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What is a neural network?

We start from the First type of artifical neuron, the
perceptron.

A perceptron takes several binary inputs, x1,x2,...,
compute a weighted sum of the inputs and produces a
single binary output using a fixed threshold:
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0 if X wjx; < threshold
To output Output = j
1 if X wjx; > threshold
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We can use the perceptron to take decisions: by varying
the weights and the threshold, we can get different
models of decision-making.




Multi-level perceptrons

More complex networks of perceptrons can deal with more complex decision
problems: .
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The first column (i.e., the first layer)of perceptrons is making simple, low level
decisions, by directly weighing the inputs. The perceptrons in the second layer

is making a decision by weighing the results from the first layer: the second
layer can make a decision at a more complex and more abstract level.

A fully connected layer (as in this case) is a layer where all its neurons have
full connections to all the output in the previous layer.

Note: It is trivial to show that perceptrons can be used to sintetize logical
functions (AND, OR, ecc...)
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From perceptrons to artificial neuron

1) Write the weighted sum as dot product.
2) Replace the threshold with the bias b =-threshold

0O ifw-x+b<0
output = ,
1 fw-x+b>0

3) "Smooth” the output using the sigmoid function:
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This is called a sigmoid neuron: that small changes in the weights and bias cause only a
small change in the output. That's the crucial fFact which will allow a network of sigmoid
neurons to learn.



Softmax

From outputs to probability distribution:
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Toward deep learning

A deeper network (i.e., with hidden layers) can breaks down

a very complicated question ( e.g., does this image show a
face or not) into simple questions

Two or more hidden layers — deep neural networks.

Deep learning methods aim at learning "feature” hierarchies
with features from higher levels of the hierarchy formed by
the composition of lower level features. [Glorot and Bengio]




Learning the network parameters

Given a labeled dataset x = {x1, x2, ...} of inputs with associated
outputs y(x) = {y(x1), y(x2), ...}, find the weights w and biases b that
minimize the cost function (a is the output of the network given the
current parameters wand b):

1
Cw.b) = - D' lly() —all®.

Easy answer! Gradient descent! - Correct but ... very difficult
implementation in practice, due to:
— Very large parameters set
— Very slow convergence rate , W= — n2<
— Huge amount of data.
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Solve the learning problem (no details)

Backpropagation
Stochastic gradient descent — Dataset divided in batches!
Massive parallelization




Backpropagation insights (1/2)

.. 1
Goal: minimize c(w,b) = o Z ly() — al|?.

(This cost function can be written as an average over cost
functions for individual training examples: ¢ = 5 @)

We need to compute allthe partial derivatives aa_c and %
Wi l

The goal of backpropagation is to compute efficiently
these derivatives.



Backpropagation insights (2/2)

layer 1 layer 2 layer 3

Let define the the “error” of a neuronjin layer (as 5} = a—Cl
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The Backpropagation Algorithm

1. Input x: Set the corresponding activation a' for the input

layer.

2. Feedforward: Foreach/ = 2,3, ..., L compute

Z =wla™' + bland @' = (7).

3. Output error 5“: Compute the vector §“ = V,C © ¢'(z5).

4. Backpropagate the error: Foreach/ =L —-1,L-2,...,2

compute &' = (WHT6") @ 6¢/(2).

5. Output: The gradient of the cost function is given by

9C = ab 151 and ¢ = 5’
au, ab’



The full algorithm

1. Input a set of training examples

2. For each training example x: Set the corresponding input

activation ¢*', and perform the following steps:

o Feedforward: Foreach/ = 2,3, ..., L compute
7' = wlg®=! + bl and o' = a(z”)

o Output error 5%/ : Compute the vector
L =V,Cx © 6/ (z%0).

o Backpropagate the error: For each
I=L—-1,L-2,...,2compute
5x,£ — ((WI+I)T§J,E+1) 0) O.!(Zx,t').

3. Gradient descent: Foreach / = L,L — 1, ... ,2 update the
weights according to the rule w! — w/ — L Z (@17,
and the biases according to the rule 5’ — bf — % Y 5



From Neural Network to CNNs (1/2)

Apply NN to images to perform classification,

detection,etc... using the classical “fully connected layers”

but ... For an RGB 200x200 image = 120000 parameters
for eachnc

Picture from M.A. Ranzato



From Neural Network to CNNs (2/2)

Convolutional neural networks use three basic ideas: local
receptive fields, shared weights, and pooling.

Picture from M.A. Ranzato



Convolutional layers

Local receptive fields and shared weights: all the neurons in
the first hidden layer detect exactly the same feature, (edges,
textures, etc..) just at different locations in the input image!!

Convolutional networks are well adapted to the translation
invariance of images.

Another idea is to apply, for each layer, different weights:

Input image Filter 1 Filter 2 Filter 2 Features Features Features
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Pooling layers

Convolutional neural networks also contain pooling layers.
Pooling layers are usually used immediately after
convolutional layers.

