other.
Precision is improved by making multiple measurements,
ideally by different people. We follow such approaches for the
earth when possible, but face additional complexities. For
example, an earthquake is a nonrepeatable experiment, so we
cannot make additional measurements. We can use different
techniques, but still face difficulties. A case in point is that
estimates of an earthquake’s depth from travel times and
waveform modeling are only partially independent. Both can
be biased similarly by incorrect assumptions about the near-
source velocity, but the travel times are independent of the
assumed source mechanism, and the waveform modeling
(which depends on relative arrival times) would not be biased
by an error in the absolute timing of individual seismograms.
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A further complexity is that different methods can measure
related but not identical entities: the earthquake depth ranges
inferred from travel times, waveform modeling, aftershock
locations, and geodesy differ somewhat, because each meas-
ures related but not identical quantities.

Most discussions of these issues focus on random errors
because they are easy to estimate from the scatter of measure-
ments. However, it is worth bearing in mind that systematic
errors not included in these error estimates can be more
significant, as discussed in Section 1.1.2. Systematic errors can
come about in surprising ways and have subtle and crucial
effects. For example, we have noted that velocity hetero-
geneities can perturb ray paths and thus bias earthquake focal
mechanisms (Section 3.7.3); attenuation variations can bias
estimates of the yields of nuclear explosions (Section 1.2.8);
errors in the paleomagnetic time scale can bias estimates of
plate motions (Section 5.2.2); and effects including an unde-
tected earthquake can change estimates of earthquake recur-
rence from paleoseismology (Section 1.2.5). Systematic biases
are difficult to detect, but sometimes are identified from dis-
crepancies between different approaches. For example, the
discrepancy between earth models derived from body waves
and those from normal modes suggests physical dispersion due
to anelasticity (Section 3.7.8), and the discrepancy between
oceanic Love and Rayleigh wave velocities points toward
anisotropy (Section 3.6.5). Hence, when data are discordant,
as in the differences in earthquake frequency-magnitude
relations derived from seismological and paleoseismic data
(Section 4.7.1), systematic bias is one possible cause.

In this section, we develop some general ideas about errors
and consider some examples. Our focus is one of the most
useful methods for improving estimates from seismological
data: stacking, or taking multiple measurements and averaging
them. We do this either by averaging measurements such as
travel times from different seismograms, or by adding many
seismograms and then estimating parameters. This process has
two effects. First, it improves precision by reducing the effects
of random noise in the data. Second, if the data are averaged
in specific ways, the precision, and perhaps accuracy, can be
improved by suppressing some features of the data and thus
enhancing desired features.

6.5.1 Random errors

We seek to estimate a quantity x from multiple measurements,
each of which gives a value x; due to noise and the limitations
of the measurements. With enough measurements, a pattern
generally emerges in which the values x; are distributed about a
value x”. If we neglect systematic errors of measurement, we
can estimate the value of x from the measured values x; and say
something about how this estimate is related to the unknown
true value of x.

For this purpose we view the measured values x; as random
samples from a parent distribution described by the probability
density function p(x) that gives the probability of observing
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Fig. 6.5-1 Probability density function for a Gaussian distribution with
mean g and standard deviation 0. Ranges within one and two standard
deviations of the mean are shown by vertical lines.

a certain value. For example, in Section 4.7.3 we treated the
occurrence of earthquakes as samples from a parent distribu-
tion of recurrence times. That example illustrated that in most
applications it is not clear what the most suitable parent distribu-
tion is. It is common to assume that the parent distribution is a
Gaussian distribution, also called the “normal distribution,”
because it often describes the frequencies at which very differ-
ent phenomena occur. A famous result called the central limit
theorem shows that this is because a sum of random numbers
approaches a Gaussian distribution even if the random
numbers are derived from other probability distributions.

For a Gaussian distribution, the probability that the i
measurement would yield a value in the interval x; + dx, in the
limitas dx — 0, is

2
1 1 x -

pl,) = exp|—| 5 E
o271 2 o

(1)

The distribution is thus characterized by two parameters: the
mean, i, and the standard deviation, 0. The most probable
measurement is the mean value, and values on either side of it
are less likely the further from the mean they are. The distribu-
tion is often written as a function of the normalized variable
z=(x—u)lo,

p(z)= -—1———-exp [-22/2]. 2)

NPT

Figure 6.5-1 shows the familiar “bell curve” that results.

A common application is to estimate how likely a measure-
ment is to be within a range z from the mean. To do this, we
integrate the probability density function to find the cumulative
probability

z z

1

p(y)dy= N exp [-y*/2]dy. (3)
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For z = 1, we get A(z) = 0.68, indicating that there is a 68%
probability that a measurement will be within one standard
deviation of the mean. Similarly, A(2) =0.95 and A(3)=0.997,
indicating a 95% probability that a measurement will be
within two standard deviations of the mean, and a greater
than 99% probability that it will be within three standard
deviations. We used such ideas in estimating earthquake prob-
abilities (Section 4.7.3).

We expect that if we made an infinite number of measure-
ments (samples) without any systematic biases, a histogram
of the measurements would look like the parent distribution.
The mean of the observed values will be the mean of the
distribution

1 N
= l B s 4
=N 2:1 i @
and the spread of the measurements is the variance (standard
deviation squared) of the distribution,

1 N
o2 = lim [EZ(%— _ﬂ)z}, (5)

Thus, if the assumptions we have made are valid, the mean of
a large number of measurements, g, would be the value that
we seek.

The difficulty in reality is that only a limited number of meas-
urements are available to estimate u. As a result, the actual
mean i’ is not necessarily equal to u. We thus ask what method
of deriving y’ from the measurements gives the maximum like-
lihood that " is actually the mean of the parent distribution.

To find this, we assume that the parent distribution had
mean i’ and standard deviation o, so the probability that the
i* measurement would yield a value in the interval x;  dx in
the limitas dx — 0 is

2
S TN Y R (6)
ovin 2\ ©

For N observations, the probability of observing a particular
set of values x; is the product of the probabilities that each
individual measurement would have that particular value,

N N 2
} exp —12[’6""“] .

2.3 o

piu)=

N
pw) = TR = [

o227

The most probable value of ' is the one that maximizes p(u’),
the probability of obtaining the set of measurements actually
found. To find this value, we set the derivative of the argument
of the exponential equal to zero,
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which occurs for
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This is not surprising — the average value of x; is the best
estimate of the mean. An interesting question is what is the
standard deviation &), of this estimate of u’? Specifically, how
does the uncertainty associated with this estimate compare to
the uncertainty of each individual measurement?

To answer this, we use the propagation of errors, a general
method for finding the relation between the uncertainty in a
function and the uncertainty in the variables that it depends on.
If z is a function of multiple variables, then

z=flu,v,...), (11)

and we have N measurements of (u, v, . . . ). The mean value of
the function is its value for the mean of the arguments,

z=f(u,v,...), (12)

and its variance is

1 N
o2=lim — Y (z,-2)% (13)
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If we expand z in a Taylor series about its mean value,
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To simplify this expression, we use the variances of each vari-
able about its mean

1N 1N
ol=lim ———z (u;—7)*> and o2=lim ,.__2 (v;—)? (16)
N—eo N N—eo N 7
i=1 i=1
and the covariances that describe how fluctuations between
variables are correlated:

77

1 N
62—£me—§y%—axw—m. (17)
e =1

Substituting Eqns 16 and 17 into Eqn 15 gives
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This relation, called the propagation of errors equation, illus-
trates that the extent to which the uncertainty in each variable
contributes to the uncertainty in a function depends on the
partial derivative of the function with respect to that variable.
We often assume that the variations in the different variables
are uncorrelated (which is not always the case), so we set the
covariances equal to zero, and simplify the variance of z to

2 2
oz 5[ 0z
[e— + J—

o; +... (19)
ou ov
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This result is a general one that we have already mentioned
in the context of estimating the uncertainty of geodetic rates
(Eqn 4.5.8) and earthquake source parameters (Eqn 4.6.23).

In the specific application here, we consider the mean to be a
function of the observations,

N

z=p'==73 x, (20)
N £

so the error propagation equation can be used with (, v, . ..)

= x;. Assuming that the variables are independent, so their

errors are uncorrelated, we get

2 N N Y N

ou’ |1 0 1 )

=) oL|——) x;| =—= > oz. (21
o EIN@M’ w%* )

1

N

2 2% 52

0% =Y o2
=

If all the observations have equal uncertainties (62 = 62), then

Gi,ZGZ/N. (22)

Thus the variance of the mean is 1/N times the variance of
the individual measurements. Hence making N measurements
reduces the standard deviation of the mean by 1/4/N. This is the
basic idea behind stacking; averaging multiple measurements
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Fig. 6.5-2 Results of drawing N samples from a Gaussian parent
distribution with mean zero and a unit standard deviation. For small
numbers of samples, the observed distribution can look quite different
from the parent distribution, and the sample mean u”differs from that of
the parent distribution. As the number of samples increases, the observed
distribution looks increasingly like the parent distribution.

of some quantity yields an estimate that has a smaller uncer-
tainty than the individual measurements.

Figure 6.5-2 illustrates this idea. We assume that measure-
ments of some quantity are described by a Gaussian parent
distribution with a mean of zero, and we try to estimate this
quantity with different numbers of samples. As the number of
samples increases, the distribution of samples looks increas-
ingly like the parent distribution, and the sample mean ap-
proaches the mean of the parent distribution. However, for a
small number of samples, the observed distribution can look
quite different from the parent distribution. This issue arises in
studying earthquake recurrence, where the few samples avail-
able make it difficult to assess whether apparent differences in
earthquake history (Section 4.7.1) are significant and what
parent distributions and parameters should be used to estimate
earthquake probabilities (Section 4.7.3).
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This simple Gaussian model is widely used in analyzing data.
We assume that each measurement includes the quantity of
interest and some noise, defined as the portion of the signal that
is not of interest. The noise thus reflects both true errors
of measurement and processes not under consideration, all of
which are assumed to be uncorrelated between measurements.
To the extent that these assumptions are valid, stacking data
will improve the signal. The random, uncorrelated noise idea
often seems to be a good approximation. However, if noise is
correlated between measurements, as can occur if the measure-
ment equipment is biased or an “error” source is otherwise
common to the measurements, the desired noise reduction
will be less. For instance, the structure under a seismometer is
studied by means of receiver functions that are derived using
the radial and vertical components (Fig. 6.3-7), assuming that
the noise on each is uncorrelated. However, noise due to
microseismic activity (Section 6.6.3) will be correlated between
components and hence can yield spurious layering.

6.5.2 Stacking examples

A simple stacking approach is to add seismograms at nearby
stations, assuming that they contain a common signal of interest
plus “noise” that differs between stations. The noise includes
differences in the response of the seismometers and differences
in the seismograms generated by the interaction between the
upcoming waves and the crustal structure under each seismo-
meter. If the seismometers and crustal structure are similar
enough, stacking seismograms should reduce the noise and
yield a better representation of the signal of interest than the
individual seismograms.

An extension of this idea is used for seismograms at different
places or times. If we know theoretically how the signal of
interest varies as a function of position or time, we can correct
the data to a common position or time and stack them. For
example, in CMP stacking of reflection seismic data, traces
with a common midpoint are shifted by a time corresponding
to the travel time curve of a reflection and then stacked (Section
3.3.4). The reflected arrivals are in phase and thus enhanced,
whereas other arrivals with different travel time curves are out
of phase and thus suppressed. Although the undesired arrivals
are not random noise, they are reduced relative to the reflected
arrivals. Random noise in the data is also reduced.

This approach is also useful in observing deeper earth struc-
tures, such as mantle discontinuities (Section 3.5.3). Figure 6.5-
3 shows an example of stacking large numbers of long-period
transverse-component seismograms to enhance precursors to
the SS arrivals. The precursors, S,,45, Ss50S, and S, are
underside reflections from the discontinuities at 410, 520,
and 660 km depths. However, these phases are weak and
are not easily observed above the noise on individual seismo-
grams. Stacking many records enhances these arrivals, allow-
ing the depths of the discontinuities to be studied. Moreover,
after removal of the theoretical signals of S;,S and S.,S
(Fig. 6.5-3, middle), the stacked record shows the S, S arrival
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Fig. 6.5-3 Stacking long-period seismograms to identify the depth of
mantle discontinuities by enhancing precursors to SS. The initial stack
(top) shows the S,,,S and S¢S underside reflections off the 410 km and
660 km discontinuities, magnified by a factor of 10. A theoretical signal
generated from the SS wave (center) is subtracted from the observed stack
to reveal the reflection from the 520 km discontinuity (bottom). (Shearer,
1996. J. Geophys. Res., 101, 3053-66, copyright by the American
Geophysical Union.)
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(Fig. 6.5-3, bottom), which is weak due to the gradual velocity
change at the 520 km discontinuity, and so rarely observed
otherwise.

Mantle structures can also be observed with slant stacks
(Section 3.3.5). The seismograms are stacked as functions of
both time and slowness, so instead of getting a single seismo-
gram, as in Fig. 6.5-3, we get a plot of seismic energy as a func-
tion of time and slowness. As shown in Fig. 6.5-4, arrivals
occur as high-amplitude bull’s-eyes. The P and pP arrivals have
a slightly different slowness due to the small (about 1°) dif-
ference in incidence angles. The large arrivals create smeared
features that are artifacts of the slant stacking.

Stacking is also used to enhance specific normal modes of the
earth. The amplitudes of normal modes vary between stations,
because they depend on spherical harmonics that are func-
tions of latitude and longitude, which differ between individual
modes (Section 2.9.3). Although simply stacking seismograms
from different sites does not make spectral peaks stand out
better, correcting for the theoretical variation in amplitude and
phase for a given mode and then stacking enhances the mode of
interest and suppresses others (Fig. 6.5-5).

Stacking can be applied to very large volumes of data. Fig-
ure 6.5-6 shows record sections generated with thousands
of digitally recorded seismograms from different earthquakes
and seismometers. The seismograms were rotated into vertical,
radial, and transverse components, grouped by source-receiver
distance, and then those within half-degree intervals were
normalized to a common amplitude and stacked. The strong
arrivals in the stacked record sections correspond to the major
phases shown in the travel time curves. It is interesting to com-
pare this analysis of global seismic data spanning large distance
ranges with reflection seismic data analysis (Section 3.3.4).
For reflection data, CMP stacking involves forming common
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Fig. 6.5-4 Slant stack of seismograms

at 279 stations for a deep (476 km)
earthquake. The bull’s-eyes are
concentrations of seismic energy for
particular arrivals. (Vidale and Benz, 1992.
Reproduced with permission from Nature.)
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Fig. 6.5-5 Stacking long-period seismograms to enhance specific normal
modes of the earth. Although a given mode multiplet is not enhanced by
simply stacking seismograms from different sites (top), stacking using its
predicted variation between sites enhances the multiplet and suppresses
others (lower panels). (Mendiguren, 1973. Science, 179, 179-80,
copyright 1973 American Association for the Advancement of Science.)
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Fig. 6.5-6 Stacking of global seismograms
to produce record sections. The three
stacks, each for a different component,
show distinct arrivals that can be
compared to those predicted by the travel

time curve for an earth model. (Astiz et al.,
1996. © Seismological Society of America. 0 30 60
All rights reserved.)

midpoint gathers and stacking them over all source-receiver
distances (offsets) (Fig. 3.3-18), to produce synthetic zero-
offset traces on which reflected arrivals are enhanced. These
traces are then shown together to produce a common mid-
point section, a function of midpoint and time. By contrast,
the global data are gathered by common offset, stacked for
that offset, and then displayed as a function of offset and
time. This operation only reduces noise, rather than enhanc-
ing specific arrivals, and so shows various arrivals (direct
waves, reflections, surface waves, etc.). Another example was
shown in Fig. 2.7.4, where many long-period seismograms
were stacked to demonstrate the group and phase velocities of
surface waves.
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In these or other stacking operations, one possible source of
systematic error is incorrect transformation of the data between
different times or positions. Interestingly, in the very different
cases just discussed, a common difficulty is lateral variation in
structure. In the reflection example, structures may dip rather
than be flat-lying, causing traces with common midpoints not to
sample the same point on a reflector (Fig. 3.3-19). In the global
travel time analysis, seismograms for the same source-receiver
distance differ when the structure between the source and the
receiver differs. An analogous effect occurs for normal modes
due to deviations of the structure from spherical symmetry.
Nevertheless, because in most cases structure varies primarily
with depth, these stacking operations generally work well.
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6.6 Seismometers and seismological networks

6.6.1 Introduction

Given what we have discussed about signal processing, we now
introduce some ideas about seismometry, the design and devel-
opment of seismic instrumentation. Although we informally
call such systems seismometers, the seismometer is actually the
sensor recording ground motion, and thus a key component of
the entire seismograph system, which also contains amplifying,
timing, and recording components. The product, a record of
ground motion as a function of time, is a seismogram.

Following linear system theory, we note that a seismogram is
not an exact representation of the ground motion. Seismograms
depend upon the seismometer and the rest of the seismograph
system, because the sensitivities of seismometers vary with the
frequency of the motion recorded. Moreover, seismometers
record ground motion as displacement, velocity, acceleration,
or various combinations of these.!

Once recorded, distributing seismic data is crucial, because
the data are of no use until they are available for study. Hence
seismology has long been a leader among the sciences in
developing public data distribution. This tradition began a
century ago out of necessity. Unlike a geological field observa-
tion or a geochemical experiment, observations at many sites
are needed to locate and study earthquakes, with the more data
the better. Soon after seismometers became sensitive enough to
teleseismically record earthquakes, arrival times were shared.
The first major attempt to gather and publish seismically
recorded arrival times was the bulletin of the Bureau Central
International de Séismologie (BCIS), which began in 1904. The
International Seismological Summary (ISS) began publication
in 1913,% and eventually became the Bulletin of the Inter-
national Seismological Centre (ISC), now an authoritative
source of earthquake locations. Not only arrival times but also
polarities and amplitudes were disseminated, enabling the
study of magnitudes and focal mechanisms.

This sharing of data has been crucial to seismology’s growth.
In the modern era, the World Wide Standardized Seismograph
Network (WWSSN), which started in 1962, was the first means
of globally sharing full seismic waveform data. Today, high-
quality digital global seismic data are available through the
Federation of Digital Broad-Band Seismographic Networks
(FDSN), of which the stations of the US-sponsored Incorpor-
ated Research Institutions for Seismology (IRIS) are a part.
Data and results such as earthquake locations are also provided
by national and regional data centers. Seismologists anywhere
in the world need only a computer and access to the Internet
to freely and conveniently obtain terabytes? of digital seismic

1 This is analogous to the way animals see differently; the electromagnetic radiation

is the same, but human eyes respond slightly differently than those of bears (which are
very nearsighted), and entirely differently from the hexagonally tiled eyes of flies.

2 Its original name was the Monthly Bulletin of the Seismological Committee of the
British Association for the Advancement of Science.

3 One terabyte (Tbyte) equals 1012 bytes.
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Fig. 6.6-1 Pendulum seismograph consisting of a mass, a spring, and a
dashpot.

data, software to look at it, and a great deal of other earth-
quake information. As much as any development in theory or
selsmometry, this free access to data and software is respons-
ible for the remarkable growth of the field within the past
century. Not only can scientists work more efficiently, but this
openness has encouraged the sharing of data and models, and
allowed comparison and testing of results.

6.6.2 The damped barmonic oscillator

The basic problem of seismometry is how to measure the
motion of the ground using an instrument that is also on the
ground. The traditional solution is to use an inertial, known as
a pendulum, system, so that the motion of the pendulum is out
of phase with the ground motion. Three orthogonal seismo-
meters (vertical, north—-south, east-west) can give a three-
dimensional record of ground motion. A schematic vertical
seismometer is shown in Fig. 6.6-1. The key elements of the
system are the mass, the spring, and a dashpot, or damping
device. We consider such a system in general, without concern
for the mechanics of how it is actually implemented.

This mechanical seismometer system is a damped simple har-
monic oscillator. If the spring equilibrium length in the absence
of ground motion is &, the spring exerts a force proportional to
its extension from equilibrium as a function of time, &(z) — &,
times a spring constant k. The dashpot, with damping constant
d, exerts a force proportional to the velocity between the mass
(m) and the earth. So, for a ground motion #(z),

d? &)
m;[é(t) +u(t)] + d? + RIE(E) — &1 = 0. (1)




If we define &(2) — &, as &(2), the displacement relative to the
equilibrium position, Eqn 1 becomes

mé + dé + k& =—mii, (2)
or
-+ 288 + wiE=—il, (3)

where the single and double dots denote the first and second
time derivatives, @, = \/k/m is the natural frequency of the
undamped system, and the damping is described by £=d/(2m).
This is a linear differential equation with constant coefficients
that we encountered when we used a damped harmonic oscilla-
tor as a model for anelasticity (Section 3.7.5). Thus Eqn 3 is the
inhomogeneous (forcing term) version of Eqn 3.7.8, where the
damping term g appeared as 0,/2Q. To solve it, we assume that

u(t)=e7 and E&(t) = X(w)e (4)

and substitute Eqn 4 into Eqn 3 to yield

X(0)(~0? - 2eio+ w})e ¥ = w?e ™, (5)
or
X(o) =-0?/(0? - 0} +2¢€i0), (6)

which is the instrument response produced by a ground motion
e ot

X(w) is complex and can be written in terms of the amplitude
and phase responses

X(@)=| X(@) [, -

where

|X(0) |= 0¥ [(0? ~ 03)? + 4202, )

$(0)=—tan —22_ 17 o
" — w;

As shown in Fig. 6.6-2, these functions have several interesting
features. First, as the angular frequency of the ground motion,
o, approaches the natural frequency of the pendulum, @,, the
amplitude response is large. This effect, called resonance, is like
“pumping” a playground swing at its natural period. Thus the
seismometer responds best to ground motion near its natural
period.

For frequencies much greater than the natural frequency,
®>> 0y, | X(w)| = 1, and ¢(w) — 7, so the seismometer records
the ground motion, but with the sign reversed.* To see why this

4 To see this, quickly jiggle an object hanging by a rubber band and note that its
motion is out of phase with your hand.
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Fig. 6.6-2 Amplitude response | X(@) | and phase delay ¢(o) fora
pendulum seismometer such as that shown in Fig. 6.6-1.

occurs, consider Eqn 3. For @ > @,, the & term is the largest
term on the left-hand side, so & approximately equals #. Thus
the seismometer responds to the ground displacement. On the
other hand, for frequencies much less than the natural fre-
quency, ®<< @y, | X(0) | = 0*/ 0}, and ¢(w) — 0. Hence, in this
case the seismometer responds to acceleration, as can be seen
from Eqn 3, because the w3& term is dominant, so & is pro-
portional to i The shape of the instrument response depends
on the damping factor b = &/w,. For b = 0, the system is
undamped, and the amplitude response is peaked around the
resonant frequency, @= @,. The seismometer amplifies ground
motion with periods near its natural period. As damping is
increased, the curve is smeared out. Thus the natural period
and damping are used to design a seismometer to record
ground motion in a particular period range.

Figure 6.6-2 bears a strong resemblance to Fig. 3.7-13, which
showed the frequency response for a damped harmonic oscil-
lator as a function of Q. The plots are slightly different, in
that Fig. 3.7-13 is plotted as a function of , and Fig. 6.6-2 is
plotted as @wy/@. In addition, Fig. 6.6-2 is normalized to the
value at ®,/@= 0. However, the curves convey the same infor-
mation because b and Q are related as b = 1/2Q. The Q values
in Fig. 3.7-13 of 5, 15, and 100 correspond to » values of 0.1,
0.03, and 0.005, all of which would plot close to the curve for
h=0in Fig. 6.6-2.
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6.6.3 Earth noise

An important consideration in designing seismometers is earth
noise. A challenge of seismometry is to create sensors sensitive
enough to record small teleseismic signals, given that noise sets
a limit to the level of detection. Moreover, studies using seismic
data in many applications must consider the signal-to-noise
ratio.

Many factors contribute to seismic noise, including solar and
lunar tides within the solid earth, fluctuations in temperature
and atmospheric pressure, storms, human activities, and ocean
waves. These factors are constantly at work, so the crust is
continually reverberating. Most of the noise occurs at periods
between 1 and 10 seconds. Such waves, called microseisms, are
shown in Fig. 6.6-3 (top). Even before the first waves arrive
from the earthquake shown, the seismogram shows a roughly
constant level of seismic energy (center). The spectrum shows
that most of this noise is in the frequency range of 0.1-0.2 Hz
(periods of 5-10s) (bottom). The primary source for these
microseisms is thought to be ocean waves. Seismometers are
noisier the closer they are to coastlines, so ocean island
stations are among the noisiest.

How a seismometer is deployed has a great effect upon the
noise that it records. Most sources of noise decrease away from
the surface, so permanent seismometer installations are often
in boreholes. For portable seismometers, burying them even
half a meter beneath the surface greatly reduces noise from
daily temperature fluctuations. Rain generates high frequency
noise, and wind, coupled to the ground through the roots of
swaying trees, can generate severe long-period noise. Human
activity (trucks, trains, machinery, etc.) causes significant
ground noise, so seismologists deploying temporary stations
face a trade-off between the convenience (continuous power,
security, constant temperature, no flooding) of building base-
ments and the lower noise of remote sites.

6.6.4 Seismometers and seismographs

Seismometers record ground motions ranging from large
high-frequency accelerations near an earthquake to small
ultra-long-period normal mode signals. Because no single
seismograph can do this, different instruments have evolved
to handle the different dynamic ranges and frequency ranges of
seismic waves.

Dynamic range is measured in decibels (dB), which increase
by 20 for each order of magnitude increase in amplitude. Thus,
if signal A, is five orders of magnitude larger than signal A,,
A,/A, = 10%, and the dynamic range is 100 dB. The displace-
ments associated with a magnitude 2 earthquake may be as
low as 10719 m, whereas teleseismic displacements from a
magnitude 8 earthquake may be on the order of 107! m, and
displacements near a large earthquake can be much greater.
Thus the dynamic range of seismometry is at least 180 dB.
Similarly, the frequency range of seismometers spans seven
orders of magnitude from Earth tides (0.000023 Hz) to ultra-
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Fig. 6.6-3 Demonstration of seismic noise on a broadband seismogram
in Hudson, New York, from an April 7, 1995, Tonga earthquake.

Top: Seismic noise appears before the first arrival, which is P
Center: Visual examination of the noise shows waves with a dominant
period of about 5-6 s, called microseisms. Bottom: The spectrum

of the noise has largest amplitude in the 5-10 s period range.

high frequencies of greater than 200 Hz for very shallow struc-
ture investigations.

The earliest attempts to record the motions of earthquakes
used seismoscopes, which differ from seismographs in that
they record ground motion without time information. The first
known seismoscope, built by the Chinese astronomer Chang
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Fig. 6.6-4 Two examples of seismoscope
recordings, which show the amplitudes

of motions without a record of time.

Left: Seismogram of the great 1906 San
Francisco earthquake, recorded by the
Ewing duplex pendulum seismoscope in
Carson City, Nevada. (Kanamori, 1988.
Importance of historical seismograms

for geophysical research, in Historical
Seismograms and Earthquakes of the world,
ed. W.H.K. Lee, H. Myers and K. Shimizaki,
copyright 1988 by Academic Press,
reproduced by permission of the publisher.)
Right: Seismogram of a m, =4.3 earthquake
in Hawaii, recorded as a telescope image

at the Hawaii Telescope Observatory.

The dark images are stars, and the lines
emanating from the large star at the upper
center of the image result from tilting of the

Carson City, Nev. Ewing Duplex Pandutum.
(From photographic copy.)

telescope during the earthquake. (Courtesy
of L. Meech.)

Heng in about ap 132, consisted of a pendulum inside a 6 ft-
diameter jar. Eight dragons’ heads with metal balls in their
mouths were placed around the rim of the jar, so the balls
would drop in the direction from which seismic waves arrived.
Later seismoscopes included a pendulum etching a path on a
bed of sand (A. Bina, 1751), a collection system for a bowl
filled to the brim with mercury (A. Cavalli, 1784), and optical
reflection off a basin of mercury (R. Mallet, 1851). Two very
different seismoscope recordings are shown in Fig. 6.6-4.

Early seismometers, incorporating a record of the time-
dependence of the ground motion, were purely mechanical
instruments like that outlined in Section 6.6.2. Seismometry
began with the designs of F. Cecchi around 1875, and devel-
oped rapidly through the work of seismologists like J. Milne, J.
Ewing, and T. Gray. The first teleseismic recording was by a
seismograph in Potsdam of a Japanese earthquake in 1889.
By the start of the twentieth century a global network of more
than 40 seismographs was in operation. Such instruments often
produced excellent data but responded best to very large earth-
quakes because their magnifications were low, only about 100
times the actual ground motion.

Higher magnifications are achieved by using electromagnetic
instruments, based on a design introduced by Galitzin in 1914
that is now common. The motion of the pendulum relative to
the frame is measured by moving a coil attached to the mass
through the magnetic field produced by a magnet fixed to the
seismometer frame. The voltage produced in the coil is pro-
portional to the time rate of change of the magnetic field, and
thus to the velocity of the mass relative to the frame (Fig.
6.6-5). The sensitivity can be increased by feeding the output
from this sensor into a galvanometer, a wire suspended by a
thin fiber such that it is deflected by the current produced by the
sensor (Fig. 6.6-6). A mirror is attached so that ground motion
deflects the mirror and thus changes the position of a beam

Fig. 6.6-5 Schematic illustration of an electromagnetic seismograph, in
which the mass is coupled to an electromagnetic transducer. Motions of
the mass move the coil through the magnetic field, generating an electric
current. The voltage across the coil is proportional to the relative velocity
between the mass and the magnet.

of light hitting a piece of photographic paper. The paper is
mounted on a helical drum which turns once per hour.

Thus the response of an electromagnetic analog seismo-
meter system is a combination of the pendulum, transducer
(electromagnetic velocity sensor), and galvanometer responses.
These are shown as log-log plots in Fig. 6.6-7. The pendulum
response (Fig. 6.6-7a, b) is proportional to w* for @ < a,, the
pendulum frequency. The transducer response (Fig. 6.6-7¢, d)
is proportional to @ because it responds to the velocity,
the derivative of displacement. The galvanometer response




402 Seismograms as Signals

Attenuator

Transducer

o= m e b e g

Amplitude response

Phase response

T T T T
T La Pendulum i b. Pendulum T
g
o
Q.
vy
I o —— -4 0
v
8 - -1 ©
A £
o (A
[
w)
R L < .
o T
L 4
-
1 1 1 l 1
T T T T 1
< Lc Transducer | " d. Transducer 7
Z
S
&
I o 10
s - ©
§ = - >
o
£
o o -1-7
8 - -
| | 1 Il 1
T T T 1 T
= - £, —— |
Q - -
vy
o
o
Q.
g v - +— 4 0
— §%)
: - ©
> =
o o
K=
=} o 1-r
S L i
Galvanometer Galvanometer
' : : : :
= gATotaI ™ h. Total 7
5 —
&
g 2r 10
— - ©
z £
]
=
o = -
2| 7T
9 i
-
| i | 1 1
!ogwg Iogws logawy logws
Log (frequency) Log (frequency)

Fig. 6.6-7 Response of the components of an electromagnetic
seismograph system. Left panels show the amplitude responses, and right
panels show the phase responses. @, and w, are the pendulum and
galvanometer frequencies.

(Fig. 6.6-7e¢, f) falls off as @™ for w> w,, the galvanometer fre-
quency. The combined effect is shown in Fig. 6.6-7g, h. Thus,
the response of an electromagnetic seismometer can be “shaped”
by choosing the pendulum and galvanometer periods.

Two classic electromagnetic instruments used heavily for
years were the World Wide Standardized Seismograph Network

1

d

Recording

Fig. 6.6-6 Coupling of the transducer of an
electromagnetic seismograph to a galvanometer, which
deflects a mirror and thus a light beam, causing a time
history of the voltage and thus the mass movements to be
recorded on photographic paper. Timing pulses deflect
the mirror to make minute and hour marks.

drum

1010 L

Guralp-3T

108

Amplification of acceleration

10° |

0.01 1
Frequency (Hz)

0.0001 100

Fig. 6.6-8 Frequency domain instrument responses for several types of
seismometers. The SRO and DWSSN sensors have responses peaked at
long periods and so do not record high-frequency signals. The STS-1,
STS-2, and Guralp-3T sensors are broadband seismometers with a flat
response over a wide range of frequencies.

(WWSSN) long- and short-period instruments. The long-
period (LP) instrument had a pendulum period of 15s (30's
in some early versions) and a galvanometer period of 100 s.
The short-period instrument had a 1 s pendulum and a 0.75 s
galvanometer. Each WWSSN station had three LP and three SP
instruments oriented to record ground motion in the vertical,
east-west, and north-south directions. The resulting response
curve of the LP instrument (labeled “DWWSSN?” from when
some of the WWSSN seismometers were converted to record
digitally) is shown in Fig. 6.6-8. Instruments ran at several pos-
sible magnifications (gains). The two different instruments
were designed to reduce the effects of seismic noise. The LP
sensors had peak sensitivity in the 10~40 s range, making them
ideal for long-period teleseismic studies. The SP sensors were
peaked at around 1, a good period with which to pick the
travel times of P waves.

A sample of the data is shown in Fig. 6.6-9. The record,
covering 24 hours, has calibration pulses at the begin-
ning, which can be used to check the amplitude and phase
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Fig. 6.6-9 Sample WWSSN seismogram, showing the long-period vertical component from an earthquake in the Indian Ocean, recorded 36° away in

Pakistan.

calibration. Timing marks, generated by crystal clocks accur-
ate to 1 part in 107 are placed at each minute (short mark) and
each hour (longer mark). Every sixth hour has no hour mark.
This timing allowed arrival times to be read accurately, and the
calibration allowed studies using true amplitudes. The seismo-
grams were microfilmed and made available to the seismolog-
ical community.

Although many results discussed in this text were derived
from such data, using WWSSN data was cumbersome. Micro-
fiche records had be acquired, examined in a microfiche reader,
copied, and refiled. The traces were then digitized by taping
them to a special table that contained a grid of electromagnetic
wires and then tracing the seismogram with a cursor. After
digitization, the seismogram was interpolated to a desired sam-
pling rate. The hand digitization added a source of error, as it
was not always easy to follow the trace of interest, especially
for large earthquakes where the surface waves could wrap
around the seismic record for several hours. Because of the
effort involved, entire Ph.D. dissertations might involve the
analysis of only tens or hundreds of seismograms, a task that is
now done in minutes to days.

The replacement of analog seismographs by digital broad-
band instruments has important advantages. The newer
seismometers provide better data over a broader frequency
band, and the digital data are available via magnetic tape,
compact disk, or the Internet, making computer analysis much
easier. Routine processing, such as rotating into radial and
transverse components and making record sections, has be-
come nearly trivial. Large volumes of data are available and
can be processed easily. For example, as of 2000 the IRIS Data
Management Center had over 7 Tbytes of digital data available
over the Internet either immediately or with only the short
delay needed for it to be read from mass storage systems.

Some of the technology involved in more recent seismograph
systems is illustrated by one of the first digital seismological
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Fig. 6.6-10 Block diagram of the sensing and feedback electronics of
an IDA gravimeter recording system. (Agnew et al., 1976. Eos Trans.
Am. Geophys. Un., 57,1808, copyright by the American Geophysical
Union.)

systems, the instrument used by the International Deployment
of Accelerometers (IDA) shown schematically in Fig. 6.6-10.
The sensor is a force-feedback gravimeter that detects vertical
ground motion by the resulting change in gravity. The gravi-
meter mass is connected to the center plate of a capacitor whose
outer two plates are fixed. As the mass moves, the voltage
between the center plate and the outer plates is proportional to
the displacement. A § kilohertz alternating voltage applied to
the outer plates is amplitude-modulated (Section 2.8.1) by the
lower-frequency seismic signal. The modulated signal is fed
to an amplifier that generates a voltage proportional to the
displacement of the mass. This signal then goes to an integrator
circuit whose output is proportional to the acceleration of the
mass. This is the seismic system’s output, which is sampled
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once every ten seconds. The voltage is also fed back to the outer
capacitor plates to stabilize the system and increase linearity.
This force-feedback, an important feature of modern seismo-
meters, provides a greater dynamic range because the mass
does not move as far to record large amplitudes. Because
this instrument can record a static displacement, it has a flat
response out to frequencies approaching @ = 0. Such long-
period response is valuable for studying normal modes and
large earthquakes.

The most versatile of the current digital seismometers are
broadband systems that record over a very broad frequency
range. At present, the primary broadband seismometers are the
Streckheisen STS-1 and STS-2 and Guralp-3T, which use force-
feedback technology to allow large dynamic and frequency
ranges (Fig. 6.6-8). The advantages of such a broad frequency
response are illustrated in Fig. 6.6-11. As shown, the seismo-
gram can be filtered to isolate and give excellent records of two
very different overlapping signals. These seismometers are very
compact (the three-component STS-2 is the size of a bowling
ball and weighs 20 Ib)® but record with a flat response at over
three orders of magnitude in frequency. The STS-1 is designed
for permanent installation, whereas the STS-2 and Guralp-3T
are robust enough to be used as portable instruments.

A variety of specialized seismic instruments are also used.
Strainmeters are used to measure gradual displacements, especi-
ally near faults and volcanoes. Such instruments are technically
challenging to build, and have taken unusual forms. For
instance, an early strainmeter made by H. Benioff consisted of
a quartz rod 24 m long, attached to the ground at one end,
and extending through a capacitance transducer at the other.
Strain rates as small as 107'% s could be recorded. A recent
strainmeter with a hydraulic sensor achieves a strain sensitivity
of 10712 with a dynamic range of about 130 dB. Over longer
distances, horizontal strains are observed using laser measure-
ments between sites (often across faults) and space-geodetic
techniques (Section 4.5), including the GPS satellite system and
very long baseline radio interferometry.

At the other end of the spectrum of seismic instrumentation
are strong-motion sensors that record strong shaking near
an earthquake. Whereas strainmeters record minute dis-
placements, strong-motion sensors, also called accelerometers,
record accelerations up to 2 g without breaking or going off
scale. For example, horizontal accelerations of 1.25 g were
recorded 3 km from the 1971 San Fernando Valley earthquake,
and vertical accelerations of 1.74 g were recorded 1 km from
the 1979 Imperial Valley earthquake. Thus the seismometer
pendulum frequency @, is chosen to exceed the highest fre-
quency of interest (about 20 Hz). These instruments are stable
because the small pendulums make the accelerometers less
susceptible to tilt and drift than longer-period instruments. A
damping parameter (often 0.7 of the critical value) is chosen to

5 Before such technology, some mechanical seismometers built in the first half of

the twentieth century weighed more than 20 tons because the large mass gave higher
long-period magnification, as shown by Eqn 6.
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Fig. 6.6-11 STS-2 broadband seismogram recorded in Slippery Rock, PA,
from a July 3, 1995, Tonga earthquake. Because the seismometer records
a wide range of frequencies, the same seismogram can be used to study
both local and teleseismic events. (a): The original broadband record.

(b): The same record, low-pass filtered at a frequency of 0.03 Hz, showing
the long-period teleseismic signals from the Tonga event. (c): The record
high-pass filtered at 0.5 Hz, showing the high-frequency signals from a
local event. (d): A zoom-in of the high-pass filtered record shows the full
waveform of the local event. The § — P time suggests that the event was
20 km away from the station, probably a local quarry blast.




Fig. 6.6-12 Diagram showing the analog-to-digital
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’ Sampling l | Decimation

(ADC) process. The analog part of the system consists of
the generation of a seismic signal by the seismometer, its
amplification, and analog anti-aliasing (AAA) filtering.
The digital part of the system consists of sampling the
AAA-filtered signal, filtering the signal further with a

Seismometer
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DAA filter

b‘ﬂ,

Amplifier AAA filter

A 4

digital anti-aliasing (DAA) filter, and then decimating
the signal to achieve the desired sampling rate.
(Scherbaum, 1996, with kind permission from Kluwer
Academic Publishers.)

give a response curve that is flat and directly proportional to
ground acceleration from periods of zero to the natural period
of the seismometer.

A major advance in seismometry has been in timing, which
has long been a difficulty. In the early days of seismology,
timing errors played a large part in the mislocation of earth-
quakes. However, seismometers now receive time signals from
GPS satellites, whose atomic clocks are accurate to a billionth
of a second. Similarly, although ocean bottom seismometers
cannot receive GPS signals, accurate clocks for them are now
available.

6.6.5 Digital recording

Although digital seismic data are easier to use than analog data,
the conversion of continuous ground motion into a digital
seismogram is not a trivial matter. Figure 6.6-12 shows how
this is done. Ground motion, represented by the waveform at
the left, is detected by the seismometer through the motion
of the mass. This motion is converted into an analog electrical
signal and then amplified. To avoid a spurious signal due to
aliasing (Fig. 6.4-3), a combination of anti-aliasing filters is
used. Many seismometers use an initial frequency domain low-
pass filter as an analog anti-aliasing (AAA) filter. The filtered
signal is then oversampled at a rate that is at least twice the
frequency of the AAA filter in order to avoid aliasing. This
signal is then convolved with a digital anti-aliasing (DAA)
filter, often called a finite impulse response (FIR) filter, and
finally resampled at twice the desired Nyquist frequency.

An example of a FIR filter is shown in Fig. 6.6-13a, with the
resulting signal shown in Fig. 6.6-13c. The FIR filter maintains
the shape of the pre-filtered signal, but introduces spurious
noncausal arrivals that might be mistaken for early stages of
earthquake rupture. These precursory signals result because
the FIR filter’s impulse response is an emergent signal. This
effect can be removed by correcting the phase of the FIR filter
to make it causal (Fig. 6.6-13b). This filter does not cause pre-
cursory signals (Fig. 6.6-13d), but the shapes of the waveforms
are changed. We noted a similar phenomenon in Section 3.7.8,
where anelasticity acted as a filter, removing high frequencies
and making the waveforms noncausal unless the phase was
changed. As discussed in Section 6.3.3, there is no perfect way

Analog system Digital system
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Fig. 6.6-13 Example of a FIR filter, a type of DAA filter, and its effects.
When the FIR filter (a) is used for the digital anti-aliasing, the resulting
signal (c) retains the wave shape of the original signal, but is preceded by
high-frequency artifacts. When a phase-corrected FIR filter (b) is applied
instead, the precursory effects vanish (d), but the seismic signal is phase-
shifted from the original. (After Scherbaum, 1996, with kind permission
from Kluwer Academic Publishers.)
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to filter a seismic signal, so we decide what we seek and what
we will accept as a consequence.

