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Esercizio 1. Determinare la soluzione w(t) del problema di Cauchy

w/(t) = [tjw(t)
w(0) =1

i. esaminare se si tratta di funzione w monotona,
ii. esaminare se la soluzione sia 0 meno di classe CZ(R),
iii. scrivere lequazione integrale equivalente al problema di Cauchy assegnato.

ESERcIZIO 2. Assegnata la funzione
1=t te[-11]
a(t)‘{ 0 te[-11]
si determinino le soluzioni dei problemi di Cauchy

y'(t) = a(t)y(t)
y(0) =y € {£2,+1,0}

ESERCIZIO 3. Si consideri il seguente problema di Cauchy
[4 + wz(x)] w/(x) = w(x)
w(0) = wg

i. si spieghi perché il problema possiede ununica soluzione locale,
ii. si discuta lesistenza globale della soluzione,
iii. si risolva il problema di Cauchy con wg = 1.

ESERCIZIO 4. Perognin € N sia y,(t) la soluzione del seguente problema di Cauchy
{yﬁﬁnbm—fm]
y(0)=1/2
i. si spieghi perché y,, esiste ed é unica,
ii.. si spieghi perché y, é definita su tutta la semiretta S = [0, +o0),
iii. si calcoli il nli_>m yYn(t), pert € S, e si dica in quali sottointervalli della semiretta tale convergenza é uniforme.
oo

Esercizio 5. Dato il problema di Cauchy

u’(t) = tu(t) (u(t) — 1)
u(0) =172

si discutano (esattamente nellordine proposto) le seguenti affermazioni
i. il problema possiede ununica soluzione locale,
1
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ii.. il problema possiede ununica soluzione definita su tutto R,
iii. la soluzione ammette limite per t — —oo,

iv. la soluzione € monotona,

infine si calcoli lespressione esplicita della soluzione.

ESERCIZIO 6. Si consideri il seguente problema di Cauchy

{ u(t) = u(t) (1+u2(1))
u(0) =ug

e si risponda alle seguenti affermazioni i. Dire se il problema possiede ununica soluzione in un intorno dellorigine.

ii. Dire se la soluzione & monotona nell’intervallo in cui é definita.

iii. Determinare la soluzione che soddisfa la condizione iniziale u(O) = O e calcolare l'intervallo massimale di defini-
zione.

iv. Determinare la soluzione che soddisfa la condizione iniziale u(O) = 1e calcolare l'intervallo massimale di defini-
zione.

ESERCIZIO 7. Assegnata lequazione differenziale autonoma

1
/
W=
i. si verifichino le ipotesi del teorema di esistenza ed unicita al variare dei dati iniziali (tg, wg),
ii. si determinino almeno tre sue soluzioni,
iii. si determini la soluzione del problema di Cauchy w(0O) = O,

iv. si provi che le soluzioni w(t) dellequazione sono tutte funzioni monotone.

Esercizio 8. Dato il problema di Cauchy

u’(t) = (1+t)e—u®
u(0)=0

si discutano le seguenti affermazioni esattamente nellordine proposto
i. il problema possiede ununica soluzione locale u,

ii. u & definita su una semiretta del tipo (—9, +o0),

iii. la soluzione é crescente e non ha punti stazionari,

iv. u e concava.

Infine si calcoli esplicitamente la soluzione.

ESERCIZIO 9. Data lequazione lineare omogenea a coefficienti non costanti
1
"
u’(t)+ —u(t)=0
412

i. si verifichi che z(t) = v/t & soluzione,
ii.. si provi lesistenza di una seconda soluzione linearmente indipendente della forma w(t) = c(t)z(t),
iii. si trovi la soluzione dellequazione con dati iniziali u(1) = 1e u’(1) = O.

