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ESERCIZIO 1. Determinare la soluzione w(t) del problema di Cauchy{
w′(t) = |t|w(t)
w(0) = 1

i. esaminare se si tratta di funzione w monotona,
ii. esaminare se la soluzione sia o meno di classe C2(�),
iii. scrivere l’equazione integrale equivalente al problema di Cauchy assegnato.

ESERCIZIO 2. Assegnata la funzione

a(t) =
{

1− t2 t ∈ [−1, 1]
0 t < [−1, 1]

si determinino le soluzioni dei problemi di Cauchy{
y′(t) = a(t)y(t)
y(0) = y0 ∈ {±2,±1,0}

ESERCIZIO 3. Si consideri il seguente problema di Cauchy{ [
4 + w2(x)

]
w′(x) = w(x)

w(0) = w0

i. si spieghi perché il problema possiede un’unica soluzione locale,
ii. si discuta l’esistenza globale della soluzione,
iii. si risolva il problema di Cauchy con w0 = 1.

ESERCIZIO 4. Per ogni n ∈�sia yn(t) la soluzione del seguente problema di Cauchy{
y′(t) = n

[
y(t)− y2(t)

]
y(0) = 1/2

i. si spieghi perché yn esiste ed è unica,
ii. si spieghi perché yn è definita su tutta la semiretta S = [0,+∞),
iii. si calcoli il lim

n→∞
yn(t), per t ∈ S, e si dica in quali sottointervalli della semiretta tale convergenza è uniforme.

ESERCIZIO 5. Dato il problema di Cauchy{
u′(t) = tu(t) (u(t)− 1)
u(0) = 1/2

si discutano (esattamente nell’ordine proposto) le seguenti affermazioni
i. il problema possiede un’unica soluzione locale,
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ii. il problema possiede un’unica soluzione definita su tutto �,
iii. la soluzione ammette limite per t−→−∞,
iv. la soluzione è monotona,
infine si calcoli l’espressione esplicita della soluzione.

ESERCIZIO 6. Si consideri il seguente problema di Cauchy{
u′(t) = u(t)

(
1 + u2(t)

)
u(0) = u0

e si risponda alle seguenti affermazioni i. Dire se il problema possiede un’unica soluzione in un intorno dell’origine.
ii. Dire se la soluzione è monotona nell’intervallo in cui è definita.
iii. Determinare la soluzione che soddisfa la condizione iniziale u(0) = 0 e calcolare l’intervallo massimale di defini-
zione.
iv. Determinare la soluzione che soddisfa la condizione iniziale u(0) = 1 e calcolare l’intervallo massimale di defini-
zione.

ESERCIZIO 7. Assegnata l’equazione differenziale autonoma

w′(t) = 1
1 + w(t)

i. si verifichino le ipotesi del teorema di esistenza ed unicità al variare dei dati iniziali (t0,w0),
ii. si determinino almeno tre sue soluzioni,
iii. si determini la soluzione del problema di Cauchy w(0) = 0,
iv. si provi che le soluzioni w(t) dell’equazione sono tutte funzioni monotone.

ESERCIZIO 8. Dato il problema di Cauchy{
u′(t) = (1 + t)e−u(t)

u(0) = 0
si discutano le seguenti affermazioni esattamente nell’ordine proposto
i. il problema possiede un’unica soluzione locale u,
ii. u è definita su una semiretta del tipo (−δ, +∞),
iii. la soluzione è crescente e non ha punti stazionari,
iv. u è concava.
Infine si calcoli esplicitamente la soluzione.

ESERCIZIO 9. Data l’equazione lineare omogenea a coefficienti non costanti

u′′(t) + 1
4t2 u(t) = 0

i. si verifichi che z(t) =
√

t è soluzione,
ii. si provi l’esistenza di una seconda soluzione linearmente indipendente della forma w(t) = c(t)z(t),
iii. si trovi la soluzione dell’equazione con dati iniziali u(1) = 1 e u′(1) = 0.

ESERCIZIO 10. Risolvere i seguenti sistemi differenziali nelle incognite u e v{
u′(x) = u(x) + 2v(x)
v′(x) = u(x)− cos(x)

{
u′(x) + v(x) + x = 0
v′(x)− v(x) + 2u(x) = 1

ESERCIZIO 11. Determinare la soluzione dei seguenti problemi:{
y′′ + 2y′ + 5y = 0
y(0) = 1 y′(0) = 0

{
y′′− 3y′ + 2y = 0
y(1) = 0 y′(1) = 2
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ESERCIZIO 12. Dati a,b ∈�, si consideri il sistema di equazioni differenziali lineari{
x′(t) =−y(t)
y′(t) = ax(t)− 2by(t)

e si individui per quali tra le seguenti scelte dei parametri

(a,b) = (−1,0) (a,b) = (0,2) (a,b) = (1,2)

l’origine (0,0) è un punto di sella per il sistema. Per tale coppia, si calcolino autovalori ed autovettori poi si disegni
qualitativamente le traiettorie nel piano delle fasi.

ESERCIZIO 13. Assegnato il seguente problema di Cauchy{
w′′(s)− k2w(s) = f(s)
w(0) = w0 w′(0) = w1

con k> 0

si ottenga una formula risolutiva generale.

ESERCIZIO 14. È ben noto che il Quidditch è uno sport magico che si pratica a cavallo di manici di scopa volanti
con quattro palle e presenta elementi in comune con vari sport del mondo dei babbani. Il Quidditch è lo sport più
popolare del mondo magico ed esistono numerose squadre professionistiche di questo sport e la scuola di magia e
stregoneria di Hogwarts ha una squadra per ognuna delle case (Grifondoro, Serpeverde, Corvonero e Tassorosso)...
Il boccino d’oro è una palla incantata dorata dal diametro di una noce dotata di ali. Ogni squadra mette in campo un
proprio giocatore, il cercatore, il cui compito è darle la caccia e cercare di prenderla. è molto piccola e molto veloce, al
punto che a stento la si vede, e per questo motivo i cercatori sono solitamente i giocatori più piccoli ed agili. La cattura
del boccino segna la fine della partita, ed alla squadra del cercatore che è riuscito a catturarlo vengono assegnati
150 punti.
Supponiamo che, all’istante t = 0, il boccino parta dal punto di coordinate P0(x0,0), con x0 > 0, e proceda con
velocità costante pari a 1 in linea retta con direzione e2, quindi seguendo la traiettoria descritta dalla parametrizza-
zione b(t) = (x0, t). Contemporaneamente un cercatore parte dal punto O(0,0) e deve scegliere la sua traiettoria di
inseguimento (x(t),y(t)) sapendo che si muove con velocità costante (in modulo) pari a v ≥ 1. Si cerchi di aiutare il
cercatore!