Because the seismogram depends on the instrument response
that is convolved with the ground motion, obtaining the
ground motion requires specifying the frequency response of
the seismometer. This can be done by giving the amplitude
and phase response as a list of the values at each frequency. A
more compact representation gives the frequency response as a
complex fraction like

B
T(iw) =

=z~
=
2

o] ] to-p,)

b
Lk}
iN

The fraction is described by a set of L complex zeros z; at
which the numerator is zero, N complex poles p, at which the
denominator is zero, and the constants 8 and . Because the
frequency terms iw are always imaginary and the poles always
contain a real part, the denominator never becomes zero,
avoiding any singular values.

The instrument responses in Fig. 6.6-8 were calculated
from the poles and zeroes of the seismometer responses. For
example, the STS-1 response has three zeroes, all equal to
(0, 0), and four poles, which come as complex conjugates:
(=0.0123, 0.0123), (-0.0123, -0.0123), (-39.1800, 49.1200),

—
(=1
=

~ Ay S\ A

(~39.1800,-49.1200). These poles provide the corner frequen-
cies and determine the sharpness of the corners. Similarly, the
DWWSSN response has five zeroes and 11 poles.

Seismometers record combinations of ground displacement,
velocity, or acceleration, depending upon the application. In a
strong-motion seismometer, the displacements may be greater
than the size of the instrument itself, so accelerations are
measured to keep signals on scale. This makes sense because
accelerations are primarily responsible for damage to struc-
tures and so are considered in strong-motion studies. At the
other end of the frequency spectrum, strainmeters are used to
study slow tectonic displacements. In fact, if they measured
accelerations, the signals would be so small as to be unusable.
Most other branches of earthquake seismology fall in between,
using the waves from distant earthquakes, and so use seismo-
meters that record ground velocity.

Although different instruments record displacement, velo-
city, or acceleration, it is simple to convert between them. For
instance, given a velocity record, the acceleration is found by
taking the derivative of the seismogram, and the displacement
record is found by integrating. This is easily done in the
frequency domain, because if F(w) is the Fourier transform of
f(2), then ioF(w) is the transform of df(t)/dt, and —w*F(w) is
the transform of d*f(z)/dt* (Section 6.2.4). Thus, a velocity
seismogram can be converted to acceleration by multiplying the
complex value of its transform at each frequency by i, or to
displacement by dividing by i@. Of the three, the displacement
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Fig. 6.6-14 Demonstration in the time domain of the relation between displacement, velocity, and acceleration. (a): A synthetic example, consisting

of delta function-like acceleration pulses. The velocity and displacement signals are obtained through successive integrations of the accelerogram.

(b): A real example, with an accelerogram recorded on the first floor of a building in Los Angeles during the 1971 San Fernando earthquake. The velocity
and displacement records were obtained through successive integrations of the accelerogram. (Krinitzsky et al., 1993. Fundamentals of Earthquake
Resistant Construction. Copyright © 1993. Reprinted by permission of John Wiley & Sons, Inc.)




seismogram has the greatest power at low frequencies, and
the acceleration seismogram has the greatest power at high
frequencies. In general, displacements have lower frequencies
than velocities, and velocities have lower frequencies than
accelerations, because integration “smoothes™ a signal, whereas
differentiation makes it “rougher.”®

Figure 6.6-14a illustrates this relation with three different
versions of the same seismogram. If an accelerogram consists of
high-frequency spikes (top), then smoother lower-frequency
velocity (center) and displacement (bottom) traces result from
integrating once and twice. Figure 6.6-14b shows this effect for
a strong-motion seismogram of the 1971 San Fernando earth-
quake, where the velocity and acceleration records have higher
frequencies than the displacement. It is common in earthquake
engineering to show the response of a structure to ground
motions using a plot that shows the displacement, velocity, and
acceleration. Figure 6.6-15 shows this formulation for the data
in Fig. 6.6-14b. This representation uses the relation between
the Fourier transforms expressed above, so the velocity scale is
vertical, whereas the acceleration and displacement scales have
opposite slopes as a function of frequency.

6.6.6 Types of networks

Most seismic experiments require multiple seismometers that
are deployed in networks or arrays. Different applications,
such as studying regional and global earth structure, resource
exploration, seismicity monitoring, or identifying nuclear tests,
lead to different deployment geometries. In some cases a
unique network of stations is used for a particular application,
but often an existing network has a geometry that is a com-
promise for different objectives.

Although the division is somewhat artificial, deployments of
seismometers are often divided into global networks, regional
networks, and arrays. Global networks are used to study global
patterns of seismicity, plate tectonics, mantle convection, and
earth structure. For these purposes seismometers should ideally
be spread evenly around the world. This means, however, that
the station spacing is too sparse to resolve the entire wave
field.” Instead, individual measurements at separate stations
are combined for applications including locating earthquakes,
3-D tomography, and waveform analyses.

The antithesis of a global network is a local array, where a
set of seismometers is deployed with a geometry chosen for a
particular goal. Array data are often analyzed as a single entity,
as in refraction and reflection studies (Sections 3.2 and 3.3).

¢ An analogy might be to compare displacement and velocity to the topography and
gradient of a mountain. A kilometer of topography over a horizontal wavelength of a
meter would be very unusual, but a kilometer of topography over a longer wavelength
of 5-10 km would be a normal mountain. Similarly, large vertical gradients are rare at
the scale of mountains (El Capitan in Yosemite and the Jungfrau in Switzerland are
exceptions), but common at the higher spatial frequency scale of meters, as where a
path goes over a boulder.

7 By analogy to time series, such undersampling is termed spatial aliasing.
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Fig. 6.6-15 Demonstration in the frequency domain of the relation
between displacement, velocity, and acceleration. In this example, taken
from the accelerogram in Fig. 6.6-14b, a site response spectrum of the
building housing the strong-motion seismometer is given as displacement,
velocity, and acceleration. The multiple curves show the amplitude of the
building response at various levels of damping, with the undamped curve
at the top, and successive levels of damping at 2%, 5%, 10%, and 20% of
critical damping. (Krinitzsky et al., 1993. Fundamentals of Earthquake
Resistant Construction. Copyright © 1993. Reprinted by permission of
John Wiley & Sons, Inc.)

Other examples are arrays used to locate distant nuclear tests.
Data from the array stations are stacked to track the propaga-
tion of the wave field across the array, so the wave vector shows
the direction the waves came from and the distance they have
traveled. One of several exceptions to this division between
global networks and arrays is normal mode seismology, where
all the stations of a global network are sometimes used as a
single array.

Between global networks and arrays are regional networks,
which usually focus on the seismicity or structure of a par-
ticular region. The data are sometimes analyzed with array
techniques, but are more often combined as individual meas-
urements (such as arrival times or amplitudes) in the same way
as global network data.

6.6.7 Global networks

The global network of seismometers has a rich history. At the
start of the twentieth century there were already seismometers
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Fig. 6.6-16 Station map of the Federation of Digital Broad-Band Seismographic Networks (FDSN) as of 1999. (Courtesy of the Incorporated Research

Institutions for Seismology.)

in locations around the world, operated by groups including
many Jesuit institutions. Devastating earthquakes such as the
1906 San Francisco and 1923 Tokyo events spurred the instal-
lation of seismometers and the interchange of data. Bulletins
of earthquake locations were published by several agencies,
the most notable being the ISS/ISC bulletin (Section 6.6.1). By
mid-century, the ISS received arrival times from several hun-
dred stations for very large earthquakes. However, there were
problems due to a lack of standardization. Different types of
seismometers were used, with a wide range in the quality of the
response, timing, and station operation practices. As a result,
earthquake locations were often poor, and focal mechanisms,
which require accurate information about polarities, were
rarely derived.

These problems were largely solved with the creation of the
World Wide Standardized Seismographic Network. WWSSN
seismometers were standardized and had known responses.
The network was installed, starting in 1961, to monitor nu-
clear testing within Eurasia, and had a high density of stations
around the borders of the Soviet Union, China, and Eastern
Europe. The WWSSN, which reached its peak of about 120
stations in the late 1960s, gave a great boost to geophysics.
Several great earthquakes in the 1960s, such as the 1964 Alaska
earthquake, provided excellent sources for seismic investiga-

tions. WWSSN data were crucial for advances in plate tectonics,
earthquake source studies, and global velocity structure.

The first digital stations began to be deployed in the 1970s.
Over the next two decades, the number of permanent digital
seismometers increased gradually. Following the phase-out of
the WWSSN, these became part of the Global Digital Seismic
Network, the primary means of global broadband data collec-
tion between 1977 and 1986. The GDSN was enhanced by
the network of IDA gravimeters, beginning in 1977, and by the
French GEOSCOPE network, which has deployed broadband
seismometers since 1982.

In 1986, the GDSN gave way to the IRIS Global Seismo-
graphic Network (GSN) program, which incorporates many
borehole seismometers with an aim toward global coverage,
with 128 stations spaced about 2000 km apart. These are
extremely quiet, permanent broadband seismic stations of the
highest quality. The GSN is part of a larger Federation of
Digital Broad-Band Seismographic Networks (FDSN) that also
includes the US National Seismographic Network (NSN) and
networks from other countries including Canada (CNSN),
China (CDSN), France (GEOSCOPE), Germany (GEOFON),
Italy (MEDNET), Japan (Pacific 21), and Taiwan (BATS).
FDSN station locations are shown in Fig. 6.6-16. Some
FDSN stations are also part of the International Monitoring




System (IMS) network used to monitor nuclear testing (Section
1.2.8).

Although the present global network of broadband seismo-
meters relies on land sites, it is hoped that the global network
will soon include permanent ocean bottom seismometers
(OBS), especially in the Southern Hemisphere, where there
is much less land, and coverage is currently very uneven.
Although OBS instruments are currently used mostly for tem-
porary deployments, the technology is evolving to the point
where permanent sites are practical.

An important aspect of the different networks of high-quality
broadband seismometers is considerable standardization in
data processing and formatting. All 7 terabytes of seismic data
archived by the IRIS DMC? as of 2000 are available in a format
called SEED (Standard for the Exchange of Earthquake Data),
which is the standard for the FDSN. SEED data can be con-
verted into whatever format an investigator requires.

It was not until the mid-1990s, more than 30 years after the
start of the WWSSN, that the global number of permanent
digital broadband seismometers surpassed the number of
WWSSN stations at its heyday. However, digital data from all
parts of the FDSN can be retrieved as if it were a single array,
making it more powerful than the WWSSN for seismic ana-
lyses. Many stations now report in real time through satellite
telemetry, so seismic signals arrive at data centers a fraction
of a second after they occur, allowing better quality control.
Efforts are being made to eventually have all GSN stations
report in real time, which will be important for applications
like tsunami warning. Software has been developed to take
real-time data from different networks and display it on
the Internet as if it were from a single array. Hence, anyone
with a computer and access to the Internet will soon be able
to examine global seismic data within seconds of them being
recorded.

6.6.8 Arrays

For global networks, the precise configuration of individual
stations is less important than the total coverage. However,
the geometries of seismic arrays are optimized for certain
investigations. Arrays can be linear, two-dimensional, and
even three-dimensional, incorporating borehole seismometers
(Fig. 7.3-8).

There is always a trade-off between the benefits of linear
versus two-dimensional arrays. The same number of stations,
and therefore cost and time for installation, provides greater
resolution if deployed in a linear manner, but the resulting
two-dimensional “slice” into the earth does not image the third
dimension. Linear arrays have long been the mainstay of active
source reflection and refraction experiments.” A marine linear

8 Because all data are duplicated in a sort order, and also stored off site, the com-
puter storage needed is four times greater, or 28 Tbytes.

9 Active experiments include their own seismic sources, as opposed to passive
experiments using earthquake sources.
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array is easily deployed by towing hydrophones behind a ship,
and similar linear deployments are used for land-based studies.
These data are analyzed using techniques discussed in Sections
3.2and 3.3.

Linear arrays are most useful if the structure being invest-
igated varies most in one direction, as is often the case at plate
boundaries. For instance, Fig. 5.3-10 (bottom) showed the
seismic structure of the East Pacific rise obtained from an array
of OBSs. Because the structure of the lithosphere changes much
more significantly perpendicular to the ridge than parallel to
it, most of the OBSs were deployed in a line crossing the
ridge. Most of the remaining seismometers were placed in a
second line, parallel to the first. Both lines were aligned along
a great circle path to the seismogenic zones of Tonga and
South America, so as to maximize the chance of obtaining good
signals from distant earthquakes. Similarly, at subduction
zones and transform faults structure varies more significantly
across the plate boundary than along it, so refraction lines are
often placed perpendicular to the boundary. For example, Fig.
3.2-17 showed a cross-section of the western US lithosphere
perpendicular to the San Andreas fault that was derived from
refraction surveys.

Two-dimensional arrays can create a three-dimensional
image of a small region. As a result, two-dimensional arrays
have been deployed around hot spots, rifts, plateaus, transform
faults, and subduction zones to study their structure and tec-
tonics. Reflection data are also now commonly gathered by
two-dimensional surface deployments. An important contribu-
tor to this development has been advances in computers and
graphics software that make it possible to analyze and model
such data and display the resulting earth structure in a compre-
hensible fashion. Such three-dimensional images are of great
importance in exploring for oil and gas and managing existing
oil and gas fields.

Special two-dimensional arrays, often consisting of short-
period vertical seismometers, have been used to monitor the
locations and magnitudes of underground nuclear tests. The
most ambitious such array was the circular Large Aperture
Seismic Array (LASA), which operated in Montana from the
mid-1960s until 1978. LASA was an array of arrays totaling
525 high-frequency vertical seismometers. Twenty-one clus-
ters of 25 seismometers, each covering 7 km?, were deployed
with a total array diameter of 200 km (Fig. 6.6-17). A similar
array is the Norwegian Seismic Array (NORSAR), built in
1971, with 22 sub-arrays spanning an area of 100 km?. Part
of NORSAR, the NORESS array, has 24 seismometers dis-
tributed within a 3 km-diameter circle. It has counterparts in
northern Norway, Finland, and Germany. As with the WWSSN,
arrays designed for nuclear monitoring have also been import-
ant for studies of earth structure. Array data can be stacked
(Section 6.5), allowing small seismic signals to be extracted
from noise. The characteristics of the inner core boundary were
first quantified using stacked array data for PKiKP waves, which
reflect at the boundary but are rarely identified on individual
seismograms due to their small amplitudes.
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6.6.9 Regional networks

Regional networks, intermediate between global networks and
arrays, are usually constructed to monitor local seismicity or
volcanism. Including Alaska, Hawaii, and Puerto Rico, over
3200 seismic stations are part of more than 40 separate US
networks (Fig. 6.6-18). Some have only a few stations, and
some have hundreds. Many use short-period vertical sensors,
but some use accelerometers. For example, the California
Strong-Motion Instrumentation Program operates more than
400 accelerometers to provide data for earthquake engineers.
Strong-motion data also provide excellent information on
source properties because much of the seismic signal is severely
attenuated at teleseismic distances. Some networks also incor-
porate broadband seismometers. For instance, as of 2000, the
Southern California Seismographic Network operated 79 broad-
band stations in addition to its 163 short-period instruments.
Regional network stations can also be valuable for earth struc-
ture studies, as shown in Fig. 6.6-19.

Many countries have regional networks. For instance, as
of 1999, Japan had about 560 stations in operation. These
stations have provided valuable data about the subduction
process there, including the double seismic zones (Fig. 5.4-20)
and ScS-to-P conversions at the slab top (Fig. 2.6-15).

Regional networks, like global networks, are continually
being upgraded. In the USA there are efforts under way, as part

Fig. 6.6-17 Seismometer geometry of the
Large Aperture Seismic Array (LASA).
(Capon, 1969. J. Geophys. Res., 74,3182~
94, copyright by the American Geophysical
Union.)

of the Advanced National Seismic System (ANSS), to install
more broadband and short-period seismometers, and to add
about 6000 strong-motion sensors in urban areas at risk from
damaging earthquakes. A very ambitious network planned is
the USArray, which would have three different components
operating simultaneously. First, the number of permanent
broadband stations would be increased (Fig. 6.6-20, left).
Second, 400 portable broadband seismometers would travel
around the country. Over eight years, this “bigfoot” array
would visit about 2000 sites in the continental USA, with
an average station spacing of about 70 km, before going to
Alaska and Hawaii (Fig. 6.6-20, right). Third, about 2400
seismometers (a mix of broadband, short-period, and high-
frequency sensors) would be used as flexible arrays to accom-
pany the moving array. As planned, USArray will be an array at
the scale of a regional network. Data from the moving array
will be available in near-real time, and can be processed using
migration techniques to attain high-resolution imaging deep
into the mantle.

Interestingly, because there is an increasing trend toward
real-time telemetry for transmitting data from the sensors,
seismology is moving toward a situation where data from
global networks, regional networks, and many local arrays
can be easily combined, largely eliminating the distinctions
between networks. This development offers great scientific
opportunities.
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Fig. 6.6-18 Map of regional network seismometer stations in the continental USA as of 1999. Some networks are cooperatively operated with Canadian

and Mexican institutions.

Fig. 6.6-19 Records from the short-period
seismometers of California regional
networks for an Oct. 17,1990, earthquake
in South America. The data reveal distinct
reflections off the sharp 410 km and

660 km mantle discontinuities. The ability
to examine large amount of data over a
small geographical region greatly increases
the resolution of earth structure. (Benz and
Vidale, 1993. Reproduced with permission
from Nature.)
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USNSN
+ 30 stations

2000 "“Bigfoot”
station sites

Fig. 6.6-20 Seismometer locations for the proposed USArray. Lefz: Solid triangles would be new permanent seismometers to augment the existing US
National Seismic Network (open triangles). Right: Possible locations of 2000 sites that the moving array of 400 broadband seismometers would
eventually cover. (Courtesy of P. Shearer.)

Further reading

Error analysis in the physical sciences is the subject of many books,
including Bevington and Robinson (1992). Seismological texts, especially
Aki and Richards (1980) and Lay and Wallace (1995), discuss seismolog-
ical instrumentation. Scherbaum (1996) addresses seismometry, especially
digital, from a signal processing viewpoint.

Because of its widespread use, an excellent literature is available both
for signal processing in general and for geophysical applications. These in-
clude introductory texts by Rabiner and Rader (1972), Claerbout (1976),
Bracewell (1978), Robinson and Treitel (1980), Kanasewich (1981), and
Hatton et al. (1986). Brigham (1974) discusses the FFT in detail.

Problems ~
. Find the coefficients analytically of the Fourier series for the
functions
(a) Astep:
)= 1 O0<t<1/2
-1 -1/2<t<0.

(b) Aramp: f(2)=t for —1/2<t<1/2.

. Use the formulae for the product of sine and cosine functions

(Section A.2) to prove the orthogonality relations for the sine and
cosine functions (Eqns 6.2.2-4).

. Express the following complex numbers in 2 + ib form:

(a) gilr

(b) 4pinl2
(C) e—in/Z
(d) 3eini3

- In the Fourier series (Eqn 6.2.1), no b, term is given. Why?
. Show that

(a) The Fourier transform is linear: if F(w) and G(w) are the
transforms of f(2) and g(#), then (aF(w) + bG(w)) is the trans-
form of (af(t) + bg(t)).

(b) The Fourier transform of a purely real-time function has the
symmetry F(-w) = F*(®).

(c) The total energy in a Fourier transform is the same as that in
the corresponding time series (Parseval’s theorem):

J|f(t)[2dt=—2—17-[—f[13(m)|2dw.

—o00
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6. If F(o) is the Fourier transform of (#), show that the following are

also transform pairs:
(a) f(t—a)and e7*F(w),
(b) F(w—a)and ef(z),
(c) dfidtandioF(w).

7. For f(t) = sin a1,

(a) Find the Fourier transform.

(b) Compare it to the Fourier transform of f(z) = cos gt.

(c) Explain what operation (filter) in the frequency domain
could be used to convert the Fourier transform of sin @, to
that of cos at.

(d) Explain how the relation between the Fourier transforms of
sin @yt and cos @yt could be derived using the fact that one
function is a time-shifted version of the other.

8. Show that if f(¢) and F(w} are a transform pair, the inverse trans-
form of F(w) yields f(z).

9. Use the propagation of errors relation (Eqn 6.5.18) to show how
the uncertainty in the following functions of several variables
depends on the variances and covariances of the variables # and v,
where a and b are constants:

(a) z=au+bv,

(b) z=auv,

(¢) z=aulv,

(d) z=aub.

10. For the discrete Fourier transform and inverse discrete Fourier

transform, show that:

(a) The DFT and IDFT are linear: if A(k) and B(k) are the trans-
forms of time series a(r) and b(n), then atA(k) + BB(k) is the
transform of aa(n) + Bb(n).
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(b) The DFT of a real-time series has the symmetry F(-k) =
F(N-k)=F*(k).
(c) If the DFT of f(n) is F(k), the DFT of f(n~j) is WX F(k),
and the IDFT of F(k —m) is W~""f(n), where W= ¢ 2/N,
11. As derived in Eqn 4.3.10, the depth » of an earthquake can be
estimated from the difference in arrival times 6t between the direct
P wave and pP, the P wave reflected from the surface, using
8t =(2h cos i)lv where i and v are the incidence angle and velocity.
(a) Express the depth as a function of the parameters 6z, v, 7.
(b) Find the depth for a measured time difference of 2.7 s and
assumed velocity of 6.8 km/s and incidence angle of 24°.
(c) Use the propagation of errors relation to show how the
uncertainty in depth depends on the uncertainties of the

Problems 413

C-2. Write a subroutine to prepare a time series for taking the fast
Fourier transform and take it. The subroutine should call a set
of separate subroutines that extend the time series to a power of 2
as required, allow for a taper of a length which you input, take
the FFT using the subroutine (COOLB) provided (Box 6C-2)
or another, and plot the amplitude spectrum. The subroutine
should have the option to list the real and imaginary parts of
the spectrum, and the amplitude and phase spectra, at each
frequency.

. . . . 2wt
C-3. (a) Write a subroutine to generate values of the function sin T

from t=0 to t=T,,,, where the time step Az, the period T,

and the total data length T, are inputs.

three parameters. o (b) Plot this function for At=0.25, T=S5, T, =20.
(d) Use the results of (c) to find the uncertainty in depth cor- (c) Use the results of C-2 to find the amplitude spectrum, with no
responding to uncertainties (one standard deviation) 0of 0.5 s tapering and with 10% and 20% tapering.
in time difference, 0.5 km/s in velocity, and 3° in incidence (d) Do parts (b) and (c) for At=0.25, T=8, = 50.
angle. (Remember to convert to radians.) (e) Do parts (b) and (c) for the function e
Computer problems 2m om
sin — + (0.5) sin —,
C-1. Using the Fourier series coefficients for the step function, derived 3 8
in problem 1a, plot the first ten terms of the series and their sum.
Also plot the sum of the first 20 and 30 terms. with A2=0.25, T, =256.
Box 6C-2 COOLB subroutine.!
SUBROUTINE COOLB (NN, DATAI, SIGNI) 4 J=3-M
CLASSIC - BUT USABLE - FFT PROGRAM M=M/2
DATAI IS DATA ARRAY, 2*NP REAL NUMBERS REPRESENTING IF (M-2)5,3,3
NP COMPLEX POINTS, SO EACH PAIR OF POINTS ARE THE 5 J=J+M
(REAL, IMAGINARY) PARTS OF A COMPLEX NUMBER. MMAX=2

NN IS POWER OF TWO, CAN BE FOUND BY
NN= (ALOG10 (FLOAT (NP) ) /ALOG10(2.))+.99
TRANSFORM DIRECTION CONTROLLED BY REAL VARIABLE
SIGNI (SIGN OF EXPONENTIAL):-1. FORWARD, 1. TO
INVERT.
DIMENSIONS: IF TIME SERIES HAS TIME INCREMENT DT,
TRANSFORM HAS DELTA FREQ=1/(2**NN*DT)
C NOTE: AFTER TAKING INVERSE FFT DIVIDE OUTPUT BY 2**NN
INTEGER NN
REAL SIGNT
DIMENSION DATAI (1)
N=2** (NN+1)
J=1
DO 5 I=1,N,2
IF(I-J)1,2,2
1 TEMPR=DATAT (J)
TEMPI=DATATI (J+1)
DATAT (J) =DATATI (I)

aO00000000naa0n

(
DATAT (J+1) =DATAI (I+1)
DATAI (I)=TEMPR
DATAI (I+1)=TEMPI
2 M=N/2

3 IF(J-M)5,5,4

1 COOLB, written in 1960s vintage Fortran (note the arithmetic IF statements), has been left in original form to illustrate both the persistence of programs that
work and the advantages of subsequent developments in programming practice and documentation (Section A.8.2).

6 IF (MMAX-N)7,10,10

7 ISTEP=2*MMAX
THETA=SIGNI*6.2831831/FLOAT (MMAX)
SINTH=SIN(THETA/2.)
WSTPR=-2.0 *SINTH*SINTH
WSTPI=SIN(THETA)
WR=1.
WI=0.
DO 9 M=1,MMAX, 2
DO 8 I=M,N,ISTEP
J=I+MMAX
TEMPR=WR*DATAI (J)-WI*DATAI (J+1)
TEMPI=WR*DATAT (J+1)}+WI*DATATI (J)
DATAI (J) =DATAI (I)~TEMPR
DATAI (J+1)=DATAI (I+1)-TEMPI
DATAI (I)=DATAI (I)+TEMPR

8 DATAI (I+1)=DATA(I+1)+TEMPI
TEMPR=WR
WR=WR*WSTPR-WI*WSTPI+WR

9 WI=WI*WSTPR+TEMPR*WSTPI+WI
MMAX=ISTEP
GO TO 6

10 RETURN
END
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C-4. (a) Write a subroutine, using the results of C-2, to use the fast
Fourier transform to take a time series, filter it in the fre-
quency domain over a specified passband, and invert the FFT,
yielding a filtered time series. The subroutine should have the
capability to taper in the frequency domain. This subroutine
is best written as a set of subroutines.

(b) Use this routine to filter the time series in C-3e to isolate the
two different frequency components.

~ \va—-w-—\f\/vvvw

C-5. (a) Write a subroutine, using the results of C-2 and C-4, to use
the fast Fourier transform to convolve two time series.
{b) Use it on two boxcar functions of unit amplitude, one 6 s long
and one 3 s long.
C-6. (a) Write a subroutine to do time domain convolution of two
functions of different lengths, both sampled at a time step At.
(b) Use it on two boxcar functions of unit amplitude, one 6 s long
and one 3 s long. Compare the results to those of C-Sb.




Inverse Problems

Most people, if you describe a train of events to them, will tell you what the result would be. There are few people, however, who,
if you told them a result, would be able to evolve from their own inner consciousness what the steps were which led up to that result.

This power is what I mean when 1 talk of reasoning backwards.

7.1 Introduction

Throughout this book we have noted that seismology is largely
directed at solving inverse problems dealing with earthquake
sources and earth structure. We start with the end result,
seismograms, and work backwards to characterize the earth-
quakes that generated the seismic waves and the medium
through which the waves passed. To do this, we first addressed
the forward problems of how features of seismic waves that are
observable from seismograms, such as travel times, amplitudes,
waveforms, eigenfrequencies, dispersion, and attenuation,
depend on the seismic source and the medium. We have also
discussed how the properties of the medium and the source,
such as velocity structure and earthquake mechanisms, reflect
tectonic processes within the earth. These are specific examples
of the fundamental question of what we can say about the earth
from seismological and other observations at its surface.

We now end our discussions by addressing some issues in
solving inverse problems. Inverse problems can be posed by
assuming that we understand the physics of a process which,
for a set of model parameters described by a vector m, gives rise
to a set of observed data described by the vector d. The data
can thus be considered the result of a function, or operator, A
acting on the model parameters,

d=A(m). (1)

The forward problem, predicting the data d that would result
from a given model described by m, is tractable if we under-
stand the process. The corresponding inverse problem, finding
what gave rise to a specific set of observed data, is more diffi-
cult. We assume that some physical model describes the pro-
cess, and then use the data to estimate a set of model parameters

Sherlock Holmes, in A Study in Scarlet by Arthur Conan Doyle

that are consistent with the data. We solve the inverse problem
using either mathematical inverse techniques to find m directly
from d, or trial-and-error techniques that solve the forward
problem repeatedly and look for the best solution. Each
approach has advantages in some applications.

We have already mentioned solving inverse problems in
contexts including studying the cooling of oceanic lithosphere
using surface wave dispersion {Section 2.8.3), inverting travel
time and amplitude data to find earth structure (Chapter 3),
inverting polarity, waveform, and geodetic data to study
earthquake mechanisms (Chapter 4), and using earthquake
mechanisms to study plate motions and regional tectonics
(Chapter §). We have noted (Section 1.1.2) that although for-
ward problems typically can be solved in a straightforward
way, giving a unique solution, inverse problems often have
no unique, exact, or “correct” solutions. Because the data are
generally somewhat inconsistent due to errors, and our models
simplify complex reality, no model exactly describes the data.
Similarly, a range of parameters can describe the data equally
well for a given model, and we have various models to choose
from based on various criteria and preconceptions. Moreover,
the data are often insufficient to resolve aspects of the model.
We can thus only recognize and accept these limitations on the
solutions.!

A consequence of these limitations is a trade-off between
the model’s resolution, how detailed it is, and its stability, or
robustness. For example, inverting travel times with simple
earthquake location algorithms using a laterally homogeneous
velocity model shows the Wadati-Benioff zones of dipping
seismicity. These results are stable, in that they do not depend

1 This situation is summarized by the title of a paper “Interpretation of inaccurate,
insufficient, and inconsistent data” (Jackson, 1972).
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Table 7.1-1 Some large-scale reference models.

Model for Observables inverted and predicted

Parameters estimated

Misfits (“anomalies”) indicate

Laterally homogeneous  Travel times, eigenfrequencies

earth structure
Relative plate motions Rates and azimuths of plate motion

Variation with age in depth, heat
flow, and geoid

Thermal evolution of
oceanic lithosphere

Average velocity and density
versus depth

Euler vectors

Plate thickness, asthenospheric
temperature, physical

Lateral velocity variation (subduction
zones, continental-ocean differences,
etc.)

Nonrigid plate behavior (plate
interiors and boundary zones)

Lateral thermomechanical variations
(swells, etc.)

properties (e.g., &, K, k)

significantly on the details of the location algorithm and velo-
city model, but have only limited resolution for where in the
slab the earthquakes occur. More detailed locations, which
are more useful for relating the earthquakes to the physics
of subduction, can be derived from sophisticated location
algorithms using a laterally variable velocity model that better
represents the slab. However, the improved resolution comes
at the price of stability, in that it depends on the specific velo-
city model used.

The results of inverse studies can be viewed in terms of
two end members. In one, we use an individual set of data to
characterize a specific phenomenon, such as the location of an
earthquake or the velocity structure in a specific area. In others,
we describe a set of data averaged over a region or the whole
earth with a simple physical model characterized by a relatively
small, or sparse, set of parameters. Such reference models — the
physical model with a specific set of parameters — are used
to characterize large sets of data in a simple way, predict data
where no observations exist, and thus identify misfits, or
“anomalies,” where the data deviate from the model predictions
and hence the global average. We then use reference models
to draw inferences about the processes that give rise to both the
average situation and deviations from it. For example, body
wave, surface wave, and normal mode data give average global
velocity structure. This structure is used to constrain models of
the average radial variations in composition and temperature,
and as a reference against which velocity perturbations due to
subducting slabs, continental roots, hot spots, ridges, etc. can
be identified and analyzed in terms of local processes that per-
turb the global model. As shown in Table 7.1-1, we can view
other reference models in a similar way. For example, the Euler
vectors describing a plate’s motion are a simple description
of its behavior, and places where earthquake mechanisms
differ from these predictions indicate deviations from rigid
plate behavior. Similarly, simple cooling models of the oceanic
lithosphere describe the average variations in depth, heat flow,
and the geoid, and so give a reference model for the temperat-
ure against which other effects can be identified and modeled.

As illustrated in Fig. 1.1-8, the models are refined over time
using new data and model parameterizations. Eventually,

the reference model does not improve significantly. When this
occurs, we are probably doing about as well as possible with
this type of model. For example, as discussed in Section 3.5,
laterally homogeneous global seismic velocity models have
become sufficiently accurate that more attention is now dir-
ected toward the lateral variations.

In this chapter, we discuss several inverse problems to intro-
duce some of the methods used. Because such inverse prob-
lems are crucial to seismology and the earth sciences, and also
appear in other sciences, considerable attention has been dir-
ected toward them. It turns out that physically quite different
problems are often described in mathematically similar ways.
Our goal is to identity some common themes and approaches,
rather than discuss the details. Some more sophisticated treat-
ments are listed in the suggested reading.

7.2 Earthquake location

We first consider the classic inverse problem of locating an
earthquake and finding its origin time using the arrival times of
seismic waves at various stations. The velocity structure, which
determines the ray paths and hence travel times, is crucial. We
first regard the velocity structure as known, and then explore
how it can also be estimated from the travel times.

7.2.1 Theory

Assume that an earthquake occurred at an unknown time ¢, at
an unknown position x = (x, y, z), known as the hypocenter,
or focus (Fig. 7.2-1). The point (x, y) on the surface above the
focus is called the epicenter. n seismic stations at locations
x; = (x;, ;» 2;) detect the earthquake at arrival times d7, which
depend on the origin time ¢ and the travel time between the
source and the station T(x, x;):

d; =T(x,x;)+1. (1)

If the velocity structure is known, the forward problem can be
written using the formulation
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Fig. 7.2-1 Geometry for earthquake location in a homogeneous (uniform
velocity) halfspace.

d=A(m), or di:A(mi), (2)

showing how the data vector, containing the arrival times at
the stations, can be computed from an assumed model vector
composed of the source location and origin time,

m:(xayizyt)- (3)

The model vector consists of physically different quantities:
three space coordinates and an origin time. Because the data
and model are vectors, relations between them can be written
in terms of either vectors (d = A(m)) or their components
(d;=A(m)).

The inverse problem can be stated as: given the observed
arrival times, find a model that fits them. To do this, we begin
with a starting model m°, which is an estimate of (or guess at)
a model that we hope is close to the solution we seek. The
starting model predicts that we would have observed data
d; = A(m?). Unless we are lucky, these predicted data are not
what were actually observed. Hence we seek changes Az in the
starting model

m;= m‘/’ +Am; (4)
that will make the predicted data closer to those observed. In
general, the data do not depend linearly on the model para-
meters, so we [inearize the problem by expanding the dataina
Taylor series about the starting model m® and keeping only the
linear term,

od;
dlzd:)-i— z——1 AWI«. (5)
7 om; 7

o

o

This equation can be written in terms of the difference between
the observed data and those predicted,

Ad;Ed;-d;’zZ%{L

i oy

Ams. (6)

m°®

Such relations are common in inverse problems. For simpli-
city, we omit the superscripts and define the partial derivative
matrix as
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j
so the equation becomes

Ad=GAm, or Adi=Y G,Am,. (8)
j

Often the As are also suppressed, and the equation is written as
d = Gm. This makes the notation simpler, but can be confusing
at first. In this derivation, we retain the As to explicitly indicate
changes.

Equation 8 is a vector—-matrix equation representing a sys-
tem of simultaneous linear equations. To solve it, we seek a
change in the model Am that, when multiplied by the known
partial derivative matrix G, gives the required change in the
data Ad. This is an inverse problem, in contrast to the forward
problem of finding the change in the data Ad predicted by an
assumed change Am in the model. Many aspects of inverse
theory deal with solving such equations under various cir-
cumstances. The earthquake location problem considered here
is a simple case.

A common complexity is that we generally have arrival time
observations at many (often several hundred) seismic stations,
and are solving for only four model parameters. In the notation
of Eqn 8, j ranges from 1 to 4, and i ranges from 1 to #, where n
is much greater than 4. Because each arrival time corresponds
to one equation, and each model parameter provides one
unknown, G has a number of rows equal to the number of
arrival time observations, and a number of columns equal to
the number of model parameters. Because there are more (1)
equations than unknowns (4), G has more rows than columns,
so Eqn 8 looks like

Adl G]l G12 G13 G14
AdZ GZ] GZZ G23 GZ4

Ad Gnl GnZ Gn3 G714

n

Such overdetermined problems can pose difficulties. One way to
see this is to recall that if # were equal to 4 the matrix G would
be square (have the same number of rows and columns), so
Eqn 8 could be solved by multiplication by the inverse matrix,

G1Ad=G1GAm=Am, or

> Gilad, =Y Gl 3. Gyam; | = Amy, (10)
i i j

If the number of arrival time observations exceeds four,
this method cannot be used, because G is not square and thus
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does not have an inverse.! Our first instinct might be to use only
arrival times at four stations, which would give an exact solu-
tion, and assume that the arrival times at the other stations
give only extra, redundant information. In an ideal world this
would be the case. In reality, the arrival times contain errors
due to a variety of possible effects, including reading errors,
inaccuracies in the clocks at the stations, and misidentification
of the first arrivals. In addition to these errors of measurement,
there are systematic errors due to the fact that the velocity
structure is not perfectly known and is laterally variable. As a
result, the equations are inconsistent: no one model can solve
them exactly. Moreover, choosing four arrival times might
mean selecting data poorer than those discarded. The approach
taken instead is to seek the origin time and source location that
“best” solve the overdetermined, inconsistent equations.

To do this, we regard the observations d as having errors
described by their standard deviations o; and find the model
that minimizes the misfit,

2
Adi—zGi/.Amf , (11)
]

1
XZZZ—Z“
i O;

which is the prediction error, the normalized sum of the
squares of the difference between the observed arrival times
and those predicted by the model. x2, the fitting function to be
minimized, weights the data by the reciprocal of their variances
so that the most uncertain have the least effect. To find the best
fit, we set partial derivatives of the misfit with respect to the
change in model parameters Am, equal to zero, and use the
fact that the model elements are independent, so the partial
derivative of the change in one with respect to those in the
others is zero,

aAmi
=5, (12)
%

The partial derivatives of the misfit are

ox?
dAmy,

=0= 22

Adi - Y. GiAm, |Gy, (13)
i

or

1 1
Z 'O__?Adicik = Z -

i i i i

ZGi/.AmI- Gy (14)

If the variances of the data are equal (62 = 02), that term can be

factored out, and

284Gy =3 | 3 Gyam, |Gy, (15)
1 1 ]

! The definition of the inverse (Section A.4.3) requires that both pre- and post-
multiplication yield theidentify; i.e., ATA=A4A1=1.

or, in matrix notation,
GTAd= GTGAm. (16)

To see that XAd,G,, = GTAd, whereas ZG Am = GAm, con-
sider the dimensions.

The advantage of this form is that although the matrix G
cannot be inverted, the matrix GTG is square and can be
inverted. Equation 16 thus gives Am, the standard least squares
solution to a set of equations that cannot be solved exactly,
because

m=(GTG)'1GTAd=G#Ad, or Am;= Y GifAd.  (17)

The operator (GTG)"'GT, which acts on the data to yield the
model, is called the generalized inverse of G, and is written
as G78, It provides the “best” solution in a least squares sense,
because it gives the smallest squared misfit. The generalized
inverse is the analog of the inverse, but for a matrix that is not
square, and hence does not have a conventional inverse. If G is
square and has an inverse, then G™' = G8. If the data errors are
not equal, the least squares solution is weighted by the errors,
as shown in problem § at the end of this chapter.

To use this method, we begin with a starting model (source
location and origin time) m® and predict the values expected
for the data, d° = A(m°). We then form the residual vector giv-
ing the misfit to the data, Ad®° = d" — d°, evaluate the matrix of
partial derivatives about the starting model,

od,

T om ;

> (18)

m°

and use the generalized inverse (Eqn 17) to find Am®, the
change in the starting model that gives a better fit to the data.
Thus the new model

m'=m°+Am° (19)
predicts values of the data
dl = A(m?) (20)

that should be closer to the observations than the predictions
of the starting model. This can be tested by computing the dif-
ference between the observations and the predicted data for the
new model Ad! =d’ — d*, and examining the total squared misfit
S(Ad})?=3(d;~ d})%. This should be less than the correspond-
ing mxsﬁt for the starting model X(Ad$)*. The total squared
misfit is more useful than the total misfit Y. Ad,, because the
latter could be small for large misfits of opposite signs.

We can often do even better. Remember that the G matrix of
partial derivatives was found by expanding the function that
predicts the data (travel times) about the starting model in a
Taylor series, and taking the linear terms. This expansion
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Fig. 7.2-2 Schematic illustration of the effect of linearizing about a
starting model in an inverse problem. The new model is found from the
difference between the observed data and that predicted for the starting
model. The worse the linear approximation is, the more iterations will be
needed to reach the true model.

works well if the starting model is “close” to the actual model.
If this is not the case, the linear approximation may not be a
good one. Figure 7.2-2 illustrates this idea schematically. The
actual situation is hard to draw, because each model vector is
an element in a four-dimensional (three space and one time)
vector space.

As a result, the method can be iterated. Once the model has
been changed, a new partial derivative matrix

_ad,

B am/.

G

i (21)

m!

is found by expanding the function that predicts the data about
the new model. The generalized inverse method is then used to
solve '

Ad'= GAm! (22)

for a further change in the model Am! that reduces the remain-
ing misfit. This process is repeated until successive iterations
produce only small changes in the model, and hence in the total
misfit to the data (Fig. 7.2-3).

7.2.2  Earthquake location for a homogeneous medinm

To make these ideas less abstract, we consider the simple case
of locating an earthquake in a medium of uniform velocity v. In
this case the ray paths connecting an earthquake and seismic
stations are straight lines. This geometry approximates a situ-
ation where the receivers are close enough to a source that the
first arrivals are direct waves in a medium whose velocity does
not vary significantly. Seismic waves from an earthquake that
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Misfit to data

lteration number

Fig. 7.2-3 Schematic illustration of the variation in misfit to the data as a
function of iteration number for an inverse problem.

occurred at time ¢ at location x = (x, v, z) are recorded by seis-
mic stations at positions x; = (x;, y;, z;) with arrival times

d;=T(x,x,) +t= 1 [(x—x)?+(y—y)*+(z—z)" "2+t (23)
v

Although the earthquake can occur below the surface, the
stations are at the surface z, = 0. The travel times depend only
on the distance between source and receiver, | x - x; |.