ESERCIZIO 10. Risolvere i seguenti sistemi differenziali nelle incognite u e v

{ u’(x) = u(x) + 2v(x) { u'(x)+v(x) +x=0

v/ (x) = u(x) — cos(x) v/ (x) — v(x) + 2u(x) = 1

ESERcCIzIO 11. Determinare la soluzione dei seguenti problemi:

y”’+2y’+5y=0 y’=3y'+2y=0
y(0)=1 y'(0)=0 y()=0 y'(1)=2
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Esercizio 12. Datia,b € R, si consideri il sistema di equazioni differenziali lineari

X' (t) = —y(t)
y'(t) = ax(t) — 2by(t)

e si individui per quali tra le seguenti scelte dei parametri
(a,b) =(—1,0) (a,b)=(0,2) (a,b)=(1,2)

lorigine (O, 0) é un punto di sella per il sistema. Per tale coppia, si calcolino autovalori ed autovettori poi si disegni
qualitativamente le traiettorie nel piano delle fasi.

EserciziO 13. Assegnato il seguente problema di Cauchy
{ w”(s) — k2w(s) = f(s)

w(0)=wo  W/(0)=w, conk>0

si ottenga una formula risolutiva generale.

ESERCIZIO 14. E ben noto che il Quidditch & uno sport magico che si pratica a cavallo di manici di scopa volanti
con quattro palle e presenta elementi in comune con vari sport del mondo dei babbani. Il Quidditch é lo sport pitl
popolare del mondo magico ed esistono numerose squadre professionistiche di questo sport e la scuola di magia e
stregoneria di Hogwarts ha una squadra per ognuna delle case (Grifondoro, Serpeverde, Corvonero e Tassorosso)...
Il boccino doro é una palla incantata dorata dal diametro di una noce dotata di ali. Ogni squadra mette in campo un
proprio giocatore, il cercatore, il cui compito é darle la caccia e cercare di prenderla. € molto piccola e molto veloce, al
punto che a stento la si vede, e per questo motivo i cercatori sono solitamente i giocatori pit piccoli ed agili. La cattura
del boccino segna la fine della partita, ed alla squadra del cercatore che é riuscito a catturarlo vengono assegnati
150 punti.

Supponiamo che, all’istante t = O, il boccino parta dal punto di coordinate Pg(xg,0), con xo > O, e proceda con
velocita costante pari a 1in linea retta con direzione e, quindi seguendo la traiettoria descritta dalla parametrizza-
zione b(t) = (xg,t). Contemporaneamente un cercatore parte dal punto O(O, O) e deve scegliere la sua traiettoria di
inseguimento (x(t),y(t)) sapendo che si muove con velocita costante (in modulo) pari a v > 1. Si cerchi di aiutare il
cercatore!

SVOLGIMENTI

ESERCIzIO 1. Determinare la soluzione w(t) del problema di Cauchy

w/(t) = [t{w(t)
w(0) =1

i. esaminare se si tratta di funzione w monotona,
ii. esaminare se la soluzione sia o meno di classe C2(R),
iii. scrivere lequazione integrale equivalente al problema di Cauchy assegnato.

DISCUSSIONE. i. Lequazione € a variabili separabili (o del primo ordine, lineare a coefficienti non costan-
ti), quindi sapendo che la soluzione € non nulla, a causa dellunicita della soluzione del problema di Cauchy,
possiamo procedere uguagliando le rispettive primitive

(W, 1 . 1
ln(w(t)|)—J‘ dt-f|t|dt-it|t| c= it

w(t)

dove abbiamo ottenuto che ¢ = O sfruttando il dato iniziale w(O) = 1. Passando agli esponenziali abbiamo

lw(t)| = eltltl/2 teR
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Abbiamo gia osservato che la soluzione nulla € una soluzione dellequazione differenziale, quindi la soluzione
del nostro problema di Cauchy restera sempre positiva, non potendo i grafici di soluzioni differenti incrociarsi,
quindi abbiamo che w(t) > O, cioe

w(t) = etltl/2 e w(t)=|tjw(t)>0 perognit € R

il che prova che la soluzione & monotona crescente (l'unico punto a derivata nulla € in t = O).

ii. La soluzione non & di classe CZ, visto che la funzione valore assoluto non & derivabile in t = O, questo si
traduce nel fatto che largomento dellesponenziale é t|t|, che & solo di classe C', la funzione non & derivabile
due volteint=0.

iii. il problema integrale equivalente € il seguente

t t
w(t) =wg + fo f(s,u(s))ds =1 +Jo |s|w(s)ds

come suggerisce la dimostrazione del teorema di Picard-Lindeloff. n

ESERCIZIO 2. Assegnata la funzione

1= te[-11]
am'{ 0 te[-11]

si determinino le soluzioni dei problemi di Cauchy

y'(t) = a(t)y(t)
y(0) =yg € {£2,£1,0}

DiscussIONE. Lafunzione a € non negativa e continua, pur essendo definita a tratti, lequazione differenziale
é lineare, per cui la soluzione locale di un problema di Cauchy si puo prolungare su tutto R. Siccome il prodotto
a(t)y & una funzione continua, y sara, in generale, una funzione di classe C': questa osservazione ci permettera
di scrivere l'integrale generale dellequazione.