SVOLGIMENTI

ESERCIZIO 1. Determinare la soluzione w(t) del problema di Cauchy{
w′(t) = |t|w(t)
w(0) = 1

i. esaminare se si tratta di funzione w monotona,
ii. esaminare se la soluzione sia o meno di classe C2(�),
iii. scrivere l’equazione integrale equivalente al problema di Cauchy assegnato.

DISCUSSIONE. i. L’equazione è a variabili separabili (o del primo ordine, lineare a coefficienti non costan-
ti), quindi sapendo che la soluzione è non nulla, a causa dell’unicità della soluzione del problema di Cauchy,
possiamo procedere uguagliando le rispettive primitive

ln(|w(t)|) =
∫

w′(t)
w(t) dt =

∫
|t|dt = 1

2 t|t| + c = 1
2 t|t|

dove abbiamo ottenuto che c = 0 sfruttando il dato iniziale w(0) = 1. Passando agli esponenziali abbiamo

|w(t)| = et|t|/2 t ∈�
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Abbiamo già osservato che la soluzione nulla è una soluzione dell’equazione differenziale, quindi la soluzione
del nostro problema di Cauchy resterà sempre positiva, non potendo i grafici di soluzioni differenti incrociarsi,
quindi abbiamo che w(t)> 0, cioè

w(t) = et|t|/2 e w′(t) = |t|w(t)≥ 0 per ogni t ∈�

il che prova che la soluzione è monotona crescente (l’unico punto a derivata nulla è in t = 0).
ii. La soluzione non è di classe C2, visto che la funzione valore assoluto non è derivabile in t = 0, questo si
traduce nel fatto che l’argomento dell’esponenziale è t|t|, che è solo di classe C1, la funzione non è derivabile
due volte in t = 0.
iii. il problema integrale equivalente è il seguente

w(t) = w0 +
∫ t

0
f (s,u(s))ds = 1 +

∫ t

0
|s|w(s)ds

come suggerisce la dimostrazione del teorema di Picard-Lindelöff.

ESERCIZIO 2. Assegnata la funzione

a(t) =
{

1− t2 t ∈ [−1, 1]
0 t < [−1, 1]

si determinino le soluzioni dei problemi di Cauchy{
y′(t) = a(t)y(t)
y(0) = y0 ∈ {±2,±1,0}

DISCUSSIONE. La funzione a è non negativa e continua, pur essendo definita a tratti, l’equazione differenziale
è lineare, per cui la soluzione locale di un problema di Cauchy si può prolungare su tutto �. Siccome il prodotto
a(t)y è una funzione continua, y sarà, in generale, una funzione di classe C1: questa osservazione ci permetterà
di scrivere l’integrale generale dell’equazione.
Prima di tutto osserviamo che y(t) ≡ 0 è una soluzione globale dell’equazione differenziale che risolve il pro-
blema di Cauchy con dato iniziale y(t0) = 0, quindi tutte le altre soluzioni non possono annullarsi (a causa
dell’unicità della soluzione del problema di Cauchy), quindi sappiamo che le altre soluzioni non hanno zeri,
quindi in un intorno di t = 0 abbiamo

y′(t) = (1− t2)y(t) da cui segue y′(t)
y(t) = 1− t2

passando alle primitive (e accorpando le costanti di integrazione) abbiamo la relazione

ln(
|y(t)|) = t− t3

3 + c e le soluzioni y(t) = ket−t3/3 k ∈�

L’espressione trovata vale, ovviamente, solo in [−1, 1]. Fuori dall’intervallo la funzione a è nulla, per cui y′(t) = 0
il che significa che la soluzione si prolunga come una costante (avendo derivata nulla su un intervallo del tipo
(1,h) o (h,−1)) quindi, imponendo anche il dato iniziale, abbiamo che

y(t) =


y0e−2/3 t ∈ (−∞,−1)
y0et−t3/3 t ∈ [−1, 1]
y0e2/3 t ∈ (1, +∞)

la formula ottenuta vale per tutti i valori di y ∈ � (a posteriori anche per y0 = 0) e quindi anche per i valori
indicati dal testo.

ESERCIZIO 3. Si consideri il seguente problema di Cauchy{ [
4 + w2(x)

]
w′(x) = w(x)

w(0) = w0

i. si spieghi perché il problema possiede un’unica soluzione locale,
ii. si discuta l’esistenza globale della soluzione,
iii. si risolva il problema di Cauchy con w0 = 1.
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DISCUSSIONE. i. L’equazione può essere scritta equivalentemente nella seguente forma normale

w′(x) = w(x)
4 + w2(x)

w′ = f(w)

La funzione f(w) = w/(4+w2) ∈ C∞(�). Ciò implica che sono verificate le ipotesi del teorema di Picard-Lindelöff
che assicurano l’esistenza e unicità locale del problema (??).
ii. La funzione f è limitata e globalmente lipschitziana in �, infatti (ricordando che ξ2 ≥ 0) si ha

|f(u)− f(w)| =
∣∣∣f′(ξ)∣∣∣ |u−w| =

∣∣∣∣∣∣ 4− ξ2

(4 + ξ2)2

∣∣∣∣∣∣ |u−w| =
∣∣∣∣∣∣ξ2−4

4 + ξ2

∣∣∣∣∣∣
∣∣∣∣∣ 1
4 + ξ2

∣∣∣∣∣ |u−w|

=
∣∣∣∣∣1− 8

4 + ξ2

∣∣∣∣∣ ∣∣∣∣∣ 1
4 + ξ2

∣∣∣∣∣ |u−w| ≤
(
1 + 8

4 + ξ2

) ∣∣∣∣∣ 1
4 + ξ2

∣∣∣∣∣ |u−w| ≤ 3
4 |u−w|

e anche che

|f(w)| ≤max
�

|f| = 1
4

quindi possiamo applicare il teorema di esistenza in grande e affermare che la soluzione esiste in tutto �.
iii. Notiamo che w(x)≡ 0 è soluzione dell’equazione differenziale. Per l’unicità due soluzioni distinte non pos-
sono intersecarsi, quindi w(x)> 0 se w0 > 0 e w(x)< 0 se w0 < 0. Poiché w0 = 1 avremo w(x)> 0, integrando
per separazione di variabili otteniamo∫ (

