Seminars in Artificial Intelligence and Robotics Computer Vision for Intelligent Robotics

Hints on classical object detection, classification and segmentation

Dipartimento di Ingegneria informatica automatica e gestionale Antonio Ruberti

Alberto Pretto

(Mainly stripped version of the Bill Triggs ICVSS 2008 slides)

Classification Versus Detection

Classification: WHAT

Detection: WHAT and WHERE

Object detection challenges

Instances may occur anywhere in the image and at any scale

Instances may have variable geometry or internal degrees of freedom

There may be lighting variations, changes in appearance, complex backgrounds

Occlusions

Real-time constraints

A naive template matcher

Detection Phase

Scan image at all scales and locations

Match window against a rigid template, e.g. by correlation

Return abovethreshold matches as detections

Object detections

Scale-space pyramid

Detection window

Problems with this approach

It is photometrically too rigid to resist changes in lighting and appearance variations

It is geometrically too rigid to resist shape variations

It does not have a strategy for overlapping detections

A better image detector

Detection Phase

Scan image(s) at all scales and locations

Extract features over windows

Run window classifier at all locations

Fuse multiple detections in 3-D position & scale space

Object detections with bounding boxes

Scale-space pyramid

Detection window

Detectors using Local Filters

Represent the image using simple convolution filters responses

– Gaussian derivatives, Gabor filters, Haar wavelets, ...

÷	-	*
ŧ	÷	×

2nd order steerable filter and its frequency response

Haar wavelets

2nd & 3rd order Gaussian derivative, scaled Gaussian derivative and logpolar Gabor filters

Haar Wavelet / SVM Human Detector

Gradient Orientation Histograms

- Divide local region into spatial cells
- Calculate orientation of image gradient at each pixel
- Pool quantized orientations over each cell
 - descriptor contains an orientation histogram for each cell
 - weight votes by gradient magnitude
- Can also use edge orientations from a discrete edge detector
- Basis of the popular SIFT, HOG, Generalized Shape Context methods

AdaBoost Cascade Face Detector

- A computationally efficient architecture that rapidly rejects unpromising windows
 - A chain of classifiers that each reject some fraction of the negative training samples while keeping almost all positive ones
- Each classifier is an AdaBoost ensemble of rectangular Harr-like features sampled from a large pool

Convolutional Neural Nets

- A series of banks of convolution filters that alternately analyse the output images of the previous bank ("simple cells") and spatially pool the resulting rectified responses ("complex cells")
- Trained by gradient descent on large training sets

Detection with deformable part models

Collection of templates arranged in a deformable configuration

Each model has global template + part templates Fully trained from bounding boxes alone

[Felzenszwalb et al. "Object Detection with Discriminatively Trained Part-Based Models", 2009]

Image classification

Given:

· positive training images containing an object class, and

negative training images that don't

?

Classify:

• a test image as to whether it contains the object class or not

Classification with bags of visual words

Represent each training image by a bag of visual words representation

Train a classifier to discriminate vectors corresponding to positive and negative training images

Use e.g. a support Vector Machine (SVM) classifier

Apply the trained classifier to the test image

[Csurka et al. "Visual Categorization with Bags of Keypoints", 2004]

Image semantic segmentation

classes	Danang	81 433	uree		sneep	SINY	anpiane	water	Tacc	Car
bicycle	flower	sign	bird	book	chair	road	eat	dog	body	boai

Segmentation as clustering

K-means clustering based on intensity or color or other local image statistics is essentially vector quantization of the image attributes

Clusters don't have to be spatially coherent

Intensity-based clusters

Color-based clusters

Using texture features for segmentation

Convolve image with a bank of filters

Find textons by clustering vectors of filter bank outputs

The final texture feature is a texton histogram computed over image windows at some "local scale"