Prima di tutto osserviamo che y(t) = O & una soluzione globale dellequazione differenziale che risolve il pro-
blema di Cauchy con dato iniziale y(tg) = O, quindi tutte le altre soluzioni non possono annullarsi (a causa
dellunicita della soluzione del problema di Cauchy), quindi sappiamo che le altre soluzioni non hanno zeri,
quindi in un intorno di t = O abbiamo

y'(t) = (1= t2)y(t) da cui segue m =1—t2
y(t)
passando alle primitive (e accorpando le costanti di integrazione) abbiamo la relazione

3
In(ly(®))=t— % +C e le soluzioni y(t) = ke"_"?'/3 ke R

Lespressione trovata vale, ovviamente, solo in [—1,1]. Fuori dall'intervallo la funzione a & nulla, per cui y’(t) = O
il che significa che la soluzione si prolunga come una costante (avendo derivata nulla su un intervallo del tipo
(1,h) o (h,—1)) quindi, imponendo anche il dato iniziale, abbiamo che

yoe*Z/3 te (—oo,—1)
y) =4 yoet B te[-11]
yoe?  te(l,+0)

la formula ottenuta vale per tutti i valori di y € R (a posteriori anche per yq = O) e quindi anche per i valori
indicati dal testo. n

ESERCIZIO 3. Si consideri il seguente problema di Cauchy
[4 + wz(x)] w’(x) = w(x)
w(0) = wg

i. si spieghi perché il problema possiede ununica soluzione locale,
ii. si discuta lesistenza globale della soluzione,
iii. si risolva il problema di Cauchy con wq =1.
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DISCUSSIONE. i. Lequazione puo essere scritta equivalentemente nella seguente forma normale

oy w(x) ,
w'(x) = yrRwI T w’ = f(w)

La funzione f(w) = w/(4+w?2) € C*°(R). Cid implica che sono verificate le ipotesi del teorema di Picard-Lindel6ff
che assicurano lesistenza e unicita locale del problema (??).
ii. La funzione f & limitata e globalmente lipschitziana in R, infatti (ricordando che £2 > 0) si ha

47&2 £2
(4+£2)2

4+¢2
L e

[f(u) — F(w)| = |F'(&)] lu— w]| = u—w]|=

’4g4|_

—w < -ju—w
‘— 1| |
e anche che

fw)| < maxf] = 5

quindi possiamo applicare il teorema di esistenza in grande e affermare che la soluzione esiste in tutto R.

iii. Notiamo che w(x) = O é soluzione dellequazione differenziale. Per [unicita due soluzioni distinte non pos-
sono intersecarsi, quindiw(x) > O sewg > O ew(x) < Osewg < O.Poiché wg =1avremo w(x) > O, integrando
per separazione di variabili otteniamo

2
J-(i+w)dw=x+c da cui 4ln(w)+w—=x+c
w 2

e imponendo la condizione iniziale troviamo c = 1/2. A questo punto possiamo scrivere

2
1
In(w*(x)) = — w Z(X) +X+ 5 da cui wi(x) = el2eXe—WH(X)/2

H(w(x)) := W4(X)eW2(X)/2 - ex+1/2

Siccome la funzione H & invertibile sulla semiretta (O, +c0) (si noti che H'(s) = (4 + sz)s3e52/2 ha lo stesso segno
del suo argomento e w(x) > O e che non possiamo scrivere esplicitamente lespressione della funzione inversa)
possiamo concludere che la soluzione w é definita implicitamente dalla relazione

w(x) = H—1 (eX+1/2)

purtroppo non é possibile fare di meglio, a meno di non percorrere strade alternative, per esempio, calcolando
il polinomio di Taylor della soluzione. n