4
w + w

)
dw = x + c da cui 4 ln(w) + w2

2 = x + c

e imponendo la condizione iniziale troviamo c = 1/2. A questo punto possiamo scrivere

ln(w4(x)) =−w2(x)
2 + x + 1

2 da cui w4(x) = e1/2exe−w2(x)/2

H(w(x)) := w4(x)ew2(x)/2 = ex+1/2

Siccome la funzione H è invertibile sulla semiretta (0,+∞) (si noti che H′(s) = (4 + s2)s3es2/2 ha lo stesso segno
del suo argomento e w(x)> 0 e che non possiamo scrivere esplicitamente l’espressione della funzione inversa)
possiamo concludere che la soluzione w è definita implicitamente dalla relazione

w(x) = H−1 (ex+1/2)
purtroppo non è possibile fare di meglio, a meno di non percorrere strade alternative, per esempio, calcolando
il polinomio di Taylor della soluzione.

ESERCIZIO 4. Per ogni n ∈�sia yn(t) la soluzione del seguente problema di Cauchy{
y′(t) = n

[
y(t)− y2(t)

]
y(0) = 1/2

i. si spieghi perché yn esiste ed è unica,
ii. si spieghi perché yn è definita su tutta la semiretta S = [0,+∞),
iii. si calcoli il lim

n→∞
yn(t), per t ∈ S, e si dica in quali sottointervalli della semiretta tale convergenza è uniforme.

DISCUSSIONE. i. Abbiamo a che fare con un’equazione differenziale a variabili separabili, di tipo autonomo,
nella forma y′ = f(y) con f(s) = n[s−s2] ∈ C∞(�)⊆ C1(�). Ciò implica che sono verificate le ipotesi del teorema
di Picard-Lindelöff che assicurano l’esistenza e l’unicità locale della soluzione del problema.
ii. Sappiamo che l’esistenza di due costanti non negative K1,K2 tali che

(1) |f(y)| ≤ K1 + K2|y| ∀y ∈�

garantirebbe la validità del teorema di esistenza globale della soluzione su tutta la semiretta S. Nel nostro caso,
però, la condizione (1) non vale perché f è a crescita quadratica.
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Questa ipotesi può essere indebolita richiedendo che f verifichi l’ipotesi (1) soltanto lungo la soluzione del pro-
blema di Cauchy. Cioè che, detta y(t) la soluzione del nostro problema, l’esistenza di due costanti non negative
C1,C2 (entrambe dipendenti da y(t)), tali che

|f(y(t))| ≤ C1 + C2|y(t)| per ogni t ∈�

implica che la soluzione y(t) è prolungabile su tutto �. Osserviamo subito che y0 ≡ 0 e y1 ≡ 1 sono due
soluzioni costanti dell’equazione differenziale e, per l’unicità della soluzione del problema di Cauchy, sappiamo
che due soluzioni distinte non possono avere punti del grafico in comune, quindi segue che 0 < y(t) < 1 per
ogni t ∈ �, visto che y(0) = 1/2 ∈ (0, 1). L’esistenza globale della soluzione è una conseguenza del fatto che
|f(y(t))| = n |y(t)(1− y(t))| ≤ n per ogni t ∈�, e quindi per ogni t ∈ S.
iii. Procediamo per separazione di variabili∫

dy
y +

∫
dy

1− y = nt + c integrando ln
(∣∣∣∣∣ y

1− y

∣∣∣∣∣) = nt + c

e invertendo otteniamo l’espressione desiderata

yn(t) = kent

1 + kent

Imponendo la condizione iniziale troviamo k = 1. Per t ∈ S si ha

lim
n→∞

yn(t) = y(t) =
{

1/2 t = 0
1 t> 0

La convergenza non è uniforme in tutto S perché y(t) < C0(S) pur essendo yn(t) ∈ C0(S). Sia a > 0, allora
abbiamo

sup
[a,∞]

|yn(t)− y(t)| = sup
[a,∞]

e−nt = e−na n−→∞−−−−−→ 0

dunque la convergenza della successione {yn(t)} è uniforme in [a,∞).
Generalizziamo l’esercizio appena concluso e consideriamo i seguenti problemi di Cauchy{

w′(t) = nf (w(t))
w(0) = w0

con f ∈ C1(�), e supponiamo che, per ogni n ∈�, il precedente problema possiede un’unica soluzione (mono-
tona, visto che il problema è autonomo del primo ordine) wn definita su tutto l’asse reale. Operiamo il seguente
cambio di variabile s = nt (che è una sorta di cambio di unità di misura per la variabile indipendente t) e, grazie
alla formula di derivazione delle funzioni composte, troviamo che

d
ds w(s) = dw

dt
dt
ds = 1

n w′(t) = f (w(t)) = f (w(s))

l’unicità della soluzione del problema di Cauchy ci permette di affermare che

wn(t) = w(nt) = w(s)

visto che nella variabile s tutti i problemi sono uguali e indipendenti dal parametro n ∈�. Quanto ottenuto ci
permette di inquadrare in modo più generale il comportamento della successione di funzioni {wn} ⊆ C0(�),
infatti vale che

lim
n−→+∞

wn(t) = lim
n−→+∞

w(nt) =


w+∞ = lim

s−→+∞
w(s) t> 0

w0 = w(0) t = 0
w−∞ = lim

s−→−∞
w(s) t< 0

si noti che i limiti w±∞ esistono sempre, visto che abbiamo osservato che la soluzione risulta essere sempre
monotona. La convergenza uniforme (su tutto �) non è mai possibile, tranne il caso in cui w(s) = w0 per ogni
s ∈�.
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ESERCIZIO 5. Dato il problema di Cauchy{
u′(t) = tu(t) (u(t)− 1)
u(0) = 1/2

si discutano (esattamente nell’ordine proposto) le seguenti affermazioni
i. il problema possiede un’unica soluzione locale,
ii. il problema possiede un’unica soluzione definita su tutto �,
iii. la soluzione ammette limite per t−→−∞,
iv. la soluzione è monotona,
infine si calcoli l’espressione esplicita della soluzione.