To solve the inverse problem, we form the matrix G,. Its ele-
ments, the partial derivatives of the elements of the data vector
d; (the arrival times at each station) with respect to the model
parameters . (the location coordinates and origin time of the
earthquake) are easily found. Differentiation of the ™ element
of the data vector is done with respect to the first element of the
model vector, which is the x coordinate of the location

_od; 94, 9Tl x)
A omy;  ox 0x
e

= --~;-—[(x~x,-)2+ (y—y?+24712, (24)

Similar expressions give the partial derivatives with respect to
the other two space coordinates of the location. Note that these
partial derivatives are functions of the spatial model para-
meters (x, v, z). The final partial derivative, with respect to
origin time, is just

G4 %y (25)
om, ot

Given the G matrix, the earthquake is located by choosing a
starting model, forming the difference Ad between the model
predictions and the observations, and solving for the change in
the model Am using the procedure in the last section.

Table 7.2-1 (¢op) illustrates a hypothetical example of locat-
ing an earthquake with ten stations located within a 100 km
square. The earthquake is assumed to have occurred at time 0
seconds at the point (0, 0, 10) km. We then try to locate the




420 Inverse Problems

Table 7.2-1 Earthquake location example with error-free data.

e N A

Invert for location and origin time

model evolution

parameter actual value model for iteration number

0 1 2
X 0.0 3.0 -0.5 0.0
y 0.0 4.0 -0.6 0.0
z 10.0 20.0 10.1 10.0
origin time 0.0 2.0 0.2 0.0

station location residual for iteration number

0 1 2
35.0 9.0 -2.1 -0.4 0.0
-44.0 10.0 -3.0 -0.2 0.0
-11.0 -25.0 -3.8 -0.1 0.0
23.0 -39.0 -3.0 -0.2 0.0
42.0 -27.0 -2.6 -0.3 0.0
-12.0 50.0 -2.0 -0.3 0.0
-45.0 16.0 -2.9 -0.2 0.0
5.0 -19.0 -3.7 -0.2 0.0
-1.0 -11.0 -4.1 -0.2 0.0
20.0 11.0 -2.4 -0.4 0.0
error 92.4 0.6 0.0

Invert for location, origin time, and velocity
model evolution
parameter actual value model for iteration number

0 1 2
X 0.0 3.0 0.2 0.0
y 0.0 4.0 0.3 0.0
z 10.0 20.0 10.2 10.0
origin time 0.0 2.0 0.7 0.0
velocity 5.0 4.0 4.9 5.0

station location residual for iteration number

0 1 2
35.0 9.0 -4.0 -0.9 0.0
-44.0 10.0 -5.6 -1.0 0.0
-11.0 -25.0 -5.7 ~-0.9 0.0
23.0 ~-39.0 -5.6 -1.0 . 0.0
42.0 -27.0 -5.2 -1.0 0.0
-12.0 50.0 -4.6 -0.9 0.0
-45.0 16.0 -5.6 -1.0 0.0
5.0 -19.0 -5.2 -0.9 0.0
-1.0 -11.0 -5.3 -0.9 0.0
20.0 11.0 -3.8 -0.8 0.0
error 261.3 8.3 0.0

earthquake using the computed arrival times at the ten stations
as “data.” For a starting model, we assume the earthquake
occurred at time 2 seconds at (3, 4, 20) km. As discussed in the
previous section, we compute the arrival times expected at each
station for a source located at the initial estimated position and
time, and then form the residual, the difference between the
“data” and this prediction (Eqn 6). For the starting model, the
total squared misfit is 92.4 s.

To reduce the misfit, we form the partial derivative matrix
G, evaluated at the starting model, and use the generalized
inverse (Eqn 17) to solve for Am®, the change in the starting
model that would best fit the residuals. This change gives a
source location of (~0.5,-0.6, 10.1) km and an origin time of
0.2 s. This new estimate is close to the true values. Because for a
real case the true model would not be known, the new model
is tested by calculating the expected arrival times, forming the
residuals, and examining the total squared misfit, which is
reduced to 0.6 s%. To reduce this further, we form the partial
derivative matrix evaluated at the new model and iterate again.
The resulting change in the model yields the true model exactly,
which fits the data perfectly.

This success is hardly surprising, because the data had no
errors. We could thus have used any four data to find the
model, and avoided the generalized inverse. Before turning to
discuss the errors, note that the same procedure could be
used to find the velocity. To do so, we regard the velocity as a
fifth model parameter, and invert the data for a model vector
m=(x, Y, 2, t,v). The additional partial derivatives are

Oy % Ll (2R (26)
omg v v?

We thus assume a velocity as part of the starting model, find the
partial derivative matrix (which now has five columns), and
use the generalized inverse to find the changes in the starting
model. Table 7.2-1 (bottom) illustrates this process for the

same example as before, except that we also invert for velocity.

7.2.3 Errors

Because earthquakes are located using arrival time data that
have errors, the resulting locations and origin times have uncer-
tainties. To assess these uncertainties, we examine how errors
in the data affect the generalized inverse solution.

We characterize the errors in the data at the i station, d,, by
viewing the specific values measured as samples from a parent
distribution that includes all possible d¥), k = 1, ... e, such
that an infinite number of measurements would yield the par-
ent distribution. In this notation, d'¥ is the k™ sample of d,, the
arrival time at station i. Because in real applications the parent
distribution for d; is unknown, it is common to assume a
Gaussian distribution with mean d; and standard deviation o,
as discussed in Section 6.5. For a large number of measure-
ments (samples) from this distribution, the mean is the average

K
d. = lim 1 > d®, (27)
K- K =1

and the “spread” of the measurements is the variance

o2 = lim lz(dg’*’—d,.)z . (28)
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If the Gaussian parent distribution is an appropriate choice,
there is a 68 % probability that any sample will fall in the range
d; + 0;, and a 95% probability that any sample will fall in the
ranged 120, (Fig. 6.5-1).

The errors at different stations are described by the variance-
covariance matrix of the data

)P —d). (29)

The diagonal (i = j) terms are the variances for data at
individual stations. The off-diagonal terms (i # j) are the
covariances that describe the relation between errors at pairs
of stations. If the errors are uncorrelated between two stations
— for example, those due to a station clock — then how a
measurement at one station differs from the mean there is
unrelated to what occurs at another station, so their covariance
is ideally zero. Given a finite number of real data, we expect the
covariance to be small. By contrast, if the errors are correlated
(for example, if one person were reading seismograms from
different stations with a consistent bias), then similar devi-
ations from the mean occur between these stations, and their
covariances would be larger. Errors can also be anti-correlated,
such that deviations at a station tend to occur in one direction,
whereas those at another station tend the other way, yielding
negative covariances. Although errors of measurement are likely
to be uncorrelated, systematic errors are often correlated. For
example, variations in velocity can cause systematic biases that
are either correlated or anti-correlated between different stations.
The data are inverted using the generalized inverse solution

m;= ZG‘gd (30)

(here the As are not written). As a result, the uncertainty in
a model parameter can reflect errors in all of the data. Thus,
even if the errors in the data are uncorrelated, the resulting
uncertainties in model parameters can be correlated. To see
this, we write the covariances of the model parameters in terms
of those for the data

1 X
ol=02 = lim — (k) — 1) () — 971,

i K—>°°I<k1 ] ] 1

—ilm——x ngd(k (ZG“' dw J)]
1< - .

_zc ZG g lmeZ(d;k)—dp)(d(sk)wds)
k=1

—ZG ZGgaz. (31)

This relation can be written in matrix form in terms of 0 and
02, the variance-covariance matrices for the data and model:
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02 =G203(G#)T. (32)

We often assume that the data errors are uncorrelated and
equal, so that the data variance—covariance matrix is a con-
stant times the identity matrix,

63=0%,, (33)
and the model variance—covariance matrix is
2 = 62(GTG), (34)

as proved in problem 4.

Table 7.2-2 illustrates these ideas for the location example in
the previous section. In this case, Gaussian errors with mean
zero and standard deviation 0.1 s were added to the arrival
times. As a result, the data are inconsistent and cannot be fit
exactly by any model. The inversion thus changes the model
until a good, but not perfect, fit to the data is achieved. This
final model, which is no longer changing much after three

Table 7.2-2 Earthquake location example with errors.

Invert for location and origin time

model evolution

parameter actual value model for iteration number
0 1 2 3
X 0.0 3.0 -0.2 0.2 0.2
y 0.0 4.0 -0.9 -0.4 -0.4
z 10.0 20.0 12.2 12.2 12.2
origin time 0.0 2.0 0.0 -0.2 -0.2
station location residual for iteration number
0 1 2 3
35.0 9.0 -2.0 -0.1 0.1 0.1
-44.0 10.0 -3.0 -0.1 0.0 0.0
-11.0 -25.0 -3.8 0.0 0.1 0.1
23.0 -39.0 -3.2 -0.1 0.0 0.0
42.0 -27.0 -2.8 -0.2 -0.1 -0.1
~12.0 50.0 -2.1 -0.3 -0.1 -0.1
-45.0 16.0 -2.9 -0.1 0.0 0.0
5.0 -19.0 -3.7 -0.1 0.0 0.0
-1.0 -11.0 -4.0 -0.1 0.0 0.0
20.0 11.0 -2.5 -0.3 0.0 0.0
error 93.74 0.33 0.04 0.04
data standard deviation 0.10
model variance—covariance matrix
0.06 0.01 0.01 0.00
0.01 0.08 -0.13 0.01
0.01 -~0.13 1.16 -0.08
0.00 0.01 -0.08 0.01
model standard deviation
X y z origin time
0.25 0.28 1.08 0.10
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iterations, is close to, but not exactly, the model used to gener-
ate the data. This simple example thus has some features of real
situations.

The uncertainties in the final model are shown by the model
variance—covariance matrix

2 42 2 2
0;, O OL ©

2 2 2 2
O, C. Gyz O
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To see that the results seem reasonable, we compare the final
inversion model, taking into account its uncertainty, to the true
model. The standard deviations of each parameter are given by
the square roots of the diagonal terms of the model variance—
covariance matrix, so the final model (x = 0.2 + 0.25 km,
y=-0.4£0.28km,z=12.2+1.08 km, =-0.2£0.10 s) is an
acceptable representation of the true model.

The model variance—covariance matrix shows some interest-
ing features. The variance of the depth estimate, o2, is larger
than the corresponding terms o2 and O'iy, indicating that the
depth is less well constrained than the epicenter. This situation
is common, and arises because all the seismometers are at the
surface.? In some cases when the depth is poorly constrained,
it is regarded as fixed, and only the epicenter and the origin are
inverted for. The results of multiple inversions, each with the
depth fixed at a different value, are compared to see which best
fits the data. It is also possible to determine the depth from
other criteria, such as the times of surface reflections (Section
4.3), and then invert with the depth fixed.

The uncertainties in the model parameter estimates are
correlated, because the off-diagonal elements of the model
variance-covariance matrix are nonzero. 0%, the covariance of
the depth and origin time uncertainties, is negative, indicating
a trade-off between the focal depth and the origin time. At any
station, similar arrival times result if the earthquake occurred
earlier (¢ smaller) but deeper (z larger). Similarly, Giy, the
covariance of the x and y location uncertainties, is nonzero,
so the uncertainties in these two parameters are correlated.
A method often used to illustrate this is to extract the 2 x 2
submatrix

o;. OF,

XX

i 2 (36)
Oy Oyy

and diagonalize it by finding the eigenvalues A1) and A?), and
the associated eigenvectors (x{V, x)) and (x?), x2)). The uncer-
tainty in the epicenter can then be thought of as an ellipse with
semi-major and semi-minor axes A2 and A2 griented in a
direction given by tan™! (x{!/x{V). In this case, the semi-major

2 Similarly, vertical positions determined using the GPS (Section 4.5.1) by a process

analogous to earthquake location are less precise than the horizontal positions.

and semi-minor axes have lengths of 0.29 and 0.24 km, and the
semi-major axis trends N22°E. An interesting feature of the
error ellipse is that its shape and orientation depend on the
(GTG)™! matrix, whereas the variance of the data, 63, con-
trols the size of the ellipse. Because the shape of the error ellipse
depends on the geometry of the receivers, it can be examined
without reference to specific data. As written, the ellipse is for a
confidence level of 16 (68%), but ellipses are sometimes also
given for 206(95%), or 36(99%).

We have shown that the model variance—covariance matrix
depends on the variance-covariance matrix of the data. In the
example, we knew the standard deviation of the data and that
the errors were uncorrelated. This information would not be
available for a real experiment. However, we could estimate
the standard deviation of the data from the misfit between the
data and the best-fitting model, given by the sample variance s2

3

! > (d-d ) (37)

n—ki

Here, d; are the observations, d; are the values of the data pre-
dicted by the best-fitting model, and k is the number of model
parameters determined from the data. Division by 7 — &, the
number of degrees of freedom, rather than by #, the number
of data, compensates for the improvement in fit resulting from
the use of model parameters determined from the data. Thus,
for our example, the final squared misfit is 0.4 s2, and four
parameters were determined from the data, so the sample
standard deviation is s = (0.4/(10 — 4))2 = 0.08 s, a value close
to the true ¢, 0.1 s.

7.2.4  Earthquake location for more complex geometries

This formulation is not restricted to locating earthquakes in
a homogeneous halfspace. Velocity variations can be incor-
porated in the function relating the arrival time at the 7% station
to the origin time ¢ and travel time T(x, X;),

d;=T(x,x,)+2. (1)

For example, a model for locating local earthquakes could have
a series of layers. As a result, even for a source at the surface,
the travel time curve is a more complicated function of distance
(Section 3.2). At close distances, the first arrival is the direct
wave. At greater distances, the first arrival becomes a head
wave from an interface at depth, with the relevant interface
being deeper as the distance increases. The situation is similar,
but more complicated, for a source at depth, because at zero
distance the travel time is nonzero.

The travel time curve can be found either analytically or by
tracing rays. If the receivers are on the surface at (x; ¥;), the
travel time curve T{(r, z) depends on the horizontal distance
between source and receiver,

ri= [l —x)*+ (y—y,) 2", (38
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Fig. 7.2-4 Map view of the relation between an earthquake epicenter and
a seismic station in Cartesian coordinates.

and the source depth z, so the arrival times are
di=T(r,z)+t. (39)
In this case, the x derivatives are found by

i 0T(r,2) _ 9T(r, 2) 0r _ 9T(r;, 2) (x — x;)
Ox ox ar  Ox or 7

2,

) (40)

and similarly for the y derivatives. If { is the azimuth from the
urce to the receiver (Fig. 7.2-4),

(x—x)/r;=-sin § and (y-y)/r;=-cos g (41)

If the travel time curve is found numerically, then T(r;, 2) isa
set of values for various points (r, z) rather than an explicit
function. The procedure for location is still the same, except
that the x, v, and z partial derivatives are computed numeric-
ally. For example, if we begin by assuming that the source is at
(x°,v°, 2°), then the partial derivative with respect to  about

7=l = (9P 2 42)

is found using the tabulated travel times for points (77 + 6/2, 2°)
and (7 - 6/2, 2°). Thus the x derivatives are found by approx-
imating the derivative by a difference

dT(r, 2°)  9T(r;, 2°) %
ox or  0x
T+ 8/2,2%) - T(r?—8/2,2°) (x° - x;)

1) 7o

1

,  (43)

and the y derivatives are found similarly. The z derivatives
are found numerically by forming the difference between two
depths. The inversion is then done as before.

- e\ A
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The location of earthquakes for a spherical earth is similar.
As before, we assume that velocity varies only with depth. In
this case, for an earthquake at colatitude 6, longitude ¢, focal
depth z, and origin time , we seek to estimate the model vector
m=(6, ¢, z, t) from the data.

The travel time to receivers on the surface at colatitudes
and longitude ¢ depends on the focal depth and the angular
distance from the epicenter (Eqn A.7.7),

cos A;=cos 6 cos 6;+sin Osin 6; cos (¢;— 9). (44)
For a travel time curve T(A, z) the arrival times are

d,=T(A;,z)+1. (45)
Several average global travel time curves are available, as in
Fig. 3.5-4. In addition, a travel time curve for a specific velocity

model can be found numerically by tracing rays.
In this case, the 8 derivatives are found using

% _0T(A,2) _9T(A;, 2)| 04 (46)
90 26 oA |, 96"
To find the last term, note that
d(cosA)) _ d(cos A;) B(Ai), 47)
20 Y 00
SO
d(4A;) [ d(cosA,) d(cos A;)
L) L) oA
1 . .
= — (sin O cos 6;— cos Bsin 8, cos (¢;~ ¢))
sinA;
= cos (;, (48)

where {; is the azimuth of the i station with respect to the
earthquake (Eqn. A.7.10). Thus the partial derivatives with
respect to source colatitude are

d, _ 9T, 2)

Iz

. 4
O )

Similarly, because by the same method

B(Ai) _ d(cos Ai) o{cos Ai)
3 | 9 A
= — ! (—sin @sin 6, sin (¢;— @)
sin A,
= —sin O sin §, (50)
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Fig. 7.2-5 Comparison of epicenters for earthquakes in central Idaho
derived by a standard location program (PDE, open triangles) and from a
joint epicenter determination study (JED, closed symbols). Error ellipses
are shown for JED locations. The JED epicenters suggest a narrower
source region than the PDE epicenters. (Dewey, 1987. © Seismological
Society of America. All rights reserved.)

the partial derivatives with respect to source longitude are

iafl’i:—g:l—:(A";z)sinGsinCi. (51)
29 oA

The two derivatives required from the travel time table, 0T(A,,
z)/0A and 9T(A,, z)/ 0z, can be approximated by forming differ-
ences between tabulated values. This approach is used to locate
earthquakes all over the world using teleseismic data, often
from hundreds of stations.

We can also locate earthquakes in a laterally varying struc-
ture using a numerical representation of the travel time curve.
In this case, the travel times, and hence partial derivatives, de-
pend on the actual positions of the source and the receiver, not
just on the distance between them. The techniques discussed so
far will work, with the modification that the travel times, and
hence partial derivatives, must be computed, by tracing rays or
otherwise, for each source-receiver pair. The computational
effort involved is large enough that laterally homogeneous
models are used whenever possible.

A number of methods are sometimes applied to improve
locations derived using a laterally homogeneous model. Some
treat residuals at individual stations as station corrections to be
removed. Master event methods consider a particular (often
the largest) earthquake in a group as the best located, and then

locate a group of nearby earthquakes using a travel time correc-
tion at each station derived from the residual at each station for
the master event. This procedure attempts to locate the other
events more accurately with respect to the master event. Joinz
hypocenter determination methods use data from a number of
nearby earthquakes, and locate them simultaneously to best fit
the travel times. Figure 7.2-5 illustrates applying this technique
to a group of earthquakes: the locations from a joint epicenter
determination study are more closely grouped and are shifted
somewhat from the epicenters for the same events found by the
standard location program.

When considering earthquake location, the travel time
residuals remaining once the “best” location is found are a
nuisance. Following the dictum that “one person’s signal is
another’s noise” brings us naturally to our next topic, the use
of these travel time residuals to study deviations from a later-
ally homogeneous earth model.

7.3 Travel time tomography

In the last section we noted that travel time observations con-
tain information about both the location and the origin time
of the seismic source and the velocity structure in the region
between the source and receivers. Thus, for the simple halfspace
example shown, we also inverted the travel time residuals to
find the best velocity. This is analogous to the way in Chapter 3
that we discussed techniques to develop layered models in
which velocity varied only with depth. However, we have seen
that many of the earth’s most interesting processes, such as
subduction, cause deviations from a laterally homogeneous
velocity model. Methods have thus been developed to use seis-
mological data to investigate laterally heterogeneous structure.
For example, we have discussed using lateral variations in
surface wave velocities to investigate the cooling of oceanic
lithosphere (Section 2.8.3) and migration of seismic reflection
data to image variable structure at depth (Section 3.3.7). In this
section we introduce the concepts of travel time tomography,
some of whose results we have seen in Sections 3.7 and 5.4.
This discussion illustrates both some further general aspects of
inverse problems and some specific features of inverting for
earth structure.

7.3.1 Theory

Consider the path s of a seismic ray through a medium whose
velocity v varies with position. The travel time, T, is

T = | Vu(s)ds = | u(s)ds, (1)

the integral of 1/velocity, the slowness, along the ray path. The
ray path, in turn, is determined by the velocity distribution.
Suppose now that the slowness at various points along the path
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Fig. 7.3-1 Geometry of a region being studied using travel time
tomography. The region is divided into blocks j, whose perturbations in
velocity are to be found from the travel time along ray paths i. The velocity
outside the blocks is assumed to be laterally homogeneous, so travel time
perturbations with respect to the reference model are used to find the
velocity perturbations within the blocks.

is perturbed by an amount u(s) small enough that the ray path
is essentially unchanged, but the travel time changes by

8T = | Sul(s)ds. (2)

We can then use the changes in travel time to study the velocity
changes that caused them.

Because the travel time perturbation reflects the slowness
perturbation integrated along the ray path, a single observation
does not indicate how the perturbation is distributed along
the path. A large localized perturbation and a smaller, but more
widely distributed, one could give the same effect. To improve
resolution, data from ray paths that sample the medium differ-
ently can be combined (Fig. 7.3-1). The simplest spatial dis-
tribution of the slowness perturbation divides the medium into
a number of homogeneous subregions termed blocks, or cells.
Thus the integral (Eqn 2) giving the travel time perturbation
along the 7™ ray path is written in discrete form

AT;= ZGijAMj’ (3)

j=1

where G, is the distance the ™ ray travels in the j® block, and
Au; is the slowness perturbation in the block.

Our goal is to use the observed travel times along a number
of paths through the medium to recover the slowness perturba-
tion. Problems of this type, in which observations of properties
integrated along a number of paths through the medium are
used to infer the two- or three-dimensional distribution of the
physical property within a medium, occur in many branches
of science and are known collectively as tomography.! The

1 This term is Greek for “slice picture.”
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two- or three-dimensional perturbation can be thought of as
an image, which we seek to reconstruct from observations.
The observations, one-dimensional integrals through the per-
turbation, are known as projections.

In travel time tomography, the inverse problem of estimating
the slowness perturbation from the observed travel time per-
turbation has the form discussed in the last section

d=Gm, or d,=Y Gm. (4)
j

As before, we do not explicitly write the As, so the model vector
m is the perturbation in slowness from a starting model, and
the data vector d is the difference between the observed travel
times and those predicted by the starting model. The elements
of the partial derivative matrix

ad, _aT,

H

am/« wé—ui-

(5)

equal the distance the i ray travels in the j th block, which is the
partial derivative of the ray’s travel time with respect to the
slowness in the block.

The matrix G is an operator that relates model vectors and
data vectors. As in the location problem, these vectors are
physically different quantities with different dimensions. The
model vectors have as many elements as there are blocks in the
model, whereas the data vectors have a number of elements
equal to the number of ray paths. Mathematically, this means
that if there are r blocks in the model, any model vector is a
vector in an 7-dimensional model space. Similarly, if there are
travel times and thus # ray paths, any data vector is a vector
in an n-dimensional data space. Because there are generally
many more equations (ray paths) than unknowns (model para-
meters), the system of equations is overdetermined. Because
the data contain noise, the system of equations is generally also
inconsistent.

The inverse problem is solved by a procedure like that dis-
cussed for the location problem. For the different ray paths,
the travel times and the distances traveled in each block are pre-
dicted using a starting or reference model. The starting model is
generally laterally homogeneous, so the travel times are easily
calculated. Travel time residuals are then computed for each
ray path by subtracting the times predicted by the starting
model from those observed. These travel time residuals form
the data vector that is inverted using the generalized inverse to
find slowness changes that predict the travel time residuals as
well as possible.

To illustrate these ideas, consider a schematic experiment in
which a region under a seismic array is divided into four square
blocks of unit length (Fig. 7.3-2). Travel time residuals from
six ray paths form the data. Four paths (1-4), which can be
thought of as due to distant (teleseismic) earthquakes, traverse
the model vertically. Two paths (S, 6), which can be thought of
as due to local earthquakes, traverse the model horizontally.
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We encountered this problem, solving a vector-matrix equa-
tion where the matrix is not square, in the last section. As in
that case, we form
G'Gm=G'd (7)
and invert the square matrix GTG to form the generalized
inverse solution

mgz(GTG)‘lGTd: Gd. (8)
We next ask how m,, the model found by the inversion,
compares to the actual slowness model that gave rise to
the travel time data. To compare the two, we substitute Gm
for din Eqn 8, and find that in this case
mgz(GTG)“lGTszm, 9)
so the inversion correctly resolves the true model. Naturally,

if errors are present in the data, these errors propagate into the
results of the inversion, as discussed previously.

7.3.2 Generalized inverse

An interesting situation occurs in this example if only the four
teleseismic ray paths (1-4) are available. The inverse problem
becomes finding the four elements of m from

After multiplying by GT, we attempt to solve this system as
before, but find that the matrix GTG has a zero determinant, so
it cannot be inverted. Thus, although the system of equations
(7) has four equations for four unknowns, it does not have a
unique solution (Section A.4.4). It turns out that this is because
the rows of G are not linearly independent. Thus the ray
geometry is not adequate to fully resolve the slowness pertur-
bations in the four blocks.

Because this situation occurs frequently in solving inverse
problems, methods for dealing with it have been developed.
Although a full treatment is beyond our scope, we summarize
some key ideas without proof.

In the general case when G is an # X 7 matrix, GTG isan 7 x 7
symmetric matrix that can be decomposed using its eigen-
vectors and eigenvalues (Section A.5.3)

GIG=VAVT, (11)

where the columns of matrix V are the 7 eigenvectors of GTG

V1 V(1
V=]~ (12)
v V0

and A is a diagonal matrix with eigenvalues on the diagonal
and zeroes elsewhere

A 0 0
0 A, 0

A= (13)
0 0 A
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Because the eigenvectors are orthogonal,

vvT=VTv=I, so VI=V-L (14)

If GTG has an inverse,

(GTG) ' = (VAVT) = VATIVT, (15)
where
Vi, 0 0
0 1A, - - 0
A=l (16)
0 0 - - 1A

This expression shows that G'G is singular if at least one
eigenvalue is zero. In this case, the p nonzero eigenvalues are
used to form the p X p diagonal matrix

A, 0 0
0 A - - O

A=l , (17)
0 0 - - A,

oAl ) e oA
v, = and V, = (18)
I ) VP )

V,, is the 7 X p matrix of the eigenvectors with nonzero eigen-
Values, and Vj, is the 7 x (r — p) matrix of the eigenvectors with
zero elgenvalues

Similarly, the 7 x 7 matrix GGT can be decomposed as
GGT=UAUT, (19)
using its eigenvector matrix U. GGT has the same p nonzero
eigenvalues as G'G, so the U matrix can be divided into U,,
the 7 X p matrix of the eigenvectors with nonzero exgenvalues,
and U, the 7 X (n — p) matrix of the eigenvectors with zero
eigenvalues. Although we do not prove it here, it is possible
to decompose the matrix G using only the eigenvectors with
nonzero eigenvalues:

G=UAVI=UA, VT, (20)

pe v

This decomposition, known as the Lanczos decomposition, is
important, because a generalized inverse

G*=V,A;'UT (21)
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that involves only the eigenvectors with nonzero eigenvalues
gives an optimal solution to the inverse problem. This solution
provides the best fit to the data while minimizing m, the change
from the starting model. This is a desirable feature: for ex-
ample, in the tomographic problem, we start with a laterally
homogeneous model, so the best solution is that with least
lateral velocity variation consistent with the data.

7.3.3 Properties of the generalized inverse solution

The relation between the solution to the inverse problem, the
model derived from the data using

m,= G™d, (22)

and the “true” (although unknown) model m, can be found
because the data are related to the “true” model by the forward
problem (Eqn 4), so

=G = -1yyT T=V VT
m,=G7?Gm=V, AU UA, V m=V,V, m. (23)

Thus the matrix G?G = VpVgis known as the model resolution
matrix.

The derivation used the fact that UgUp =], because the col-
umns of U, and hence the rows of Ug are orthonormal
eigenvectors. Similarly, V7 oVp =1 By contrast, if there are
some zero eigenvalues, then p#n, U, U #landp#7,V, VT;t I,
because the rows of U, and V), are no longer orthonormal
eigenvectors (because the columns corresponding to the zero
eigenvalues have been removed to form the V,, and U, matrices).

To illustrate these ideas, consider the example in Eqn 10. The
G matrix yields

GTG = (24)

N = O W
N WO
O W N =
W O = N

which has eigenvalues 0, 2, 4, 6, and hence is singular. The
eigenvector matrices are

~0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5
V = V = . 25
7=l o5 o5 os| 4 Vo=| o5 25)
0.5 —0.5 0.5 ~0.5

The model resulting from the inversion m,, is then related to the
“true” (although unknown) model m by the model resolution
matrix

0.75 —025 025 025
v yTme|-025 075 025 025| . iy
Mp=YeY e ™= 025 025 075 -0.25|" (26)

0.25 025 -0.25 .0.75
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Fig. 7.3-3 Illustration of the “blurring” resulting from the tomographic
experiment of Fig. 7.3-2, with incomplete ray coverage. When coverage is
adequate, the true slowness perturbation (top left) is recovered (top right).
When coverage is inadequate, the true slowness perturbation (lower left) is
blurred (lower right), although the resulting slowness perturbations yield
the correct travel time perturbation for each ray path.

The i™ column of the model resolution matrix shows how a
unit perturbation in the i element of the true model maps into
various elements of m,. The true model is thus “blurred” by the
inversion. For example (Fig. 7.3-3), inversion of travel time
data resulting from a 1% slowness perturbation in block 3
yields a model with 0.25% perturbations in blocks 1 and 2, a
0.75% perturbation in block 3, and a =0.25% perturbation in
block 4. These slowness perturbations yield the correct travel
time perturbations for the four paths, but because there are no
horizontal paths, the solution is not exactly correct. However,
most of the perturbation is correctly placed. Note that the
resolved structure has a smaller net slowness perturbation than
the true structure.

The relation between the resolution matrix and the model
covariance matrix (Eqn 7.2.32) is interesting. The blurring
illustrated by the resolution matrix results from the ray geo-
metry and would occur even if the data contained no errors.
In other words, the resolution matrix illustrates how well the
inverse problem could be solved for perfect data. Because the
data usually contain errors, the uncertainty in the model, given
by the model covariance matrix, reflects errors induced in the
model by both the ray geometry and the data errors.

Because the resolution matrix shows how a perturbation in
any block is resolved by the inversion, it can be used to find
how well the inversion can recover an arbitrary slowness
anomaly. Thus the ray geometry, which gives the G and hence

V matrices their form, controls the resolution. Note that in the
first example, in which all six ray paths are used, Eqn 9 shows
that the model from the inversion was the true model. In this
case the resolution matrix is the identity matrix.

To see how the lack of resolution in the four-ray case arises,
consider what would occur if GTG had no zero eigenvalues and
could be inverted. Then, by Eqns 21 and 22, the model derived
from the data would be

m, = VA;lUgd, (27)

because V, = V. The model is thus a linear combination of
the columns of V, or the eigenvectors of GTG. Because there
are 7 (in this case four) linearly independent eigenvectors, and
the model vector has r elements, the eigenvectors span the
r-dimensional model space. Thus any vector in the model space
is a possible model.

If instead, as in this case, some of the eigenvalues are zero,
the eigenvectors associated with them are excluded from the v,
matrix. The model

m,=V,A;'UTd (28)

is then a linear combination of only the columns of V,, the
eigenvectors associated with the nonzero eigenvalues. In this
case, there are 7 — p (here three) rather than r linearly independ-
ent eigenvectors. Hence not all possible vectors in the model
space can be constructed. The model resulting from the inver-
sion contains no linear combinations of the eigenvectors asso-
ciated with the zero eigenvalues.

To illustrate this idea, consider the four-ray case where the
eigenvector associated with the zero eigenvalue is (from Eqn 2.5)

v=(0.5,0.5,-0.5,-0.5)". (29)

This vector corresponds to equal slowness perturbations in
blocks 1 and 2 and equal perturbations of opposite sign in
blocks 3 and 4. Physically, this means changing the slowness
everywhere in the upper layer by some amount, and making the
opposite change in the lower layer. Because all four teleseismic
rays have equal path lengths in the upper and lower layers,
their travel times are unaffected, so travel time data cannot
resolve any such change.

Another way to see this is to consider Eqn 7 and note that if
v is an eigenvector whose eigenvalue is zero,

(GTG)v=0, (30)

so that even if the model contains a linear combination of such
eigenvectors, they have no effect on the problem. The zero
eigenvectors thus limit the resolution of the model. Because any
linear combination of these eigenvectors has no effect, the
model resulting from the inversion is not unique. It is possible
to prove that the generalized inverse G finds a “best” model
with no contribution from these eigenvectors. Mathematically,
the resulting model is restricted to the V, space and has no com-
ponents in the V;, space. As a result, this model is the minimum
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possible solution consistent with the data. In this application,
the minimum model gives the least lateral perturbation in
slowness consistent with the travel time data. Philosophically,
this is an attractive approach.

The six-ray case, by contrast, had no zero eigenvalues.
Because one ray traveled only in the upper layer and another
traveled only in the lower layer, a change in the slowness in
either layer would affect the travel times. This ray geometry
avoids the ambiguity of the four-ray case, so the model is fully
resolved. There is no V; space,so V=1V, GTG can be inverted,
and the solution is found using the generalized inverse G7$
(Eqn 8). To see how this is related to the generalized inverse
G, we use the Lanczos decomposition (Eqn 20) to expand G:

T = T Ty 2yT
GTG=(VA,UL)(U,A,VT)=VAZVT, (31)
(GTG) = VA2V, (32)

where the matrix products A2= A, A, and A2 =A;'A " Thus,
. T - . .
if GTG can be inverted, the generalized inverse

G#=(GTG)'GT= (VA;ZVT)(VAPUE) = VA;lU;f: G, (33)

Hence G is the general form of the generalized inverse, and
G¢is the special form that applies if GG can be inverted. The
later form, G7%, is easier to compute because it does not require
the eigenvector decomposition. Fortunately, it can often be
used in applications such as earthquake location.

The eigenvector decomposition also divides the data space
into two portions, U, and U, reflecting the nonzero and zero
eigenvalues. Data vectors in the U, space, linear combinations
of the eigenvectors whose eigenvalues are zero, cannot be gen-
erated by the operator G for any model. For example, in the
six-ray case there cannot be six linearly independent observa-
tions because the model has only four parameters. Thus two of
the six eigenvectors of the 6 x 6 matrix GGT must have zero
eigenvalues. These eigenvectors represent travel time observa-
tions that should be impossible, given the geometry of the
experiment. If the data contained some linear combinations
of these eigenvectors, perhaps due to noise in the data, the
inversion process could never generate a model capable of
matching them.

Figure 7.3-4 summarizes these ideas: the operator G and
its generalized inverse G? relate the model and data spaces.
Portions of these spaces are not “illuminated.” Any part of the
model in the V,, portion of the model space has no effect on
the data, and thus cannot be detected. Thus, if V|, space exists,
the model found by solving the inverse problem is not unique.
This situation can only be improved by additional types of
data, such as a new set of ray paths in the tomographic example
(Fig. 7.3-3).2 Similarly, any part of the data in the U, portion
of the data space cannot be described by any possible model.

2 As Sherlock Holmes says in The Copper Beeches, “I have devised seven separate
explanations, each of which would cover the facts so far as we know them. But which
of these is correct can only be determined by fresh information.”
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Fig. 7.3-4 Schematic illustration of the relation between the model and
data spaces for the inverse problem d = Gm. The observed data d form a
vector in the #-dimensional data space, the model m sought is a vector in
the -dimensional model space, and the known partial derivative matrix G
has dimensions 7 X 7. Matrix U, whose columns are the eigenvectors of the
matrix GGT, can be decomposed into U,, the matrix of the p eigenvectors
with nonzero eigenvalues A, 4,, .. ., 4,, and Uy, the matrix of the
eigenvectors with zero eigenvalues. Similarly, the matrix V, whose
columns are the eigenvectors of the matrix GG, can be decomposed into
Vi the matrix of the eigenvectors with nonzero eigenvalues, and V,,, the
matrix of the eigenvectors with zero eigenvalues. (After Lanczos, 1961.)

Thus, if a U, space exists, the model found by solving the
inverse problem is not an exact solution.

7.3.4 Variants of the solution

A number of variants of the least squares solution that we have
developed using earthquake location and tomography are also
used in these and other inverse problems.

One variant arises from the fact that although the eigen-
vector decomposition gives insights, it may not be the best
approach in some real applications. First, it involves significant
computations when the matrices are large. Second, it associates
difficulties with the eigenvalues that are zero, whereas in real
problems complications and noisy data are more likely to yield
small, but nonzero, eigenvalues. These small eigenvalues cause
the sort of difficulties that occur formally for zero eigenvalues.
To see this, note that in Eqn 27 the model is derived by
multiplying the data by the matrix A™!, which contains the
reciprocals of the eigenvalues. Thus the small eigenvalues, rep-
resenting the worst-constrained features of the data and model
spaces, can have large effects on the solution. For example,
we noted in Section 4.4.7 that using the generalized inverse
to estimate the moment tensor gives good estimates of
components on which seismograms depend strongly, but
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poorer ones for components on which the seismogram depends
weakly.

This issue can be addressed in several ways. One is to exclude
small eigenvalues from the inversion. Another, which avoids
the eigenvector decomposition, is to modify the function used
to measure the misfit between the data predicted by the model
and those observed (Eqn 7.2.11) to

2
2% = 2 —Gl—z(Adi - ZGi/.Aij + gzz (Am,)z. (34)
i i ] ]

This function is the sum of the net misfit and the change in
length of the model vector, weighted by £2. Hence minimizing
it is a compromise between the best fit to the data and the least
change from the starting model. The resulting solution, written
with the As suppressed,
m=(GTG+2)1G™d, (35)
is called the damped least squares solution. If £is zero, we have
the best-fit solution (Eqn 7.2.17), whereas larger values of ¢
reduce or damp the change in the starting model by accepting
a poorer fit to the data. The damping parameter € is chosen
empirically to yield a solution that seems plausible, and thus of
necessity reflects our ideas about the solution sought, because
damping the poorly constrained and undesired changes in the
model also damps the better constrained and desired changes.

Another common situation is that we want some data to have
greater effect on the solution, usually because we consider them
to be better known. We thus incorporate a data-weighting
matrix W, into the solution. The simplest is to weight by W, =
(63)71, the inverse of the variance—covariance matrix of the
data, so the data with the smallest uncertainties have the great-
est effect. Problem 5 shows that this weighted least squares
solution is
m=(GTW,G)1GTW,d. (36)

We may also want to have the model change smoothly,
such that each element varies only slightly with respect to its
neighbors. For instance, if the model were a continuous func-
tion of one variable, we measure the smoothness, or flatness,
f, of the changes by forming

-1 1.0 - - 0)fm,
0 -1 1 0||m,
(=] 0 00 01| my - Fm, (37)
ol -
.. .0
0 000 -1 1){m

r

where F is the flatness matrix, which is a numerical approxima-
tion to the derivative at the edges of each element. The overall
flatness of the solution is then

fo=mTFTFm=mTWmm, (38)
so the matrix W, =FTFisa weighting matrix for the model. For
more complicated model geometries, Fis changed appropriately.

We can combine the model and data weighting in a weighted
damped least squares inversion, which yields the solution
mz(GTWdG+£2Wm)“1GTde. (39)
As noted earlier, the damping parameter ¢ is chosen empiric-
ally. If we do not weight the data and model, the weighting
matrices W, and W, are identity matrices, and Eqn 39 is just
the simple damped least squares solution (Eqn 35).

An example of such an inversion was shown for P-wave
velocities at the base of the mantle in Fig. 3.5-17. A grid of 660
nodes that were roughly equally spaced were used to represent
the base of the mantle. The damping factor, = 1.2, was a com-
promise between the best fit, which minimizes the prediction
error, and minimizing the undetermined part of the solution.
Because each node is surrounded by 5 or 6 nodes that are
roughly equidistant, the rows of the model flatness matrix F
were chosen with the diagonal term equal to —~1 and the terms
of the nearest N neighbors equal to 1/N (with N =5 or 6). The
data were weighted empirically so that the diagonal elements
of the W, matrix ranked the quality of the observations from 9
(excellent) through 4 (good) to 1 (poor). These choices again
bear out that we have various ways of solving inverse prob-
lems, so the solution we develop depends on choices about
the data we use and the model we seek, based on our ideas
about what seems reasonable. Hence our solutions are in part
objective and in part subjective, and different approaches yield
different solutions.

7.3.5 Examples

Studies using travel time tomography yield interesting results
for various areas. For example, Fig. 7.3-5 (top) shows the model
geometry used in a study of the upper mantle in the region
including Central Europe, the Mediterranean, and the Middle
East. The model contains nine layers, each divided into 1040 1°
by 1° blocks. The layer thickness increases with depth from
33 kmat the top to 130 km at a depth of 670 km. The data con-
sist of approximately half a million travel times from about
25,000 earthquakes, recorded at stations both within the
model region and at distances to 90°.

The data used are travel time anomalies relative to the
Jeffreys—Bullen values, which can result from earthquake
mislocations as well as variations in seismic velocities. The
location and origin time of the earthquakes were thus also
inverted for, so the number of unknowns reflects both the
number of blocks (9360) and four times the number of earth-
quakes used. To reduce these numbers, procedures were used
to combine data from nearby earthquakes and from stations
close to each other. The problem to be solved thus involves
approximately 300,000 equations for 20,000 unknowns.
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Fig. 7.3-5 Top: Block model for a travel time tomographic study of the
upper mantle in the region including Central Europe, the Mediterranean,
and the Middle East. The heavy line indicates the location of the cross-
section shown below. (Spakman and Nolet, 1988, with kind permission
from Kluwer Academic Publishers.) Bottom: Cross-section through the
block model across the Hellenic trench region, showing P-wave velocity
perturbations with respect to the JB model. (Spakman et al., 1988.
Geophys. Res. Lett., 15, 60-3, copyright by the American Geophysical
Union.)

Solving matrix equations of this size poses major difficulties.
The matrices are so large (in this case 6 x 10° elements) that
they are difficult to store in a computer and operate on. As a
result, numerical methods are used, some of which allow only
a single row of the matrix to be manipulated at any time. The
properties of these algorithms and methods of improving the
resulting image form an active research area.