ESERCIZIO 4. Perognin € N sia y,(t) la soluzione del seguente problema di Cauchy

{y%pnbm—ﬁm]

y(0)=1/2

i. si spieghi perché y,, esiste ed é unica,

ii. si spieghi perché y,, é definita su tutta la semiretta S = [0, +c0),

iii. si calcoli il nli_}m ¥, (t), pert € S, essi dica in quali sottointervalli della semiretta tale convergenza é uniforme.
oo

DISCUSSIONE. i. Abbiamo a che fare con unequazione differenziale a variabili separabili, di tipo autonomo,
nella formay’ = f(y) con (s) = n[s —s2] € C*°(R) C C'(R). Cié implica che sono verificate le ipotesi del teorema
di Picard-Lindel6ff che assicurano lesistenza e lunicita locale della soluzione del problema.

ii. Sappiamo che lesistenza di due costanti non negative Ky, K, tali che

(1) [fy)] <Ki+Kaly| VyeR

garantirebbe la validita del teorema di esistenza globale della soluzione su tutta la semiretta S. Nel nostro caso,
pero, la condizione (1) non vale perché f € a crescita quadratica.
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Questa ipotesi pud essere indebolita richiedendo che f verifichi lipotesi (1) soltanto lungo la soluzione del pro-
blema di Cauchy. Cioé che, detta y(t) la soluzione del nostro problema, lesistenza di due costanti non negative
C;,C; (entrambe dipendenti da y(t)), tali che

[fly(t)| < Ci+Cyly(t)] perognit€ R

implica che la soluzione y(t) & prolungabile su tutto R. Osserviamo subito che y5 = O e y; = 1 sono due
soluzioni costanti dellequazione differenziale e, per lunicita della soluzione del problema di Cauchy, sappiamo
che due soluzioni distinte non possono avere punti del grafico in comune, quindi segue che O < y(t) < 1 per
ogni t € R, visto che y(O) = 1/2 € (0,1). Lesistenza globale della soluzione & una conseguenza del fatto che
[fy(t))] = n|y(t)(1—y(t))| < n perognit € R, e quindi per ognit € S.

iii. Procediamo per separazione di variabili

J‘Q+Ji=nt+c integrando ln(L')=nt+c
y J1-y -y
e invertendo otteniamo lespressione desiderata
kent
Yn(t) = 1+ kent
Imponendo la condizione iniziale troviamo k = 1. Per t € S si ha

. [ t=0
nﬁ&YJ”‘“ﬂ‘{1 t>0

La convergenza non € uniforme in tutto S perché y(t) ¢ co(s) pur essendo y,(t) € C9(S). Siaa > 0, allora
abbiamo

—_na h—o0
nt_ .—na 0

sup |y,(t) —y(t) = supe M =e
[a,00] [a,00]
dunque la convergenza della successione {y,,(t)} € uniforme in [a, c0).
Generalizziamo lesercizio appena concluso e consideriamo i seguenti problemi di Cauchy

w’(t) = nf (w(t))
w(0) = wg

con f € C'(R), e supponiamo che, per ognin € N, il precedente problema possiede ununica soluzione (mono-
tona, visto che il problema € autonomo del primo ordine) wy, definita su tutto lasse reale. Operiamo il seguente
cambio di variabile s = nt (che & una sorta di cambio di unita di misura per la variabile indipendente t) e, grazie
alla formula di derivazione delle funzioni composte, troviamo che

d dwdt 1 ,
EW(S) *gtds W (t) = f(w(t)) = f(w(s))
lunicita della soluzione del problema di Cauchy ci permette di affermare che

wn(t) = w(nt) = w(s)

visto che nella variabile s tutti i problemi sono uguali e indipendenti dal parametro n € N. Quanto ottenuto ci
permette di inquadrare in modo piti generale il comportamento della successione di funzioni {wn} € CO(R),
infatti vale che

Wiso = lim w(s) t>0
S—+00

lim wp(t)= lim w(nt)={ wg=w(O) t=0
n—r+oo n—roo W_so= lim w(s) t<O
S—>—00
si noti che i limiti w-+, esistono sempre, visto che abbiamo osservato che la soluzione risulta essere sempre
monotona. La convergenza uniforme (su tutto IR) non € mai possibile, tranne il caso in cui w(s) = wg per ogni
sclR. [}
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Esercizio 5. Dato il problema di Cauchy

u’(t) = tu(t) (u(t) = 1)
u(0)=1/2

si discutano (esattamente nellordine proposto) le seguenti affermazioni
i. il problema possiede ununica soluzione locale,

ii. il problema possiede ununica soluzione definita su tutto R,

iii. la soluzione ammette limite per t — —oc,

iv. la soluzione € monotona,

infine si calcoli lespressione esplicita della soluzione.