DISCUSSIONE. i. Il problema di Cauchy in oggetto riguarda un’equazione differenziale ordinaria del primo or-
dine in forma normale, la funzione a secondo membro è f(t,p) = tp(p−1), un polinomio in due variabile di grado
tre. Siccome f ∈ C∞(�2) ⊆ C1(�2), tale funzione è localmente lipschitziana, quindi il teorema di esistenza ed
unicità della soluzione del problema di Cauchy garantisce la veridicità dell’affermazione.
ii. Osserviamo subito che f non è una funzione globalmente lipschitziana, per questo motivo l’esistenza in gran-
de della soluzione del problema di Cauchy non è assicurata a priori. Notiamo però che u∗(t) ≡ 0 e u∗(t) ≡ 1
sono due soluzioni costanti dell’equazione differenziale definite su tutto l’asse reale, siccome la nostra solu-
zione verifica 0 = u∗(0) < u(0) = 1/2 < u∗(0) = 1, l’unicità della soluzione del problema di Cauchy implica che
0≡ u∗(t)< u(t)< u∗(t)≡ 1. Poiché si può provare che |f(t,p)| = |tp(p− 1)| ≤ |t| per ogni p ∈ [0, 1], abbiamo che
il grafico della soluzione è vincolato a svolgersi nella striscia di equazione {0≤ p≤ 1} ⊆�

2, in cui la funzione
f è globalmente lipschitziana e quest’ultima osservazione prova che l’affermazione ii è vera.
iii. Abbiamo mostrato che la soluzione u è definita su tutto �, naturalmente questo fatto da solo non implica
l’esistenza dei limiti per t −→ ±∞. Però abbiamo osservato che 0 < u(t) < 1 per ogni t, quindi possiamo
concludere che f(t,u(t)) > 0 per t < 0 e che f(t,u(t)) < 0 se t > 0, quindi sulla semiretta dei reali negativi la
funzione ha derivata prima positiva, cioè è monotona crescente ed essendo limitata deve possedere limite.
iv. L’ultima affermazione non è vera: come discusso precedentemente la soluzione è crescente sui negativi
e decrescente sui positivi, quindi la soluzione non è globalmente monotona. Il calcolo della soluzione può
essere effettuato usando due differenti strategie: o si osserva che l’equazione è a variabili separabili o che è
un’equazione di Bernoulli.
Nel primo caso si procede come segue

u′(t) = tu(t) (u(t)− 1) da cui
∫

u′(t)dt
u(t) (u(t)− 1)

=
∫

tdt

a questo punto risolviamo indipendentemente gli integrali indefiniti ottenendo∫
tdt = 1

2 t2 + c

e anche∫
u′(t)dt

u(t) (u(t)− 1)
=
∫ [
−

1
u + 1

u− 1

]
du =− ln |u| + ln |u− 1| + c = ln

(
1− u

u

)
+ c

ricordando che la soluzione assume solo valori in (0, 1). Uguagliando le primitive ottenute e accorpando le
costanti d’integrazione possiamo scrivere

ln
(

1− u
u

)
= 1

2 t2 + c

e invertendo la funzione logaritmo troviamo
1− u(t)

u(t) = Ket2/2 cioè u(t) = 1
1 + Ket2/2

imponendo il dato iniziale u(0) = 1/2 si trova che K = 1 e si giunge all’espressione esatta della soluzione

u(t) = 1
1 + et2/2

In alternativa si può scrivere l’equazione nel seguente modo

u′(t) + tu(t) = tu2(t)
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e, riconoscendo che si tratta di un’equazione di Bernoulli, possiamo operare la seguente sostituzione

u(t) = w−1(t) u2(t) = w−2(t) u′(t) =−w′(t)w−2(t)

in questo modo l’equazione si trasforma nella seguente

−w′(t)w−2(t) + tw−1(t) = tw−2(t)

che equivale alla seguente equazione lineare

w′(t) + tw(t) = t

visto che per l’unicità della soluzione u(t) , 0, quest’ultima si risolve calcolando due primitive e si ottiene l’e-
spressione trovata precedentemente.

ESERCIZIO 6. Si consideri il seguente problema di Cauchy{
u′(t) = u(t)

(
1 + u2(t)

)
u(0) = u0

e si risponda alle seguenti affermazioni
i. Dire se il problema possiede un’unica soluzione in un intorno dell’origine.
ii. Dire se la soluzione è monotona nell’intervallo in cui è definita.
iii. Determinare la soluzione che soddisfa la condizione iniziale u(0) = 0 e calcolare l’intervallo massimale di defini-
zione.
iv. Determinare la soluzione che soddisfa la condizione iniziale u(0) = 1 e calcolare l’intervallo massimale di defini-
zione.

DISCUSSIONE. i. È un’equazione differenziale a variabili separabili, di tipo autonomo, nella forma u′ = f(u) con
f(u) = u(1 + u2) ∈ C1(�). Questo assicura l’esistenza e l’unicità locale della soluzione del problema assegnato in
un intorno Iδ = (−δ,δ) (teorema di Cauchy).
ii. La soluzione u(t) ≡ 0 è soluzione costante (monotona) del problema di Cauchy con la condizione iniziale
u0 = 0. Se u0 > 0 [u0 < 0] allora u(t)> 0 [u(t)< 0] nell’intorno dell’origine Iδ (per l’unicità due soluzioni non
si intersecano). Quindi u′(t)> 0 [u′(t)< 0] in Iδ cioè la soluzione è monotona crescente [decrescente].
iii. u(t)≡ 0 è, per verifica diretta, soluzione del problema di Cauchy con dato iniziale nullo ed è definita in tutto
�.
iv. Integro l’equazione differenziale per separazione di variabile∫

du
u(1 + u2)

=
∫

dt da cui
∫

du
u −

∫
udu

1 + u2 =
∫

dt

dall’ultima relazione ricavata otteniamo che

ln
 u√

1 + u2

 = t + c cioè u2 = Ce2t

1−Ce2t

Imponendo la condizione iniziale u(0) = 1 troviamo C = 1/2. Quindi, ricordando che u(t)> 0,

u(t) = et√
2− e2t

Un altro modo per determinare la soluzione del problema è quello di considerare l’equazione differenziale di
tipo Bernoulli con parametro α = 3. Con la sostituzione z = u1−α = u−2 ci si riconduce al problema di Cauchy{

z′(t) + 2z(t) + 2 = 0
z(0) = 1

Si tratta di un’equazione differenziale lineare del primo ordine, la cui soluzione (non riportiamo i calcoli) è z(t) =
2e−2t− 1. Da qui si trova (sempre considerando che u(t)> 0)

u(t) = 1√
z(t)

= et√
2− e2t
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Per determinare l’intervallo massimale in cui la soluzione è definita determiniamo il più grande intervallo in cui
è definita u

2− e2t > 0 se e solo se t< ln(
√

2)
quindi l’intervallo massimale è la semiretta (−∞, ln(

√
2)).