The resulting three-dimensional velocity model can be shown
as either cross-sections or map views at various depths. Fig-
ure 7.3-5 (bottom) shows a cross-section across the Hellenic
trench region, where the African plate subducts beneath Crete
and the Aegean basin (Fig. 5.6-8). The tomographic image
shows velocity anomalies in percent of the velocity predicted
for that depth by the JB model. A planar high-velocity (posit-
ive) anomaly, presumably the cold downgoing slab, dips NW
from the trench and extends to depths well below the deepest
earthquakes (dots). Above the slab, a low-velocity (negative)
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Fig. 7.3-6 Analysis of the tomographic image in Fig. 7.3-5 (bottom). Top:
Hit count plot, showing the number of times each block is sampled. Black
regions indicate the best-sampled blocks (hit counts in excess of 2000).
Bottom: Resolution test using synthetic velocity anomalies. Travel times
are generated for a model with 5% velocity perturbations, of alternating
sign, in each of the blocks marked by heavy lines. How well the
perturbations are recovered illustrates how much the image is blurred.
(Spakman and Nolet, 1988, with kind permission from Kluwer Academic
Publishers.)

region occurs, presumably due to flow behind the arc. Such
observations are valuable for modeling the subduction history
and dynamics.

Because tomographic images are solutions to an inverse
problem, they are neither unique nor exact. Hence it is import-
ant to assess which features in the image are likely to be geo-
Jogically real, and which are more likely to be artifacts of the
inversion. As we have seen, an important factor is how well
parts of the model are sampled by the ray paths. Figure 7.3-6
(top) shows a hit count plot for the section of Fig. 7.3-5
(bottom), showing the number of ray paths that sample each
block. The better-illuminated regions should be better resolved
than poorly sampled regions. Additional insight comes from
analyzing how a perturbation in one model block is blurred by
the inversion into nearby blocks. This information, given by
the resolution matrix (Eqn 23), can also be found by placing a
perturbation in one block, computing the forward problem,
and inverting the result. Because this would be time consuming
for such a large model, perturbations were placed in various
blocks, and the combined resolution was estimated by com-
puting synthetic travel time data and inverting it. Figure 7.3-6
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(bottom) illustrates this method for a 5 % velocity contrast
whose sign alternates between columns. If resolution were per-
fect, the image would be reconstructed exactly: each anomaly
would be confined to the original block (heavy line). Due to the
ray geometry, the anomalies “blur”, but are still concentrated
in the correct locations. Comparison with the hit counts shows
that better-sampled regions, such as the second column from
the left, are better resolved than poorly sampled regions like
the lower left column. The reconstructed image is further de-
graded when the effects of noise in the data are simulated. Even
in this case, the inversion results locate the perturbed blocks
reasonably well and retrieve the sign of the perturbation.
These tests suggest strongly that the high-velocity slab in the
image is real.

Typically, the major features of tomographic inversions seem
likely to be real, but assessing how much of the detailed struc-
ture is real is more difficult. For example, Fig. 5.4-7 showed
the results of a numerical experiment to see how well a tomo-
graphic study would reconstruct the image of a theoretical
subducting slab. It turned out that the general shape of the slab
was resolved, but was blurred by artifacts implying velocity
anomalies that are not present in the original model. In this
case these artifacts, generally of low amplitude, caused the slab
to appear to broaden, shallow in dip, or flatten out. The extent
to which these artifacts appear depends on ray geometry, so
the image could be improved by using upgoing as well as
downgoing rays.

Another important factor in tomographic images is the refer-
ence model with respect to which the velocity anomalies are
shown. In examining images, it is natural to focus on the lateral

[

reference models near 600 km depth.

(van der Hilst and Spakman, 1989. Geophs.
Res. Lett., 16, 1093-6, copyright by the
American Geophysical Union.)

variations. However, because these variations are with respect
to a starting model, which is usually laterally homogeneous,
the resulting images depend on the starting model. Figure 7.3-7
shows an example for the Lesser Antilles, The ray paths pre-
dicted by the global JB and PREM reference models differ
somewhat from those predicted by a model VCAR developed
for this region. As a result, tomographic images relative to the
JB and VCAR models differ. Although both show the high-
velocity North American plate subducting westward beneath
the Caribbean, the JB image implies that the slab flattens at the
660 km discontinuity, whereas this suggestion is much less in
the VCAR image. The flattening in the JB image results from
the fact that the inversion yields “streaks” of velocities relative
to JB that are lower than those observed above 660 km, and
higher than those observed below 660 km. This effect arises
because, compared to VCAR, the JB model predicts higher
velocity above 660 km, and lower velocity below. Thus a bias
in the reference model can produce spurious lateral heterogene-
ity. Similar reference model artifacts, in which a common state
seems abnormal due to the standard used, appear in various
inverse problems and other situations.3 However, the choice
of reference model is subjective, so making a choice requires
recognizing its consequences. For example, a global velocity
reference model that excluded subducting slabs would be
slower than the actual global average, whereas one including
slabs would predict slow anomalies elsewhere.

% 90% of motorists are said to consider themselves above-average drivers, and “all

children are above average” in the mythical town of Lake Wobegon in the radio show
Prairie Home Companion.
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Fig. 7.3-8 Anexample of cross-borehole tomography in Manitoba, Canada. Left: Travel times are recorded from a source at different depths in one
borehole to receivers in the other. The experiment is then reversed, yielding dense ray path coverage. Center: Straight ray paths computed for the laterally

homogeneous starting model. Right: Ray paths for the laterally varying model found from the inversion. (Wong et al., 1987.)

In addition to ray geometry and reference model artifacts, it
is worth noting that tomographic images can also be affected
by something as simple as the contouring scheme used. Some-
times when features are not robust aspects of the image, their
tectonic interpretation depends in part on preconceptions,
much like the ink-blot tests used by psychologists. Thus, despite
the power and value of tomographic images, it is important to
bear their limitations in mind.

Tomography is also used in other seismological applications.
One important use, providing detailed near-surface images,
is illustrated by Fig. 7.3-8 showing tomography between two
boreholes. The source and receivers were moved to generate
dense coverage with many crossing ray paths. The travel time
observations were then inverted for velocity structure. In this
experiment, the ray paths were recomputed for the perturbed
model and used to compute travel times for later iterations.
The differences between the initial and perturbed ray paths
show the advantages of recomputing the ray paths for each
successive model, a process called nonlinear tomography. This
updating ensures that the ray paths, and hence predicted travel
time anomalies, are consistent with the velocity structure being
found. However, for practical reasons it is common to conduct
linearized tomography using ray paths from the starting model
even as the model is perturbed, and to assume that the resulting
errors are small.

It is interesting to compare travel time tomography to the
surface wave tomography discussed in Section 2.8.3, where the
average surface wave velocity along multiple paths through
oceanic lithosphere of various ages is used to infer the velocity
structure for each age range. The approach is to find the phase
or group wave velocity as a function of frequency for each

age range, and then infer the variation in the medium velocity
with depth from the dispersion curve giving the variation in
apparent velocity as a function of frequency. Hence this is
tomography in the lateral direction, and dispersion analysis
vertically. We will see in the next section that dispersion ana-
lysis is an example of methods that infer earth structure using
functions that sample the structure at depth in different ways.
Tomographic methods can be used for waveforms as well as
travel times. As noted earlier — for example, in Fig. 3.7-7 —
waveforms sample earth structure over broader regions than
travel times, which, in the limit, correspond to sampling along
narrow geometric rays. Figure 7.3-9 shows some results
from global tomography in which velocity perturbations were
inferred by fitting both waveforms from 27,000 long-period
seismograms and 14,000 travel times. The seismograms include
body wave records (from the P or PKP arrival to the start of the
surface waves) and “mantle wave” records, which are low-pass
filtered seismograms about 4.5 hours in length. The travel time
data include both absolute shear wave arrival times and dif-
ferential (SS—S and ScS—S) times. Rather than inverting for the
velocity perturbations in blocks, the velocity perturbation was
described by a series of orthogonal functions, and the inversion
was for the coefficients of the functions. The lateral structure
was described by spherical harmonics (Section 2.9.3), and the
vertical structure was modeled using Chebyshev polynomials.
In addition, we saw in Section 3.7 that amplitude tomo-
graphy can infer attenuation variations along the ray paths.
Amplitude tomography is similar to medical tomography,*
in which the image indicates the degree to which X-rays are

4 The medical term “CAT scan” is for computed axial tomography.
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Fig. 7.3-9 Tomographic image of shear wave velocities along a great circle
slice through the Equator, obtained by inversion of both waveforms and
travel times. (Su et al., 1994. J. Geophys. Res., 99, 6945-80, copyright by
the American Geophysical Union.)

absorbed in different portions of the subject. Medical tomo-
graphy has the advantages that the subject can be uniformly
illuminated from all sides, and that the internal structure is
both well understood and subject to later, direct observation.

7.4 Stratified earth structure

Quantities that can be determined using seismological data are
often the integrals of a physical property of the earth. For
example, the travel time is the integral of slowness along a ray
path. As discussed in the last section, although a single travel
time gives only the average slowness along the ray path, travel
times for different ray paths can be combined to find the spatial
distribution of slowness.

A common such problem is finding earth structure for later-
ally homogeneous or stratified earth models, in which physical
properties are assumed to vary only with depth. Frequently, an
observable quantity d, can be expressed as the integral over the
radius of a physical property m(r),

a

d; = | G(r)m(r)dr, (1)

[

<

Fig. 7.4-1 Schematic amplitude spectrum of a seismogram, showing the
observations used to invert normal mode data for eath structure. Each
mode peak is described by a width proportional to Q7, which describes
its attenuation, and an eigenfrequency o,

where G,(r) is a known function of depth called a kernel. Given
a set of d; with different kernels, each of which samples the
distribution of m(r) differently, the inverse problem is to infer
m(r). Although the relation between the observed quantity and
earth structure is sometimes less intuitive than for travel time
and slowness, the problems can be formulated in a similar way.

We encountered this idea in discussing Love wave dispersion
in Section 2.7.4. The apparent phase velocity along the free
surface varies as a function of period, because waves of differ-
ent period sample the velocity at depth differently. Hence this
variation can be used to study the velocity at depth.

7.4.1 Earth structure from normal modes

The concepts of inverting observations for the structure of
a stratified medium can be illustrated using normal modes
(Sections 2.9 and 3.7). The displacement field of the i mode
excited by an earthquake can be written

u,(#) = C,(1) exp (~0,t/2Q). (2)

The mode’s eigenfrequency ; and quality factor Q,, which
describes the attenuation, and thus the width of the peak,
can be found from the Fourier transform of the seismogram
(Fig. 7.4-1). Because @, and Q; depend on the variation with
depth of the seismic velocities, density, and attenuation, these
observations can be used to study earth structure.

To do this, we begin with an earth model described by ofr),
B(r), and p(r) and find the eigenfrequencies of the different
modes, @, This calculation also gives the partial derivative
functions

90,
oo

20,
ap

Jw;

L 3
P (r), 3)

(r), (r),

showing how a mode’s eigenfrequency changes if the velocity
or density at a given depth is perturbed. The total change in the
eigenfrequency is the integral over the radius of the perturba-
tions in the earth model:
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Fig. 7.4-2 Observed attenuation for fundamental spheroidal modes
05505 191- The variation in Q™! with period reflects the depth variation of
g (7). (Stein et al., 1981. Anelasticity in the Earth, 39-53, copyright by
the American Geophysical Union.)

da, 9o, 90;
Aw; = g(r)Aa(fH B (nAB(r) + ” (nAp(r)|dr.  (4)
0

Thus the difference between a measured eigenfrequency and
that predicted by an earth model can be inverted to find the
perturbation in the model required to fit the data. Although a
single mode observation gives only the average over depth of
the required perturbation, a set of modes gives more informa-
tion, because the partial derivatives vary between modes.

We illustrate the method using the corresponding inverse
problem for attenuation, which has a simple linear form. If

AN\ AN
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attenuation within the earth is described by the function g(r),
the quality factor for the i mode is

Q

O7' = G;(ng !(r)dr, (5)

f=}

where the kernels G,(r) are derived from the partial derivatives
(Eqn 4), using the formulation of the quality factor as an imagin-
ary part of the frequency that is related to an imaginary part of
the velocity (Section 3.7.6). Although the symbol Q is com-
monly used for both the modes’ quality factor and the attenu-
ation as a function of depth, using g(r) for the latter emphasizes
the distinction. The problem is written using the reciprocals
g }r) and O7}, so higher attenuation (larger loss of seismic
energy) corresponds to larger values.

Figure 7.4-2 shows measured values of the attenuation of
fundamental spheroidal modes, which for periods less than a
few hundred seconds correspond to fundamental mode Rayleigh
waves. The attenuation is low for the longest-period modes,
rises to its highest values at periods slightly above 100 seconds,
and then decreases again for the shortest periods (about 50 sec-
onds) shown. This variation occurs because the kernels differ
between modes (Fig. 7.4-3). Because Q7! for a mode is the
integral of the attenuation weighted by the kernel, the shape of
the kernel with depth illustrates a mode’s sensitivity to attenu-
ation at various depths. Long-period modes are most sensitive
in the lower mantle, periods near 100 seconds sample the low-
velocity zone heavily, and periods near 50 seconds are most
sensitive to structure in the “lid” region above the low-velocity
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Fig. 7.4-3 Attenuation kernels for various g 0.0006 7 0.006
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Anelasticity in the Earth, 39-53, copyright 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
by the American Geophysical Union.) Depth (km)

Depth (km)




436 Inverse Problems

~ A\ A —

Kernels

Layers + + +.

A\ 4

Parameter
space

v A\ ¥
Data space

Fig. 7.4-4 Schematic illustration of the model parameterizations for two
types of inversion methods. In parameter space inversions, the model is
divided into layers; in data space inversions the model is treated as a
weighted sum of the kernels.

zone. Q7! is a smooth function of the period, because the
kernels of fundamental modes with similar periods are similar.

The inverse problem is to use the observed mode attenuation
Q7! and the known kernels G,(r) to infer the function g7(r)
describing the variation of attenuation with depth in the earth
that best fits the data. This problem can be approached in
several ways, two of which we discuss briefly.

7.4.2  Parameter and data space inversions

The most direct approach, parameter space inversion, is to
regard the unknown model g™!(r) as constant in a set of layers
(Fig. 7.4-4, left), such that in the ™ layer

g N=q;', 1<rsr,g (6)

The inverse problem is then converted from an integral to a
matrix equation

a

o' =G, q;'dr = > Ayqi, (7)
i i
0

where the matrix elements are

r/+1

A= | G,(r)dr. (8)

7j i

7

The observations are inverted for the value of the parameter
g;" in each layer.

By choosing a smaller number of layers than mode observa-
tions, we obtain an overdetermined system of equations. As

before, the generalized inverse gives the “best” solution in g
least squares sense. The concepts developed previously are use-
ful for assessing the solution. Columns of the resolution
matrix, called resolving kernels, indicate how well the value in
the corresponding layer could be determined independently of
those in the other layers if the data had no errors. This uncer-
tainty results from the inverse problem itself, and reflects the
best resolution possible, given the available kernels, analogous
to the resolution matrix (Eqn 7.3.23) in the tomographic exam-
ple. It is also useful to consider the model covariance matrix,
which indicates the uncertainty in the model due to both the
nature of the inverse problem and the errors in the observa-
tions. Often a weighted average over a number of layers is the
best resolution obtainable, analogous to the blurring in travel
time tomography.

Parameter space inversion has a few unattractive features.
First, the layers in which attenuation is treated as constant must
be chosen in advance. This choice might not be a meaningful
one. Second, parametrizing the model as constant in these
layers yields a model with “steps” at layer boundaries. These
steps may be quite unphysical; in many cases our intuition
(admittedly sometimes a poor guide) suggests that physical
properties should vary smoothly with depth.

In an alternative formulation, data space inversion, the
unknown model describing attenuation as a function of depth
is expanded not into constant layers, but as a weighted sum of
the kernels themselves (Fig. 7.4-4, right),

q(r)=Y,v,G,r). 9)
i

The inverse problem is then

Qlfl = Gi(r)z V/G/(r)dr = ZAi/'V;‘> (10)
i i

0

where the matrix elements are

Q

(r)dr. (11)

<

The model is found by inverting for the expansion coefficients
V.

Data space inversion is less intuitive than parameter space
inversion, but has the attractive features that the resulting
model is a smooth function of depth, and need not be para-
metrized in depth in advance. Moreover, it is in some sense
“natural” to use the kernels as basis functions for the model,
because the observations sample the model along these kernels.
However, these solutions often seem too smooth for our in-
stincts, just as the parameter space solutions often seem too
jagged. We often both expect changes in properties near certain
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depths and are reluctant to force them into the solution. This
dilemma is an example of the general issue of deciding how
much we want the inversion solution to reflect our preconcep-
tions, some of which may be correct, especially when derived
from other data, and some of which may be incorrect. We can
choose to focus on what the data require, what the data permit,
or a combination of the two.

These issues are illustrated in Fig. 7.4-5, which shows several
models for attenuation as a function of depth, all generally con-
sistent with the data in Fig. 7.4-2. Model SL8 was derived by
parameter space inversion, whereas the others were derived
from data space inversion. The lower two models were derived
by inverting the data in Fig. 7.4-2 with different misfit func-
tions, whereas the upper two were derived from different data.
Although the models differ, all have low attenuation in the
lower mantle, high attenuation in the upper mantle associated
with the low-velocity zone, and moderate attenuation in the
“lid” above the low-velocity zone. The models illustrate the
range of acceptable solutions. For example, the high attenu-

1000 2000 3000
Period (s)

Fig. 7.4-5 Comparison of various attenuation models. Despite the differences, all reproduce the general features of the data in Fig. 7.4-2, as shown in the
right hand panels. (Stein et al., 1981. Anelasticity in the Earth, 39-53, copyright by the American Geophysical Union.)

ation zone at the base of the mantle in model SL8 is permissible,
and thus survives if included in the starting model, but is not
required by the data. This ambiguity results from the fact that
the data have little resolution for structure at this depth, as
shown by the kernels in Fig. 7.4-3.

7.4.3 Features of the solutions

The inverse problem for attenuation (Eqn 5) has a simple form,
because each mode’s quality factor depends linearly on g7'(r),
so the observations can be inverted directly for the attenuation
structure. If this is not the case, we linearize about a starting
model (Section 7.2.1), so the change in a datum depends lin-
early on the change in model parameters

i~y

<
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Figure 7.4-6 illustrates a parameter space inversion for vertical
shear velocity structure from Rayleigh waves. Using the partial

derivatives
oUL) y U,
B B

which show how the phase and group velocities at a particular
period change in response to a shear velocity perturbation at
each depth, the starting model is modified to fit the observed
dispersion. The resolving kernels that illustrate the vertical
“smearing” are largest at the depth for which they are com-
puted, but have nonzero amplitudes at other depths. The best

Depth (km)

‘MW

Shear velocity (km/s)
4.2 4.4 4.6 48 50

50

100

150

200

250

300

L B S LA S B B B B B A B

350 f- coce starting model

L |

—— inversion result

400

-86

Fig. 7.4-6 Inversion of Rayleigh wave phase
and group velocity measurements for shear
wave velocity structure beneath the Pacific.
(a): Phase and group velocity partial
derivatives at 40 and 100 s periods. (b):
Starting (dotted line) model and final model -
derived by parameter space inversion.
Horizontal lines indicate the model standard
deviation in each layer. (c): Resolving kernels
for various depths. The number and :
horizontal line indicate the depth for each !
kernel. (Yu and Mitchell, 1979.) -

resolution occurs when the kernel is sharply peaked at the
desired depth. :
As we noted earlier, the generalized inverse solution yields
the minimum change in the model that best produces a desired
change in the data. Hence the final model is as close to the start-
ing model as possible. Features of a model derived by linearized
inversion can thus depend on the starting model. For example,
in a parameter space inversion, a layer whose value in the start-
ing model is assumed to differ significantly from adjacent layer
will often retain this feature in the solution. One way to ?"Oldf
this is to start off with a model whose properties are uqur
with depth. In other cases, data not included in the inversiof
can be used to find a starting model more appropriate than




auniform one. Another approach is to do inversions with dif-
ferent starting models and compare the resulting solutions. If
the solutions differ, they are likely local minima of the misfit
function (Eqn 7.2.11) that the inversion minimized, whereas
if the different starting models yield the same solution, it is
ore likely to be the global minimum that we seek. Yet another
approach is to search numerically for the minimum in the
model space by varying the model parameters. Such “brute
force” approaches, in which we solve the inverse problem by
solving the forward problem many times, are attractive when
the number of model parameters is small, because they avoid
the issue of linearizing about the starting model and show the
trade-offs between various parameters. For example, Fig. 5.3-8
showed the trade-off between plate thickness and basal tem-
perature in inverting oceanic depth and heat flow data for
thermal structure.

. Parameter space and data space inversions can be carried out
using more sophisticated variations. For example, parameter
space inversion can be smoothed to reduce the jumps at layer
‘boundaries. Data space inversion can be formulated in terms
of a set of orthogonal kernels, rather than the actual kernels,
which are often quite similar to each other. This approach
xpands the model in the simplest possible way with the
minimum number of parameters. In addition, the model can be
constrained to fit the data only within the error bars, rather
than attempt to fit the mean value of each datum.

‘Due to the structure of inverse problems and the range of
ossible techniques available, various solutions can generally
be derived for a set of seismological observations. As a result,
inverse problems remain an important research area. The
choices, ambiguities, and trade-offs in the solutions of these
roblems are sometimes key features of the solution. Attempts
toexplain these issues can be frustrating to nonseismologists,
as illustrated by the joke that in response to the question
How much is 2 +2,” an engineer replies “3.9999,” a geologist
replies, “Somewhere in the mid-single digits,” and a geo-
physicist replies, “How much do you want it to be?”

.5 Inverting for plate motions

We end our discussion of inverse problems with the issue of
etermining the Euler vectors that describe relative plate
otions. As we have noted, these Euler vectors are derived in
part from earthquake focal mechanisms, and are then used as
eference model to predict the directions and rates of plate
lotions for applications including estimating earthquake re-
currence, slip partitioning, and the fractions of seismic and
eismic slip at plate boundaries.

7.5.1 Method

he forward problem (Section 5.2.1) is that at any point r
long their boundary, the linear velocity of plate j with respect
plateiis

. A\ AN
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V=0, X1, (1)
where w;is the relative angular velocity, or Euler vector. Hence
the rate and direction of plate motion are given by the north—
south and east—west components of v,

rate=|v|= /(™) + (EV)?,

azimuth = 90° — tan™! [(vN8)/(vEV)]. (2)

The corresponding inverse problem is to find a model, or
set of Euler vectors, that best predicts the observed motions.
Because Euler vectors can be added, assuming that the plates
are rigid, m plates are specified by m — 1 Euler vectors, and thus
their 3(m — 1) components. Hence we use a data vector d com-
posed of rates and azimuths to estimate the model vector m
composed of the Euler vector components. Both the model
and data vectors consist of physically different quantities: the
model vector is made up of Euler pole latitudes, longitudes, and
rotation rates
m=(6,,0,,...

Ots 015 B2+ -+ Oty [ 011 [ D ]s - - - | @4 )y

whereas the data vector contains rates and azimuths
d: (7’1, 72, e Tk, azl, azz, cee élzn_k). (4)

As written, the inverse problem is not linear because the data
are complicated functions of the model parameters. Thus, as in
the previous examples, we linearize about a starting model by
forming the partial derivative matrix

G =94 (5)

- b
g am].

showing how a change in the /™ model parameter affects the
prediction of the i® datum. The derivatives are found by differ-
entiating the expressions for ™ and vE¥ (Eqn 5.2.7). We then
have the usual equation

Ad=GAm, or Ad;=) GAm, (6)
i

relating the changes in the data and the model. The system
is usually overdetermined, because we generally have data at
many sites and solve for only a few plate model parameters. For
example, the NUVEL-1 model has 12 plates whose motions
were estimated from 1122 data (Fig. 1.1-9). We thus use the
weighted least squares solution

Am=(GTW ,G)"1GTW ,Ad, (7)

where the variance-covariance matrix of the data, W, = (03)71,
contains our estimates of the uncertainty in rates from

N E—
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magnetic anomalies and the uncertainties in directions
associated with estimating transform azimuths and deter-
mining earthquake slip vectors. The weighted solution is
needed because the uncertainties have different dimensions and
vary between data points.

Thus uncertainties in the estimated Euler vectors are given by
the model variance-covariance matrix

02 =(GTW,G). (8)

Uncertainties associated with the Euler poles are often shown
by error ellipses analogous to those for earthquake locations,
whereas those for the rates are quoted separately. Alternat-
ively, we can view the pole and rate uncertainties as forming
a three-dimensional ellipsoid. Hence two Euler vectors are
distinct if their error ellipsoids do not overlap. As we have seen,
conventional global plate motion studies using magnetic
anomalies, transforms, and earthquake slip vectors yield solu-
tions similar to those obtained by using the same formulation
to invert the rates and azimuths of plate motions determined by
space-based geodesy (Section 5.2.3). This agreement is gratify-
ing, given that the conventional solutions combine data from
magnetic anomalies averaged over millions of years, the azi-
muths of transform faults that formed over long times, and the
slip vectors of earthquakes, whereas the space-geodetic solu-
tions based on data spanning only a few years have different
uncertainties.

7.5.2  Testing the results with y? and F-ratio tests

Given a model derived by inversion, the natural question is,
how good is it? This issue is a specific case of the general one
of testing how well a model fits data, which is discussed in
statistics texts. For our purposes we focus on two issues and
note some results without proof.

One common way to test how well a model fits data uses the
misfit function y? that we minimized to derive the least squares
solution (Eqn 7.2.11). We write it as

d; — d7)?
X2:Z(1021)’ (9)

i i

where d7* are the data predicted by the model, d, are the data
observed, and o; are their uncertainties. Lower values of y? cor-
respond to better fits. However, because a model derived from
these data is bound to fit better than one derived without them,
we examine the reduced chi square

15=xv (10)

where the parameter v, known as the number of degrees of
freedom, equals n — p where  is the number of data and p is the
number of model parameters estimated in the inversion.

If the model is a good fit to the data and our estimates of the
uncertainties are reasonable, then we expect 2 to be around 1.

Fig. 7.5-1 Cumulative probability distribution P(x2, v), giving the
probability of observing 2 above a certain value, plotted for 10 and 10
degrees of freedom. The more the degrees of freedom, the more Iikel&k;
to be near 1, and the less likely much higher or lower values are.

Statistically, this means that there is a reasonable possibili
that the observed data are samples from a parent distribution
described by the model, given the random uncertainties of mea
urement. However, if y2 is much larger than 1, it is unlikely
that the data are samples from this distribution. This issue
is addressed using the cumulative probability distribution
P(x2, v) given by statistical tables or mathematical software
that gives the probability of observing y2 above a certain value
(Fig. 7.5-1). In other words, this test asks what the probability
is that such a high value would be observed purely by chance
due to the uncertainties of measurement. The more the degrees
of freedom, the less likely a high value is. For example, the
chance of observing ¥ greater than 1.5 is about 13% for v=10,
but less than 1% for v=100. Thus, the more data we have, the
more the degrees of freedom, and closer to 1 we expect y? to be.
This test does not tell specifically whether the data observed
are samples from the distribution predicted by the model, but
gives instead some insight into the probability. If ¥ 2is too large,
there is likely to be something wrong. =

One possibility is that the model does not include some
crucial factors. For example, a plate motion model may not
include an important plate boundary, and so does not describe
the data well. In this case, the misfit is greater than expected
from considering only random uncertainties of measurement,
because systematic errors are also present. Similarly, the misfit
to travel time in an earthquake location includes both errors of
measurement and the effects of velocity structure like lateral
heterogeneity. We sometimes rescale the uncertainties to make
2% =1, which lets us assign confidence limits using y2. This
rescaling does not address the causes of the misfit, but impli-
citly lumps the systematic errors in with the errors of measure-
ment. To do better requires improving the model.

Conversely, if 2 is too small, Fig. 7.5-1 indicates that some-
thing is also likely to be wrong. For example, for v= 10, there 1
only about a 2% chance of observing y2 less than 0.3, and the
probability is less for more degrees of freedom. This is because
the data are unlikely to be fit that well, given errors of measure-
ment. About one-third (100 — 68%) of the data should be misfit




Jeast 10, and about 5% should be outside the 20 range.
e a low x2 value, which we might view as showing an
lent fit, is more likely to imply that the uncertainties in the
2 have been overestimated, and have thus made x% appear
all. For example, 2 for the NUVEL-1 model is 0.24,
sit is expected to lie with 95 % probability between 0.93
07. This effect is also seen for other plate motion models,
gesting that the assigned data uncertainties are more like
% (20) confidence limits than one standard deviation. If so,
uncertainties in the model are correspondingly less than
lied by the model variance-covariance matrix. Thus the 2
formalizes the adage that if something seems too good to be
it probably is.!
second issue is whether the number of model parameters is
ropriate. As discussed in Chapter 5, there are often several
sible plate boundary geometries for an area. Naturally,
re plates can describe plate motions in an area better
use the model has more parameters. Thus we ask whether
¢ improved fit shown by a lower value of 2 is more than
cted purely by chance due to the additional parameters.
example, a set of data in the x—y plane are always better
by a higher-order polynomial, such as a quadratic versus a
raight line.
his issue can be addressed using the F-ratio test, which gives
ight into whether a set of data are significantly better fit by a
odel with more parameters. The idea is that if a set of # data
re fit by two models, one with » parameters (7 — 7 degrees
- freedom) and a second with p parameters (7 — p degrees of
edom) with p greater than 7, the second model should fit the
ata better, and y%(p) should be less than x?(r). To test if the re-
uction in y? is greater than would be expected simply because
dditional model parameters are added, we form the statistic

m

20 - x>l — 1) (11)
2on—-p

tatistical tables or mathematical software give the probability
(F, v;, v,) of observing an F value greater than that observed
a random sample with v; = (p — ) and v, = (n — p). Thus,
or example, if P is 0.01, there is only a 1% chance that
he improved fit of the model with more parameters is due
urely to chance. Because this test depends on the ratio of %,
is not affected if the uncertainties are consistently over- or
nder-estimated.
“We can use F to test whether the fit to # relative motion data
f a model with p + 1 plates is significantly better than that of
“one with p plates. The p plate model has 3(p — 1) parameters
#n—3p + 3 degrees of freedom), whereas the p + 1 plate model
as 3p parameters (n — 3p degrees of freedom). Thus

This approach has been used to argue that Mendel’s famous results in 1865 that
_established the science of genetics are so good — the probability of observing them is
0.004% — that they are suspect. Similarly, instructors have used %2 tests to show that
students’ results reported in laboratory classes are so good that they are unlikely to
have actually been obtained.
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2 )
Fe [x%(p plates) — x*(p + 1 plates)]/3 (12)

22(p + 1 plates)/(n — 3p)

is tested using Py(F, v;, v,) with v; =3 and v, = (n - 3p). If the
risk that the improved fit would occur by chance is small, per-
haps less than 1%, then we treat the additional plate as distinct.
Conversely, if the improved fit is likely to result simply from
the additional parameters, the data do not strongly indicate
the presence of an additional plate. For example, such tests
show that although the boundary between them is indistinct,
North and South America should be treated as separate plates.
This approach is used to investigate complicated regions where
the plate geometry is unclear, such as near Japan and in the
Indian Ocean. Similarly, we can investigate regions of intraplate
deformation to see whether there is resolvable motion.

In many applications these or other statistical tests can be
used to examine how well a model fits the data and to gain in-
sight into whether the model is too simple (underparametrized)
to explain the data or more complicated (overparametrized)
than is required by the data. For example, we can examine
cases when adding more layers to a velocity model significantly
improves the fit to travel time data, when a more complex
earthquake source model fits seismograms significantly better,
or when a more complex model of earthquake recurrence de-
scribes an earthquake history better. In these applications the
statistical tests address only the data used, so a more complex
model may be justified based on other data, even if it is not
required by the data tested. Moreover, we often suspect that
the earth is more complicated than we would like when using
simple statistical models. In particular, we often have little a
priori knowledge of how to estimate the random and system-
atic errors. Even so, it is worth subjecting models to tests and
seeing how well the data support our beliefs. This testing is a
key part of the cycle (Fig. 1.1-8) by which models are refined
using new data and model parameterizations.

Further reading

Many discussions of inverse theory, including ours, are based on Lanczos
(1961). Applications in the earth sciences, especially seismology, are dis-
cussed in texts and reviews including Parker (1977), Aki and Richards
(1980), and Menke (1984). Treatments of tomographic methods in seis-
mology are given by Nolet (1987), Thurber and Aki (1987), Spakman and
Nolet (1988), Humphreys and Clayton (1988), and Romanowicz (1991).
Inversion for the properties of stratified media is reviewed by Wiggins
(1972).

Tests for goodness of fit are discussed in statistical texts such as
Bevington and Robinson (1992) and Freedman et al. (1991); the latter
treats the issue of Mendel’s results. Chase (1972) and Minster et al. (1974)
present the inverse problem for plate motions; the latter gives the partial
derivatives. Stein and Gordon (1984) and DeMets et al. (1990) discuss ap-
plications of the F-ratio test to plate motions and intraplate deformation.
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Inverse Problems

1.

2.

3.

b

b

6.

7.

Problems

Show the following matrix identities:

(a) For an arbitrary (not square) matrix A, the matrices ATA and
AAT are symmetric.

(b) For an arbitrary (not square) matrix B and a symmetric
matrix A, (BT AB)T=BTAB.

(c) For square matrices A and B such that (AB)~! exists, (AB)™! =
B1AY

Show that if a square matrix G has an inverse, the inverse and gener-
alized inverse are identical.

Show that if the variance-covariance matrix of the data is diagonal,
oi= 0',-275,7 (with no summation implied), its inverse is another dia-
gonal matrix W, = 6;,»/0',%. (Also with no summation implied.)

Show that the model variance-covariance matrix (Eqn 7.2.32) 02 =
G¢063(G#)T reduces to 62, = 0*(GTG)™! when the data errors are
uncorrelated and equal, so the data variance—covariance matrix is a
constant times the identity matrix, 0§ = 625,

Show that if the data errors are uncorrelated but not equal, such that
the data variance-covariance matrix of the data is the diagonal
matrix 0} = 0,-21»5,»/- with inverse W, (problem 3):

(a) The least squares criterion (Eqn 7.2.14) for the inverse prob-
lem gives rise to the weighted least squares solution Am =
(GTW,G)1GTW,Ad.

(b} The model variance-covariance matrix is 02, = (GTW,G)™L.

For a halfspace with uniform (and known) velocities cvand j3:

(a) Show how the location problem can be formulated to use
both P-wave and S-wave first arrival times as data. Write the
data vector, model vector, and partial derivatives. How do
these differ from the case for P waves alone?

Show how the location problem can be formulated to use only
the difference between P-wave and S-wave first arrival times
as data. Write the data vector, model vector, and partial
derivatives. How do these differ from the case for P waves
alone? How might you apply this method if only the P velocity
were known? Under what conditions might this method be
useful?

For the idealized tomographic experiment in Figure 7.3-2:

(a) Show how one row of the G matrix in Eqn 7.3.10 can be
derived from the others, such that the four teleseismic ray
paths are not linearly independent. Give a physical inter-
pretation of this result.

(b) Find four rows of the G matrix in Eqn 7.3.6 that are linearly
independent, and give a physical interpretation of this result.

M————MNMM\_/\/\/\N
AT

Computer problems

C-1. Write a subroutine to find the generalized inverse G¢ =

(GTG)'GT of an (1 x r) matrix G, using a matrix inversion
subroutine. As a test, check that the solution satisfies the criterion
that for a square matrix G that has an inverse, the inverse and
generalized inverse are identical.

C-2. For a homogeneous halfspace with P-wave velocity o

(a) Write a subroutine to compute the distance and travel time
between two points (x, y, z) and (x;, ¥, z;). Test this for
some simple cases.

Use the result of (a) to write a program that reads an earth-
quake location, origin time, and medium velocity and the
locations of # seismic stations, and finds the first arrival
time at each station.

Write a subroutine using the result of (a) to compute the
partial derivatives of the first arrival time at a station with
respect to changes in the model parameters (location,
origin time, and medium velocity).

Modify the result of (b) to compute arrival times for a start-
ing model (assumed location, origin time, and medium
velocity), and then locate the earthquake by inverting these
synthetic data to find the best-fitting model. The result of
C-1 should be useful. Have the program iterate until the
model change between iterations is less than a parameter
you set. The program should have the option to invert for
velocity or hold velocity fixed at an assumed starting value.

(b

=

C-3. Test the location program with a set of station locations, a “real”

origin time and location, and an incorrect starting model. The
program should retrieve the “real” model. Once this works for
error-free data, add some errors to the travel times, either by using
your computer’s random number function or by simply choosing
some numbers. Invert for the best-fitting model, and see how
the result of the inversion changes as the errors become a larger
fraction of the travel times. How do the results depend on
whether the velocity is held fixed or inverted for?

Compute and compare x> and x2 for C-3 for cases in which
you inverted for velocity and in which the velocity is fixed at an
incorrect value. Using the F-ratio test, does the improved fit due to
inverting for velocity seem significant?




Appendix: Mathematical and
Computational Background

Ifyou wish to learn about nature, to appreciate nature, it is necessary to understand the language she speaks in. She offers her informa-
tion only in one form; we are not so unhumble as to demand that she change before we pay attention.

A.1 Introduction

The study of seismology follows a pattern characteristic of
many scientific disciplines. We first identify phenomena that
we seek to understand, such as the propagation of seismic
waves through the solid earth. We then consider the physics of
the simplest relevant case, such as the propagation of a wave
of a single frequency through a uniform material, formulate
the problem mathematically, and derive a solution. From this
solution, we build up mathematical solutions to more complex
problems, each of which is ideally a better approximation to
the complexities of the real earth. Although the simpler pro-
blems can be solved analytically, eventually the complexities
require numerical techniques.

We thus rely on a set of mathematical techniques often used
in physical problems. Experience suggests that although many
readers are familiar with most of the mathematics required
in this book, a review is often helpful. This appendix briefly
summarizes a broad range of material. The first sections treat
a variety of mathematical topics. The final section reviews
some concepts relevant to the use of computers for scientific
calculations.

In using these mathematical techniques, it is worth bear-
ing in mind that we are invoking the special power of math-
ematics to deal with physical problems. This power is that if a
physical problem is posed correctly in mathematical terms, then
applying mathematical techniques to this formulation yields
quite different, and often apparently unrelated, statements
that also correctly describe the physical world. For example,
in Section 2.4 we used the equations of elasticity and applied
vector calculus to derive the properties of seismic waves that

Richard Feynman, The Character of Physical Law (1982)

we observe. Similarly, in Section 2.5 we derived an observed
physical relation, Snell’s law, starting from three different phys-
ical formulations. Conversely, we have seen that different phys-
ical phenomena can be described using similar mathematical
approaches and so have some deep similarities. Although in
hindsight such successes may not seem surprising, because
many of the mathematical methods we use were developed to
solve such physical problems, they illustrate the intimate con-
nection between sciences like seismology and mathematics.!

A.2 Complex numbers

In several of our applications, notably in describing propagat-
ing waves and their frequency content, complex numbers are
helpful. We thus briefly review some of their properties.

The complex number z = a + ib, where i = \/ji, has a real
part, 4, and an imaginary part, b. These relations are sometimes
written 2 = Re (z) and b = Im (z). Complex numbers are typ-
ically plotted in the complex plane with their real parts on the
x, axis and their imaginary parts on the x, axis (Fig. A.2-1).
Alternatively, a complex number can be written in polar coor-
dinate form as

z=a+ib=re®=7r(cos B+isin 6). (1)

1 Most seismologists are more conservative than Paul Dirac, a leader in the
development of quantum physics, who invented the delta function. Dirac regarded
mathematical beauty as a guiding principle, stating that “it is more important to have
beauty in one’s equations than to have them fit experiment.”
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Fig. A.2-1 A number in the complex plane can be represented in terms of
its real and imaginary parts, z=a+ib, or in polar form z = re’.

The polar coordinates, the magnitude r and the phase angle 6,
can be expressed in terms of the real and imaginary parts as

r=+a*+b*, O=tan"! (bla). (2)
and, conversely,

a=rcos 0, b=rsin6. (3)
To describe complex numbers in all four quadrants of the com-
plex plane, Oranges from 0 to 27. Because the inverse tangent is
periodic with period 7, the signs of the real and imaginary parts
are used to obtain the correct phase.

Complex numbers are equal when they have the same real
and imaginary parts. Two complex numbers in (g +ib) form are
added by adding the real parts and the imaginary parts:
(ay+1iby) + (ay+iby) = (a; +a,) +i(b, + b,). (4)
Complex numbers can be multiplied either in the (a +ib) form:
(ay+1ib))(a, +1ib,) = (aya,— b,b,) +i(a;b, + bia,), (5)
or in the magnitude and phase form:

01, ,i61 _ i(01+02)
7€'ty etfr =rr,e!%1 o, (6)

The conjugate of a complex number z, z*, has the same real
part and an imaginary part of opposite sign. Because

Z*=a—ib=rcos 6—irsin 6

=7 cos (—0) + ir sin (—0) =re~*®, (7)
the conjugate has the same magnitude but the opposite phase.
Hence the square of the magnitude of a complex number can be

found by multiplication by the complex conjugate,

|2 [>=z2z*=(a+ib)(a—ib)=(a®+b*) =re're0=12. (8)

By combining
e®=cos O+isin @ and e ®=cos @—isin 6 9)

we obtain the definitions of the sine and cosine functions in
terms of complex exponentials
cos B=(e??+e7)/2 and sin 0= (e'f—e19)/2;. (10)

These relations yield formulae for the trigonometric functions
of the sum of the angles because

e!01102) = cos (0, + 6,) +i sin (6, + 6,) (11)
and, by Eqn 6,

e(01762) = ¢i91¢162 = (cos 6, +i sin 6;)(cos 6, +i sin 6,)
=(cos 0 cos 6, —sin 6, sin 6,)

+1(sin 8; cos 6, +cos 6, sin 6,), (12)

so we can equate the real and imaginary parts and find

cos (6, + 6,) =cos 8, cos 6, —sin 6, sin 6, (13)
and
sin (6; + 6,) =sin 6, cos 0, +cos 6, sin 6,. (14)

These expressions are symmetric in 6, and 6,, as expected. The
corresponding relations for the trigonometric functions of the
difference of two angles are found by making 6, negative. Set-
ting 6, = 6, gives expressions for cos (26) and sin (26).