DiscuUssIONE. i. Il problema di Cauchy in oggetto riguarda unequazione differenziale ordinaria del primo or-
dine in forma normale, la funzione a secondo membro € f(t, p) = tp(p—1), un polinomio in due variabile di grado
tre. Siccome f € C*°(RR2) C C'(R2), tale funzione & localmente lipschitziana, quindi il teorema di esistenza ed
unicita della soluzione del problema di Cauchy garantisce la veridicita dellaffermazione.

ii. Osserviamo subito che f non & una funzione globalmente lipschitziana, per questo motivo lesistenza in gran-
de della soluzione del problema di Cauchy non é assicurata a priori. Notiamo pero che u.(t) = 0 e u*(t) =1
sono due soluzioni costanti dellequazione differenziale definite su tutto lasse reale, siccome la nostra solu-
zione verifica O = u,(0) < u(0) = 1/2 < u*(0) = 1, lunicita della soluzione del problema di Cauchy implica che
0 = u(t) < u(t) < u*(t) = 1. Poiché si puo provare che [f(t,p)| = [tp(p —1)| < |t| per ogni p € [0, 1], abbiamo che
il grafico della soluzione & vincolato a svolgersi nella striscia di equazione {O <p <1} C RRZ, in cui la funzione
f & globalmente lipschitziana e quest'ultima osservazione prova che laffermazione ii € vera.

iii. Abbiamo mostrato che la soluzione u é definita su tutto R, naturalmente questo fatto da solo non implica
lesistenza dei limiti per t — +o00. Pero abbiamo osservato che O < u(t) < 1 per ogni t, quindi possiamo
concludere che f(t,u(t)) > O per t < O e che f(t,u(t)) < O se t > O, quindi sulla semiretta dei reali negativi la
funzione ha derivata prima positiva, cioé € monotona crescente ed essendo limitata deve possedere limite.
iv. Lultima affermazione non é vera: come discusso precedentemente la soluzione € crescente sui negativi
e decrescente sui positivi, quindi la soluzione non & globalmente monotona. Il calcolo della soluzione puo
essere effettuato usando due differenti strategie: o si osserva che lequazione é a variabili separabili o che &
unequazione di Bernoulli.

Nel primo caso si procede come segue

. ) o [utdt
u(t) =tu(t)(u(t) —1)  dacui Ju(t)(U(t)n Jtdt

a questo punto risolviamo indipendentemente gli integrali indefiniti ottenendo

1
J-tdt= §t2+c

e anche

u’(t)dt 1 1 -
Jm=j[—a+ﬁ]du=—ln|u|+lnu—1+c=[n( ' )+c

ricordando che la soluzione assume solo valori in (0,1). Uguagliando le primitive ottenute e accorpando le
costanti d'integrazione possiamo scrivere

In ( 1—Tu) = %tz +C
e invertendo la funzione logaritmo troviamo
1—u(t) 1
u(t) 1+ Ket’/2
imponendo il dato iniziale u(O) = 1/2 si trova che K =1 e si giunge allespressione esatta della soluzione

1
u(t) = P

2 .
= Ket'/2 cioé u(t) =

In alternativa si puo scrivere lequazione nel seguente modo

u’(t) + tu(t) = tu(t)
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e, riconoscendo che si tratta di un'equazione di Bernoulli, possiamo operare la seguente sostituzione
u® =w M) P =wA() U =—w (tw ()
in questo modo lequazione si trasforma nella seguente
—w/ (w2 (1) + tw (1) = tw (1)
che equivale alla seguente equazione lineare
w/(t) + tw(t) = t

visto che per lunicita della soluzione u(t) = O, quest'ultima si risolve calcolando due primitive e si ottiene le-
spressione trovata precedentemente. n