ESERCIZIO 7. Assegnata l’equazione differenziale autonoma

w′(t) = 1
1 + w(t)

i. si verifichino le ipotesi del teorema di esistenza ed unicità al variare dei dati iniziali (t0,w0),
ii. si determinino almeno tre sue soluzioni,
iii. si determini la soluzione del problema di Cauchy w(0) = 0,
iv. si provi che le soluzioni w(t) dell’equazione sono tutte funzioni monotone.

DISCUSSIONE. i. Per applicare il teorema di esistenza ed unicità della soluzione del problema di Cauchy dob-
biamo mostrare che la funzione che descrive il campo vettoriale tangente alle traiettorie delle soluzioni sia de-
finita, continua e lipschitziana (solo nella seconda variabile) almeno in un intorno del dato iniziale. Nel nostro
caso abbiamo che

f(t, s) = 1
1 + s

{
(t, s) ∈�

2 : s + 1 , 0
}

affinché le prime ipotesi siano soddisfatte dobbiamo assumere che w0 , −1. A questo punto dobbiamo fare
alcune maggiorazioni per verificare la locale lipschitzianità nella seconda variabile, quindi possiamo scrivere
che ∣∣∣∣∣ 1

1 + w −
1

1 + u

∣∣∣∣∣ =
∣∣∣∣∣− 1

(1 + ξ)2

∣∣∣∣∣ |w− u| ≤ L|w− u|

se u,w ∈ [w0− ε,w0 + ε] con |ε|< d(w0,−1) = |w0 + 1|, dove L = max |∂2f(t, s)| nella striscia in questione.
ii. L’equazione differenziale è un’equazione a variabili separabili, quindi possiamo procedere calcolando alcune
primitive∫

(1 + w(t))w′(t)dt =
∫

dt da cui w(t) + 1
2 w2(t) = t + c

come dovrebbe essere noto l’inversione di una funzione quadratica pone sempre dei problemi, visto che tali
funzioni non sono globalmente iniettive, infatti troviamo che

w(t) = 1
2
[
−1± (1 + 4(t + c))1/2]

l’”indecisione” sul segno viene meno conoscendo il dato iniziale, infatti le soluzioni non possono assumere
(quindi tanto meno attraversare) il valore−1, quindi vale

w(t) =


1
2
[
−1− (1 + 4(t + c))1/2] se w0 <−1

1
2
[
−1 + (1 + 4(t + c))1/2] se w0 >−1

A questo punto possiamo scrivere tre soluzioni relativamente ai dati iniziali w(0) =−2,0,+2 in modo da risolvere
anche il punto iii.

w−2(t) = 1
2
[
−1− (1 + 4(t + 2))1/2]

w0(t) = 1
2
[
−1 + (1 + 4t)1/2]

w+2(t) = 1
2
[
−1 + (1 + 4(t + 6))1/2]

iv. Le soluzioni sono tutte monotone (nel loro dominio di esistenza) perché soluzioni di un’equazione differen-
ziale autonoma del primo ordine. Infatti, come abbiamo già osservato, i valori prodotti da una soluzione vivono
in un intervallo delimitato da due zeri della funzione a secondo membro (in questo caso c’è solo lo spartiac-
que dato da {w = −1}) quindi la funzione produce output che generano sempre lo stesso segno attraverso la
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composizione con la funzione a secondo membro, il che significa che la derivata ha segno costante, cioè la
funzione è monotona!

ESERCIZIO 8. Dato il problema di Cauchy{
u′(t) = (1 + t)e−u(t)

u(0) = 0
si discutano le seguenti affermazioni esattamente nell’ordine proposto
i. il problema possiede un’unica soluzione locale u,
ii. u è definita su una semiretta del tipo (−δ, +∞),
iii. la soluzione è crescente e non ha punti stazionari,
iv. u è concava.
Infine si calcoli esplicitamente la soluzione.

DISCUSSIONE. i. L’equazione differenziale è un’equazione avente la forma u′(t) = f(t,u(t)) con f(t,p) = (1 + t)ep.
La funzione f è di classe C∞(�2), quindi localmente lipschitziana, il che garantisce la validità del teorema di
Cauchy, cioè l’esistenza e l’unicità della soluzione per ogni punto del piano, in particolare per il puntoO = (0,0)
che riguarda il nostro problema.
ii. Consideriamo l’aperto A = (−δ, +∞)×� (con δ ∈ (0, 1)), in A la funzione f è globalmente lipschitziana nella
seconda variabile, infatti per il teorema di Lagrange vale

|f(t,p)− f(t,q)| = |1 + t|
∣∣∣e−p− e−q∣∣∣

≤ |1 + t|| − e−ξ| |p−q| ≤ |1 + t| |p−q|

e, scegliendo q = 0 e usando la disuguaglianza triangolare, troviamo
|f(t,p)| = |1 + t||p| + |f(t,0)| = |1 + t| + |1 + t||p|

a causa della lipschitzianità (con costante di Lipschtiz L = 1) della funzione x 7→ e−x, quindi il teorema di pro-
lungabilità delle soluzioni del problema di Cauchy garantisce l’esistenza della soluzione su tutta la semiretta in
oggetto!
iii∗. L’equazione differenziale ”contiene” la descrizione della derivata prima della soluzione u. Siccome una fun-
zione (di classe C1) è crescente se e solo se la sua derivata è non negativa, l’affermazione risulta vera se vale
che

u′(t) = (1 + t)e−u(t) ≥ 0
a causa delle proprietà dell’esponenziale la derivata è positiva per t > −1, è negativa per t < −1 (dove, quindi,
la soluzione risulta decrescente) e nulla per t = 0, punto in cui la funzione deve avere un minimo globale.
iv∗ Osserviamo che la disuguaglianza

u′′(t) =
[
(1 + t)e−u(t)]′ = e−u(t) + (1 + t)[−u′(t)e−u(t)]

= e−u(t)− (1 + t)2e−2u(t) =
[
1− (1 + t)2e−u(t)]e−u(t) < 0

è soddisfatta solo se eu(t) < (1+ t)2, cioè se u(t)< ln
(
(1 + t)2

)
. Però, ricorrendo all’espansione di Taylor per t≃ 0,

troviamo che
ln

(
(1 + t)2) = 2t + 3t2 + o(t2) e u(t) = t + o(t2)

quindi esiste δ > 0 tale che

u(t)> ln
(
(1 + t)2) t ∈ (−δ,0)

u(t)< ln
(
(1 + t)2) t ∈ (0,δ)

il che significa che intorno al punto t0 = 0 la funzione cambia di concavità e che l’affermazione iv è falsa. In fin
dei conti una funzione concava non potrebbe avere un minimo locale, la cui esistenza abbiamo provato in iii.
Infine calcoliamo esplicitamente la soluzione, procedendo per separazione di variabili

1
2 t2 + t + c

∫
(1 + t)dt =

∫
eu(t)u′(t)dt = eu(t)
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invertendo la funzione esponenziale otteniamo

u(t) = ln
(

1
2 t2 + t + 1

)
dove abbiamo anche sfruttato la condizione iniziale per calcolare la costante di integrazione.