Pooling layers simplify the information in the output from
the convolutional layer.

In max-pooling, a pooling unit simply outputs the

Mmaximum.
Single depth_slicg
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RelLU activation Function

It has been shown that
non-saturated activation
functions such as the
rectified linear unit
(ReLU) outperforms the
classical activation
functions (e.g. sigmoid).

ReLU(x) = max(0,x)

e ke



Data Preprocessing

Preprocessing helps to simplify the classification problem.
First preprocessing issue: data normalization

The aim is to remove all redundant information from the
data.

Common solution is to subtract the mean (calculated only
on train dataset) and normalize with respect to the
covariance.

original data zero-centered data normalized data




Avoid overfitting (1/3)

Several ways to prevent overfitting: Regularization,
Dropout and Data Augmentation

Regularization methods are used for model selection, in

particular to prevent overfitting by penalizing models with
extreme parameter values. Common solution are:

L2 regularization

L1 regularization
Max norm constraints



Avoid overfitting (2/3)

Dropout is implemented by only keeping a neuron active
with some probability or by setting it to zero otherwise.

This affects also the back propagation, training only the
activated neurons.

(a) Standard Neural Net (b) After applying dropout.




Avoid overfitting (3/3)

In Data Augmentation, “fake” data is simulated, encoding
image transformations that shouldn’t change object

identity.
FI|p horlzontally Random mix/combinations of:
i Translation
Rotation
Stretching

Color Jittering



A CNN For MNIST

MNIST: a subset of
the NIST*
database of
handwritten digits

- 2 convolutional + Max
pooling layers

- 2 Fully connected layers
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A typical (small) CNN

Convolution Pooling
> > -
14x14x32
28x28x32 Convolution
28x28x1
Fully
Conn. + Pooling
~ Softmax <
10x1 x7x64 14x14x64

Running 20000 iteration steps, we can reach an accuracy of 99.2% in
the MNIST dataset.



(Breaf & Incomplete) History of CNNs

1988-94: LeNet

C3: 1. maps 16@10x10

INPUT C1: feature maps 54: 1. maps 16@5x5
32x32 fE20eR S2: f. maps CE: layer i QOUTPUT
6@14x14 120 Poli ol

| | Full mnAamiun ‘ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection
Convolution
Pooling
Non-linearity

Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-based learning applied to document recognition”, Proceedings of
the IEEE ( Volume: 86, Issue: 11, Nov 1998 )



(Breaf & Incomplete) History of CNNs

1994-2010: indeed, not many contributions on CNNs ...
among others, convolutional auto-encoders (CAE) for
invariant features extraction

pooling upsampling
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Marc'Aurelio Ranzato, Fu Jie Huang, Y-Lan Boureau and Yann LeCun, “Unsupervised Learning of Invariant Feature
Hierarchies with Applications to Object Recognition”, IEEE Conference on Computer Vision and Pattern Recognition,
2007. CVPR'07.

P. Vincent, H. Larochelle, |. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked denoising autoencoders: Learning useful
representations in a deep network with a local denoising criterion,” J. Mach. Learn. Res., vol.11, pp. 3371-3408, 2010.



(Breaf & Incomplete) History of CNNs

2012: AlexNet

Rectified linear units (ReLU) as non-linearities
Dropout technique
Multiple powerful GPUs implementation

Krizhevsky, A., Sutskever, |. and Hinton, G. E. “ImageNet Classification with Deep Convolutional Neural Networks” NIPS
2012: Neural Information Processing Systems



(Breaf & Incomplete) History of CNNs

2014: VGG network

224 %224 %3 224 % 224 % 64

56l 56 25
777 288512 TxTx512
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@ convolution+4 Rel.1T

r ] max pooling
fully connected+Rel.U

| softmax

Small 3x3 filters in each convolutional layers
Sequence of convolutions

K. Simonyan, A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition”
arXiv technical report, 2014



(Breaf & Incomplete) History of CNNs

2015: ResNet

X
Y
weight layer
F(x) ! relu =
weight layer identity

Learn residuals through bypasses o
It makes it possible to train up to thousands of layers

Kaiming He, Xiangyu Zhang, Shaoging Ren and Jian Sun. “Deep Residual Learning for Image Recognition” CVPR 2016.



(Breaf & Incomplete) History of CNNs

2016: YOLO

Class probability map

End to end training For object detection

Grid based object confidence with bounding box
regression

Joseph Redmon, Santosh Divvala, Ross Girshick and Ali Farhadi, “You Only Look Once: Unified, Real-Time Object
Detection”, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)



Other References

[1] lan Goodfellow, Yoshua Bengio, Aaron Courville, Deep
Learning, MIT Press, 2016

[2] Michael Nielsen, Neural Networks and Deep Learning

— Free online version:
http://neuralnetworksanddeeplearning.com/

[3] Nikhil Buduma, Fundamentals of Deep Learning,
O'Reilly, 2017
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