ESERCIZIO 6. Si consideri il seguente problema di Cauchy

u(t) = u(t) (1+u2(1))
u(0) =ug

e si risponda alle seguenti affermazioni

i. Dire se il problema possiede ununica soluzione in un intorno dellorigine.

ii. Dire se la soluzione & monotona nell’intervallo in cui é definita.

iii. Determinare la soluzione che soddisfa la condizione iniziale u(O) = O e calcolare lintervallo massimale di defini-
zione.

iv. Determinare la soluzione che soddisfa la condizione iniziale u(O) = 1 e calcolare lintervallo massimale di defini-
zione.

DISCUSSIONE. i. E unequazione differenziale a variabili separabili, di tipo autonomo, nella forma u’ = f(u) con
f(u) = u(1+u?) € C'(R). Questo assicura lesistenza e lunicita locale della soluzione del problema assegnato in
un intorno l5 = (—0,6) (teorema di Cauchy).

ii. La soluzione u(t) = O € soluzione costante (monotona) del problema di Cauchy con la condizione iniziale
ug =0.Seug > O [ug < O] allora u(t) > O [u(t) < O] nell'intorno dellorigine |5 (per lunicita due soluzioni non
si intersecano). Quindi u’(t) > O [u/(t) < O] in 5 cioé la soluzione & monotona crescente [decrescente].

iii. u(t) = O &, per verifica diretta, soluzione del problema di Cauchy con dato iniziale nullo ed & definita in tutto
R.

iv. Integro lequazione differenziale per separazione di variabile

fd—u=Jdt da cui fd_ufudu =Jdt
u(1+u?) u 1+u?
dallultima relazione ricavata otteniamo che

u . 2 Ce2t
In =t+cC cioé u

1+ 42 =1—Ce2t

Imponendo la condizione iniziale u(O) = 1 troviamo C = 1/2. Quindi, ricordando che u(t) > O,

et

V2 et

Un altro modo per determinare la soluzione del problema é quello di considerare lequazione differenziale di
tipo Bernoulli con parametro o = 3. Con la sostituzione z = u'~® = u=2 ci si riconduce al problema di Cauchy

{ Z/(t)+2z(t)+2=0

u(t) =

z(0) =1

Si tratta di unequazione differenziale lineare del primo ordine, la cui soluzione (non riportiamo i calcoli) € z(t) =
2e 2% _1Da qui si trova (sempre considerando che u(t) > O)

z(t) 2-—eZt
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Per determinare l'intervallo massimale in cui la soluzione & definita determiniamo il pitl grande intervallo in cui
é definita u

2-et>0 se e solo se t<In(v2)

quindi lintervallo massimale & la semiretta (—oo, In(v/2)). ]

ESERCIZIO 7. Assegnata lequazione differenziale autonoma
1
/

T 1ew(t)
i. si verifichino le ipotesi del teorema di esistenza ed unicita al variare dei dati iniziali (tg, wg),
ii. si determinino almeno tre sue soluzioni,
iii. si determini la soluzione del problema di Cauchy w(O) = O,

iv. si provi che le soluzioni w(t) dellequazione sono tutte funzioni monotone.

DISCUSSIONE. i. Per applicare il teorema di esistenza ed unicita della soluzione del problema di Cauchy dob-
biamo mostrare che la funzione che descrive il campo vettoriale tangente alle traiettorie delle soluzioni sia de-
finita, continua e lipschitziana (solo nella seconda variabile) almeno in un intorno del dato iniziale. Nel nostro
caso abbiamo che

f(t,s) = % {(t,s) ER2:s+1 io}

affinché le prime ipotesi siano soddisfatte dobbiamo assumere che wg = —1. A questo punto dobbiamo fare
alcune maggiorazioni per verificare la locale lipschitzianita nella seconda variabile, quindi possiamo scrivere
che

1 1

1T+w  1+u

1
——' |lw—u| <Llw—u|
(1+6)2
seu,w € [wg — &,wg +€] con || < d(wg, —1) = |wg +1|, dove L = max |9,f(t,s)| nella striscia in questione.
ii. Lequazione differenziale & un'equazione a variabili separabili, quindi possiamo procedere calcolando alcune
primitive