ESERCIZIO 9. Data l’equazione lineare omogenea a coefficienti non costanti

u′′(t) + 1
4t2 u(t) = 0

i. si verifichi che z(t) =
√

t è soluzione,
ii. si provi l’esistenza di una seconda soluzione linearmente indipendente della forma w(t) = c(t)z(t),
iii. si trovi la soluzione dell’equazione con dati iniziali u(1) = 1 e u′(1) = 0.

DISCUSSIONE. i. La verifica non presenta particolari difficoltà, infatti

z(t) =
√

t = t1/2 z′(t) = 1
2 t−1/2 z′′(t) =− 1

4 t−3/2

e sostituendo nell’equazione abbiamo

−
1
4 t−3/2 + 1

4t2 t1/2 = 0

ii. Per trovare una seconda soluzione della forma w(t) = c(t)z(t) = c(t)t1/2 dobbiamo calcolare alcune derivate e
sostituire nell’equazione per ottenere un problema per la funzione incognita c, dunque

w′(t) = c′(t)t1/2 + 1
2 c(t)t−1/2

w′′(t) = c′′(t)t1/2 + c′(t)t−1/2−
1
4 c(t)t−3/2

e dall’equazione differenziale otteniamo

c′′(t)t1/2 + c′(t)t−1/2−
1
4 c(t)t−3/2 + 1

4t2 c(t)t1/2 = c′′(t)t1/2 + c′(t)t−1/2 = 0

che possiamo considerare come un’equazione lineare del primo ordine nella variabile y(t) = c′(t)

y′(t) + 1
t y(t) = 0 che ha soluzione y(t) = 1

t
La soluzione trovata ci permette di ottenere c(t) = ln(t). Quindi abbiamo le due soluzioni z(t) = t1/2 e w(t) =
t1/2 ln(t) e siccome è facile verificare che non esistono λ1,λ2 ∈ � tali che λ1z(t) + λ2w(t) ≡ 0, abbiamo pro-
vato l’esistenza di due soluzioni linearmente indipendenti dell’equazione differenziale. Essendo l’equazione
differenziale lineare e del secondo ordine possiamo concludere che

V =
{
u(t) = At1/2 + Bt1/2 ln(t) : A,B ∈�

}
è lo spazio vettoriale delle soluzioni dell’equazione.
iii. La soluzione del problema di Cauchy è un elemento dello spazio lineare V quindi è sufficiente imporre che
la soluzione soddisfi le condizioni iniziali per t = 1

u(t) = At1/2 + Bt1/2 ln(t)

u′(t) = A
2 t−1/2 + Bt−1/2

[
1 + 1

2 ln(t)
]

cioè

 A = 1
A
2 + B = 0

Risolto il sistema abbiamo la soluzione cercata

u(t) = t1/2
[
1− 1

2 ln(t)
]

il che conclude l’esercizio.
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ESERCIZIO 10. Risolvere i seguenti sistemi differenziali nelle incognite u e v{
u′(x) = u(x) + 2v(x)
v′(x) = u(x)− cos(x)

{
u′(x) + v(x) + x = 0
v′(x)− v(x) + 2u(x) = 1

DISCUSSIONE. Iniziamo dal primo sistema, il quale, scritto in forma vettoriale, diventa(
u
v

)′
=
(

1 2
1 0

)(
u
v

)
+
(

0
−cos(x)

)
Come abbiamo visto in altri esercizi, il sistema può essere affrontato calcolando una matrice fondamentale del
sistema grazie all’esponenziale di matrici, però tale strategia richiede una notevole fatica, in realtà è spesso più
facile procedere nel segente modo: derivando la prima equazione otteniamo

u′′(x) = u′(x) + 2v′(x) = u′(x) + 2(u(x)− cos(x))
sostituendo la seconda equazione, in questo modo abbiamo ottenuto la seguente equazione di secondo grado
lineare a coefficienti costanti

u′′(x)− u′(x)− 2u(x) =−2cos(x)
il cui polinomio caratteristico è λ2 − λ− 2 = (λ− 2)(λ + 1) = 0. Da cui ricaviamo che l’equazione omogenea
associata ha come nucleo il seguente spazio vettoriale

V =
{
uo(x) = Ae2x + Be−x : A,B ∈�

}
Inoltre possiamo trovare una soluzione particolare ricorrendo al metodo della somiglianza

up(x) = acos(x) + bsin(x) u′p(x) =−asin(x) + bcos(x) u′′p(x) =−acos(x)− bsin(x)
e sostituendo nell’equazione otteniamo i valori dei parametri e, di conseguenza, l’integrale generale dell’equa-
zione

u(x) = 3
5 cos(x) + 1

5 sin(x) + Ae2x + Be−x A,B ∈�

La prima equazione ci permette di ottenere anche l’altra incognita, infatti

v(x) = 1
2
(
u(x)− u′(x)

)
= 3

10 sin(x)− 1
10 cos(x)−Ae2x + B

2 e−x

con A,B ∈�.
Affrontiamo il secondo sistema nella stessa maniera, derivando la seconda equazione abbiamo

v′′(x) =−2u′(x) + v′(x) =−2(−v(x)− x) + v′(x)
ottenendo la seguente equazione differenziale lineare del secondo ordine a coefficienti costanti

v′′(x)− v′(x)− 2v(x) = 2x
Come sopra l’equazione omogenea possiede le soluzioni

V =
{
vo(x) = Ae2x + Be−x : A,B ∈�

}
mentre possiamo cercare una soluzione particolare della forma

vp(x) = ax + b v′p(x) = a v′′p(x) = 0
e sostituendo nell’equazione si ottiene

vp(x) =−x + 1
2

quindi

v(x) =−x + 1
2 + Ae2x + Be−x A,B ∈�

Infine notiamo che la seconda equazione può essere letta

u(x) = 1
2
(
v(x)− v′(x) + 1

)
il che permette di ricavare anche l’altra incognita.
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ESERCIZIO 11. Determinare la soluzione dei seguenti problemi:{
y′′ + 2y′ + 5y = 0
y(0) = 1 y′(0) = 0