The relations for the product of trigonometric functions of
two angles can also be found using complex exponentials

(ei61 + e—i@,) (ez'92 + e—iGZ)
2 2

cos 6, cos 6, =

[(eH01+62) 4 g=i(01+02)) | (pilB1=62) 4 =i(61-62)]

D= A=

[cos (8, + 8,) +cos (6, - 6,)] (15)

and, similarly,

(€0 — i) (¢i0 _ gmif)

sin 6, sin 6, =

2 2i
= l [(ei(91—92) +e—i(91~92)) _ (ei(81+92)+e_i(91+92))]
4
1
= E[cos(91—92)~cos(01+92)], (16)
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Fig. A.3-1 A vector u is expressed by the Cartesian unit basis vectors and
its components: u =&, +u,&, + 1,85,

A.3 Scalars and vectors

A.3.1 Definitions

In seismology, we deal with several types of physical quan-
tities. The simplest, scalars, are numbers describing a physical
property at a given point that is independent of the coordinate
system used to identify the point. Temperature, pressure, mass,
and density are familiar examples. Mathematically, if a point
is described in one coordinate system by (x,, x,, x;) and in a
second by (x1, x, x5), the value of a scalar function ¢ in the
first coordinate system equals that of the corresponding scalar
function in the second

(p(xpxza x3)=¢,(xia xéa x;)- (1)

The distance between two points is a scalar because although
the coordinates of the points depend on the coordinate system,
the distance does not.

Vectors are more complicated entities that have magnitude
and direction. In seismology, the most common vector is
the motion, or displacement, of a piece of material within the
earth due to the passage of a seismic wave. Vectors transform
between different coordinate systems in a specific way. Thus, if
the horizontal ground motion is recorded with seismometers
oriented northeast-southwest and northwest—southeast, the
north-south and east-west components of the displacement
can be found using the properties of vectors. We will see that
although the components depend on the coordinate system, the
magnitude and direction of the vector remain the same.

Consider the familiar Cartesian coordinate system (Fig. A.3-
1) with three mutually perpendicular (orthogonal) coordinate
axes. There are two standard notations for these coordinates
and axes: either the x,, x,, and x5, or the x, y, and z axes. Each
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Fig. A.3-2 A vector u is described in each of two orthogonal coordinate
systems by the Cartesian unit basis vectors of the coordinate system and
the components of the vector in the coordinate system: u =&, +#,&, +
38y =1 &} +u)&) +uj€}. Although the components differ between
coordinate systems, the vector remains the same.

notation has advantages. The x;, x,, x; notation is more con-
venient for some derivations, and the x, y, z notation is some-
times clearer in physical problems. We use the x;, x,, and x
notation in this appendix, and use whichever notation seems
more convenient in other discussions.

A point in this coordinate system is described by its x4, x,,
and x; coordinates. Because a vector can be defined by a line
from the origin (0, 0, 0) to the point (u,, #,, #5), the three num-
bers u,, 1, and u5 are the components of the vector u. A vector
is denoted either by boldface type or by a set of its components

u:(ula uz: u3)=(ux, uy; uz) (2)

A Cartesian coordinate system is described by three ortho-
gonal unit basis vectors, &, &,, and &;, along the x,, x,, and x4
coordinate axes:
€,=(1,0,0) &=(0,1,0) &=(0,0,1). (3)
The caret, or “hat” superscript, indicates a unit vector, whose
length is 1. The vector u is formed from its components and the
basis vectors

=108y + 1,8, + 1585 = (g, 1y, 13). (4)

Now, consider a second Cartesian coordinate system with
the same origin and different axes x7, x3, and x3, along which
unit basis vectors &, &5, and &} are defined (Fig. A.3-2). In this

coordinate system the components of u are different,

u=u18] +us) +ulfl = (ul, us, uj). (5)
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Fig. A.3-3 A vector in two dimensions making an angle 6 with the x, axis.

Thus the same physical vector is represented in a different
coordinate system, described by a different set of basis vectors,
using different components. The essential idea is that the
vector remains the same, or invariant, regardless of the coordin-
ate system, although the numerical values of its components
change. Physical laws, like Newton’s law stating that the force
vector equals the product of the mass and the acceleration
vector (the second derivative with respect to time of the dis-
placement vector), are written in vector form because the phys-
ical phenomenon does not depend on the coordinate system
used to describe it.

The length or magnitude of a vector, | u |, is a scalar, and thus
the same in different coordinate systems. By the Pythagorean
theorem, the length is

|u|=(ut+ud+ud) V= (P +u?+u})V2. (6)

The zero vector, 0, all of whose components are zero in any
coordinate system, has zero magnitude.

A vector is specified in either Cartesian coordinates by its
components or in polar coordinates by its magnitude and direc-
tion. For example, in a two-dimensional (x,, x,) coordinate
system (Fig. A.3-3), the vector v can be written in terms of its
components

v=(vy,7;) (7)
or its magnitude
|vI= (34032 (®)

and direction, given by the angle 6 that v makes with the x,
direction

O=tan™! (v,/v,). (9)

Just as| v |and @are given by the components, so the compon-
ents are given by | v|and 0

v;=|v|cos @ and wv,=|v]sinb. (10)

By analogy, a vector in three dimensions is specified by either
its three components or its magnitude and the angles it forms
with two of the coordinate axes. It is worth noting that the

~ AN\ AN —

mathematical convention of defining angles counterclockwise
from x; differs. from the geographical convention of defining
angles clockwise from North (x,), so conversions are oftep,
needed.

A.3.2 Elémentary vector operations

The simplest vector operation is multiplication of a vector bya
scalar

ou= (0, 0u,y, Oits). (1'1)
For example, in two dimensions,

ov= (0, av,) (12)
yields a vector with magnitude

((avy)? + (o)) 2 =|a| (W2 +v3) 2 =| || v | (13}
whose direction is given by

tan 0= ov,/av, =v,/v,. (14)

Multiplication by a positive scalar thus changes the magnitude
of a vector but preserves its direction. Similarly, multiplication
by a negative scalar changes the magnitude of a vector and re-
verses its direction. @i, a unit vector in the direction of u is
formed by dividing u by its magnitude

i=u/|ul. (15)

The sum of two vectors is another vector whose components
are the sums of the corresponding components, so if

a=a,€ +a,8,+ae; and b=5b& +b8, +bs¢,,

a+b=(a;+b,)& +(a,+b,)&,+ (a;+b;)é;=b+a. (16)

Addition can be done graphically (Fig. A.3-4) by shifting one
vector, while preserving its orientation, so that its “tail” is at
the “head” of the other, and forming the vector sum. For ex-
ample, the total force vector acting on an object is the vector
sum of the individual force vectors. Equation 16 and Fig. A.3-4
show that vector addition is commutative; it does not matter in
which order the vectors are added.

A.3.3  Scalarproducts

There are two methods of multiplying vectors. The first, the
scalar product (also called the dot product or inner product),
yields a scalar:

a-b=ab,+a,b,+ab;=|a||b|cos 6, (17)

where 6 is the angle between two vectors. To see that the two
definitions of the scalar product are equivalent, consider a two-
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Fig. A.3-4 Addition of vectors a and b. The addition can be done
nalytically, by adding components, or graphically. Vector addition is
ommutative, as the order of addition is irrelevant.
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Fig. A.3-5 Derivation of alternative definitions of the scalar producta - b
in two dimensions.

dimensional case (Fig. A.3-5) with a=(a,, a,) and b= (b, b,). If
aand b make angles 6, and 6, with the &, axis, then

a-b=|a||b|cos @=|a||b|cos (6,-6)). (18)
Using a trigonometric identity (Eqn A.2.13) we expand

cos §=cos (6, — 8,) =cos 6, cos 6, +sin 8, sin 6;. (19)
Because

cos 6, =a,/(a5+a3)V? and sin 6, =a,/(a}+ad)'?, (20)

and similar definitions hold for 6, and b, substitutions for the

angles in Eqn 18 show that
|a||b](a,b +a,b))

(a3 + ad)V2 (b3 + b}

|a|]b|cos 6= =a,b, + a,b,. (21)
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Equation 17 shows several features of the scalar product:
e The scalar product commutes:a-b=b-a.
e The scalar product of two perpendicular vectors is zero,
because cos 90°=0.
e The scalar product of a vector with itself is its magnitude
squared:

a-a=a,a,+a,a, +asa;=|al’ (22)

The definition of the scalar product is generalized for vectors
with complex components. To see why, note that for a vector
a=(i,1,0), wherei= /-1, Eqn 22 would give a squared mag-
nitude of zero. Because we would like only the zero vector, all
of whose elements are zero, to have zero magnitude, Eqn 17 is
generalized to

a-b=atb,+asb,+atb, (23)

where * indicates the complex conjugate. Thus the definition of
the squared magnitude (Eqn 22) becomes

a-a=ata, +aja, +ata;=|al’ (24)

For example, the squared magnitude of | (i, 1, 0) [2 = (i)(~i) +
(1)(1) = 2. These complex definitions reduce to the familiar
cases, (Eqns 17 and 22), for vectors with real components.

The relations between the unit basis vectors for a Cartesian
coordinate system, &, &,, and &;, are easily stated using their
scalar products. Because each is perpendicular to the other two,
the scalar product of any two different ones is zero,

A ~ ~

& - 8,=¢ -&;=¢,-&=0, (25)

and the scalar product of each with itself is its squared
magnitude

6, -8,=8,-8,=8, &=1. (26)

The unit basis set of vectors is orthonormal; each is ortho-
gonal (perpendicular) to the others and normalized to unit
magnitude.

The projection, or component of a vector in a direction given
by a unit vector, is the scalar product of a vector with the unit
vector. Using this idea, a component of a vector can be found
from its projection on the unit basis vector along the corres-
ponding axis. Thus the x, component of u is

u - & = (1,8 +uy8, +1ug8s) - € =uy, (27)

with the other components defined similarly.

A.3.4 Vectorproducts

A second form of multiplication, the vector or cross product,
forms a third vector from two vectors by
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Aaxb

/ a
Fig. A.3-6 Illustration of the right-hand rule giving the orientation of the
vector product ax b.

axb=(a,b;~a;b,)é, +(a;b, — a.bs)é,
+(d1b2_42b1)é3’ (28)

which can be written as the determinant

& & &
axb=la, a a. (29)

The vector product of two vectors is perpendicular to both
vectors. For example, if a and b are in the x;—x, plane, a; = b,
= 0, and by Eqn 28, the vector product has only an €; com-
ponent. This can be shown in general by evaluating a - (ax b) =
b - (axb) = 0. Geometrically, the direction of the vector prod-
uct is found by a “right-hand rule” (Fig. A.3-6): if the fingers
of a right hand rotate from a to b, the thumb points in the
direction a x b. The magnitude of the cross product is

laxb|=|a]||b|sin 6, (30)

where @is the angle between the two vectors. The cross product
is zero for parallel vectors because sin 0° = 0, so the cross prod-
uct of a vector with itself is zero.

The vector product often appears in connection with rota-
tions, such as those used to describe the motion of lithospheric
plates (Section 5.2). For example, if an object located at a
position r undergoes a rotation, its linear velocity v is given by

V=0 Xxr, (31)

where @is the rotation vector, which is oriented along the axis
of rotation, with a magnitude | @| that is the angular velocity
(Fig. A.3-7). Similarly, the vector product is used to define the
torque, which gives the rate of change of angular momentum.
A force F, acting at a pointr, gives a torque

7=rxF. (32)

<

Fig. A.3-7 The vector product v = @x r describes a rotation.

X2

X4

X3

Fig. A.3-8 The x; component of the vector product t=r x F gives the
torque, 7, F, —r, F; about the x; axis. In this case r, F, is greater than r,F;,
so counterclockwise rotation about the x5 axis occurs.

For example, the torque about the x; axis is 7, = (r,F, - ,F;);
so each component of the force contributes a counterclockwise
torque equal to the component times its lever arm, the perpen-
dicular distance of the point from that axis (Fig. A.3-8).

Some useful identities, whose proofs are left as problems, are

a-(b+c)=a-b+a-c
ax(b+c)=axb+axc
a-(bxc)=b:(cxa)=c-(axb) .
ax(bxc)=b(a:c)—c(a-b). (33)

A.3.5 Index notation

Vector equations, such as the definition of the cross product,
can be cumbersome when written in terms of the components.
Simplification can be obtained using index notation, whereby




 index assuming all possible values replaces the subscripts
dicating coordinate axes. For example, the vector u= (u,, u,,
is written #,;, where i can be 1, 2, or 3. In this notation, the
alar product is

E 3
b=ab,+aby +asby= Y, ab;. (34)
, i=1

Because the sum over all coordinates appears frequently, the

stein summation convention is often used, whereby an
dex repeated twice implies a summation over that index, and
¢ summation sign is not explicitly written. Hence the scalar
roduct of two real vectors is written

i

‘b=ab

sing implied summation over the repeated index 7. Similarly,
e square of the magnitude of a real vector is

2oy, (36)

epeated index is called a “dummy” index, like a dummy
iable of integration, because it is used only within the sum-
ation. The form of the expression indicates that #; is a
alar; because the repeated index is summed, no index remains
free.” By contrast, #, is a vector, because there is a free index.

Index notation is further simplified by introducing two sym-

ols, 8;; and ;. The Kronecker delta, G;» s defined
=0 ifi=j,
=1 ifi=j. (37)

o, for example, §;; = 1, but §;, = 0. Using the Kronecker
elta symbol, the relations between the Cartesian basis vectors
Eqns 25, 26) can be written compactly as

&=0; (38)

he Kronecker delta, a function of two discrete variables i and

is analogous to the Dirac delta function which is a function of

a continuous variable (Section 6.2.5).

The permutation symbol, €, is defined as

;=0  ifany of the indices are the same,

=1 ifi,j, k are in order, i.e., (1,2, 3),(2, 3, 1),
or(3,1,2)

if i, j, k are out of order,
ie,(2,1,3),(3,2,1),(1,3,2). (39)

Cases where the indices are in order are known as even, or
cyclic, permutations of the indices; those in which the indices
are out of order are known as odd permutations. Because of the
symmetries in the definition, &;, = €;; = &y;- A useful relation,
‘whose proof is left for the prob[ems, is

i€t

= é‘/‘s(skt_ 6it6/zs‘ (40)
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Using index notation, the definition of the vector product
(Eqn 28) becomes

3 3
(axb), = 2 D €401, = €5,4:by (41)

j=1 k=1

where the last form uses the summation convention. The nota-
tion shows that the cross product yields a vector because only
one index, i, remains free after the repeated indices j and k are
summed. To see that the index notation gives the correct defini-
tion, we expand the i =2 component as

(axb),=&y11a1by +€y1ya1by + €5138, b3+ 2318, b1 + €995 D)
+85)3a, b3+ €531a3h1 +€53,030, + €533035
=(a;by —ab3), (42)

because the only nonzero €, terms are €,;3=~1 and £,3;=1.

Index notation points out an interesting feature of the vec-
tor product. Because a,b; = b;a;, the scalar product commutes.
By contrast, the properties of the permutation symbol show
that

a><b=si/-ka/bkz—eiikbiakz—bxa, (43)

so the order matters for the vector product.

Although index notation seems unnatural at first, it does
more than simply shorten expressions. The notation explicitly
indicates what operations must be performed, and thus makes
them easier to evaluate. For example, suppose we seek to show
that the cross product of a vector with itself is zero. In contrast
to (a x a), the notation €44, shows how the cross product
should be evaluated. Because 4,4, is symmetric in the indices
j and k, the permutation symbol makes the terms involving
any pair of j and k sum to zero. We will see that index notation
makes the complicated expressions that we encounter in study-
ing stress and strain easier to evaluate.

A.3.6 Vectorspaces

These concepts for vectors can be generalized in several ways.
In three dimensions any vector is a weighted combination of
three basis vectors. The usual choice of basis vectors along
coordinate axes is for simplicity. We could choose any three
mutually orthogonal vectors, which need not be of unit length,
to be the basis vectors. To see this, remember that a physical
vector does not depend on the coordinate system.

Moreover, the idea of vectors in two- or three-dimensional
space can be generalized to spaces with a larger number of
dimensions. For example, given unit vectors

é]:(la O: 0,0,0),
é4: (09 03 0’ 13 0)9

ézz(oa 13030> 0)5 é3=(0> 071103 O)a
€=(0,0,0,0,1), (44)
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a vector u can be formed from the basis vectors and components
U= 248y +y€, + Usls + 1€y +us€s = (1, Uy, thy, 1y, Us). (45)

This vector is defined in a five-dimensional space, with five axes
each orthogonal to the others, because their scalar products are
zero. Although this is difficult to visualize (or draw), the math-
ematics carries through directly from the three-dimensional
case. N mutually orthogonal vectors thus provide a basis for an
N-dimensional space,

These ideas are formalized in terms of vectors in a general
linear vector space. For our purposes, a vector space is a collec-
tion of vectors X, y, z, satisfying several criteria:

® The sum of any two vectors in the space is also in the
space.

® Vector addition commutes: x +y=y +X.

* Vector addition is associative: (x +y) +z=x+ (y +z).

* There exists a unique vector 0 such that for all x, x =x +0.

* There exists a unique vector —x such that for all x, x + (—x)
=0.

® Scalar multiplication is associative: a(8x) = (af)x.

* Scalar multiplication is distributive: a(x + y) = ax + oy
and (o+ B)x=(ax+ Bx).

A point worth considering is the number of independent
vectors in a vector space. Given N vectors x%, x2, ..., xNina
linear vector space, a weighted sum Yo x" is called a linear
combination. The N vectors are linearly independent if

N
Z o,;x'=0 only when all o,;=0, (46)
i=1

so that no vector can be expressed as a combination of the
others. Otherwise, the vectors are linearly dependent, and one
can be expressed as a linear combination of the others.

This idea corresponds to that of basis vectors. If N basis
vectors are mutually orthogonal, they are linearly independent.
Because any vector in an N-dimensional space is a linear com-
bination of N linearly independent basis vectors, the basis
vectors span the space. Thus the dimension of a vector space
is the number of linearly independent vectors within it. For
example, we cannot find four linearly independent vectors in
three dimensions.

Though vector spaces sound abstract, they are useful in
seismology. For example, in Chapter 2 we represent travelling
waves by normal modes, which are orthogonal basis vectors in
a vector space, so any wave is a weighted sum of them. The
modes of a string (Section 2.2.5) form a Fourier series (Chap-
ter 6), in which a function is expanded into sine and cosine
functions that are the basis vectors of a vector space. A sim-
ilar approach is also used for the modes of the spherical earth
(Section 2.9). Vector space ideas are also used in inverting
seismological observations to study earth structure (Chapter
7).

A.4 Matrix algebra

A.4.1 Definitions

Matrix algebra is a powerful tool often used to study systems of
equations. As a result, it appears in seismological applicationg
including stresses and strains, locating earthquakes, and seismic
tomography. We thus review some basic ideas, often stating
results without proof and leaving proofs for the problems. Fyr.
ther discussion of these topics can be found in linear algebra texts,

Given a matrix A with » rows and 7 columns, called an
m X 1 matrix,

41 dyp ANy

1 9y Dn
A —_—

aml amZ am n

and a second matrix B, also with 7 rows and 7 columns,
matrix addition is defined by

ay +by ap +by ay, + by,

ay + by ay + by 4y, + by,
A+ B=

aml + bm’l aml + me et amn + bmn

The usual convention is to indicate matrices with capital letters
and their elements with lower-case ones. ‘
Matrix multiplication is defined such that for a matrix A that
is m x n and a matrix B that is # x 7, the 7" element of the 72 x 1
product matrix C= AB is defined by '

n
€= Z G bk/ = bk;"
k=1

The 4j™ element of C is the scalar product of the i row of A
and the /™ column of B. As a result, for matrix multiplication
the two matrices need not have the same number of rows
and columns, but must have the number of columns in the first
matrix equal to the number of rows in the second. Often the
numbers of rows and columns in the two matrices allow multi-
plication in only one order. Thus, in the example above, A
“premultiplies” B, or B “postmultiplies” A. A convenient way
to remember this is that the number of columns in the first
matrix must equal the number of rows in the second, but this.
dimension does not appear in the product. In the case of AB:
C, written schematically, we have [m x n][n x r] = [m X ]
Hence, in the final form in Eqn 3, the summation conventio;
shows that k is summed out, leaving 7 and j as free indices, $0 ¢
is a matrix element. Furthermore, even if both AB and BA ar
allowed, the two products are generally not equal, so mat
multiplication is not commutative.
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The identity matrix, I, is a square matrix (one with the same
umber of rows and columns) whose diagonal elements are
qual to 1 while all other elements are O:

10 00
10 1 00
(4)
00 10
00 0 1

The transpose of a matrix A, AT, is derived by placing the
ows of A into the columns of AT, so for C=AT,

A+B)T=AT+BT and (AB)T=BTAT, (7)

With these definitions, vector operations can be expressed
sing matrix algebra, by treating vectors as matrices with one

here the second form uses the summation convention. Each
omponent y, is the scalar product of the i row of A with x.
imilarly, the scalar product of two vectors is given by the
atrix product

hus the scalar product of two vectors yields a scalar, because a

X 71 matrix times an 72 X 1 matrix is a 1 X 1 matrix, or single

alue. The squared magnitude of a real vector can be written as

2. I -

P=u-u=ulTu= Y wu=uu,. (10)
i

or vectors with complex components, the scalar product
Eqn A.3.23)is

“b=a*Tb=Y atb=aib, (11)

This brings us to a minor point of notation. In linear algebra,
s in the last few equations, it is common to treat vectors as
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column vectors represented by # x 1 matrices with » rows and
one column

Uy
Uy

whose transposes are row vectors (one row, # columns) like
T=( ) (13)

ul=(uy,uy, ... u,).

Nonetheless, to save space, we sometimes write

u= (g, tyy .. 1,), (14)

while treating u as a column vector when required. Strictly
speaking, we should call the row vector u’.
We often encounter matrices that are symmetric, or equal

their transposes,

A=AT, a=a,. (15)

For a matrix A with complex elements, the conjugate matrix
A* is formed by taking the conjugate of each element, and the
transpose is generalized to the adjoint matrix A* = A*T, which
is the complex conjugate of AT. Note that if the elements of A
are real, A*= AT. A matrix A is Hermitian if it equals its adjoint

A=AY, ag=a}. (16)

If A is real, “Hermitian” and “symmetric” are equivalent.

A.4.2 Determinant

A useful entity is the determinant of a matrix, written det A, or
| A'|. For an n X n matrix,

n n

n
det A=Y > ... s(ipsfas e e - in)B1j, o), « + - i - (17)

A=1/,=1 7n=1

This complicated sum over # indices, j;, f,, - - - j,,, Uses a genera-
lized form of the permutation symbol

5(i1)j2)"'jn)=5gn H (jq—jp)' (18)

1<p<gsn

The sgn function is one times the sign of its argument, so that it
equals 1 if its argument is positive, —1 if its argument is negat-
ive, and 0 if its argument is zero. For n =3,

5(j1:72’i3) =sgn [(/2_71)(73 "j1)(j3 ‘fz)]a (19)

so that, for example,
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s(1,2,3)=1, s(2,1,3)=-1, s(1,1,3)=0. (20)
Because s(f, /,,7;) suppresses terms with two equal indices, and
assigns others a sign depending on the order of the indices, it is
the same as the permutation symbol, & i, (Eqn A.3.39).

The definition of the determinant gives the familiar result for
n=2:

2 2
a a . .
[A|= det( 1 alzJ =2 $(71> /2)a;,a;,

D1 922) jZ1j=1
=s(1, 1)aya,, +s(1, 2)aq 4y, +s(2, Day,ay, +5s(2, 2)a,a,,

=dy1dy) — A1y, (21)

because s(1, 1) = 5(2, 2) = 0, s(1,2)=1, and s(2, 1) = -1. For
a matrix with only one element, the determinant equals the
matrix element.
Among the properties of determinants that we will find
useful in solving systems of equations are:
® The determinant of a matrix equals that of its transpose,
| A]=[AT].
® If two rows or columns of a matrix are interchanged, the
determinant has the same absolute value but changes
sign.
e If one row (or column) is multiplied by a constant, the
determinant is multiplied by that constant.
e If a multiple of one row (or column) is added to another
row (or column), the determinant is unchanged.
e If two rows or columns of a matrix are the same, the
determinant is zero.
Proving these properties is left for the problems.

A.4.3 Inverse

For an n x # square matrix A, the inverse matrix A~ is defined
such that multiplication by the inverse gives the identity matrix

ATA=AAT=]. (22)

A1 can be written in terms of the cofactor matrix, C, whose
elements

¢=(-1)"1| A, (23)
are formed from the determinants of Ajyan (n—1)x (n-1)
square matrix formed by deleting the i* row and jth column
from A.If | A | is not zero,

AT =CT/| A, (24)

For the familiar =2 case, see problem 7.

A matrix whose determinant is zero does not have an inverse,
and is called singular. Because the determinant of a matrix with
two equal rows or columns is zero, such a matrix is singular,

~ ~\NV\'——-\_/\W

More generally, a matrix is singular if a row or column jg a
linear combination of the others.

The inverse of the matrix product AB, if AB is nonsingular,
obeys

(AB)1=B-14"1, (25)
A matrix A whose transpose equals its inverse,
A1=AT (26)

is called orthogonal. By extension, a matrix A with complex
elements is unitary if its adjoint and inverse are equal

ATl=A*, (27)

A.4.4  Systems of linear equations

A vector-matrix representation is often used for systems of
linear equations. In this formulation, a system of equations
for » unknown variables X,

Ay Xy tapx, .o tag,x,=b,

ayXy+anx, ... +a,,x,=b,

Gp1X1+y%y .o ¥a, x,=b (28)

m

is written in the form

Zaijszbi or Ax=b, (29)

i=1

by defining the matrix of coefficients and column vectors for
the unknowns and right-hand side,

41 ayp A1n x by
! b
31 4y Ay x, 2
A=l . e x=| b=| - [ (30)
n
Gy Gy -o. Gy, b,

The coefficient matrix A is m x n, because there is one row for
each equation, and one column for each unknown.

The Ax = b form illustrates that whether a system of equa-
tions can be solved depends on the matrix A. A system of equa-
tions is called homogeneous in the special case that b = 0, and
inhomogeneous for all other cases in which b % 0. We consider
here only systems where the number of unknowns and equations
are equal, so the coefficient matrix A is square. If A possesses ai
inverse, both sides can be premultiplied by A-1, and

Al Ax=A"b=Ix=x (31)




ields a unique solution vector x. For inhomogeneous systems,
computing A™! provides a straightforward manner of solving
for the unknown variables x;. For homogeneous systems of
equations, the equation shows that x = 0 if A1 exists. Thus,
or a homogeneous system to have a nonzero or nontrivial
solution, A must be singular. This occurs if the determinant of
Ais zero, implying that some of the rows (or columns) of A are
ot linearly independent. If a nontrivial solution of the homo-
_geneous System exists, any constant times that solution is also
_asolution.
If the coefficient matrix is singular, the corresponding
inhomogeneous system of equations does not have unique
solutions, and may have none. The existence of A-1 and the
solvability of the equations thus depend on whether the rows
‘and columns of A are linearly independent. For example, if the
rows are linearly dependent, there are fewer independent equa-
tions than unknowns and difficulties result, as discussed in the
_context of inverse problems (Chapter 7).

A.4.5 Solving systems of equations on a computer

Standard methods exist to solve linear equations on a com-
puter. Consider the basic problem

Ax=b (32)
app a4y A3l b,
dy1 4y A3 |[*2 = b,
dzy dz 433 )\ %3 b,

in which we solve for x, given A and b. If A were a triangular
matrix T, with zeroes below the diagonal, it would be easy to
solve the system

Tx=d (33)
ot by X d;
0 ty ty||x|=|dh
0 0 t33])lx dy

by starting with the simplest (bottom) equation, solving for x3,
and solving the other equations in succession to find x, and
then x,. In other words, the solution

x3=d;lt5; (34)
can be substituted into the middle equation to find

%y =(dy — ty3%3)/ty,. (35)

Then, by substituting x; and x, into the first equation,

Xy = (dy —t13%3— 1%/t (36)
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The importance of this idea is that an arbitrary matrix can
be triangularized. Consider that the solution of the system of
equations is not changed by any of the following elementary
row operations:

(i)  Rearranging the equations, which corresponds to inter-
changing rows in the b vector and matrix, i.e.,

a1 G A3 || X% by
d31 43 A3 || X2 |= bs (37)
ayp 4y Gy3 )\ X3 b,

The solution is unchanged because the order of the
equations is arbitrary.

(ii) Multiplying an equation by a constant ¢, which corre-
sponds to multiplying a row of A and the correspond-
ing element of b by a constant, i.e.,

cayy cap, cags || x cbhy
ay ay  ay ||%|=| b |- (38)
azy  dzp d33 )\ X3

S~
[™

(iii) Adding two equations, which corresponds to adding a
multiple of one row to another, i.e.,

cayy +ayy Cdyy +ay capztay || x cb + b,
a1 a2 a3 X |= b,
as asy 433 X3 by
(39)

Thus if the system Ax = b is transformed into Tx = d using
elementary row operations, the two systems of equations have
the same solutions x. This provides a fast method of solving the
system: combine A and b into a single augmented matrix

ay ap a3 by

ay ayp ay b

and triangularize the augmented matrix to obtain

ty tp ts 4y
(T,d)=| 0 t), ty3 dz s (41)
0 0 33 ds

which represents a set of equations easily solved for x by the
method in Eqns 34-6.
The matrix is triangularized using the following method
column by column:
o Find the element of maximum absolute value in the
column on or below the diagonal.
o If this “pivot” element is below the diagonal, interchange
rows to get it on the diagonal.
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e Subtract multiples of the pivot row from rows below it to
get zeroes below the diagonal.
The pivoting, though not absolutely necessary, avoids possible
numerical difficulties. Note that once a column is zeroed below
the diagonal, we do not have to think about it any more.
For an illustration of this method, called Gaussian elimi-
nation with partial pivoting, consider solving the system of
equations

Xy tx,=35,
4y +xy+x3=4,

206y +2x5 +2x,=3. (42)

This can be expressed in matrix form as

11 0)fx 5
4 1 1||x;,|=(4], (43)
202 2 )| x;s 3

and solved by triangularizing the augmented matrix

1105
4 1 1 4}. (44)
2 2 2 3

To get zeroes below the diagonal in the first column, we first
move 4, the element with the largest absolute value in the first
column, to the diagonal by interchanging rows

4 11 4
11 0 5. (45)
2 2 23

We then subtract 1/4 times the first row from second, and 1/2
times the first row from third, leaving

4 1 1 4
0 075 -025 4. (46)
0 15 1.5 1

Next, to zero the elements below the diagonal in the second col-
umn, we interchange rows to get the pivot for this column, 1.5,
on the diagonal:

4 1 1 4
0 1.5 15 1 (47)
0 0.75 -025 4

and subtract 0.75/1.5 = 0.5 times the second row from the third

41 1 4
0 15 1.5 1 (48)
00 -1 35

to complete the triangularization. We then solve the equations
for x, beginning with the bottom one, as in Eqns 34-6.

A similar procedure can be used to invert a matrix. This
method uses the idea that two vector-matrix equations

Ax=b and Ay=c (49)

can be combined into one by forming an augmented matrix
from each pair of vectors,

X=(x,y), B=(b,c), (50)

and writing the matrix equation
AX =B. (51)

Because x, the solution to Ax =b, is not changed by elementary
row operations on the augmented matrix (A, b), the corres-
ponding solution to AX = B is unaffected by elementary row
operations on the augmented matrix (A, B).

To apply this to matrix inversion, consider a special case

AX =1, (52)

whose solution X = A™! is the inverse of the # X # matrix A. X
is unaffected by elementary row operations that convert the
augmented matrix

(A’ I) = . . . . . . . . (53)

a, - - a,, 0 . .1
to one whose left side is the identity

1..0 86, .. b,

0..16b, ..60b, '
so the corresponding equation
IX=B (55:} ‘
shows that the right side of the matrix gives B=X=A", Fhe in-
verse of A. The sequence of operations used to diagonalize the
left (A) side of the augmented matrix (A, I) are similar to tho’ys‘fi 7
that triangularize a matrix.

A.5 Vector transformations

In seismology, we often apply two types of transformations
to vectors. In the first, the same vector is expressed in tWO
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Fig. A.5-1 The relation between two orthogonal coordinate systems with
the same origin is described by the angles a;; between the two sets of axes.

different coordinate systems. In the second, some operation
- converts a vector to another vector expressed in the same co-
‘ordinate system. In this section we summarize these transforma-
tions and their differences.

A.5.1  Coordinate transformations

We have seen that vectors remain the same regardless of the co-
ordinate system in which they are defined, although their com-
ponents differ between coordinate systems. Thus vectors can
_be defined in one coordinate system (for example, one oriented
‘along an earthquake fault plane) and reexpressed in another
such as a geographic coordinate system). This property is very
useful for solving problems and gives valuable insight into the
nature of vectors.
To define the relation between vector components and co-
ordinate systems, consider two orthogonal Cartesian coordinate
systems (Fig. A.5-1). Because the origins are the same, one co-
_ordinate system can be obtained by rotating the other through
hree angles. The relation between the two sets of unit basis
vectors, &, &,, &; and &7, &), &}, is given by their scalar products,
~called direction cosines,

—

A A
€+ €;=cos o =ay, (1)
where the angles o;; are the angles between the two sets of axes.
A vector can be expressed in terms of its components in the

wo coordinate systems

—_— A ~ ~ — A2 p 1A’ r Az
U=0,8, + 1,8, + 1€y =ul8] +u)é) +ulél. (2)
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Given the components #; in the unprimed system, the com-
ponents #; in the primed system are found by taking the scalar
products of the vector with the basis vectors of the primed
system:
ui=28p-u=(&]- & )u +(&] - &)u, + (&7 - &)u,

= Aqqty t Aty T ay s,
CU= AUy gyt + a5t

—al, —
Uy =85 UW=az Uy + Ayt +as3Us. (3)

These can be written as a matrix equation

Uy 41 G Gz || Uy

w=Au, or |uy|=|d, dy dys|luy ], (4)
’
Uz 31 43 ds3 ) #3

where A is the matrix that transforms a vector from the
unprimed to the primed system. Note that this is not a relation
between two different vectors u and u” — it is a relationship
between the components of the same vector in two coordinate
systems. It turns out that the matrix A uniquely describes the
transformation between these coordinate systems.

For example, a unit basis vector for the unprimed system

&,=1¢,+08&,+0&;=(1,0,0) (5)

has components in the primed system given by

a4 a1y a1
a4y | =y ap a3 || 0|, (6)
a3 ay ay a0

and so is written
s s o
41181 +a5,8) +a3185=(ay,, 951, 431) (7)

in the primed system. The last expression is just the first column
of A. Similarly, the components of &, and &; in the primed
system are the second and third columns of A, respectively.
Thus the columns of the transformation matrix A are the basis
vectors of the unprimed system written in terms of their com-
ponents in the primed system.

For example, consider rotating a Cartesian coordinate sys-
tem by 6 counterclockwise about the &, axis, so that the only
rotation occurs in the &8, plane. The &, axis is also the &} axis
(Fig. A.5-2). The elements of the transformation matrix are
found by evaluating the scalar products of the basis vectors
a;= & - éf, SO

_ara ata o v
a,,=¢€]-&=cosb, a,=¢] &=cos(90°-0)=sin 0,
_A,'A; Al A — o — )
a,,=8),-&=cos 6, a, =&-& =cos(90°+6)=-sin 6,

=8’ .8, = = = = =
a33=83-&=1, ay3=dy3=a3,=d3, =0, (8)
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X

X3, X3

Fig. A.5-2 The relation between the axes of two orthogonal coordinate
systems differing by a rotation @in the x,—x, plane.

and the components of a vector in the two systems are related
by

uy cos@ sin@ 0 }[u
#y; |=|-sinf cos® O ||u,|. 9)
u3 0 0 1| us

Thus the €, and &), and the &, and &), components differ,
whereas the &; and €} components are the same. To check this,
consider the case where 8= 90°. As expected, (1, 0, 0) in the
unprimed system becomes (0, —1, 0) in the primed system, and
(0,1, 0) in the unprimed system becomes (1, 0, 0) in the primed
system, while (0, 0, 1) in the unprimed system remains (0, 0, 1)
in the primed system.

Seismologists often use such a geometry. Because the ground
motion is a vector, seismometers are generally oriented to
record its components in the east-west, north-south, and
up—down directions. This decomposition is less useful than
decomposing ground motion into its radial and transverse
components, those along and perpendicular to the great circle
connecting the earthquake and seismometer. The vertical com-
ponent is useful as is, so a rotation about the vertical by the angle
between East and the great circle connecting the earthquake
and seismometer converts the E~W and N-S components into
the new representation. The relevant angle, the back azimuth
to the source from the receiver, is discussed in Section A.7.2.

We can also reverse the transformation. By analogy to Eqn 3,
the components in the unprimed system can be found from
those in the primed system as

N

— A ’ .
uy =& u'=(&

A7

&) )ul + (& - €))ul+ (€& - €5)uf

— 7 7 7
=ap g tayuytasis,

~— A e WA VIV

A — ’ ’ ’
Uy =€) " W =apuy+aynu,+adpis,

A

- gy ’ ’ ’
Uz =C3 - W =ay3uy +ady3U) +ds3is. (10)

Combining these to express the reverse transformation in
vector—matrix form,

Uy a1y Q1 431 || ¥
p— ’

Uy [=|81p dyp 43 || 42> (11)
7
Us di3 A3 d33 )\ U3

shows that the reverse transformation matrix is just the trans-
pose of the transformation matrix A

=ATw. | (12)
Hence a unit basis vector in the primed system
e; =187+ 08} +08; (13)
becomes, by the matrix transformation,
ay1€; +a1,8, + a8, (14)

in the unprimed system. This is the first row of A, so the rows of
A are the primed basis vectors expressed in the unprimed coor-
dinates. This is natural because the transformations are related
by the matrix transpose.

Alternatively, the reverse transformation can be found
directly by starting with u” = Au and multiplying both sides by
the inverse matrix

Al =A"Au=Tu=u. (15)

Comparison with Eqn 12 shows that the inverse of the trans-
formation matrix equals its transpose, so the transformation
matrix is an orthogonal matrix. This seems reasonable because
the columns of A, which represent orthogonal basis vectors,
are orthogonal. Similarly, the rows of A are orthogonal. As a
result, such coordinate transformations are called orthogonal
transformations. An important feature of orthogonal trans-
formations, whose proof is left as a homework problem, is that
they preserve the length of vectors. ‘

The transformation relations, Eqns 4 and 12, prOVIde a
mathematical definition of a vector. Any vector must transform .
between coordinate systems in this way. A set of three entities
defined at points in space (for example, temperature, pressure,
and density) that does not obey the transformation equations is
not a vector.

A.5.2  Eigenvalues and eigenvectors

The product of an arbitrary # x # matrix A and an arbitrary
n-component vector X .




y=Ax (16)

is also a vector in # dimensions. This is not the same as co-
ordinate transformation; the vector x is transformed into
another distinct vector, with both vectors expressed in the same
coordinate system.

A physically important class of transformations convert a
vector into one parallel to the original vector, so that

Ax=Ax, (17)

where A is a matrix, and A is a scalar. The only effect of the
transformation is that the length of x changes by a factor of 4.
For a given A, it is useful to know which vectors x and scalars 4
satisfy this equation.

In three dimensions, the case most commonly encountered,
Eqn 17 can be written

(A-Al)x=0
ap—A  ap 413 X1 0
Ay Ay — A dy % [=10|. (18)
a31 azp  az = A)| % 0
This is a homogeneous system of linear equations, so nontrivial

solutions exist only if the matrix (A — Al) is singular. We thus
seek values of A such that the determinant

ay -4 ap 413
HA-A)l=det| a, ayp—-A ay |[=0. (19)
a3y ayp dz—A

Evaluating the determinant gives the characteristic polynomial
P12+ LA-1,=0, (20)
‘which depends on three constants called the invariants of A:

=dyy tdy, +ags,

a,, 4a a,, a a,, 4a
_ 12 2 %3 11

=det| 1! + det + det 3

‘ dyy G2 A3y dsz3 a31 433

L=det A. (21)

I, the first invariant, or trace, of A, is the sum of the diagonal
‘elements of A. The invariants of a matrix have significance for
stresses, strains, and earthquake moment tensors, because they
are not changed by orthogonal transformations.

The characteristic polynomial is a cubic equation in A
~with three roots, or eigenvalues, A, for which the determinant
| A—AI|is zero. For each eigenvalue there is an associated non-
trivial eigenvector, x™), satisfying

"Ax("" =4, x"). (22)
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The components of the eigenvector, x), x7), x", are found
by solving

ayy = Ay, ag a3 x(lm) 0
ay, Ay — A,  dy x5 =] 0. (23)
(m)
a3 a3 az;— A, || %3 0

Each eigenvalue and its associated eigenvector form a pair
satisfying Eqn 22. In general, an eigenvalue and the eigen-
vector associated with a d1fferent eigenvalue will not satisfy the
equation.

For example, the eigenvalues of

3 -1 0
A=|-1 2 -1 (24)
0 -1 3

are found by solving the characteristic polynomial
-8 +194-12=0, (25)

whose rootsare A, =4, 1,=3, 4;=1. Next, the equations

3-2, -1 0 |{="] [0
-1 2-2, -1 [[«f]|=]0 (26)
0 -1 3-2,]x%"] |0

are solved for each eigenvalue to yield the associated eigen-
vector. Thus for A; =1,

II

3) 3)
Zx‘ x(2

0
—xP a2 =0,
=0.