{
y′′− 3y′ + 2y = 0
y(1) = 0 y′(1) = 2

DISCUSSIONE. Affrontiamo questi problemi di Cauchy, impiegando una strategia rapida che ci permette di
aggirare la costruzione della matrice esponenziale. Prendiamo in esame il primo sistema e calcoliamo le radici
del polinomio caratteristico

λ2 + 2λ + 5 = 0 se e solo se λ = 1
2 [−2±4i]

quindi l’equazione omogenea ha il seguente spazio vettoriale come insieme delle soluzioni

V =
{
yo(x) = e−x [Acos(2x) + Bsin(2x)] : A,B ∈�

}
La soluzione del problema di Cauchy appartiene allo spazio V, visto che la forzante è nulla (o, per meglio dire,
l’equazione completa è omogenea), inoltre vale

y′o(x) = e−x [−Acos(2x)−Bsin(2x)− 2Asin(2x) + 2Bcos(2x)]
con A,B ∈�, quindi imponendo i dati iniziali otteniamo per i parametri il sistema{

A = 1
−A + 2B = 0

da cui ricaviamo l’espressione esplicita della soluzione del problema di Cauchy

y(x) = e−x
[
cos(2x) + 1

2 sin(2x)
]

La seconda equazione ha polinomio caratteristico

λ2− 3λ + 2 = 0 che ha radici λ1,2 = 1
2 [3± 1] = 1,2

in questo caso abbiamo che

V =
{
yo(x) = Ae2x + Bex : A,B ∈�

}
e siccome vale che y′o(x) = 2Ae2x + Bex abbiamo, per i parametri il sistema{

A + B = 0
2A + B = 2

il che significa che

y(x) = 2e2x− 2ex □

ESERCIZIO 12. Dati a,b ∈�, si consideri il sistema di equazioni differenziali lineari{
x′(t) =−y(t)
y′(t) = ax(t)− 2by(t)

e si individui per quali tra le seguenti scelte dei parametri

(a,b) = (−1,0) (a,b) = (0,2) (a,b) = (1,2)

l’origine (0,0) è un punto di sella per il sistema. Per tale coppia, si calcolino autovalori ed autovettori poi si disegni
qualitativamente le traiettorie nel piano delle fasi.

DISCUSSIONE. Il sistema da studiare è un sistema di due equazioni differenziali lineari il cui campo vettoriale
è definito dalla matrice

A =
(

0 −1
a −2b

)
Per tali sistemi l’origine O(0,0) è sempre un punto di equilibrio, un putno critico, una soluzione stazionaria, per
capirne la natura dobbiamo studiare gli autovalori della matrice. In realtà O è una sella se e solo se gli autovalori
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sono non nulli e discordi (quindi anche reali), e il loro prodotto è svelato dal determinante di A, per cui dobbiamo
cercare per quali coppie vale

det(A) = a< 0

quindi l’unica coppia da considerare è (a,b) = (−1,0). Per calcolare effettivamente gli autovalori dobbiamo
trovare gli zeri del polinomio caratteristico, e ricordando che (a,b) = (−1,0) otteniamo

p(λ) = det(A−λI2
) = λ(λ + 2b) + a = λ2 + 2bλ + a = λ2− 1 = 0 cioè λ1,2 =±1

Per il calcolo degli autovettori w1 e w2 procediamo come al solito iniziando da ker(A− I2
), quindi dal sistema

(A− I2)
(

x
y

)
=
(
−1 −1
−1 −1

)(
x
y

)
=
(

0
0

)
da cui otteniamo

x + y = 0 cioè w1 =
(

x1
y1

)
=
(

1
−1

)
dopo di che passiamo allo studio di ker(A + I2

)
(A + I2)

(
x
y

)
=
(

1 −1
−1 1

)(
x
y

)
=
(

0
0

)
e ricaviamo che

x− y = 0 cioè w2 =
(

x2
y2

)
=
(

1
1

)
Infine tracciamo un disegno qualitativo delle traiettorie del sistema risultante ricordando che il sistema è con-
trattivo lungo l’autospazio V1 = ⟨w1⟩ ed espansivo lungo V2 = ⟨w2⟩

x

y

Si noti che le traiettorie sono dei rami di iperbole i cui asintoti sono le due rette passanti per l’origine aventi
(rispettivamente) gli autovettori di A come giacitura.

ESERCIZIO 13. Assegnato il seguente problema di Cauchy{
w′′(s)− k2w(s) = f(s)
w(0) = w0 w′(0) = w1

con k> 0

si ottenga una formula risolutiva generale.

DISCUSSIONE. Abbiamo a che fare con un’equazione del secondo ordine con termine forzante generico, il
problema consiste nel trovare una soluzione particolare dell’equazione completa in quanto l’espressione delle
soluzioni dell’equazione omogenea non costituisce un problema, infatti il polinomio caratteristico associato è

λ2− k2 = (λ− k)(λ + k) = 0 da cui λ1,2 =±k
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il che ci permette di descrivere lo spazio vettoriale bidimensionale delle soluzioni dell’equazione omogenea
nel seguente modo

W =
{
w0(s) = Ae−ks + Beks : A,B ∈�

}
Ricorrendo alla strategia della variazione dei parametri, imponiamo la seguente forma

wp(s) = A(s)e−ks + B(s)eks

Eseguendo le derivate, imponendo (come al solito) che

A′(s)e−ks + B′(s)eks = 0
e sostituendo nell’equazione completa si ottiene

−A′(s)e−ks + B′(s)eks = 1
k f(s)

insieme le due relazioni sono un sistema di equazioni lineari non omogeneo del primo ordine, sommando e
sottraendo otteniamo