3

\I

x4+ 24

(27)
All three unknowns cannot be found uniquely, because these
are homogeneous equations. We thus set ¢ equal to 1 and
find the other two unknowns, x§) = 2, x¥) = 1. Similarly, the
other eigenvectors are found by substituting A, and 4, in
Eqn 26, so

I=(1,2,1), x?P=(1,0,-1), xW=(1,-1,1). (28)

Because the eigenvectors are solutions to a set of homo-
geneous equations, any multiple of an eigenvector is also an
eigenvector. The eigenvectors thus determine a direction in
space, but the magnitude of the vector is arbitrary. Often the
eigenvectors are normalized to unit magnitude. The set we have
found can be written as

D= (1443, -1/4/3,14/3), x®=(1/y/2,0,-1/2),
= (116,216, 11,6). (29)
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Sometimes complications arise, as for the matrix

(30)

o
I
O O =
O OO
-0 O

with eigenvalues 1, 1, and 0. Using the method given above to
find the eigenvector for A, = 0 by setting x¢) = 1 yields no solu-
tion. Setting x% = 1, however, yields a correct solution for the
eigenvector, (0, 1, 0). Because this has no &, component, we
could not have set xt¥) = 1 and found the other components.

This example illustrates a complication that arises for a de-
generate, or repeated, eigenvalue: e.g., A, = A, = 1. In this case,
the eigenvalue corresponds not to an eigenvector but to an
entire plane, and any vector contained within it is an eigenvector.
Two eigenvectors spanning this plane can be found by finding
the eigenvector of the nondegenerate eigenvalue, and then
choosing two independent vectors orthogonal to it. Because the
eigenvector for the nondegenerate eigenvalue is (0, 1, 0), two
possible orthogonal eigenvectors for the degenerate eigenvalue
are(1,0,0)and (0,0, 1).

A.5.3 Symmetric matrix eigenvalues, eigenvectors,
diagonalization, and decomposition

The eigenvalues and eigenvectors of a symmetric matrix have
interesting properties. An 7 X # matrix H has a characteristic
polynomial of degree 7, each of whose # roots is an eigenvalue.
Consider two eigenvalues and their associated eigenvectors

Hx=2x%, Hx?=2x. (31)

Multiplication of the first equation by x'//7 (the transpose of
x(7)) and the second equation by x!/T yields

T Hx (1) = A,x) T ), xITHx() = 2, xTx(). (32)

Transposing both sides of the second part of Eqn 32 and sub-
tracting it from the first gives

xUITHx!) - T HTl0) = (2, - A,)x I Tx(), (33)

Because H is symmetric, it equals its transpose, H = H', so the
left-hand side is zero

0= (3, - 2, x) T, (34)

Thus, if i # j and the two eigenvalues are different, their asso-
ciated eigenvectors must be orthogonal so that their scalar
product x)Tx(") is zero. Thus, for a symmetric matrix, eigen-
vectors associated with distinct eigenvalues are orthogonal.

This result lets us diagonalize a symmetric matrix. To illus-
trate this for a 3 x 3 case, consider a matrix U whose columns
are the eigenvectors of the symmetric matrix H

Xl x® 0
Y @ .03
U=|x9 x9 9] (35)

x(%) x (32) x (33)

If the eigenvalues of H are distinct, the eigenvectors of H, and
hence the columns of the eigenvector matrix, are orthogonal,
so U is an orthogonal matrix satisfying U™ = U”.

The entire set of eigenvalue—eigenvector pairs, each of which
satisfy Hx'!)= ,x(), can be written as the matrix equation

HU=UA, (36)

where A is the diagonal matrix with eigenvalues on the diagonal

A, 0 0
A=[0 2, 0 (37)
0 0 2,

Premultiplying both sides of Eqn 36 by the inverse of the
eigenvector matrix yields ,

U-'HU=UTHU=A, (38)
which shows how the eigenvector matrix can be used to

diagonalize a symmetric matrix. This result can also be stated
as

H=UAUT, (39)

which illustrates how a symmetric matrix can be decomposed
into a diagonal eigenvalue matrix and the orthogonal eigen-
vector matrix. Similar results apply for complex Hermitian
matrices.

We will see that if a matrix contains the components of
vectors expressed in a coordinate system, the physical problem
under discussion can be simplified by diagonalizing the matrix.
This corresponds to rewriting the problem in its “natural” co-
ordinate system, whose basis set is the eigenvectors, an idea
used in discussing stresses in the earth (Section 2.3.4) and the
seismic moment tensor (Section 4.4.5). :

A.6 Vector calculus

A.6.1 Scalar and vector fields

Many phenomena in seismology depend on how physical

quantities vary in space. Some, like density or temperature, -
are scalar fields, scalar valued functions of the position vector¥
denoted by expressions like ¢(x) or ¢(x, x,, X3)- Similarly,
a vector that varies in space is described by a vector field. For
example, seismic waves are described by the variation in the
displacement vector -



u(x) = u(xp X9, x3)

=uy(xq, X2 X3)€1 + 1y (X1, Xy, X3)€) +13(5q, Xy, X3)E5 (1)

as a function of position, and result in turn from forces derived
from spatial derivatives of the stress tensor.

Spatial variations of scalar, vector, or tensor fields are de-
scribed using the vector differential operator “del”, V,

. 0 L d . 0
V=& —,&—,8— (2)
) ox
0x *2 3
_This operator has the form of a vector, but has meaning only
when applied to a scalar, vector, or tensor field. We first review
~uses of the V operator in Cartesian coordinates, and in the
next section discuss the more complicated forms for spherical

coordinates.

A.6.2 Gradient

The simplest application of the V operator is the gradient,
a vector field formed from the spatial derivatives of a scalar
field. If ¢(x) is a scalar function of position, the gradient is

defined by

), 300, | 300,

d =V
grad ¢(x) = Vo(x) ox, o, o,

o

3 (

where d¢(x)/dx, is the partial derivative of ¢(x,, x,, x;) with
_respect to x,, for x, and x; held constant. The gradient is a
vector field whose components equal the partial derivative with
- respect to the corresponding coordinate.
Expressions like Eqns 1 and 3 can be written more compactly
if the dependences on position are not written explicitly, i.e.,

Vo= 0 (4)

dx, ax, dx;

In this notation, it is implicit that ¢, its derivatives, and hence
the gradient, vary with position.

For example, the elevation ¢(x;, x,) is a scalar field de-
scribing the topography as a function of position in a two-
~dimensional region. This is often plotted using topographic
_contours (Fig. A.6-1), curves along which ¢ is constant. At any
_point, 0¢/9x, is the slope in the x, direction, and d¢/dx, is the
slope in the x, direction.

The gradient can be used to find the slope in any direction.
The projection of a vector in a given direction is the scalar
_product of the vector and the unit normal vector in that direc-
ion, il = (r,, 1,). Thus the scalar product of the gradient with
_the normal vector,

nlgg-knz—aﬂ (5)

fi- Vo= ,
¢ X4 ox,
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B x1, Xo)

Fig. A.6-1 A scalar field demonstrating the concept of a gradient.
If ¢(xy, x,) gives the elevation, the gradient can be used to find the slope
in the fi direction at a point (xy, X,).

gives the directional derivative in the fi direction. Because both
fi and V¢ are functions of position, the directional derivative
varies in space. At any point, the maximum value of the scalar
product occurs for i parallel to the gradient, so the gradient
points in the direction of the steepest slope along which ¢
changes most rapidly. The scalar product is zero when 1 is
perpendicular to the gradient, so the gradient is perpendicular
to curves of constant ¢. These concepts are also used in three
dimensions.
In index notation, the gradient is written as

_99 _
(Vo)====0, (6)

512
i

where the last form uses a common (if sometimes confusing)
notation in which differentiation is indicated by a comma. The
notation, with one free index, shows that the gradient is a vec-
tor. By contrast, the directional derivative, written as

ﬁ'V(P:”,"a—?':niﬁb,‘s (7)
ox; ’

has an implied sum over i and is a scalar.

Often, the gradients of quantities are important physically
because an effect depends on spatial variations of a field. For
example, the flow of heat depends on the gradient of the tem-
perature field (Sections 5.3.2, 5.4.1), and the gradient of the
pressure field in the atmosphere is important for the weather.

A.6.3 Divergence

A related operation that describes the spatial variation of a vec-
tor field is the divergence. The divergence of a vector field u(x)
is given by the scalar product of the V operator with u(x) as

914.1..+_8_”12_+§Z3_, (8)

divu=V-u=
dx, Ox, Oxs
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Uy + 0u4/0x,
Uz + du3/0x; /

_— — U, + U,/ X,

u;
X3
Uy

Us

X2

Xy

Fig. A.6-2 The divergence, formed from the differences between the flow
into one face of a volume and the flow out of the opposite face, gives the
net flow through a unit volume.

which yields a scalar field because the vector components and
their derivatives are functions of position.

The divergence frequently arises in conservation equations.
For example, if u(x) is the velocity as a function of position in a
fluid, V - u(x) gives the net outflow of material per unit time
from a unit volume at position x (Fig. A.6-2). To see this, note
that, to first order, the net flow in the x, direction is the differ-
ence between the flow out the far side, u, + du,/9x,, and that
into the near side, u,, given as

u2+%—u2:@—2~. 9)
ox, dx,

Adding similar terms for the net flow in the x, and x5 directions
gives the divergence (Eqn 8). If the divergence is positive, there
isa net outward flow, whereas a negative divergence indicates a
net inflow.

This idea can be applied to any vector field u(x). Consider the
problem of finding the net outflow from a region with volume
V and surface S. If fi(x) is the unit normal vector pointing
outward at a point x on the surface (Fig. A.6-3), the scalar
product fi(x) - u(x) gives the outward flux per unit area at that
point. Integrating the flux over the surface then gives the total
flux. Another way to compute the total flux is to integrate the
divergence over the volume. These two methods give the same
flux, so

n-udS= | V-udV. (10)

N v

This relation, Gauss’s theorem, or the divergence theorem,
says that what accumulates inside a volume is determined by
the integral over its surface of what goes out. If we think of the
volume as many adjacent cells, the flow out of one cell is the

Vector field
u(x)

/

Fig. A.6-3 Geometry for the divergence theorem: fi(x) is 2 unit vector ,
pointing outward at the point x from an element dS of the surface § that
encloses a volume dV.

flow into an adjacent cell, which cancels to zero. Only flow in
or out of the volume’s surface is not canceled out in this way.
Written in full, [dV is a triple integral over the volume, and [dS$
is a double integral over the surface.

In index notation, using the summation convention, the
divergence is written

Vous—t=u, (11)

i &

which is a scalar because no free index remains. Gauss’s theo-
rem iIs written

o

ox;

unds=| 24y, (12)

N v

or, using the comma notation for derivatives,

un,dS= | u, dV. (13’)'

i,i

$ v

As before, it is implicit in the notation that the field u, its derivat-
ives, and the normal vector fi vary with position. .

A.6.4 Curl

The curl operator, the cross product of the V operator with
vector field, yields another vector field

o |9 0y

. | 0u, Ou . [ou, Ouy
Vxu=§¢ & | —1 . 2~

€3
dx, Ox, dx;  dx, dx; 0%



=g, . (16)

- Some physical insight into the curl comes from Stokes’
theorem, which relates the integral of the curl of a vector field
over a surface S to the line integral around a curve C bounding
(Fig. A.6-4) as

u-tdC= [ (Vxu)-ddS. (17)

Here dS is an element of surface area with normal fi(x), and dC
is an element of the curve with tangent t(x). Analogous to the
case of Gauss’s theorem applied to a volume, we can think of
the surface as composed of infinitesimal tiles, each with a line
integral of u - t around it. The border of each tile is shared with
another tile, but, because the line integral, or circulation, is
computed in a counterclockwise manner, the integrals along
is border are the same but of opposite sign for the two tiles,
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and therefore cancel. The segments of the line integrals cancel
between all the tiles except those on the outer border that have
no adjacent circulation to cancel them.

If the line integral is nonzero, the vector field has a net rota-
tion along the curve, so the integral of its curl over the surface is
nonzero. The curl of a vector field shows where rotations arise.
A common application is describing the velocity field of a mov-
ing fluid. The upper portion of Fig. A.6-5 shows streamlines,
lines parallel to the velocity vector at any point, for a viscous
fluid flowing past a circular object. The velocity is zero at the
object, and increases with distance away from it. The flow is
symmetric on the bottom of the object. The lower portion of
the figure shows contours of the curl of the velocity field with
larger values, indicating greater rotations, close to the object.

Two useful identities, whose proofs are left for the problems,
are that the curl of a gradient and the divergence of a curl are
Zero:

V- (Vxu)=0 (18)
V x (V) =0. (19)

Equation 19 can be used with Stokes’ theorem to show that for
a vector field written as the gradient of a scalar, the curl, and
hence circulation around an arbitrary curve, are zero. This idea
is used in mechanics to prove that a conservative force (one that
can be written as the gradient of a potential) has a line integral
that is independent of path, because its circulation around any
path is zero. These relations give insight into seismic waves,
because P waves have no curl and S waves have no divergence
(Section 2.4.1).

A.6.5 Laplacian

The Laplacian operator is formed by taking the divergence of
the gradient of a scalar field, which yields a scalar field

¢ % 9%
V2=V -Vp=—+ — +—=9¢,, 20
’ ’ dx?  Ox3 0x3 % (20)

where the last form uses index notation and the summation
convention. By analogy, the Laplacian of a vector field is a vec-
tor field whose components in Cartesian coordinates are the
Laplacians of the original vector components,

Viu=(V2u;, Viu,, Vu,). (21)

For example, the & component of V2u is

2 2 2
8u1+8u1+8u1

. (22)
oxz  9x3 O}

In Cartesian coordinates, the Laplacian of a vector satisfies

VZu=V(V-u)-Vx(Vxu), (23)




462 Appendix
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0.4

an obscure-looking relation that is useful in deriving the exist-
ence of P and S waves.

A.7 Spherical coordinates

The vector operations discussed so far were performed in
Cartesian coordinates, in which the unit basis vectors (€, €,, &;)
point in the same direction everywhere. There are, however,
situations in which non-Cartesian coordinate systems without
these nice properties are useful. In particular, spherical coordin-
ates often simplify the solution of problems with a high degree
of symmetry about a point.

A.7.1 Thespherical coordinate system

In a spherical coordinate system, a point defined by a position
vector x is described by its radial distance from the origin, r =
| x |, and two angles. 1s the colatitude, or angle between x and
the x; axis, and ¢, the longitude, is measured in the x,—x, plane.
Often the latitude, 90° — 6, is used instead of the colatitude.
Spherical coordinates are often used in seismology because
the earth is approximately spherically symmetric, varying with
depth much more than laterally. Thus properties like velocity
and density are often approximated as functions only of , inde-
pendent of 8and ¢.

Figure A.7-1 shows the relations between rectangular and
spherical coordinates. If the vector x is written as

x=x,&; +x,8, +x3&;, (1)

then its components in rectangular coordinates (x;, x,, x;) are
described by spherical coordinates as

1.0
0.8

0.6

0.4

Fig. A.6-5 Top: streamlines showing

the velocity of fluid flow around an

object. Numbers on streamlines show the
magnitude of the velocity. Bottom: contours
of the curl for this velocity field. The curl is
greatest near the sphere, where the fluid flow
lines are the most curved. (After Batchelor,
1967. Reprinted with the permission of
Cambridge University Press.)
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(0, 0°) Equator
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Fig. A.7-1 Relations between spherical (r, 6, ¢) and Cartesian coordinates.
(x> X5, X3). (After Marion, 1970. From Classical Dynamics of Particles o
and Systems, 2nd edn, copyright 1970 by Academic Press, reproduced by
permission of the publisher.) TR

x4 7sin 8 cos ¢
_ I - 2
X=|x,|=|7rsin@sing |. (
X5 7 cos 0

Conversely, the spherical coordinates 7, 6, and ¢ can be writt¢n
as -

r=(x}+x%+x3)12, @=cos! (x3/7), ¢=tan’! (x,/x¢)- "{‘3‘

In the equatorial (x,~x,) plane, 8= 90°, cos 6= 0, sin 0= 1380
X, =7c0s ¢, x, =7 sin ¢, and x5 =0. This is the same as the po
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Equator

Fig. A.7-2 Geometry of the latitude and longitude system used to locate
points on the earth’s surface. A point P at S0°N, 60°W (8=40°, ¢ =—60°)
is shown. (After Strahler, 1969.)

coordinate system described in Section A.3.1. Along the x; axis
~we have =0°, s0 x; =x, =0, and x; =r. Any of these expres-
sions written in terms of colatitude 8 can be converted to
latitude A=90° - 0, using cos 8=sin Aand sin O=cos L.
This coordinate system is the familiar one (Fig. A.7-2) used
to locate points within the earth or on its surface, r = 4. For this
_purpose, the origin is placed at the center of the earth, and the
x; axis is defined by a line from the center of the earth through
the north pole. The intersections of planes containing the x,
~axis with the earth’s surface define meridians, lines of constant
longitude. The x, axis intersects the equator at the prime
_meridian, on which ¢ is defined as zero, which has been chosen
o run through Greenwich, England. The intersection of planes
perpendicular to the x; axis with the earth’s surface define
parallels, lines of constant colatitude or latitude. Meridians are
_aspecial case of great circles, lines on the surface defined by the
ntersection of a plane through the origin with the surface of
the spherical earth. Parallels are a special case of small circles,
hich are lines on the surface defined by the intersection of the
urface of the spherical earth with a plane normal to a radius
ector.
~These conventions allow the colatitude 8 (0° < 6 < 180°)
nd longitude ¢ (0° < ¢ < 360°) to define a unique point on the
arth’s surface. Often locations are described in terms of
atitudes north and south of the equator, and longitudes east
and west of Greenwich. North and south latitudes corres-
ond, respectively, to colatitudes less than or greater than 90°.
ecause ¢ measures longitude east of the prime meridian, west

~ A NN
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longitudes correspond to values of ¢ less than 0° or greater than
180°. Thus a point at (10°S, 110°W) has 8=90° + 10° = 100°,
and $=-110°=360°-110°=250°.

At any point, unit spherical basis vectors (€, &, €y) can be
defined in the direction of increasing , 6, and ¢. &, points away
from the origin, and gives the upward vertical direction. &,
points south, and & o points east. These two are sometimes writ-
ten in terms of north- and east-pointing unit vectors, &y =—&,
and &gy =&,

An important feature of the unit spherical basis vectors is
that at different points they are oriented differently with re-
spect to the Cartesian axes. The Cartesian unit basis vectors
(&, &, &;) point in the same direction everywhere. By contrast,
for example, &, points in the é; direction at the north pole, and
in the -, direction at the south pole. This effect is described by
the Cartesian (&, €,, &;) components of the unit spherical basis
vectors, at a point with colatitude 8 and longitude ¢:

—sin ¢ cos 6 cos ¢ sin 6 cos ¢
€& =| cos¢|, € =|cosfsing |, & =|[sinOsing |[. (4)
0 —sin @ cos 6

The dependence on the colatitude and longitude describes how
the orientation with respect to the Cartesian axes changes.

At any point, the spherical basis vectors (&,, &, &) form an
orthonormal set. For problems whose spatial extent is small
enough that the curvature of the earth can be ignored, these
basis vectors provide a useful local coordinate system.

A.7.2 Distance and azimuth

Spherical coordinates are especially useful in describing the
geographic relation between two points on the earth’s surface.
A common application is to find the distance between points
and the direction of the great circle arc joining them. A great
circle arc is the shortest path between points on a sphere, so if
seismic velocity varies only with depth, the fastest path along
the surface is the great circle arc, and the fastest paths through
the interior are in the plane of the great circle and the center
of the earth. Because velocities vary laterally by only a few
percent throughout most of the earth (and imperceptibly in
the liquid outer core), this is a good approximation for most
seismic applications. The source-to-receiver distance is often
given in terms of the angle A subtended at the center of the earth
by the great circle arc between the two points (Fig. A.7-3). If
A is expressed in radians, then the length s (in km) of the arc
along the earth’s surface is RA, where R is the earth’s radius
(= 6371 km). If A is expressed in degrees, s = RA7/180, so one
degree of arcequals 111.2 km.

Consider the great circle arc connecting an earthquake
whose epicenter is at (6g, ¢) and a seismic station at (6, ¢).
Seismic waves that traveled along the great circle arc (or in the
plane of this arc and the center of the earth) left the earthquake
in a direction given by the azimuth angle { measured clockwise
from the local direction of north at the epicenter to the great
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circle arc. These waves arrive at the seismometer from a direc-
tion described by the back azimuth angle {’ measured clock-
wise from the local direction of north at the seismometer to the
great circle arc. To find these quantities, the Cartesian compon-
ents of the position vectors for the earthquake and the station
are written, using Eqn 2:
R sin 6; cos ¢y R sin 65 cos ¢
Rsin g sin ¢ |- (5)
R cos 6

Xp=|RsinOsing; | Xg=
R cos ¢

The distance A, the angle between x¢ and xg, is given by the
scalar product

X+ X =R? cos A, (6)
SO
A=cos™! [cos O cos Og+sin O sin 65 cos (¢g— P) 1. (7)

This formula defines A uniquely between 0 and 180°. This
shorter portion of the great circle is called the minor arc con-
necting the two points; the longer portion, known as the major
arc,is (360° — A) degrees long.

To compute the azimuth from the earthquake to the station,
consider b, a unit vector normal to the great circle in the local
horizontal plane at x;;, which is written using the vector prod-
uct of the position vectors

Xg X xp =bR% sin A. (8)

Evaluation of the vector product gives

Great
N circle path
¢
90° - ¢
> é¢
Earthquake ¢
b
3
&

Fig. A.7-3 Geometry of the great circle path
between an earthquake epicenter and seismic
station (left), showing the convention for
defining the azimuth, { (right).

sin 8 cos O sin ¢g — sin B cos G sin ¢y

b= — cos O sin B cos ¢ — cos b sin O cos @ |- (9)
. sin 6 sin 6 sin (¢p — @)

The azimuth angle £, measured clockwise from north, is then
given (Fig. A.7-3) by

cos {=b- &= .1 (cos B sin B —sin 6 cos Oy cos (Ps— @)
sin A
(10)
and
. fo 1 . .
sin {=b - &;= ——sin 6 sin (¢5— Py ). (11)
sin A

Use of both sin { and cos { makes the angle { unambiguous
(0°<{<360°). The azimuth from an earthquake to a receiver is
useful, because earthquakes radiate more energy in some direc-
tions than in others (Chapter 4), so measurements at different
azimuths yield information about the source.

The back azimuth ¢’, obtained by reversing the indices E and
S in Eqns 10 and 11, shows the direction from which seismic
energy arrives at a seismometer. Seismometers typically record
the north-south and east-west components of horizontal
ground motion. Using the back azimuth, these observations
can be converted into radial (along the great circle path) and
transverse (perpendicular to the great circle path) components
by a vector transformation (Eqn A.5.9). This distinction 15
made because waves appearing on these components propag:
ated differently (Section 2.4). The azimuth and back azimuth
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Fig. A.7-4 Geometry of the great circle path for an earthquake in the Peru
trench recorded at station VAL (Valentia, Ireland). The azimuth, {, and
back azimuth, {’, are not simply related, due to the sphericity of the earth.

angles are measured clockwise from north, a geographic
convention which contrasts with the mathematical one of
~ measuring angles counterclockwise from the x; direction.
Figure A.7-4 illustrates this geometry for an earthquake in
the Peru trench (6 = 102°, ¢ = —78°) recorded at station VAL
(Valentia, Ireland; 6 = 38°, ¢ = —10.25°). The resulting dis-
tances and azimuths are A=86°, {=35°, (" =245°.!

This analysis assumes that the earth is perfectly spherical. In
fact, the earth is flattened by its rotation into a shape close to an
oblate ellipsoid, so the radius varies with colatitude approxim-
ately as

7(6)=R,(1—f cos? 6), (12)

_ where R, is the equatorial radius, 6378 km. The flattening
factor f is approximately 3.35 x 1073, or about 1/298, so the
polar radius R, is 6357 km. An average radius can be defined
as the radius of a sphere with the same volume as the earth, if
it were a perfect ellipsoid. Because the volume of an ellipsoidal
earth would be (4/3)7ZR§RP, and a sphere of radius R has
volume (4/3)7R3, the average radius is 6371 km. For certain
applications the ellipticity is included in precise distance
- calculations.

! These distance-azimuth equations also have nonseismological applications

because ships and aircraft follow the shortest (great circle) paths between two points
- when possible.
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A.7.3 Choice of axes

Spherical coordinates are also used with axes different from
the geographic ones. Because the physics of a problem does not
depend on the choice of coordinates, a set of coordinates that
simplifies the relevant expressions is used. For example, in
earthquake source studies, the x axis can be chosen to go from
the center of the earth to the location of the earthquake. The
prime meridian, and hence x,, axis can be selected so that
the fault is oriented in the direction ¢ = 0. These axes simplify
the description of the seismic waves radiated by an earthquake,
because the distance A from the source is now the colatitude.
Moreover, the radiation pattern generally has a high degree of
symmetry about the fault, so simple functions of ¢ appear. By
contrast, the radiation pattern need have no symmetry about
the North pole and Greenwich meridian, so a description in
those coordinates would usually be more complicated.

Fortunately, a coordinate system referred to the earthquake
location does not make describing the propagation of waves
from the source any more difficult. Because earth structure
varies primarily with depth, the spherical symmetry about
the center of the earth is independent of the axis orientation
chosen. The geographical convention in which the earth rotates
about the x; axis is helpful for navigation. In most seismolo-
gical applications, however, the north direction has no particular
significance because the propagation of seismic waves is essen-
tially unaffected by the earth’s rotation. The choice of a prime
meridian is arbitrary; in the early nineteenth century some
American maps had it through Washington DC, and some
French maps had it through Paris.

A.7.4 Vector operators in spherical coordinates

Because at a point on the sphere the unit spherical basis vectors
are oriented up, south, and east, the basis vectors at different
locations are generally not parallel. This makes the vector
differential operators more complicated, because these oper-
ators involve taking spatial derivatives of vectors. In Cartesian
coordinates the unit basis vectors are not affected by this
differentiation because they do not change orientation, so only
derivatives of the components need be taken. In spherical
coordinates, because a vector u is

u=u,é,+u9é9+u¢é¢, (13)

differential operators acting on u must incorporate the derivat-
ives of the basis vectors. Thus, in spherical coordinates, for a
scalar field wand a vector field u:

Loy low . 1 ow
dy=¢—+8&-—+ —- 14
gracv == or egr 20 eq’rsin(? a9 1
d
d1vu=—1~—a—~(72u)+ 1 i(sin@ue)-i— 1 e} (15)
r? or rsinf 96 rsin@ 99
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curlu=¢, 1 j—(sin& uy) = %
rsinf | 06 d¢

0 1 ~sin @ — (ru,)
rsin | d¢ ar

1{ 9 ou
8 2| Zipmy) - 16
+e‘”r{ay(”‘9) ae] (16)

\721//=ii r2~a-l—//— — 9 sin@a—w
r2 or ar r2sin@ 00 00
1 %

2 sin% 6 99>

u?’

(17)

These expressions are used when we discuss spherical waves in
Section 2.4 and the earth’s normal modes in Section 2.9.

A final point worth noting is that the elements of volume
and surface used in integrals are different in spherical coor-
dinates from rectangular coordinates. In spherical coordinates
(Fig. A.7-5) there are several scale factors, so an element of
surface area is

dS=r2sin 6d0d¢, (18)
and an element of volume is

dV =1?sin 6dr d6d¢. (19)

Spherical coordinates:

dV=r2sin@ dr do d¢
rsiné
d¢ d
\ dS=r2sin6 de do
de y rsing de
¢ rde
o
d¢

Fig. A.7-5 Definition of the element of volume in spherical coordinates.
Unlike the case of Cartesian coordinates, the volume element in spherical
coordinates in not a cube. (Marion, 1970. From Classical Dynamics of
Particles and Systems, 2nd edn, copyright 1970 by Academic Press,
reproduced by permission of the publisher.)
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A.8 Scientific programming

Most seismological applications require computers, and these
requirements, especially in exploration applications with very
large data volumes, have spurred the development of computer
software and hardware. Some remarks about the use of com-
puters in seismology thus seem appropriate.

Computer usage in seismology includes several broad and
overlapping categories:

e Computers are often used in data acquisition and record-

ing systems.

® Data are initially displayed and manipulated using
computers.

o Subsequent analysis is frequently done using computers.
For example, seismograms can be filtered to enhance
certain frequencies or combined to better resolve certain
features.

e Theoretical, or synthetic, seismograms are often com-
puted for a range of the parameters under study and com-
pared to data to find the best fit.

¢ Computers are used to invert seismological data to deter-
mine the parameters of a model which best matches the
data.

o Computer modeling is often used to draw geological in-
ferences from seismological observations. For example,
seismic velocity data are compared to the predictions of
models for the velocity of rock as a function of composi-
tion, temperature, and pressure.

These applications often require scientific programming, a
programming style used for essentially mathematical applica-
tions. Some problems in this book also require scientific pro-
gramming. Although programming is a matter of personal
style, this section discusses several points that may be helpful.
The suggested reading provides some starting points for read-
ers interested in pursuing these topics further.

A.8.1 Example: synthetic seismogram calculation

Consider a program to compute a synthetic seismogram for
waves in a one-dimensional constant-velocity medium, a math-
ematically idealized string that illustrates features of wave
behavior. The program is based on u(x, t), the displacement as
a function of position x and time ¢. The displacement is zero at
the fixed ends of the string, x = 0 and x = L, between which
waves travel at speed v. As in Section 2.2.5, the displacement
can be written as the sum of the normal modes of the string,
each of which is a standing wave with # half wavelengths along
the string,

u,(x,t)=sin (nmx/L) cos (®,1), (1)
and vibrates at a characteristic frequency, or eigenfrequency,

w,=nav/L. (2)
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Fig. A.8-1 Top: Synthetic seismogram for a string showing the direct wave
arrival (1) and reflections (2, 3) from both ends. Bottom: Geometry
showing source and receiver positions, and the times of the direct and
reflected arrivals.

If a source at position x, generates a pulse at time zero with
duration 7, the propagating waves are described by a weighted
sum of the modes

u(x, t)= i sin (n7x/L) sin (nx /L) cos (@,2) exp [-(w,7)*/4].
n=1
(3)

Given the displacement u(x, #) for any position and time,
a seismogram (“stringogram”) giving the displacement ver-
sus time at a receiver position x, is u(x,, t). Alternatively, a
“snapshot” of the displacement everywhere on the string at
time £ is #(x, ¢ ).

Consider a program to evaluate a synthetic seismogram
using this sum. For simplicity, we use a string of length 1 m!
with a wave speed 1 m/s, a source at x,=0.2 m and a receiver at
x,=0.7 m. To approximate the infinite sum, the program adds
up 200 modes. The seismogram (Fig. A.8-1, top) is calculated
at 50 time steps, covering 1.25 s. This program is written in

1 It is easy to use arbitrary values on a computer; we could also use 1km or 1

furlong. Finding a physical 1 km string is another matter . . .
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Fortran, a language that is especially suitable for scientific pro-
gramming and is therefore commonly used in seismology (and
thus in this book). The program could be also written in other
languages, but the general points would still apply.
C SYNTHETIC SEISMOGRAM FOR HOMOGENEOUS STRING
C DISPLACEMENT U AS FUNCTION OF TIME T
C CALCULATED BY NORMAL MODE SUMMATION
DIMENSION U(200)
PI = 3.1415927

C PARAMETERS (NORMALLY WOULD COME FROM INPUT)
C STRING LENGTH (M)
ALNGTH = 1.0
C VELOCITY (M/S)
Cc=1.0
C NUMBER OF MODES
NMODE = 200
C SOURCE POSITION (M)
XSRC = 0.2
C RECEIVER POSITION (M)
XRCVR = 0.7
C SEISMOGRAM TIME DURATION (S)
TDURAT = 1.25
C NUMBER TIME STEPS
NTSTEP = 50
C TIME STEP (S)
DT = TDURAT/NTSTEP
C SOURCE SHAPE TERM
TAU = .02

@]

LIST PARAMETERS
WRITE (6,3000)
3000 FORMAT (‘SYNTHETIC SEISMOGRAM FOR STRING')
WRITE (6,3001) NMODE
3001 FORMAT (‘NUMBER OF MODES’, I6)
WRITE (6,3002) ALNGTH, C
3002 FORMAT (’LENGTH (M)’ F7.3, ‘VELOCITY,
X (M/S)’', F7.3)
WRITE (6,3003) XSRC, XRCVR
3003 FORMAT (’POSITION (M): SOURCE’, F7.3,
X 'RECEIVER’, F7.3)
WRITE (6,3004) TDURAT, NTSTEP
3004 FORMAT (’SEISMOGRAM DURATION (S)’, F7.3,
X I6, 'TIME STEPS')
WRITE (6,3005) TAU
3005 FORMAT (’SOURCE SHAPE TERM', F7.3)
c
C INITIALIZE DISPLACEMENT
DO 5 I =1, NTSTEP
U(I)=10.0
5 CONTINUE
C
C OUTER LOOP OVER MODES
DO 10 N =1, NMODE
ANPIAL = N*PI/ALNGTH
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C SPACE TERMS: SOURCE AND RECEIVER
SXS = SIN(ANPIAL*XSRC)
SXR = SIN(ANPIAL*XRCVR)
C MODE FREQUENCY
WN = N*PI*C/ALNGTH
C TIME INDEPENDENT TERMS
DMP = (TAU*WN) **2
SCALE = EXP(-DMP/4.)
SPACE = SXS*SXR*SCALE

C INNER LOOP OVER TIME STEPS
DO 15 J = 1, NTSTEP
T =DT*(J - 1)
CWT = COS (WN*T)
C COMPUTE DISPLACEMENT
U(J) = U(J) + CWT*SPACE

15 CONTINUE
10 CONTINUE
C

C OUTPUT SEISMOGRAM FOR LATER PLOTTING
WRITE (6, 3101) (U(J), J= 1, NTSTEP)
3101 FORMAT (7F10.4)
STOP
END
This example brings out several points:

o [s the answer correct? Two different types of error occur
in scientific programs. First, the program may be wrong. In
this case, the mathematical formulation correctly describes the
physical problem, but the program incorrectly implements
this formulation. This is the usual situation, in which “bugs”
are identified and corrected. Second, the formulation may be
wrong, so the program correctly implements an incorrect
mathematical model. This could occur because of a mathemat-
icalerror, like an attempt to sum a divergent series, or a physical
error, such as an equation that does not correctly describe
waves on a string. An incorrect formulation is particularly dis-
turbing because it cannot be detected by checking the program.
For example, Fig. A.8-2 shows two computer simulations for
waves bending as they pass from one medium into another with
higher velocities. Figure A.8-2 (top) uses the correct formula-
tion of Snell’s law (Section 2.5), whereas Fig. A.8-2 (bottom)
looks equally convincing but is wrong because the equation
which the program illustrates is incorrect.

Programmers check for both types of errors by choosing
cases for which the results can be predicted analytically and
comparing the results to those of the program. Several tests
are easily done for the string. The wave following the shortest
(direct) path appears at the expected time, 0.5 s (Fig. A.8-1,
bottom), because the source and the receiver are 0.5 m apart.
The next two arrivals, reflections from the ends of the string,
also occur at the expected times. Moreover, these arrivals have
polarities opposite that of the initial pulse, as should occur
(Section 2.2.3) upon reflection at the string’s fixed ends. The
program can also be checked for different string lengths,
speeds, and source and receiver positions. Similarly, in addi-

Right

Fig. A.8-2 Demonstration of the danger that a program accurately
computes an incorrect mathematical formulation. Top: A correct
simulation of wave refraction using Snell’s law, sin 7;/v; =sin 1,/v,.
Bottom: The same simulation using a wrong formula for Snell’s law,
i/vy =i /v,.

tion to synthetic seismograms, displacements along the string
at fixed times could be computed. Such tests are important,
because if the mathematical model is not appropriate for the
physical situation, then time spent debugging, documenting,
and optimizing the program is wasted.

o The program is reasonably comprebensible. Several fea-
tures help clarify the program. The program’s purpose and
method are stated. Variable names somewhat resemble those in
the equation: “SXS” issin x, and so on. Comments identify the
functions of portions of the program.

e The program uses loops and arrays. The seismogram is
described by the array U(J), and its values at successive times
are calculated by looping. Using an array, rather than discrete
variables UT1, UT2, etc., makes the program clearer, closer
to the mathematical formulation, and simplifies output. The
loop structure also makes the program clearer and allows
the number of time steps to be changed simply by changing the
parameter NTSTEP. Similarly, the number of modes is easily
changed.

o The output is labeled. The seismogram was placed in an
output file for later plotting. The parameters used to compute
the seismogram are included, so examination of the output
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C OUTER LOOP OVER MODES
DO 10 N = 1, NMODE

terms for each mode
that do not depend on time

C INNER LOOP OVER TIME STEPS
DO 15 J = 1, NTSTEP

terms that depend on time
C COMPUTE DISPLACEMENT

15 CONTINUE
10 CONTINUE

Fig. A.8-3 Structure of the loops for the string synthetic seismogram
calculation.

shows how it was computed. This helps avoid the common
situation where, given a large collection of computer output,
cases are rerun because it is unclear what parameters were
used. Moreover, subsequent “improved” versions of the pro-
gram can be checked to see whether they give the same results.

o The program is somewhat efficient. Some thought is gener-
ally put into optimizing scientific programs to make them run
rapidly. The program could find the displacement by looping
over time and summing all the modes at each time step. How-
ever, consideration of the equation shows that three terms,
sin (nmx/l), sin (n7x /1), and exp [~(w,7)*/4] are evaluated only
once for each mode, whereas only cos (®,#) is evaluated for
each time step. It is thus more efficient to loop over the modes
and evaluate each at all times (Fig. A.8-3). Because the outer
(mode) loop is executed 200 times, whereas the inner (time)
loop is executed 200 x 50 = 10,000 times, the inner loop should
be as efficient as possible. The program would run more slowly
if the loops were reversed. The difference, though not signific-
ant for this calculation, might be significant for much larger
numbers of time steps and modes.

Further improvements could be made to fully optimize the
program. Optimization is not an end in itself, because the
programmer’s time and the intelligibility of the program are
also important. Programmers typically try to write reason-
ably optimized programs without making them impossible to
understand and debug. Once fully tested, a program that will
be used heavily may be worth further optimization if the com-
puter time savings justify the effort required. There is no point
in “getting the wrong answer as fast as possible.”* Certain
computers, such as those using parallel processors, may require
specialized optimization.

A.8.2  Programming style

The style in which programs are written can make them easier
to develop, debug and use. A few suggestions, though not abso-
lute rules, may be useful.

2 Kernighan and Plauger (1978).
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o Document the program. Computer programs can be almost
useless without adequate documentation. Stonehenge has been
described as “the world’s largest undocumented computer
system.”3 Failure to document is often justified by the assump-
tion that the program will not be used again. This rationaliza-
tion is self-fulfilling, because even the author may find an
undocumented program difficult to reuse once the details are
forgotten.

Documentation should state the program’s goals and
method. The input and output variables, their units, and how
they are defined should be listed. Implicit assumptions and
restrictions are worth noting. Comments should identify major
portions of the program and describe their functions.

Documentation is best written when writing a program
because it can aid in debugging. Moreover, once a program is
fully written, it is harder to remember how it works. Documen-
tation included in the program is less prone to be lost than that
written separately.

Finally, documentation helps scientists exchange programs
and work in collaboration. This can be useful, except in the
apocryphal cases of programmers writing gigantic undocu-
mented programs to maximize their job security.

o Use modular programming. Large programs can generally
be divided into smaller subroutines or functions, which can
be used like the functions (e.g., sine, square root) supplied by
many computer languages. Each subroutine can be tested sep-
arately and then used in various programs. Subroutines can
handle applications that frequently recur, such as reading or
plotting data or carrying out a mathematical operation. This
approach saves the time needed to write and debug portions of
a program similar to one already available. Moreover, the
overall structure of a program containing a set of calls to sub-
routines is generally easier to understand, because many com-
plexities are isolated into subroutines.

o Make programs comprehensible. It is helpful to be able to
understand programs once written. Clear documentation and
modular programming help. In addition, it should be easy to
tell what portions will be executed under which circumstances.
For this purpose, portions of a program should be executed
sequentially, rather than jumping backwards and forwards
within a program.

Similarly, the statements themselves can be written clearly.
The use of mnemonic variable names and natural groupings of
variables can help. For example, it is somewhat unclear that

X=0.23873#A/(Y*Y*Y)

gives the average density X of a planet with mass A and radius
Y, whereas

RHO = AMASS/((4.0/3.0) = PI = (RADIUS* *3))

3 Brooks (1975).
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is clearer. For clarity, the latter expression is more verbose
than required, has 7 previously defined, and is slightly less
efficient.

e Don’t be clever. Sometimes the shortest, “cleverest” way
of programming something can be the worst. In addition to
giving rise to lack of clarity, some shortcuts make it difficult
to transfer programs between computers. This is especially true
of programs that exploit specific properties of an individual
computer or compiler, such as local variants of a standard
programming language.

o  Keep a perspective on precision. The program calculates
and manipulates numbers that, at least in theory, correspond to
physical entities. It is worth keeping track of the precision asso-
ciated with the data and other quantities, and of that required
to compute the desired results.

o Organize programs and data. Related programs and the
associated files can be grouped into directories which include
files listing and explaining the directory’s contents. Data files
can be organized similarly. Often seismograms, for example,
go through multiple processing stages carried out by different
programs. A common practice is to use specific types of file
names to indicate various intermediate stages. In addition, the
data files begin with headers, information identifying the data
and recording the operations applied to it. The headers and file
names should be updated by the programs themselves, rather
than “by hand” at each stage. The output, whether text or
graphic, should contain the parameters required to replicate
the result. This can be especially important for interactive data
processing because input files are not kept.

A.8.3 Representation of numbers

Several simple concepts about numerical calculations on a
computer are worth bearing in mind. One is the consequences
of the way in which numbers are represented and manipulated.
Because computers use binary (base 2) arithmetic, numbers
are written as sets of bits, single binary digits, grouped into
words. Some general ideas about these representations can be
illustrated without going into the schemes used by various
computers.

Integers are represented by their binary equivalent. Thus 46
(decimal) is 101110, because

46=1x25+0x2%+1x23+1x22+1x21+0x20.

Many computers represent integers by 16- or 32-bit words.
The word length governs the range of possible integers. For ex-
ample, using 16 bits, one of which indicates the sign, the largest
positive integer that can be represented is

11111111111 1111 (binary) =21 -1=32,767.
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Fig. A.8-4 Representation of a floating point number using 32 bits.

Because a greater range is needed for scientific computation,
floating point numbers are used:

number = (mantissa) x 2¢xponent,

Floating point numbers can accommodate fractions, with digits
to the right of the binary point representing negative powers
of two, just as digits to the left of the point represent positive
powers of two. For example,

46.625 (decimal) =1x2° + 0x 24+ 1x23+ 1 x 2?2+ 1 x 2}
+0x204+1x2 14 0x224+1 %273

=101,110.101 (binary)=0.101110101 x 26,

To represent binary floating point numbers on a computer, a
certain number of bits are assigned to the mantissa and the
exponent. Figure A.8-4 shows one way in which a single pre-
cision floating point number might be represented by a 32-bit
word. One bit is reserved for the sign of the mantissa, 8 bits
are used for the exponent including its sign, and the remaining
23 bits contain the mantissa. The number of bits available for
the exponent determines the range of the floating point num-
bers. Because 28 = 256, the exponent can represent numbers
between approximately 2127 and 27128 or approximately 103
to 1073, The number of bits in the mantissa determines the pre-
cision or number of significant digits. Because 2723 is approxim-
ately 1077, the maximum number of significant decimal digits is
about seven. Further precision can be obtained using double
precision numbers with additional bits for the mantissa. The
precise values of the range and the precision depend on details
of the implementation. -

The range and precision in use are worth bearing in
mind because computers do not always issue “overflow” or
“underflow” warnings. The computer may assign a value, such
as the largest floating point number, and proceed. It can be
frustrating to find that the peculiar answers produced by a
program result from numbers outside the computer’s range.

A related malady is round-off error, the loss of computa-
tional precision due to the limited number of significant digiFS-
To illustrate the concept, suppose that a computer used six bits
for the mantissa. The decimal addition

0.65625+0.96875=1.625

would, in binary, be




0.10101+0.11111=1.10100,

which, because no precision was lost, equals the exact answer.
Now, consider the decimal addition

5.25+0.96875=6.21875,
which, in binary, becomes
0.101010%x23+0.111110 x 2°.

To carry out the binary addition, because the numbers have
different exponents, the mantissa of the smaller number is
shifted to produce a common exponent. If some of the bits rep-
resenting the smaller number are lost, inaccuracy may result.
For example, in this case,

0.101010x23+0.000111x23=0.110001 x 23
=6.125 (decimal).

The precision available on a computer is generally adequate
to avoid significant round-off error. Nonetheless, it is a poten-
tial problem to keep in mind, especially in long calculations or
in those such as a series sum where the answer is the difference
between large numbers.

A.8.4 A few pitfalls

Difficulties often can be avoided by considering how various
statements in the program will be executed. This is especially
the case when using compilers that provide little error checking
and few helpful warning and error messages. The computer,
following its explicit rules, may yield results differing from
those expected. The foibles here are for Fortran, but similar
ones often appear in other computer languages.

o Statement execution. Problems often stem from the distinc-
tion between integers and floating point numbers. For example,
ifIand ] are integer variables,

yields zero, because integer division yields an integer. This
problem is not cured by setting the result equal to a floating
_point variable, or performing a floating point operation on the

yield zero, because division is done as an integer operation, and
the result (0) is converted to floating point (0.0). On the other
hand, most compilers give 0.2 as the result of
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X =1.0/],

although a conservative policy is to explicitly convert the integer
to floating point

X =1.0/FLOAT(]).

A second class of problems can result from the order in
which operations are performed. For example, it may be
unclear whether

-1.0%%2

should be interpreted as (-1.0)> = 1.0 or —(1.0)* = -1.0.
Although the computer language rules are explicit, it may be
wise to use parentheses, e.g.,

(—1.0)**2

to ensure that operations are carried out as desired. The
additional parentheses can also make the program more
comprehensible. :

o Subroutines. Subroutines are heavily used in writing scient-
ific programs. As a result, problems can result while using
computer languages like Fortran in which what appear to be
arguments passed to a subroutine are actually the locations in
memory of these arguments.
A common error is exemplified by the following program

CALL SUB(1.0)

X=1.0

WRITE (6,*) 'X ="', X

STOP

END

SUBROUTINE SUB(Y)

Y=5.0

RETURN

END
which, when executed, yields “X = 5.0.” Because Y, a para-
meter in the subroutine definition, was set equal to 5.0, the
value of the corresponding parameter in the subroutine call,
“1.0” has been redefined as 5.0. This situation, which some-
times underlies inexplicable behavior by programs, can be
avoided by not passing numerical values of an argument expli-
citly to a subroutine if the argument will be redefined. For
example, had the first statements been

Z=1.0

CALL SUB(2)
the variable Z would equal 5.0, but “1.0” would not be
affected.

Other errors occur when either the type or number of argu-
ments in a call to a subroutine do not match those in its defini-
tion. For example, calling a subroutine with an integer variable
may yield unexpected results if the definition is in terms of a
real variable.
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e Arrays. Scientific computing often involves dealing with
arrays, groups of data addressed by their indices. For example,
a seismogram giving a single component (e.g., vertical) of
ground motion can be written as an array (U(1), U(2) . ..) of
displacement versus time. Similarly, a seismogram giving all
three (vertical, north-south, east-west) ground motion com-
ponents can be written as a two-dimensional array

U(l, 1), UL, 2), U(1, 3), U(L, 4) ...

u(z2, 1), U2, 2), U(2, 3), U2, 4) ...

U(3, 1), U(3, 2), U(3, 3), U(3, 4) ...
whose first index gives the component, and second index indic-
ates the time.

Arrays are defined initially by statements giving their dimen-
sions, i.e.,

DIMENSION A (N, M)
or

REAL A(N, M) .
Typically, the computer selects a memory location for the first
element in A and reserves N X M successive locations. Sim-
ilarly, Nx M x R locations are reserved for a three-dimensional
array dimensioned (N, M, R). In Fortran, regardless of the
number of dimensions, an array is stored as one-dimensional
with the first index varying the most rapidly, then the second,
and so on. In other words, if A is dimensioned (2, 3), the stor-
age order is

A(1,1), A(2,1), A(1,2), A(2,2), A(1,3), A(2,3).
For two-dimensional arrays, this can be thought of as storing
the array by columns. An individual array element is found by
calculating its location relative to that of the first element.
Thus, for an array dimensioned (N, M), with element (1, 1) at
location 1, element (I, ]) is found at location

1+ (I~1)+ (J—1)XN.

Several computational difficulties can arise in dealing with
arrays. A common set of errors involve being “off by one,”
either by starting or ending on the wrong element. This is
especially easy because some computer languages (e.g., For-
tran) start with the first element in an array being “1,” whereas
others (e.g., “C”) start with the first array element as “0.” Thus
one needs to make sure that the array elements correspond
to the expected variable values, such as seismic record times.
Often, when an array index is computed by the program, an
error yields an index outside the bounds dimensioned for the
array. Because many compilers do not check for such errors
unless specifically requested, a statement like

A(9) = 4.0
will usually be executed even for an array dimensioned
DIMENSTION A (5) .
Typically, the computer places 4.0 in whatever is 8 locations in
memory beyond A(1). This location may contain some other
variable, or a portion of the program itself. Often the program
continues until it requires the contents of the overwritten loca-
tion, at which point several things may occur. At best, the pro-
gram “crashes”; at worst, it continues the calculation with
erroneous values that propagate. Array element out-of-bounds
problems are among the most common and most frustrating

difficulties in scientific programming. When a compiler pro-
vides array bounds checking, it is worth using.

The nature of array storage can also lead to inefficient pro-
grams. On many computers, data which are actually on disk
can be treated as resident in memory, and are automatically
“swapped” into physical memory when needed. For efficiency,
large adjacent regions of the disk are often swapped into phys-
ical memory together. Efficient programs minimize swapping
by making the most possible use of data that reside in phys-
ical memory. By contrast, inefficient programs can produce
“thrashing,” a situation in which much of the computer’s time
is spent swapping rather than computing.

For example, consider*

DIMENSION A(1000, 1000)

DO 10 I = 1,1000

DO 10 J = 1,1000

10A(I, J)=1I+4J
Because the elements of A are stored in column order, A(1, 1)
and A(1, 2) are a thousand locations apart. It would be more
efficient to reverse the loops

10 A(J, T) =T +J
so that adjacent locations (A(1, 1), A(2, 1)...) were used
successively.

o Uninitialized variables. Problems frequently result from
uninitialized variables: those used in calculation without their
values being set. A common example, summing an array

DO 10T =1, N

10 SUM = SUM + A(I)
can give strange results unless the compiler initializes SUM
as zero. Because this is not always the case, it is thus wise to
explicitly initialize, e.g.,

SUM = 0.0
before executing the loop. Proper initialization also helps to
ensure that programs do not give different results on different
computers.

o The computer may be wrong. Although most problems
result from programming errors, a very small fraction of the
time the error may be the computer’s. Compilers have been
known to contain “bugs” in common routines such as square
root, tangent, or complex arithmetic. This tempting explana-
tion for the failure of a long and intricate program can gener-
ally be rejected unless a test program that carries out only the
suspect operation yields the wrong answer.

A.8.5 Some philosophical points

To close our discussion, a few general thoughts are worth
considering. Historically, computers were considered a scarce
and valuable resource. Currently, as computer power increases
and costs fall, it is increasingly practical to carry out investl-

4 Hatton (1983¢).




gations numerically. One example is the change, both in ex-
ploration and in global seismology, from earth models whose
properties vary only with depth, to three-dimensional models
that are evaluated numerically.

The role of analytic solutions is also changing. In addition
to the traditional goal of providing exact solutions to simplified
problems, analytic solutions provide test cases for numerical
solutions of more complex problems. Analytic solutions can
also yield the insight needed to evaluate numerical results.

Along with the increase in the complexity of problems that
can be solved computationally comes an increase in the volume
of output. Fortunately, a parallel development has been the
increasing role of graphic output, often in color. The proverb
“A picture is worth a thousand words” may be unduly con-
servative in this context. A thousand words on a computer
might be 32,000 bits; graphic output often makes it possible to
visualize data with millions of bits.

Finally, software such as spreadsheets or programs with
sophisticated general mathematical capabilities often eliminates
the need to write programs for a specific application. In this
book, we do not assume that such software will be used for the
problems, although many could be done this way. We think
that programming without using such software gives a deeper
understanding of the underlying principles. Hence, in educa-
tional applications, we strongly favor programming, even if in

~— Problems ~—

=

. Find the angle between the vectors (1,4, 2) and (2, 3, 1).
2. Show, using index notation, that for the three-dimensional vectors
a, b, c:
(a) axbisperpendicular to bothaandb.
(b) |axb|=]al b]sin 6, where 8is the angle between the two
vectors.
(c) a-(b+c)=a-b+a-c.
(d) ax(b+c)=axb+axc.
(e) a-(bxc)=b-(cxa)=c-(axb).
(f) ax(bxc)=bf(a-c)—c(a-b).
3. Show that for arbitrary matrices A, B, and C:
(a) (AB)T=BTAT.
(b) (ABC)T=CTBTAT.
4. Prove the following properties of determinants for the case of a
2 X 2 matrix:
(a) The determinant of a matrix equals the determinant of its
transpose.
(b) If two rows or columns of a matrix are interchanged, the de-
terminant has the same absolute value, but its sign changes.
(c) If a multiple of one row (or column) of a matrix is added to
another row (or column), the determinant is unchanged.
(d) If two rows or columns of a matrix are the same, the
determinant is zero.
5. Express the determinant of a 3 X 3 matrix using the definition in
EqnA.4.17.
6. Prove that if A has an inverse, the two solutions x and y satisfying
Ax=band Ay=b are equal.
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non-educational applications ease of use may favor sophistic-
ated software.

Further reading

Many texts cover portions of the mathematical material summarized here.
Feynman (1982) discusses general issues of the relations between math-
ematics and science. Butkov (1968) and Menke and Abbott (1990) provide
introductions to many of these topics. Fung (1969), Hay (1953), Jeffreys
and Jeffreys (1950), and Marion (1970) treat vectors, vector transforma-
tions, and vector differential operators. Applied linear algebra texts such
as Franklin (1968) and Noble (1969) deal with the range of the subject
including numerical methods.

Articles by Hatton (1983a-d, 1984a,b, 1985) provide a broad and witty
introduction to computer science for geophysicists. Eckhouse and Morris
(1979) and Sloan (1980) cover topics in computer software, including the
representation of numbers and arithmetic operations. Kernighan and
Plauger (1976, 1978) discuss topics in programming style. Brooks (1975)
treats issues in the development and organization of computer software.
Numerical analysis texts like Froberg (1969) cover round-off and other
sources of error in numerical computations. Harkrider (1988) gives an enter-
taining anecdotal account of early (c.1960) computer usage in seismology.

The application of spherical geometry to the paths between an earth-
quake and a receiver, including the effects of the earth’s ellipticity are dis-
cussed by Ben-Menahem and Singh (1981) and Bullen and Bolt (1985).
The theory of the earth’s shape is treated by Cook (1973) and Jeffreys
(1976).

7. Find the inverse of the matrix

e

both by the cofactor method and by row operations. Check that
the solution is in fact the inverse.
8. Show that the inverse of a 2 x 2 matrix A is given by

Al= 1 ( ayn _an) .
[Al\~a,,  ayy
9. Show that A, the transformation matrix for a rotation about the
&, axis (Eqn A.5.9) satisfies ATA =1 and is thus orthogonal.
10. Prove that the magnitude of a vector is preserved by an orthogonal
transformation.
11. Expand the determinant that give the eigenvalues of a 3 X 3 matrix
(Eqn A.5.19) and verify that the invariants (Eqn A.5.21) are the
coefficients of the characteristic polynomial.
12. Prove the following vector identities using index notation:
(a) Forany vector field u(x), V - (Vxu)=0.
(b) Forany scalar function ¢(x), Vx Vg=0.

13. For the vector field u(x, v, 2) = (3x%y? + 2, 2x%y + 2y, x), find:
(a) V- u.

b) Vxu.

c) Viu.

d) A scalar field ¢(x, y, z) such thatu=V¢.

(
(
(
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14. Use index notation toshow that the Laplacian in Cartesian coordin-
ates of any vector field u(x) satisfies
Viu=V(V-u)-VxVxu.

15. Show that at any point in a spherical coordinate system, the spher-

ical basis vectors (€,, &, &) form an orthonormal set.

16. Use Eqn A.7.6 to derive the angular distance A between the loca-

tions of an earthquake and a seismic station as given in Eqn A.7.7.

Computer problems

The solutions may be useful for other problems in this and other

chapters.

C-1. Find the largest integer your computer allows by starting with
“2,” “2 % 2,* “2x 2 x2,” and doing successive multiplication by
2. What happens when you exceed this number? Do the same for
floating point numbers using “10.0” instead of “2” in both single
and double precision. Does double precision allow larger floating
point numbers?

C-2. Find when your computer starts to show round-off error by start-
ing with “10.0” and doing successive multiplications by 10.0. At
each step, add 1.0 to the result and subtract the two numbers.
When does the difference become zero? Do the same in double
precision.

C-3. Write subroutines to do the following operations on an input

C-4.

C-6.

C-7.

vector in three dimensions:

(a) Find the magnitude of a vector.

(b) Find the sum of two vectors.

(c) Find the scalar product of two vectors.

(d) Find the vector product of two vectors.
Your subroutines should include comment lines explaining the
purpose of the routine and the various inputs and outputs.
Werite a subroutine using the necessary subroutines from problem
C-3 to find the angle between two vectors.

. Use the solutions to problems C-3 and C-4 to find the magnitude,

sum, scalar product, and vector product of the vectors (1, 4, 2)

and (2, 3, 1), and the angle between the two vectors.

(a) Write a subroutine to multiply an # X m matrix by an m-
element vector.

(b) Write a subroutine to multiply an # X # matrix by an m X r
matrix.

(¢) Write a subroutine to find the determinant of a 3 x 3 matrix.

(a) Write a subroutine that uses Gaussian elimination with
partial pivoting to solve the system of equations Ax =b. The
routine should take an arbitrary 3 X 3 matrix A and 3-element
vector b as inputs. The program should test the solution by
multiplying Ax and subtracting b from the result. The sub-
routines from C-6 may be helpful.

(b) Use the subroutine to solve

10 =7 0 \[x,) (7
=32 6 ||x,|=|4
s -1 5 |{x) |6

. (a) Write functions that return the values of the ; and & sym-

bols given the indices as arguments. Test the functions and
show that they give the correct values.

Werite a program that uses these two functions to prove the
identity

(b

-~

eiikeist = éjsgkt - 6/’16/&5

by testing all possible combinations of indices.

(a) Write a subroutine to invert a 3 x 3 matrix using elementary
row operations. The subroutine should first check to see if
the matrix is singular. It should test the result by multiplying
by the original matrix.

(b) Use this routine to invert

1 -1 -1
3 -1 2
2 2 3

C-10. (a) Write a program to solve a 3 x 3 system of equations Ax=b

using the matrix inversion routine from the previous prob-
lem. The program should test the solution by multiplying Ax
and subtracting b from the result. The subroutines from C-6
may be helpful.

(b) Use the program to solve the system of equations in C-7.

C-11. (a) Write a subroutine to find the roots of a general cubic equa-

tion using the method given below.!
A cubic equation y3 + py? + gy + r = 0 may be converted to

B+ax+b=0

by defining

y=x—pl3, a=(3q-p?3, b=Q2p>-9pq+27r)27.

if p, g, and r are real, the quantity

c=b¥4+a3127

characterizes the roots: if ¢ > 0, there is one real root and two
conjugate imaginary roots; if ¢ =0, there are three real roots,
of which two are equal; and if ¢ < 0, there are three real and
unequal roots. Using

A= (_b/z n 61/2)1/3, B= (_b/z - 61/2)1/3,

the values of x given by

x=A+B, [~(A+B)+(A-B)-3)2,
~[(A+B)+(A-B){-3112

are the roots.

The subroutine requires complex arithmetic and should
test the roots by substituting back into the equation.
Use the result to solve

=

y3 - 8y?+19y-12=0.

C-12. (a) Write a subroutine to find the eigenvalues and eigenvectors

of a real, symmetric 3 x 3 matrix, using the results of C-11.
The program should check that the eigenvectors and eigen-
values satisfy their definition. Be careful to avoid dividing by
zero.

(b) Use this subroutine to find the eigenvalues and eigenvectors of

W N =
“©“ b
A\ L W

Beyer (1984).
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C-13. (a) Write a program that accepts the latitude and longitude of
two points on the earth’s surface and finds the angular dis-
tance and distance along the earth’s surface between them,
and the azimuth and back azimuth.

(b) Use your program to find the distances and azimuths
between: .
(i) Cairo, Illinois (37°N, 89°W) and Cairo, Egypt (30°N,
32°E).

Problems 475

(ii) Berlin, New Hampshire (44.5°N, 71.5°W) and Berlin,
Germany (52.5°N, 13.5°E).

(iii) Montevideo, Minnesota (45°N, 95.5°W) and Monte-
video, Uruguay (35°S, 56°W).

(iv) Mexico, Maine (44.5°N, 70.5°W) and Mexico City,
Mexico (19°N, 99°W).
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Solutions to selected odd-numbered
problems

Note that in many problems (as in reality), the solution varies (25a) ¥, =B, exp [i(wt -k x+k,7p2)],
depending on the interpretation of the data or the assumptions We =B, exp [i{wt—kx — k,752)],
used. Dp=A, exp [i(wt -k x—k 7,2)].
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7b) 150 Khar, (27a)  ForScS: = 26°, o =4 For ScSp: iy, = 50° i, ¢=20°.

0 o 1 (27b) 50 km.
(7 b=l s 3l (29) ©,=0.58, w,=1.16.
1 35 (33) (3/2)(S cos? @sin B—sin 6).
7d) 450 kon. (35a)  2591s.
o) o (35b) 4.4 kmis.
(35¢) 8.3 km/s, 13.8 km/s, 74.5 km/s.
(11 64 g ou o 3 2 2(:1 . (35d) o 751;3;2 km/s, 5.01 km/s, 4.05 km/s; A= 11,440 km, 1312 km,
0 2 61+ 4u (37a) Aw/wobserved: 0.095.

(11b) ~ 182+16pu. (37b)  Aw/wpredicted: 0.038.
(13a)  [(A+2p)/p]"2. (C-3)  ForPwavesat the CMB, T, =0.975, R, _=~0.025,
(13b)  (w/p)'~ T,,=1.025R,,=0.025,Ep/E =0.0006, B /E;=0.9994.
(15) ¥3. For S wavesatthe CMB, T, =2,R, =1,Ec/E =1,E/E=0.
(17a) a=11.25 km/s; f=6.18 km/s.
(17b)  @/B=1.82.
(19a) 0.8 km, 8 km, 800 km. Chapter 3
(19b)  0.000125s,0.125s,12.5 s; 8000 Hz, 8 Hz, 0.08 Hz. ) 0ty =5.7 ks, 0y = 7.8 kands, by =23 k.
(21) i =13% 3 =17% 1= 37". (3a) 0, =6.7 km/s, o, = 7.8 km/s.
(23a) For the i, =0°wave: i,=0°/, =2 km, [, =2 km, T=3.3 s. For

the i, =30° wave: 4, =49°, [, =2.3 km, ,=3.0 km, T=4.3 s. (3b) 3.1 km.
(23b)  Forthei;=0°wave:s, =(0, 1) stkm, |5, |=1/v;,5,=(0,2/3) s’km, ~ (5¢) ~ 6.1km.

|s,| = 1/0,. For the i; = 30° wave: s, = (0.5, /3 /2) s/km, () a=6.5 km/s, o, =8 km/s, dip=4°, , = 50 km, h;= 30 km.

(

s;|=1v,s,=(0.5,0.44) s/km, | s, | = 1/v,. 11) 24,000,000.
1 152 2 2



(13a) 9.34 km/s.

(13b) 11.24 km/s.

(15) For D =0 km: py, = 8.3 s/degree, pyo = 6.9 s/degree, i, = 26°,
160 =21°. For D =600 km: p,;="7.9 s/degree, py,= 6.6 s/deoree,
iy =52% 15 =41°.

(17a) 4.5 s/degree.

(17b) 13.4 km/s.

(17¢) SKKS.

(19a) t1d0Th) =58.3 hr, 2,,(oT50) = 3.0 hr, £,,,(4S39) =4.2 hr.

(19b) 54,300 km for (T, 76,450 km for (S5,

(21a) 3%.

21b)  0.3%.

(23) M, =1.94x10% kg, =11 g/cm>.

Chapter 4

(3) Earthquake a: (¢, 6, 1), =(310°, 65°, 90°) (thrust); (¢, §, 4), =
(130°,25°, 90°) (thrust); P axis (azimuth, plunge) = (40°, 20°);
T axis=(220°,70°); Baxis = (130°, 0°).

Earthquake b: (¢, 6, 4), = (176°, 80°, 195°) (right-lateral
strike-slip); (@, 8, A), = (83°, 75°, 350°) (left-lateral strike-slip);
P axis (azimuth, plunge) = (40°, 18°); T axis = (309°, 3°);
B axis=(209°,72°).
Earthquakec (¢, 6, A),=(9°,90°,180°) (right-lateral
strike-slip); (@, 8, ), =(99°, 90°, 0°) (left-lateral strike-slip);
P axis (azimuth, plunge) = (234°, 0°); T axis = (144°, 0°);
B axis = (undefined, 90°).
Earthquake d: First solution: (¢, 8, 1); =(16°, 85°, 90°) (dip
slip); (¢, &, A}, =(196°, 5°, 90°) (thrust); P axis (azimuth, plunge)
=(106°,40°); T axis = (286°, 50°); B axis = (196°, 0°). Second
solution: (¢, 8, A); =(78°, 66°,25°) (left-lateral strike-slip);
(9, 8 A), =(337°,67°,154°) (right-lateral strike-slip);
P axis (azimuth, plunge) =(28°, 1°); T axis = (297°, 34°);
Baxis=(119°,56°).
(7) 0.
00 O M, /3 0 0
(9a) 00 O (=l 0 M,)/3 0
00 M, 0 0 M3
M, /3 0 0
+ 0 -M_/3 0
0 0 2M.3
-2.14 0 0 -2.075 0 0
(9b) 0 201 0 |= 0 2.075 0
0 0 013 0 0 0

(Double-couple scalar moment)/(original scalar moment) =0.999.

(CLVD scalar moment)/(original scalar moment) = 0.054.

(9¢)

(C-1)

(C-3)

Solutions to odd-numbered problems 487

There are two solutions:

Solution 1:
-2.14 0 0 -1.135 0 0
0 201 0 |= 0 0 0
0 0 013 0 0 1.135

-1.005 O 0
+ 0 2.01 0 .
0 0 -1.005

(Double-couple scalar moment)/(original scalar moment) =
0.546.
(CLVD scalar moment)/(original scalar moment) = 0.838.

Solution 2:

-2.14 0 0 0 0 0

0 0 0.13 0 0 -09%4
-2.14 0 0
+ 0 107 0
0 0 107

(Double-couple scalar moment)/(original scalar moment) =
0.452.
(CLVD scalar moment)/(original scalar moment) =

4.24 mm/yr, 0.85 mm/yr, 0.42 mm/yr.
Mg=5.2.

assuming i =3 x 101%; 200,000 km; 43,333 km.
~0.04 Hz.

0.003-0.03.

Japan: 8 mo. (M= 6); 7 yr (M27);65 yr (M28).S. California:
1yr (M26);8 yr (M=7);=100 yr (M2 8). New Madrid: 92 yr
(M>6); 920 yr (M 27); 9200 yr (M2 8).

Earthquake a: i=(0.453,-0.785,0.423);
(0.098,0.515,0.852).

(0.853,-0.150,0.500);

(0.492,-0.087,-0.866).
(0.853,-0.150,0.500);
(-
(=
(
(-
=(=

0.892.

Earthquake b:

o

Earthquake c:
-0.492,0.087,0.866).
-0.633,-0.754,0.174);

0.758,-0.559,0.337).
-0.633,-0.754,0.173);
~0.758,0.559,~0.337).

Earthquake d:

I!

ll

Earthquakee:

Q..) B ool ool aoD Qo ,:;)
l|

0.088 0.157 0.427
0.157 -0.808 -0.451].
-0.427 -0.451 0.720

Earthquake a:

0.840 -0.148 -0.492
-0.148 0.026 0.087].
-0.492 0.087 -0.866

Earthquake b:

—-0.840 0.148 0.492
0.148 -0.026 -0.087].
0.492 ~0.087 0.866

Earthquake ¢:




488  Solutions to odd-numbered problems

WMWW

-0.960 -0.218 —0.082 Chapter 6
Earthquaked: | -0.218  0.843 -0.351].
~0.082 —0.351 0.117

(1a) ay=0,a,=0,b,=(2/km)(1-cos (kr)).
0.960 0218 0.082 (1b) ay=0,a,=0, b, =—cos (kr)/kw=(~1)**"1/kx.
Earthquakee: | 0.218 —0.843  0.351]. (3a) -1.
0.082  0.351 —0.117 (3b) 4
Bo) -
(C-7b)  0.95. (3d) 1.5 +2.6i.
(C-9a)  Gaussian: 0.1%; Poisson: 4%. (7a) me= ™2 [5(w - wy) ~ 8w + wy)].
(C-9b)  Gaussian: 0.3%; Poisson: 3%. (9a) a*o%+b*ol+ Zabafw
(C-9¢)  Gaussian: 0.5%; Poisson: 2%. (9b) av*ol+atutol+ 2atuvo?
(C-11a) 7=21.8 yr; 6=7.2 yr; Poisson: p = 37%; (9¢) (@0l +(a*ulv) ol - 2(a*ulv®) o7,
Gaussian: C(1993,1985) =64%. (9d) a2l 22,
(C-11b) 7=21.8 yr; o=1.5 yr; Poisson: p = 37%; (11a) vAt/(2 cos 7).
Gaussian: C(1993, 1985)=99%. (11b) 10k,
(C-11¢)  7=25.5 yr; =111 yr; Poisson: p=31%; (11c) (oA +0%,0% + oc2?AL? tan? i)/4 cos? i.
Gaussian: C(2018,2010) = 82%. 11d) 4k,
(C-11d) 1=27.2 yr; 6=14.7 yr; Poisson: p =29%;
Gaussian: C(2028, 2020) = 74%.
Appendix
Chapter 5 (1) 21°.
1a) 0.77 ms M, = 6.8, length = 31 km. (5) 211;’22533‘“11“23‘132"‘112"21“33“’12“23“31 +ay38y193
13922931
1b) 4.62m; M, =7.8,length =240 km. ) o (_2/3 1/3)
3a) 40 mm/yr. sl6 ~1/6)
3b) 125,250,500 yr. 13a) 6xy?> + 233 + 2.
3c For 25%: 500, 1000, 2000 yr; for 50%: 250, 500, 1000 yr. 13b) (0,0,0).

(
) (
3¢) M, =~ 8.4; My =5 x 10?8 dyn-cm. (13¢)  (6y*+6x% 12xy,0).
S) 6x 103! dyn-cm; M,, 10.5. (13d)  xz+x%?+y*+constant.
7a) 47 mW/m?2. { Hint: use Eqn A.7.4.

{

(

(

(

(

(

(

(5)

( )
(7b) 33 Wi, C-5) Lib4 %—;3 yez ?21111 J14;5um=(3,7,3);a-b=16;
(

(

(

(

(

(

(

(

7¢) 84 mW/m?2. (C-7b) (0,1, 1).
) Lo 0.7 -0.1 0.3
1) =215 bar/*C. (C9b) | 0.5 -05 0.5].
13) vL3/(24x%t); 28 (for v=10 cm/yr and ¢ = 150 Ma). -0.8 0.4 -0.2
17) 58°;251 MPa. (C-11b) 1,3,4.

b)  San Andreas: 46 mm/yr at 324°; Aleutian: 53 mm/yr at 346°. (C-13b) iz A=93°{=48".

i: A=54°, £=49°.
b) (6, ,|@|) =(~63.0°,107.4°,0.641 */my). i A=87° F= 148°

C-1
C-3
C-3¢) Hawaii: 66 mm/yrat 299°. iv: A=35°,{=232°.
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absolute plate motions, 296-8
effect on spreading ridge, 305
relation to anisotropy, 182
absorption peak, 196
acceleration (ground motion), 14-17,21-2
accelerometers, 14, 404-5
accuracy, of estimates, 67, 391-2
acoustic impedance, 33,77
activation energy, 356
activation volume, 356
Adams-Williamson equation, 200-2
adiabatic gradient (adiabat), 201, 310
aftershocks, 217,277
air gun, as seismic source, 148-9
Airy isostasy, 301n3
Alaska earthquake (1946), 19, 26
Alaska earthquake (1964), 19, 20,238-9,261-3
source parameters, 265-6
stress drop, 270
aleatory uncertainty, 7
Aleutian arc, 311
aliasing, 386-7, 405
amplitude modulation, 94n1
amplitude spectrum, 95, 102, 373
amplitude tomography, 433
amplitude
from ray densities, 100-1, 160, 169
reflected and transmitted waves, 32-4, 76, 85
Andes, deformation rates, 341
anelasticity, 185-6, 190-4
physical dispersion, 194-6
physical models, 1967
angle of incidence
for plane waves, 65-6
in spherical earth, 157
angle of internal friction, 351
angle of sliding friction, 352
angular frequency, 31
angular order, 103
animal behavior, earthquake precursor, 25
anisotropy
asthenosphere, 180-2
azimuthal, 179
composite structures, 180
of core, 1825
definition, 177
of lithosphere, 180-2
mantle, 182-4
of minerals and rocks, 179-80
olivine crystals, 60, 179
transverse isotropy, 178-9
velocities for, 178-9

antipodal focusing, 169, 170
Appalachian Mountains, 182, 334
apparent dip, 126,153
apparent reflector, 153-4
apparent velocity
filtering, 145-6
seismic waves, 65-6
surface waves, 87-91
Armenia earthquake (1988) see Spitak (Armenia)
earthquake
arrays, seismometer networks, 407
aseismic deformation, 342
aseismic slip, 262, 307, 323-4, 340
asperities, 273
associated Legendre function, 103, 106
asthenosphere, 170,286
anisotropy, 180-2
viscous flow, 331, 365
Atlantic Ocean, intraplate earthquakes, 326-7
atmosphere, evolution of, 288
attenuation
incrust, 197-8
geometric spreading, 56, 187
inverse problem for normal modes, 434-7
in mantle, 198
physical dispersion, 194-6
quality factor Q, 114, 1903, 197-8
seismic waves, 114, 185-98,229-30
spectral resonance peaks, 193-4
attenuation operator, 196
auto-correlation, 151, 384-5
auxiliary fault plane, 219
axial high, mid-ocean ridge, 299, 305
axial valley, mid-ocean ridge, 299, 305
azimuth, spherical coordinates, 463-5
azimuthal anisotropy, 179
azimuthal order of normal modes, 103

b-values, 274-7

back azimuth, 456, 464-5

backarc basin, 307

Balleny Islands earthquake (1998), 13, 328, 347

bandpass filter, 378-9, 383

bar, pressure unit, 41

basalt, 132

Basin and Range, 130, 293, 334

Bayes’s theorem, 279

BCIS see Bureau Central International de
Seismologie

benchmarks, 251n1

Benioff, H., 288

Big Bear earthquake (1992), 2534

Birch, F., 119,201
blind zone, refraction seismology, 123
block slider model, 360
body force, 39
equivalent for earthquakes, 220,239, 245
body waves
core phases, 166-9
definition, 3
lower mantle, 171-4
magnitude, 264
modeling, 231-5
phases, 163-6
radiation patterns, 220-2
travel time studies, 162-76
and upper mantle structure, 169-71
visualizing, 174-6
see also P waves; S waves
Borah Peak earthquake, Idaho (1983),293, 347
borehole seismometer, 400, 408, 433
boundary conditions
core-mantle, 10504
different interfaces, 51-2
reflection and transmission, 76, 79
string waves, 33
surface waves, 87, 90
bowtie structure, 153—-4
boxcar function, 231, 381, 383
breathing mode, 106
bridges, earthquake damage, 18
Brillouin scattering, 179
brittle fracture, 349, 352
brittle-ductile transition, 357
broadband seismometers, 403—-4
Browning, I., 11n3
buildings
as damped harmonic oscillators, 194
earthquake risks, 14-18
bulk modulus, 50
butk sound speed, 200
Bullen, K., 162n1, 201

Bureau Central International de Seismologie (BCIS),

398
Byerlee’s law, 353

Calavaras fault, 276

California Strong-Motion Instrumentation
Program, 410

Carrizo Plain, San Andreas fault, 215, 260

Cartesian coordinate system, 445,455

caustic, 160, 169,188

CDP see common depth point

cell hit-count plot, 311
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Central Indian Ocean ridge, 295, 329

central limit theorem, 392

centroid moment tensor project (CMT) see
Harvard centroid moment tensor project

Chagos—Laccadive ridge, 329n4

Chang Heng, 400-1

chaos theory, 24n11

characteristic polynomial, 457

Chile earthquake (1960), 11, 110, 265, 266, 321,

323
Chilean subduction zone, 323
China, earthquake prediction, 25-6
circular fault, 269
Clapeyron slope, 315-16
CLVD see compensated linear vector dipole
CMB see core-mantle boundary
CMP see common midpoint

CMT see Harvard centroid moment tensor project

Cocos plate, 2945

coda, 189

coefficient of internal friction, 351

coefficient of sliding friction, 352

coefficient of thermal expansion, 201

cohesive strength, 351

collision, between plates, 336-9

common depth point (CDP) stack, 144

common midpoint (CMP) stacking, 141-4,
395-7 ‘

common source point (CSP), seismograms, 141

compensated linear vector dipole (CLVD), 245-6,

250

complex Fourier series, 371-2
complex numbers, properties, 443—4
composite structures, anisotropy, 180
Comprehensive Test Ban Treaty (CTBT), 27
compression, 40
compressional (P) axis, 221,226-7,243-4
compressional quadrant, 5,219
compressional waves see P waves
compressive stress, 40, 351
computers

scientific programming, 466-74

solving linear equations, 453-4
Conrad discontinuity, 130
constitutive equations, 38, 48-51
continental drift, 9, 286,295-6
continental earthquakes, 33348
continental lithosphere, 287
continental plates

deformation, 339-43

plate boundary zones, 334-9

rifting, 333-4, 343, 345
continuum mechanics, 38
convolution

digital, 3901

in earthquake modeling, 229-34

linear systems, 378, 379-80

in reflection seismology, 150-1
coordinate transformations, vectors, 455-6
coordinates

Cartesian coordinate system, 445,455

polar, 443

spherical, 462-6
core of earth

anelasticity, 198

anisotropy, 182-5

body wave phases, 166-9

chemical composition of, 205, 208-10

inner core boundary (ICB), 162,209-10

regions of, 162

core-mantle boundary (CMB), 105n4, 162,
174
density changes, 202
temperature, 204, 209
Coriolis force, 114
corner frequencies, 267, 270
coseismic displacement, 217,254-6
Coulomb-Mohr failure criterion, 351, 362-3
coupling
of earth’s modes, 114-15
of P-SV waves, 64
see also seismic coupling
covariance, 394, 421
cracks, fluid-filled, 181
critical angle, waves at interface, 67-8, 78,
121
critical distance, refracted waves, 121
creep, 262
cross product, 447-8
cross-correlation, seismograms, 151, 383-5
crossover distance, refraction seismology, 121
crust
anisotropy, 180-2
attenuation, 197-8
boundary with mantle (Moho), 122, 130
geological composition, 130-4
refraction studies, 128-31
CSP see common source point
curl, vector fields, 460-1

D" region
composition of, 207-8
structure of, 171-4
temperature, 204

damped harmonic oscillator
model for anelasticity, 190-4
model for seismometer, 398-9

. damped least squares solution, 430

damping factor, 190, 398
dams, earthquake damage, 18
data see seismic data
data space inversion, 436-7,439
decomposition
matrix (Lanczos), 427,429
moment tensor, 246,250-1
vector field (Helmholtz), 54n3
deconvolution
earthquake source, 235, 380
linear systems, 80
in reflection seismology, 148-51
deformation
coseismic, 254-9
interseismic, 259-63
measuring, 251-4
permanent or transient, 342-3
postseismic, 365
regional, 364-5
rheology, 349-50
seismic or aseismic, 339-42
theoretical models, 349-66
degeneracy of normal modes, 104
delay time, 181,232
delta functions
application to deconvolution, 150-1, 380
Dirac, 375~7
Kronecker, 449
density, within the earth, 199-202
deep earthquakes
definition, 308
relation to subduction, 310-21