A(s) =− 1
2k

∫ s

0
f(t)ektdt B(s) = 1

2k

∫ s

0
f(t)e−ktdt

sostituendo le funzioni ottenute nell’espressione di wp(s) troviamo la seguente espressione

wp(s) = 1
2k

[∫ s

0
f(t)ektdt

]
e−ks + 1

2k

[∫ s

0
f(t)e−ktdt

]
eks

ricordando la definizione delle funzioni trigonometriche ipoerboliche sinh(s) e cosh(s) possiamo riscrivere l’e-
spressione della soluzione ottenendo la seguente espressione generale

w(s) = w0(s) + wp(s) = Ãcosh(ks) + B̃sinh(ks) + 1
k

[∫ s

0
f(t) sinh(k(t− s))dt

]
Ã, B̃ ∈�

Infine, dai dati iniziali, otteniamo l’espressione desiderata dell’unica soluzione

w(s) = w0 cosh(ks) + w1
k sinh(ks) + 1

k

[∫ s

0
f(t) sinh(k(t− s))dt

]
□

ESERCIZIO 14. È ben noto che il Quidditch è uno sport magico che si pratica a cavallo di manici di scopa volanti
con quattro palle e presenta elementi in comune con vari sport del mondo dei babbani. Il Quidditch è lo sport più
popolare del mondo magico ed esistono numerose squadre professionistiche di questo sport e la scuola di magia e
stregoneria di Hogwarts ha una squadra per ognuna delle case (Grifondoro, Serpeverde, Corvonero e Tassorosso)...
Il boccino d’oro è una palla incantata dorata dal diametro di una noce dotata di ali. Ogni squadra mette in campo un
proprio giocatore, il cercatore, il cui compito è darle la caccia e cercare di prenderla. è molto piccola e molto veloce, al
punto che a stento la si vede, e per questo motivo i cercatori sono solitamente i giocatori più piccoli ed agili. La cattura
del boccino segna la fine della partita, ed alla squadra del cercatore che è riuscito a catturarlo vengono assegnati
150 punti.
Supponiamo che, all’istante t = 0, il boccino parta dal punto di coordinate P0(x0,0), con x0 > 0, e proceda con
velocità costante pari a 1 in linea retta con direzione e2, quindi seguendo la traiettoria descritta dalla parametrizza-
zione b(t) = (x0, t). Contemporaneamente un cercatore parte dal punto O(0,0) e deve scegliere la sua traiettoria di
inseguimento (x(t),y(t)) sapendo che si muove con velocità costante (in modulo) pari a v ≥ 1. Si cerchi di aiutare il
cercatore!
DISCUSSIONE. Riassumiamo le informazioni salienti del problema nel seguente disegno

-x

6

y
b(t) = (x0, t)

(x(t),y(t)) s
b
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La prima osservazione che possiamo fare è che il cercatore si muove con velocità (in modulo) costante, quindi
per raggiungere il boccino è conveniente supporre che la sua traiettoria sia il grafico di una funzione y = y(x) e il
cercatore deve indirizzare la sua traiettoria verso il boccino, cioè il suo vettore velocità deve puntare verso b(t)

(2) y′(x) = t− y(x)
x0− x = y(x)− t

x− x0
da cui ricaviamo t = y(x)− y′(x)(x− x0)

inoltre, ricordando la relazione che intercorre tra spazio e tempo nei moti a velocità costante, deve anche valere

t = 1
v

∫ x

0

√
1 + |y′(s)|2ds

e uguagliando le relazioni ottenute otteniamo

y(x)− y′(x)(x− x0) = 1
v

∫ x

0

√
1 + |y′(s)|2ds

Ponendo y′(x) = p(x) e derivando rispetto ad x trasformiamo la precedente equazione integro-differenziale
nella seguente

k
√

1 + p2(x) =−p′(x)(x− x0)

dove k = 1/v ∈ (0, 1) è un parametro che esprime il rapporto tra le velocità del boccino e del cercatore. Dalla
precedente uguaglianza (di fatto l’equazione è a variabili separabili) troviamo

p′(x)√
1 + p2(x)

=− k
(x− x0)

e passando alle corrispondenti primitive possiamo scrivere che

ln
(
p(x) +

√
1 + p2(x)

)
=− ln

(
(x0− x)k) + C

dove abbiamo anche sfruttato il fatto che deve valere x< x0 lungo la traiettoria percorsa dal cercatore. Osser-
viamo che il calcolo della primitiva a sinistra può risultare più impegnativo, si effettua nel seguente modo∫

p′(x)√
1 + p2(x)

dx =
∫

dp√
1 + p2

=−
∫

2s
1 + s2

1 + s2

2s2 ds =−
∫

ds
s =− ln(|s|) + c

= ln
 1√

1 + p2−p

 + c = ln
(√

1 + p2 + p
)

+ c

dove abbiamo applicato la sostituzione

1 + p2 = (p + s)2
(
da cui p = 1− s2

2s e anche dp =− 1 + s2

2s2 ds
)

e razionalizzato la frazione finale nell’argomento del logaritmo.
Sappiamo che la traiettoria del cercatore ha origine in O(0,0), il che significa che quando x = 0 vale anche
t = 0 e, di conseguenza y = 0, cio è y(0) = 0 per cui da (2) otteniamo che p(0) = y′(0) = 0 e nella precedente
relazione possiamo calcolare C ottenendo

ln
(
p(x) +

√
1 + p2(x)

)
=− ln

(
(x0− x)k) + ln

(
xk

0
)

=− ln
(1− x

x0

)k
e svolgendo alcuni semplici conti abbiamo

ln
[p(x) +

√
1 + p2(x)

](
1− x

x0

)k = 0

[
p(x) +

√
1 + p2(x)

](
1− x

x0

)k
= 1

p(x) +
√

1 + p2(x) = 1(1− x/x0
)k
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La precedente relazione è del tipo

p +
√

1 + p2 = Q da cui segue
√

1 + p2 = Q−p

a questo punto possiamo elevare al quadrato ed esplicitare l’incognita p

1 + p2 = Q2− 2pQ + p2 ovvero p = Q2− 1
2Q = 1

2

[
Q− 1

Q

]
e giungere cos̀ı all’espressione

y′(x) = p(x) = 1
2

(1− x
x0

)−k
−

(
1− x

x0

)k
integrando la relazione trovata otteniamo l’espressione esplicita della funzione y(x)

y(x) = k
1− k2 x0 + 1

2 (x0− x)
 (1− x/x0

)k

1 + k −
(1− x/x0

)−k

1− k


Possiamo concludere che il cercatore intercetta il boccino quando x = x0 per cui risulta y(x0) = k/(1− k2)x0.