S WA VAVA e

depth of earthquakes
classification, 308
determining, 6~7,232-4,238
and lithospheric properties, 303, 357-62
atridges, 305
at continental rifts, 334
at subduction zones, 310, 312,318
depth of ocean, 301-3
deviatoric stresses, 45-6
DFT see Discrete Fourier Transform
diagonalized stress tensor, 43
differential interferogram, 253
diffraction, 2,72-5,153
and core phases, 167-8
diffraction hyperbola, 153
diffraction sum migration, 153
digital convolution, 390-1
digital seismographs, 251,404
dilatation
volume change, 48
seismic first motion, 219
dilatational quadrant, 5,219
dip angle, 218
dip filters, 147
dip-slip faulting, 218,225-6, 236,244, 256,
269-70
Dirac comb, 385-6
Dirac, Paul, 443n1
Dirac delta function, 375-7
direct wave, refraction seismology, 120
direction cosines, 455
directivity, 231
Discrete Fourier Transform (DFT), 387-91
dislocation, 265-6
dispersion
dispersive signals, 94-6
geometrical, 96-9
normal mode, 107-10
physical, 96,194-6
surface waves, 87, 96-100, 433
tsunamis, 99-101
dispersion relations, 90, 107
displacement
potentials for, 54, 63
string wave, 30
seismic wave, 53-7, 63-5
static (coseismic), 254-6
distance, spherical coordinates, 464
divergence, vector field, 45960
divergence theorem, 460
Dix equation, 136
Doppler effect, 231
dot product, 4467
double-couple source, 220, 240, 242
downward continuation, 155
ductile flow, 355-7
ductile materials, 349
dunite, in mantle, 205
dynamic friction, 359
dynamic range of seismometers, 400

earth
anelastic structure, 197-8, 437
anisotropic structure, 177-85
density, 199-202
interfaces within, 75
models, 62-3, 119, 162, 202-3, 434-9
normal modes, 101-15
pressure in, 202
surface boundary conditions, 51-2



study of, 1, 2-3,119-20
temperature in, 202-4
earthquakes
acceleration from, 14-17,21-2
continental, 333-48
damage caused by, 11-20
deaths due to, 12-13
deep, 308,310, 31221
depth determination, 6-7,232-4, 238
distribution of, 9-10, 289
epicenter, 4,416
energy radiated, 10, 11,273
and faults, 215-16
first motions, 219-20
forecasting, 20-4,278-81
frequency—magnitude relations, 274~7
geodesy, 251-63
hazard estimates, 14-15,21-2, 346,379
hypocenter, 4,217,251, 416
insurance, 14
intensity of shaking, 1417, 346
intermediate depth, 308, 320-1
intraplate earthquakes, 11,271, 288, 303,
326-48
continental, 343-8
list of notable, 12-13
locating, 416-24
location bulletins, 251, 398
magnitude, 4, 11,263-6
numbers of, 11,274-7
mid-ocean ridge and transform, 298-9, 305-7
oceanic, 326-32
plate boundaries, 288
prediction of, 9, 11n3, 24-6
probabilities, 21-4,278-81
possible unpredictability of, 23-6, 274, 280
real-time warnings, 26
and regional deformation, 364-5
risks, 11-14
and rock friction, 359-64
shallow, 308
silent, 262
slow, 271
statistics, 274-81
and strength of lithosphere, 357-9
at subduction zones, 307-10
in subducting slabs, 312-21
swarms, 326,328
trench, 321-5
yearly energy release, 275
East African rift, 333-5, 343
East Pacific rise, 299, 305, 307
Easter microplate, 307
Eastern North America
earthquakes, 14-17,343-7
seismic attenuation, 17, 197-8
seismic hazards, 14-17,22, 346-7
eclogite, 133,321
effective stress, 353
effective viscosity, 356
efficiency, seismic, 273
eigenfrequencies, 36-8,101-2, 107-10, 434-5,
466
eigenfunctions, 36, 92, 101-2, 107
eigenvalues, 426-9,456-8
eigenvectors, 426-9,456-8
Einstein, Albert, 279n$
Finstein summation convention, 449
elastic rheology, 48-51, 349
elastic lithosphere, 304

elastic moduli, 49-50, 177-8
elastic rebound, 21, 215,259-62
elastic strain energy, 52, 61-2
elastic-perfectly plastic rheology, 349
electromagnetic seismometers, 401-2
endothermic phase transition, 206, 316, 318
energy

flux in P-SV waves, 80~1

flux in SH waves, 77-8

in harmonic waves, 356

in plane waves, 61-2

radiated in earthquakes, 10, 11,273

strain energy, 52
engineering seismology, 14-18
epistemic uncertainty, 7
epicenter, of earthquakes, 4,416
epicentral distance, 163
equal-area projection, 223n3
equation of equilibrium, 47, 314, 330
equation of motion, 38, 46-7
equivalent body forces, 220, 239-45
error ellipse

earthquake location, 422, 424

Euler poles, 344, 440
errors

earthquake location, 7, 420-2

propagation of, 393-4

random, 7,392~

systematic, 7, 392
Euler pole, 290-1
Euler vectors, 290-5, 326

inverse problem for, 439-40

for NUVEL-1A model, 294
Euler’s theorem, 290n1
evanescent wave, 68,78
excitation amplitudes, 102,111
excitation functions, 236
exothermic phase transition, 206, 315-16, 318
exploding reflectors experiment, 152
exploration seismology, 3-5, 134-57
explosions, as seismic sources, 245

far-field motion, 259-60
failure line, 351
Fast Fourier Transform (FFT), 389-90
“fault strength” paradox, 363
faults
analytical representation of geometry, 228-9
blind faults, 256
body wave radiation pattern, 220-2,232-3
dip-slip, 218,225-6, 236,244,256, 269-70
and earthquakes, 4-5,215-17
geometry of, 217-19
heat flow, 363
normal, 45,218,225-7,236,244,298-9, 328,
334,336
reverse, 45,218,225-7,236,244
rupture propagation, 230-1,238-9
seismic cycle, 217,259~63
shear stresses, 40-5,350-3
slip, 218,230-1,242,254-62
static displacements, 254—6
stereographic projection, 223-8
stick-slip, 359-64
stress direction, 44-5,226-7, 345
strike-slip, 45,218,225-7,236,244,254-5,
269,298-9,328
surface wave radiation pattern, 235-6
thrust, 45,218,225-7,236,244, 328, 336
transform, 286,298, 305-7
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FDSN see Federation of Digital Broad-Band
Seismographic Networks
Federation of Digital Broad-Band Seismographic
Networks (FDSN), 398, 408
Fermat’s principle, 70-2, 74, 122, 188-90
Fernandina caldera, Galapagos Islands,
276
Feynman, Richard, 9n1
FFT see Fast Fourier Transform
filtering
anti-aliasing, 405
bandpass, 378-9, 383
signals, 369
tau-p, 147
velocity (dip), 145-7
finite impulse response (FIR) filter, 405
finite signal length, 380-3
FIR see finite impulse response
fire, caused by earthquakes, 18-19
first motions, earthquakes, 219-22,239
flatness matrix, 430
focal hemisphere, 222
focal mechanism, 219-29, 235-9
deep earthquakes, 312-14
intermediate earthquakes, 312-14
ridge-transform earthquakes, 298-9
focus, of earthquake see hypocenter
foot wall block, 218
football mode, 106
force couple, 241-2
force-feedback seismometer, 403
forecasting, earthquakes, 20—4,278-81
foreshocks, 25
Fort Tejon earthquake (1857),22,279, 334
Fortran, for scientific programming, 467
forward problems, 6,415
410-km discontinuity, 163~4, 170-1, 202, 205-6,
315-16,395
Fourier analysis, 369-70
linear systems, 377~85
Fourier series, 370-2
Fourier transform, 94-5, 229, 372-5
delta functions, 375-7
Discrete Fourier Transform (DFT), 387-91
double Fourier transform, 146
Fast Fourier Transform (FFT), 389-90
finite length signals, 380-3
inverse Discrete Fourier Transform (IDFT),
388-9
properties of, 374-5
spatial, 145-6
fractal scaling, 274
fractional crystallization, 209n11
fracture, of rocks, 349-54
fracture strength, 349
fracture zone, 298
free oscillations, 36, 101
frequency domain, 373
frequency response, seismometer, 402
frequency—magnitude relations, earthquakes,
2747
frequency-time domain equivalence, 229,235,
373-4
Fresnel zone, 166, 188
friction, and earthquakes, 359-64
friction and fracture, in rocks, 350-4
fundamental modes
Love wave, 91-2, 96
spheroidal, 106
torsional, 105




492  Index

gabbro, 130-4, 321
gain, seismometer, 402
Gaussian distribution, 279-80, 392-5
Gaussian elimination with partial pivoting, 454
Gaussian pill box, 51-2
Gauss’s theorem, 460
GDSN see Global Digital Seismic Network
geodesy
combined with seismological data, 256-9
coseismic deformation, 254-6
interseismic deformation, 259-63
space-based methods, 251-4
plate motions from, 295-6
geoid, 303
geological composition, crust and upper mantle,
130-4
geology, effect on earthquake damage, 18
geometric ray theory, 70-2
geometric spreading, 56, 160, 187
geometrical dispersion, 96-9
geophones, 141
GEOSCOPE network, 407
geotherm, 202-4
oceanic lithosphere, 302
and rock strength, 357-8
subducting slab, 309
Gilbert Islands, earthquake swarm (1981-3), 328
glacial loads, removal, 346
Global Digital Seismic Network (GDSN), 407
global plate motions, 8,293-5
Global Positioning System (GPS), 251-2, 296, 323,
336-41,344-5,365
Global Seismic Network (GSN), 407-8
Gloria transform fault, 326
GPS see Global Positioning System
gradient, vector field, 459, 465
Grand Banks earthquake, Newfoundland (1929),
241,346-7
granite, 133, 359
gravimeter, 403
gravity within earth, 199-202
grazing incidence, 78, 80
great circles, 463-4
Green’s function, 235, 246-7, 380
Greenwich meridian, 463
ground motion from earthquakes
acceleration, 14-17,21-2
intensity, 14-17, 246
ground roll, 141
groundwater, earthquake precursor, 25
group velocity, 94-7
Guatemala earthquake (1976), 235
Gulf of Aden, 333,334
Guralp-3T seismometer, 404
Gutenberg, Beno, 274n2
Gutenberg-Richter relation, 274-7

Haicheng (1975) earthquake, 12,25
halfspace model, oceanic lithosphere, 302
half-spreading rate, 300
hanging wall block, 218
harmonic oscillation, damped, 190-4, 398-9
harmonic waves

definition, 31-2

energy in, 35-6

plane wave, 55
harmonics, spherical, 103-4

vector spherical, 105-6
Harvard centroid moment tensor project (CMT),

251,266

Hawaii
intraplate earthquakes, 327-8
tsunamis, 19, 26
Hawaiian-Emperor seamount chain, 297
hazards, definition, 11
head wave
amplitude, 128
dipping layers, 123-6
flat layers, 121-3
heat engine model of earth, 287
heat flow
oceanic, 3013
on faults, 363
Hebgen Lake earthquake, Montana (1959),
347
Hellenic trench, 339, 342,431
Helmbholtz decomposition, 54n3
Herglotz—Wiechert integral, 161-2
highways, earthquake damage, 18
Hilbert transform, 166n3
Himalayas, 336
homogeneous equation of motion, 47, 53-4
homogeneous medium, earthquake location,
419-20
Hooke’s law, 49,177
horizontal slowness, 69, 137
hot spots, 297,327,347-8
Huygens’ principle, 72-5,122,153,189
hydrophones, 141
hydrostatic pressure, 354
hypocenter, of earthquakes, 4,217,251, 416

IASP91 earth model, 162-4
ICB see inner core boundary
IDA see International Deployment of
Accelerometers
identity matrix, 451
IDFT see inverse Discrete Fourier Transform
ilmenite, 205
imaginary numbers, 443-4
impedance, 33,77, 83
impulse response, 377
IMS see International Monitoring System
incompressibility, SO
Incorporated Research Institutions for Seismology
(IRIS), 398,403
Global Seismographic Network (GSN) program,
407-8
index notation, 38n1, 448-9
India-Eurasia plate collision, 336
Indian Ocean, earthquakes, 328-9
infinitesimal strain theory, 49
inhomogeneous wave, 78
inhomogeneous wave equation, 56
inner core boundary (ICB), 162,209-10
InSAR see Synthetic Aperture Radar interferometry
intensity of shaking, 14-17, 346
intercept-slowness (tau-p)
filtering, 147-8
formulation for travel time, 137-40
interfaces
boundary conditions, 51-2
in the earth, 75
SH reflection and transmission at, 76-8
P-SV reflection and transmission, 81-6
Snell’s law, 668
interferometry, 2524
intermediate depth earthquakes
definition, 308
relation to subduction, 310-21

W

Intermountain Seismic Belt, 347
internal friction, 186
International Deployment of Accelerometers (IDA),
403-4
International Monitoring System (IMS), 28,408
International Seismological Centre (ISC),
earthquake bulletins, 251, 398
International Seismological Summary (ISS), 398,
407
interplate earthquakes, 288
mid-ocean ridges, 298-9, 305-7
trench, 321-5
interseismic motion, 217,259-63
intraplate earthquakes, 288
continental, 343-8
oceanic, 326-32
intraplate earthquakes, 11,271,288, 303, 326-48
intraplate stress field, 331, 345
intrinsic attenuation, seismic waves, 185, 190-8
inverse Discrete Fourier Transform (IDFT), 388-9
inverse filters, 150-1, 380
inverse Fourier transform, 95, 372
inverse problems
earthquake location, 416-24
migration as, 153
plate motions, 439-41
solving, 6,415-16
stratified earth structure, 434-9
surface wave dispersion, 96-9
travel time tomography, 424-34
inverse theory, 415-19
Iran earthquake (1990), 11
IRIS see Incorporated Research Institutions for
Seismology
isoseismals, 15
isostasy, 301
isotherms, 300
isotropy, 50, 177
1SS see International Seismological Summary
Izmit earthquake, Turkey (1999),13, 339, 363

Jackson, David, 9n7
Jamaica earthquake (1692), 20
Japan
earthquake prediction program, 9
regional networks, 410
seismicity, 322n5
Jeffreys, Harold, 9, 162n1
Jeffreys-Bullen (JB) earth model, 162
in travel time tomography, 430-2
joint hypocenter determination, 424
Juan de Fuca plate, 291,293,295

Kalapana earthquake, Hawaii (1975), 327-8
Kansu earthquake, China (1920), 20

Kepler, Johannes, 110n7

kernels, 434-7

Kirchoff migration, 153-5

Klauder wavelet, 151

Kobe earthquake, Japan (1995), 9, 13,18
Kronecker delta, 449

Kuhn, Thomas, 9

Kuril subduction zone, 323

Lg phase, 197

Labrador Sea, 327

Lame constants, 50

Lanczos decomposition, 427,429

Landers earthquake (1992),12,253-4, 282,
293



landslides
caused by earthquakes, 20
as seismic sources, 241
Laplacian, vector field, 461-2, 466
Large Aperture Seismic Array (LASA), 409
lateral spreading, 20
lattice-preferred orientation (LPO) anisotropy,
177
layered medium
dipping, 123-6
as earth model, 62-3
plane waves in, 6286
refraction seismology, 120-3
least-squares solution, 418
left-lateral slip, 218
Legendre polynomials, 103
Lehmann, Inge, 168n6
Lesser Antilles, travel time tomography, 432
lid see seismic lithosphere
light, analogies for seismic waves, 2, 32n3,38n6,
56-7,61nl,67,70n2,74, 96,185, 189n3,
194n5,231n2
linear elasticity, 48
linear superposition, 34, 377
linear systems, 377-85
convolution and deconvolution, 379-80
linear vector space, 450
linear velocity, plate motions, 290
liquefaction, caused by earthquakes, 20
lithosphere, 170, 2867
anisotropy, 180-2
strength of, 357-9
see also oceanic lithosphere
lithostatic stress, 45-6
Loma Prieta earthquake (1989), 7,12-13,15, 24,
282,293
aftershocks, 277
damage caused by, 13,18
ground motion, 62
liquefaction, 20
source parameters, 265-7
Long Beach earthquake (1933), 17
Long Valley caldera, 246,334
longitudinal waves, 57
Love, A.E.H., 86n1,110
Love waves
definition, 86~7
dispersion, 91-3, 967
focal mechanisms, 235-9
layer over halfspace, 90-3, 102
and torsional modes, 107, 109
low-velocity zone (LVZ), 99, 170,204, 303, 358,
435
lower focal hemisphere, 222
lower mantle see mantle
LPO see lattice-preferred orientation anisotropy
lunar seismology, 210-11
LVZ see low-velocity zone

magma chamber, 186, 246,305
magnesiowustite, 205,316
magnetic reversals, 293
magpnitude, earthquake

body wave, 264

of earthquakes, 4, 11,263-6

frequency-magnitude relations, 274-7

local, 263

moment, 266

and radiated energy, 273

saturation, 265, 268

surface wave, 264
uncertainties in, 7, 266
magnitude of vectors, 446
mainshock, 277
mantle
anisotropy, 182-4
attenuation, 198, 435-7
boundary with crust (Moho), 122, 128-31
chemical composition of, 204-7
convection system, 2867
discontinuities, 1701
lower mantle structure, 171-4
regions of, 162
temperature of, 204
upper mantle structure, 169-71
viscosity of, 331-2, 350, 355-7
see also core-mantle boundary; D” region
mantle plume hypothesis, 297
mantle waves, 251
Mars, 211,287-8
master event methods, earthquake location, 424
mathematical techniques, 443
matrix
adjoint, 451
cofactor, 452
computer solutions of linear equations, 453—4
diagonalization and decomposition, 426-7,
456-7
definitions, 450-1
determinant, 451-2
eigenvalues and eigenvectors, 4567
generalized inverse 247, 418, 426-7
Hermitian, 451
identity, 451
invariants, 43,457
inverse, 452
linear equations, 452-3
orthogonal, 452
symmetric, 451
transpose, 451
maximum time path, 71-2, 164-6
Maxwell relaxation time, 355-6
Maxwell viscoelastic material, 355
mean recurrence time, 278
Mediterranean collision zone, 337-9
megaton, energy unit, 11
Mercury, 211
meridians, 463
metastability, 316n3
meteor impacts, as seismic source, 241
meteorites, composition of, 209
mesosphere, 319
Mexico City earthquake (1985),12,18
mica, anisotropy, 179-80
microplates, 307
microearthquakes, 299, 305
microseismicity, 25
microseisms, 400
Mid-Atlantic ridge, 298-9
mid-ocean ridges, 286-8,298-9,305~7
migration, reflection seismology, 152-6
Millikan, R., 7
minerals
anisotropy, 179-80
crust and upper mantle, 130—4
phase changes and deep earthquakes, 317-18

phase changes and intermediate earthquakes, 321

in subducting slabs, 315-17
in transition zone, 205-7
minimum time path, 71-2, 164-6
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mode-wave duality, 101
model resolution matrix, 427
models
of the earth, 623,119, 162
in inverse problems, 415-16
plate motions, 8, 293-4
use of, 5-9
modes, normal see normal modes
Modified Mercalli scale, 14-16
Moho (Mohorovicic discontinuity), 75
discovery of, 122
reflection and transmission at, 82—4, 122
geological composition, 130-1
waveforms, effects on, 127-8, 130
Mobhorovicic, Andrija, 122
Mohr envelopes, 353
Mohr’s circle, 3504
moment, see seismic moment
moment magnitude, 266,273
moment tensor, seismic, 239-51
compensated linear vector dipoles (CLVDs),
245-6
interpretation of, 249-51
inversion, 246-9
isotropic, 245
stress (P, T, B) axes, 243-4
moon
moonquakes, 210
scattering of seismic waves, 189-90
velocity structure, 210-11
Mzt. St. Helens, explosion, 240-1
moveout, 134, 142
multichannel data geometry, reflection seismology,
140-1
multipathing
seismic waves, 185,187-8
tsunami, 100
multiplet, 104, 114-15, 184,194, 388
music of the spheres, 110n7

namazu (catfish), 322n5
Nankai trough, 322-3
Nazca plate, 144, 305, 307, 339-40
networks see seismological networks
New Madrid earthquakes (1811 & 1812) and
seismicity, 12, 14-16,274, 343-6
Newtonian fluids, 356
Newton’s second law of motion, 29, 38,47, 101
Niigata earthquake (1964), 20
Ninetyeast ridge, 329
Nisquaily earthquake (2001) 334
NMO see normal moveout
nodal lines, 104-6
nodal planes, 219, 222,224, 226-9
nodal surfaces, 105-7
nodes, 92,105
noise, in seismograms, 141, 145, 369, 383,395,400
noncausality, 195, 378,405
nonlinear tomography, 433
normal fault earthquakes, 218-19,298-9, 307,
328-9,334
surface waves, 236
normal modes of the earth, 101-15
attenuation, 114, 434-7
dispersion, 107-9
inverse problem for, 4347
radial, 106
of a sphere, 101-11
spheroidal, 10610
splitting, 11415




494  Tndex

normal modes of the earth {continued)
synthetic seismograms, 111
torsional, 104-10
traveling wave equivalence, 106-10
normal modes of string, 368
normal moveout (NMO), 134, 142
NORSAR see Norwegian Seismic Array
North American plate
absolute motion, 297-8
boundary with Pacific plate, 291-3, 334
intraplate earthquakes, 343-7
relative motion, 294
rigidity, 344
stress field, 347
North Anatolian fault, 339, 363
Northridge earthquake (1994), 13, 14, 2578, 282,
363
Northwest Pacific, subduction zones, 319
Norwegian Seismic Array (NORSAR), 409
nuclear explosion, source, 241, 245
nuclear testing, monitoring of, 26-8, 198, 407, 409
null (B) axis, 220-2,226-8,243-4
NUVEL-1A global plate motion model, 293-6,
326,441
Euler vectors, 294
Nyquist frequency, 3868

oblique convergence, 321-3
oblique slip, 225
oblique spreading, 299
ocean bottom seismometers (OBS), 408, 409
oceanic crust
anisotropy, 180
mineralogical transitions, 321
refraction studies, 129
structure, 129
oceanic earthquakes, intraplate, 326-32
oceanic lithosphere
age of, 287
anisotropy, 180-1, 182
evolution of, 299-305
forces and stresses, 328-31
oceans, evolution of, 288
Oldham, Richard, 167n5
olivine
anisotropy, 60, 179
in mantle, 205
metastable wedge, 316-18
spinel transition phase, 311
strength of, 357, 358
Omori, Fusakichi, 277n3
Omori’s law, 277
one-dimensional scalar wave equation, 30
origin time, 1,416
orthogonal transformations, 456
outlier earthquakes, 319
overdetermined system of equations, 99, 247, 417,
425
overtones, 91, 105

P waves, 3,56-61
atinterfaces, 8§1-6
body wave phases, 107, 1646
core phases, 166-9
critical angle, 67-8
displacement equations, 63-5
equations, 53-4
first motions, 219
in layered medium, 63-8
ray parameter, 69-70

reflection and transmission; at an interface, 81-4;

at a free surface, 79-81
refraction, 122~3,127-8
Snell’s law, 667
SV waves coupling, 57
transverse isotropy, 179
velocity, 58-9
waveform modeling, 231-3
Pacific Plate motion, 294
palaeomagnetism, 293
palaeoseismology, 223,28
Pallett Creek, earthquake forecasting, 22-4, 281
Palmdale Bulge, 25,28
paradigm shifts, 9
parameter space inversion, 436, 438-9
Parkfield, earthquake forecasting, 23, 281
Parseval’s theorem, 375
particle motion plot, 58, 89, 182, 189
passive margins, 334
perfect fluids, 50
period, 31-2
period equations, 90
permutation symbol, 449
perovskite, 205,208, 316
Peru trench
seismic section, 144
tectonics, 339-41
phase nomenclature, 164
phase spectrum, 95, 373
phase velocity, 94, 97-9, 107, 195
physical dispersion, seismic waves, 96, 1946
plane wave decomposition, 147
plane waves, 54§
energy in, 61-2
in layered medium, 63-5
Snell’s law, 66-75
see also P waves; S waves
planetary evolution, 210-11
plastic deformation, 349
plate boundaries, 2867, 333-4
plate boundary zones
continental plates, 334-9
faults, 260
plate dynamics, 288
plate motions, 288,290-8
absolute plate motions, 296-8
continental plates, 334
global plate motions, 8,293~5
inverse problem, 439-41
relative plate motions, 290~3
space-based geodesy, 2956
plate model, oceanic lithosphere, 302-3
plate tectonics, 5, 286-90
continental earthquakes, 333-48
oceanic intraplate earthquakes, 326-32
plate kinematics, 290-8, 334
spreading centers, 298-307
subduction zones, 307-25
point sources, 72, 152-3,231
Poisson distribution, 278, 280
Poisson solid, 51
Poisson’s ratio, 51
polar coordinates, 443
polarization, shear waves, 57-8, 178
poloidal modes see spheroidal modes
pore pressure, 353-4
postseismic phase, 217
potentials, 54
power spectrum, 384
precision, of estimates, 391-2
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precursors
earthquake predicting, 24-6
from FIR filters, 405
to PKP phase, 168
to S¢S phase, 172-3
to SS phase, 395
PREM (Preliminary Reference Earth Model), 162,
171
density structure, 202
model parameters, 203
preseismic stage, 217
pressure
earth profile, 202
effect on rocks, 349
hydrostatic, 200
lithostatic, 50
principal stresses, 42~3,227, 350
probability, assessment of, 7,278-81, 441
probability density distribution, 278
propagation of errors, 3934
pure path method, variable velocity measurement,
98-9
pyrolite, 205

quality factor Q, wave attenuation, 114, 190-1,
192-3,197-8,229-30, 4345
quartz
inrocks, 132
strength of, 357, 358

radial component, 57-9
radial earth model, 162
radial order, modes, 102
radiation patterns
body waves, 220-2
surface waves, 2369
radon gas, earthquake precursor, 25
Radon transform, 147
ramp function, 372
ray parameter
definition, 69-70
layered medium, 134-5
spherical earth, 157
ray paths
dipping interface, 123-6
low-velocity zone, 161
seismic waves, 65, 1201
spherical earth, 157-9
velocity increase, 160
ray theory, see geometric ray theory
Rayleigh waves
definition, 86-7
dispersion, 96, 98-9
focal mechanisms, 236-9
in homogeneous halfspace, 87-9
inversion, 438
relation to spheroidal modes, 1067, 110
real-time data, 408
real-time warnings, earthquake, 26
receiver function, 380
reciprocity, principle of, 38, 122
recurrence time, 278
Red Sea, 333, 334
reflection coefficients
P-SV waves, 79-84
SH waves, 768
string waves, 33
reflection seismology
common midpoint (CMP) stacking, 141-4
deconvolution, 148-52
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examples, 85-6 Snell’s law, 68-9
intercept-slowness formulation, 137-40 waveform modeling, 233
migration, 152-6 SV waves

multichannel data geometry, 140-1 energy flux, 80-1

seismic moment tensor, 240, 241,242-4
seismic parameter, 200
seismic phases, P waves:

antipodal phases, 169-70

principle of, 2
signal enhancement, 145-7
travel time curves, 1347
reflectivity method, 127
refraction
critical, 67
definition, 2, 67
refraction seismology
crustal structure, 128-31
dipping layer method, 123-6
flat layer method, 120-3
principle of, 2
regional networks, 410
Reid, H.,215
relative plate motion, 290
relaxation time, 191, 355
reservoirs, cause of earthquakes, 18
residual vector, 418
residuals, travel time, 420
resolution, model, 415
resolution matrix, model, 427
resonance curve, 193-4
resonant frequency, 193
resonant period, of buildings, 17
reverse fault, 45,218,225-7,236,
244
rheology, 349-50
Richter, Charles, 274n2
Richter scale, 263
ridge push, 328, 330
rifts, continental, 333, 334
right-lateral slip, 218
rigid body rotation, 47
rigidity, 50
ringwoodite, 205
rise time, 230, 267
risks, seismic, 11-14
rocks
anisotropy, 179-80
crust and upper mantle, 130-4
fracture and friction, 350—4
friction, 359-64
strength of, 357-9
viscosity, 355-7
rupture
geometry, 269-70
direction, 230,231
process, 2589
propagation, 238~9
time, 230, 267
velocity, 230

Swaves, 3, 56-61
body wave phases, 164-6
core phases, 166-9
displacement equations, 63-5
equations, 53-4
motion, 221-2
radiation pattern, 220-2
ray parameter, 69-70
transverse isotropy, 1789
velocity, 59
visualizing, 174-6

SH waves
definition, 57
reflection and transmission, 7638

P wave coupling, 57
reflection and transmission, 79-84
Snell’s law, 66-7
Sacks, Selwyn, 149n5
sampling
and b-values, 275,277
and earthquake probability, 278
cell hit count, 311-12
of continuous data, 385-7
San Andreas fault, 5,11,21
aseismic slip, 262
b-values, 276
earthquake probability, 279
and earthquakes, 215, 260
“fault strength” paradox, 363
heat flow across, 363
interseismic deformation, 260
interseismic motion, 260
locking, 263
palaeoseismology, 22-3
plate boundary zone, 334
plate movements, 293
seismic gaps, 23-4
space geodesy, 296
San Fernando earthquake (1971), 12, 18, 265,267,
334,363
seismograms, 4068
San Francisco earthquake (1906), 11-12,215
damage caused by fire, 18
seismoscope recording, 401
source parameters, 265, 266,267
stress shadow, 363
sand blows, 20
Sanriku earthquake (1896), 12,19
SAR see Synthetic Aperture Radar interferometry
Satellite Laser Ranging (SLR), 251,296
satellites, use in geodesy, 251-4, 296
scalar wave equation
one-dimensional, 30
three-dimensional, 54-5
scalars
definition, 444-5
scalar fields, 458 -9
scalar product, 4467
scale invariance, 274-5
scaling relations, seismic sources, 268-9
scattering
PKP precursors, 169-70
seismic waves, 189-90
Schmidt projection, 223n3
sectoral harmonics, 104
SEED see Standard for the Exchange of Earthquake
Data
seismic coupling, 323-4
seismic cycle, 217,259-63
seismic data
networks, 407-12
publication of, 251, 398
sampling of, 385~7
seismic efficiency, 273
seismic energy, 61-2,273
seismic gaps, 23-4,280-1, 323
seismic hazards and risks, 11-14
seismic intensity, 14~16
seismic lithosphere (lid), 170, 304,435,437
seismic moment, 4, 221~2,265,273, 305

P,3,163-5,232-4,396,433

P coda, 190
PcP,109,163-4,166,195
PcPPKP,170

P ¢ (also Pd), 58, 86,109,164, 167-8
PdP,172-3

p,,122-3

P, 123

P,,129

P,,129

P,P,129

PP, 123

PKIIKP, 169

PKiKP, 58,163-4,167-9,409
PKIKP,110,165,167-9,184,198
PKJKP,107,110,165,169
PKKP,58,86,164,169
PKP,109,163-4,167-9,189,433
PKP,, 167

PKP-AB,167-9
PKP-BC,167-9,184
PKP-DF,167-9,184,210

PKP precursors, 168-9

PKPPKP, 169

P, P,122-3,127-9
P,,122-3,127-31,180-1
Pn2,123
pP,3,163-6,232-4,396

PP, 3,58,86,163-7,169, 396
P'P’, 164,169

pPcP, 165

pPcPSKKP, 165

PP gigr, 58
pPK{’, 164

pPP, 163,166
PPP,164-5,167
pSP, 58

P,P,234
ScP,163-4,166
SKiKP,163-4
SKP, 58,1635
SKPPKP, 165
SKKP,58,164-5
sP,163-6,232-4,395
Py, 58
SP,86,164-5
S,,P,234

seismic phases, S waves:

PcS, 163,166

PKS, 58

PKKS, 164

PPS, 165

pPS, 58

PS, 58,164

pSKS, 164
S,3,108,163-4,176,383-4,433
Sbe, 173

Scd, 173

ScS, 3, 85,108-10, 112, 163-6, 176,182,193,

195,384,433
ScSp, 85
ScS,, 3,108,165-7,176
SeS5,3,176
ScS4 3
§¢85,45,176
§¢S4005,176
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seismic phases, S waves (continued):
8cS444S,176
S 58,86,108-9, 176, 1823
Saifra00Saigr> 176
Sdiffmogdiff’ }Zg

diff670°diff>

ds,172°3

3

S,122
sks, 58, 86,109, 1635, 168,174, 181-2
SKKS, 58, 86,163-5,168
SKKKS, 168
S,, 122
SPAKS, 174
sPS,165-6
s§,3,108,163-4,176
s8¢§,3,108,176
58¢52,3
s8¢83,3
$8¢54,3
88 4igr> 58
SS,3,58,86,108,163-7, 176,383-4,395,433
sSKS, 164
3858, 3, 86,108, 164-6,176
sS8S,108
$4,3,86,164,166,176
85005, 176
S4005,176
84105, 395
85,05, 395
Se605, 395
S¢705, 176
$5,166,176
seismic ray, 6, 65
seismic section, 143-4
seismic slip
continental deformation zones, 3401
subduction zones, 323-4
seismic sources, 1, 4, 141
air gun, 148-9
double couples, 220, 240, 242
equivalent body force, 220, 240
exploding reflectors, 152
explosive, 245
force couples, 241-2
isotropic, 245,247
magnitudes and moment, 4, 263-6
moment tensors, 239-51
moving point, 231
point, 56, 152-3
scaling relations, 268-9
single forces, 240~1
spectra, 2668
stress drop, 269-73
time function, 222,230, 235, 258-9
Vibroseis unit, 149-52
seismic spectrum, 59
seismic strain rate tensor, 341
seismic velocity see velocity
seismic waves
attenuation, 114, 185-98
introduction to, 1-3
in layered medium, 62-86
phases, 2-3
plane waves, 54-5, 61
ray paths, 2,65, 120-1
seismic wave equation, 53—4
signal filtering, 369
in spherical earth, 157-62
spherical waves, 55-6
string waves, 29-38

INAAN/N

travel times, 60-1, 119-20
see also body waves; surface waves
seismicity
deep, 289-90, 312, 319-22
geographic distribution, 9-10, 289
temporal distribution, 11, 2746
seismograms
common midpoint (CMP) stacking, 141-4
cross-correlation, 383-5
data processing sequence, 1567
data sampling, 385-7
digital, 405-7
Fourier analysis, 369-77
introduction to, 1-3
linear systems, 377-85
mode observation, 110
multichannel, 140-1
Pand S waves, 57-8, 60~1
receivers, 141
record sections, 122
rotated, 57-8
stacking, 391-7
synthetic, 111, 383
seismological networks
arrays, 407,408-9
global, 407-8
regional, 407, 410~12
seismometers, 1
analog, 401
arrays, 408-9
broadband, 404
damped harmonic oscillator, 1901, 398-9
digital, 403-7
earth noise reduction, 400
electromagnetic, 401-2
force-feedback, 403
IDA gravimeter, 403
networks, 407-12
ocean bottom, 408
response, 229-30, 379, 4012
strainmeter, 404, 406
Streckheisen, 404
strong-motion, 404
time recording, 405
types of, 141, 385, 398, 400-5
WWSSN, 4023
Wood-Anderson, 263
seismometry
definition, 398
development of, 401
seismoscopes, 400—1
self-similarity, 274
shadow zone, 161, 167-8
Shah function, 385
shape-preferred orientation (SPO) anisotropy, 177
shear modulus, 50
shear stresses, 40, 43-5, 350-1
shear wave splitting, 181-2
shear waves see S waves
shift theorems, 374
shock wave, from explosion, 245
Sierra Nevada, crustal structure, 129-30
signal enhancement, reflection seismology, 1457
signal processing, 369
signals, finite length, 380-3
silent earthquakes, 262
sinc function, 73, 381, 383
single forces, 240-1
single-couple source, 241
singlets, normal mode, 104, 114

M\f\/\w

660-km discontinuity, 163-4, 171, 202-3,205-7,
315-20
slab pull, 314, 315, 324, 330
slabs, subducting, 286, 308-21
slant stacks, 147, 396
Slichter mode, 106
slider model, 360
sliding, stick-slip, 35964
sliding friction, 352
slip
aseismic, 262, 324, 340
at faults, 218, 254-6,262-3
seismic, 323-4
slip partitioning, 322
slip vector, 218,228, 243,293
slow earthquakes, 271
slowness
horizontal, 69
intercept-slowness, 137-40
and ray parameter, 69~70
vector, 69
vertical, 69
SLR see Satellite Laser Ranging
slump earthquakes, 241, 346-7
Snell’s law
and Fermat’s principle, 71
and Huygens’ principle, 723
P-SV waves, 66-7
SH waves, 68-9
in spherical earth, 157-9
SNREI earth, 111-15
SOFAR channel (SOund Fixing and Ranging), 70
solidus, 204, 209
source location, 419-20
source time function, 222, 230, 235, 258-9
South American plate, deformation, 339-40,
342-3,365
Southern California Seismographic Network, 410
Soviet Union, nuclear testing, 26~7
spatial aliasing, 407n7
spatial eigenfunction, 36
spatial frequency, 31
spectral resonance peaks, attenuation, 1934
sphere, modes of, 101-11
spherical coordinates, 462-3
axes, 465
distance and azimuth, 463-5
vector operators, 4656
spherical earth, ray paths and travel times, 157~9
spherical harmonics, 103-4
spherical waves, 55-6
spheroidal modes, 106, 109-10
spinel, transition from olivine, 205-6, 311,
316-18
Spitak (Armenia) earthquake (1988), 12~13, 15
splitting, mode, 104, 114-15
SPO see shape-preferred orientation anisotropy
spread, statistical, 393, 420
spreading centers, 286, 298307
mid-ocean ridges and transforms, 288, 298-9,
305-7
oceanic lithosphere formation, 299-305
stable sliding, 357
stacking, 391-7
Standard for the Exchange of Earthquake Data
(SEED), 408
standard linear solid, 196
standing waves, 36, 101, 466
starting model, 417
static displacements, faults, 2546



static friction, 359-60
static time correction, 145
station corrections, 424
steady state friction, 361
stereographic projection, faults, 223-8
stereonet, 223
Stevenson, D., 174n9
stick-slip earthquakes, 359-64
stishovite, 205, 208
strain
infinitesimal strain theory, 49
recording of, 404
seismic strain rate tensor, 341
strain energy, 52, 61-2
strain tensor, 38, 47-8
see also stress
strainmeters, 404, 406
Streckheisen seismometers, 404
strength, of lithosphere, 357-9
strength envelope, 357
stress
constitutive equations, 38, 48~51
deviatoric stresses, 45-6
earthquake stress drop, 269-73
elastic moduli, 49-50
field, 45-7, 345
maximum stress difference, 356
normal stress, 40, 42, 350-1, 353,357
in oceanic lithosphere, 328~31
principal stresses, 42-3
and rock fracture, 350-4
shear stresses, 40, 43-5,350-1
stress drop, 269-73
stress and strain tensor, 50, 177-8
stress tensor, 38, 39-42,350
stress—strain curve, 349
viscous relaxation of, 355-6
yield stress, 349
see also strain
strike angle, 218
strike-slip fault, 45,218,225~7,236,244,254-5
269,298-9,328
string waves
calculation, 466-9
harmonic waves, 31-2, 35-6
normal modes, 36~8
reflection and transmission, 32-5
theory, 29-31
strong-motion sensors, 404, 406
STS-1 seismometer, 404
STS-2 seismometer, 404
subduction zones, 198, 286, 307-235
earthquakes, 307-8, 309-10
interplate trench earthquakes, 321-5
subduction slab earthquakes, 312-21
thermal models, 308~12
summation convention, 449
superadiabatic gradient, 201, 209
superposition, 34,219, 377
surface force, 39
surface wave magnitude, 264
surface waves, 3, 86-93
anisotropy, 182
dispersion, 87, 93-100, 433
focal mechanisms, 235-9
geometry, 87
Lgwaves, 197-8
mantle waves, 251
mode equivalence, 106-7, 109
radiation amplitudes, 236-7

waveform modeling, 235-9

see also Rayleigh wave, Love wave, tsunami
swarm, earthquake, 326, 328
sweep signals, 149~-52
symmetric matrix, 458

Synthetic Aperture Radar interferometry (InSAR),

252-4
synthetic seismogram calculation, 4669
synthetic seismograms, 111,229
synthetic waveforms see waveform modeling
systematic errors, 391-2, 397
systematic bias, 392-3

t*,196
take-off angle, 222
tangential motion, spheroidal modes, 110
tangential traction, 43-4, 116
Tango, Japan, earthquake (1927), 254,256
Tangshan, China, earthquake (1976), 12,
26
tau function, 121, 138, 159
tau-p method, 137-40
tectosphere, 170
temperature
in the earth, 202-4
measuring variations, 186
tensional stress, 40, 51
tensional (T) axis, 221,227-8
tensor
invariants, 43, 457
stress, 38-9
strain, 38,47-8
Tericiera Rift, 326
tesseral hermonics, 104
thermal boundary layer, 170, 204, 287
thermal diffusivity, 300, 309
thermal isostasy, 301n3
thermal lithosphere, 304
thermal models, subduction, 308-12
thrust earthquakes, 321-3, 340
moment tensor, 250
thrust fault, 45,218, 225-7,236, 244, 328,
336
Tibet, 336-7
tides, solid earth, 373, 400
Tien Shan mountain belt, 336
time series analysis, 369
time-dependent behavior, 349-50, 355
time-frequency domain equivalence, 229, 235,
373-4
Tokyo earthquake (1923), 12, 18-19, 407
tomography, 99,425
attenuation, 198-9
cross-borehole, 433
nonlinear, 433
whole-mantle, 433-4
see also travel time tomography
Tonga arc, 311
Tonga subduction zone, 199, 320
toroidal modes, 104
torsional modes, 104—6
total reflection, 33
total internal reflection, 67
traction vector, 39
normal traction, 44
tangential traction, 44
transfer function, 377, 379
transform faults, 286
continental, 334
spreading centers, 298, 305-7

e e VAVAVA oS

Index

497

transition zone, 162-3, 171
and deep earthquakes, 317
mineralogy, 205
velocities and density, 203

transmission coefficients
P-SV waves, 79~84
SH waves, 76~8
string waves, 33

transverse component, 57

transverse isotropy, 178-9, 208

transverse waves, 57

travel time curves
AK135,162
earthquake location, 422-4
IASP91,162-4
inversion, 161-2
Jeffreys—Bullen, 162
PREM, 202-3

travel time equation
dipping layer, 125
direct arrival, 120
head wave, 121
layered structure, 123
reflected wave, 121
in spherical earth, 159

travel time tables, 162-4

travel time tomography
examples, 430-4
inverse problem, 426-30
subduction zones, 311
theory, 4246

travel times
intercept-slowness formulation, 137-40
low-velocity zone, 1601
reflected waves, 1347
refracted waves, 121-2
residuals, 420
seismic waves, 60-1, 119-20
spherical earth, 157-9
triplication, 160, 171
upper mantle, 171

trenches, 288
see also subduction zones

triple vector dipole, 245

triplication, 160
core, 168
upper mantle, 171

Truckee earthquake (1966), 267

tsunamis, 19-20, 241,271
dispersion, 99-101
real-time warnings, 26
seismic sources, 241, 271

two-station method, phase velocity, 97-8

ultra-low-velocity zone (ULVZ), 174, 208
uncertainty principle, 7, 382
uniaxial tension, 51
uniformitarianism, 341n4
United States
Advanced National Seismic System (ANSS),
410
earthquake forecasting, 21
earthquake hazard map, 15,21
earthquake risk, 13-14
National Earthquake Hazards Reduction
Program, 25
National Seismographic Network (NSN),
408
regional networks, 410
upper mantle see mantle
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Van Norman dam, 18
variance, 393-4,420
variance—covariance matrix, 421
vector calculus, 458-62
curl, 460~1
divergence, 459-60
gradients, 459
Laplacian, 461-2
scalar and vector fields, 4589
vector dipole, 241
vector potentials, layered medium, 63
vector spherical harmonics, 104, 106
vector transformations, 454-8
coordinate transformations, 455~6
eigenvalues and eigenvectors, 456-8
symmetric matrix, 458
vectors
definition, 445-6
index notation, 448~9
magnitude, 446
scalar product, 446
spherical coordinates, 465-6
vector fields, 4589
vector operations, 446
vector products, 447-8
vector spaces, 449-50
velocity
apparent velocity, 65-6
dispersion of surface waves, 93-4, 97-9
filtering, 145-7
group, 94
interval velocity, 136
linear, 290
P and S waves, 58-9

phase, 94

in spherical earth, 159-61

subduction zones, 311
velocity structure

at Moho, 127-8,130

of the earth, 119-20, 162
Venus, 211, 287-8
vertical slowness, 69, 137
Very Long Baseline Interferometry (VLBI), 251,296
Vibroseis unit, sweep signals, 149-52,214
viscoelastic material, 196, 355
viscosity, of mantle, 204, 331-2, 350, 355-7
viscous fluid models, 365
volcanoes

predicting eruptions, 20-1

as seismic sources, 240-1, 246

Wadati, K., 288
Wadati-Benioff zones, 288, 307-8, 312,319
wadsleyite, 205, 315
Walvis ridge, seismic wave dispersion, 96-7
water layer, 212,234
wave equation
one-dimensional, 30
homogeneous plane wave, 54
inhomogeneous plane wave, 55
migration, 155
spherical wave, 36
wave field, 32
downward or upward continuation, 155-6
wave front
body wave, 187
plane, 55
energy, 56,61-2
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spherical, 56
surface wave, 187
wave vectors, 55, 65
horizontal component, 69
vertical component, 69
waveform annealing, 74
waveform modeling, 171, 229-39
body waves, 231-5
source time function, 230~1
surface waves, 235-9
waveguides, 70, 321
wavelength, 31-2
wavenumber, 31-2
Wegener, Alfred, 9,286,295
weighted damped least squares inversion,
430
weighted least squares solution, 430
Whittier Narrows earthquake (1987), 363
Wilson cycle, 333
Wilson, J. Tuzo, 333n1
window functions, 3801
Wood—Anderson seismograph, 263
World Wide Standardized Seismographic Network
(WWSSN), 26,288,398,407,408
seismometers, 402-3

Yellowstone hot spot, 334, 347-8
yield, explosion, 267

yield stress, 349

Young’s modulus, 51

Zeeman effect, 115
zero-offset section, 143,152, 154
zonal harmonics, 104
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