J(1 +w(t)w’(t)dt = J-dt da cui w(t) + %wz(t) =t+cC

come dovrebbe essere noto l'inversione di una funzione quadratica pone sempre dei problemi, visto che tali
funzioni non sono globalmente iniettive, infatti troviamo che

w(t) = %[4 +(1 +4(t+c))1/2]

["indecisione” sul segno viene meno conoscendo il dato iniziale, infatti le soluzioni non possono assumere
(quindi tanto meno attraversare) il valore —1, quindi vale

" %[—1 - (1+4(t+c))1/2] sewg < —1
w(t) =
%[—1+(1+4(t+c))1/2] sewg > —1

A questo punto possiamo scrivere tre soluzioni relativamente ai datiinizialiw(0O) = —2, 0,+2 in modo darisolvere
anche il punto iii.

w_alt)= 2 [-1- (1+4(t+2)"?]
wo(t) = % [-1+(1+49"2

wap(t)= 2 [ 1+ (1+4(t+ 6)"7]

iv. Le soluzioni sono tutte monotone (nel loro dominio di esistenza) perché soluzioni di unequazione differen-
ziale autonoma del primo ordine. Infatti, come abbiamo gia osservato, i valori prodotti da una soluzione vivono
in un intervallo delimitato da due zeri della funzione a secondo membro (in questo caso c'é solo lo spartiac-
que dato da {w = —1}) quindi la funzione produce output che generano sempre lo stesso segno attraverso la
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composizione con la funzione a secondo membro, il che significa che la derivata ha segno costante, cioé la
funzione & monotona! n

Esercizio 8. Dato il problema di Cauchy

u'(t) = (1+t)eu®
u(0)=0

si discutano le seguenti affermazioni esattamente nellordine proposto
i.. il problema possiede ununica soluzione locale u,

ii. u é definita su una semiretta del tipo (—0,+00),

iii. la soluzione é crescente e non ha punti stazionari,

iv. u é concava.

Infine si calcoli esplicitamente la soluzione.

DISCUSSIONE. i. Lequazione differenziale & unequazione avente la forma u’(t) = f(t,u(t)) con f(t,p) = (1+t)eP.
La funzione f & di classe C*°(RR2), quindi localmente lipschitziana, il che garantisce la validita del teorema di
Cauchy, cioé lesistenza e lunicita della soluzione per ogni punto del piano, in particolare per il punto O = (0, 0)
che riguarda il nostro problema.

ii. Consideriamo laperto A = (—§,+00) X R (con § € (0,1)), in A la funzione f & globalmente lipschitziana nella
seconda variabile, infatti per il teorema di Lagrange vale

[f(t.p) — f(t.q)| =|1+t||e P —e |
<[1+tll —e ¢|lp—ql <[1+t/[p—q
e, scegliendo q = O e usando la disuguaglianza triangolare, troviamo
[f(t.p)| = [1+1[[p[ + [f(t, 0)] = [1+t[ + [1+]|p|

a causa della lipschitzianita (con costante di Lipschtiz L = 1) della funzione x — e™*, quindi il teorema di pro-
lungabilita delle soluzioni del problema di Cauchy garantisce lesistenza della soluzione su tutta la semiretta in
oggetto!

iii*. Lequazione differenziale "contiene” la descrizione della derivata prima della soluzione u. Siccome una fun-
zione (di classe C') & crescente se e solo se la sua derivata & non negativa, laffermazione risulta vera se vale
che

(W) =(1+t)e U0 >0

a causa delle proprieta dellesponenziale la derivata & positiva per t > —1, & negativa per t < —1(dove, quindi,
la soluzione risulta decrescente) e nulla per t = O, punto in cui la funzione deve avere un minimo globale.
iv* Osserviamo che la disuguaglianza

U//(t) = [(1 + t)e_”(t)]/ = e_u(t) +(1+ t)[_u/(t)e—u(t)]

=e Ul _ (14 4)2e—2u0) - [1 —(1+ t)zefu(t)]efu(t) <0

é soddisfatta solo se e't) < (1+1)2, cioé se u(t) < In ((1 + t)z). Pero, ricorrendo allespansione di Taylor per t ~ O,
troviamo che

In((1+0?)=2t+3t%+0(t?) e  u(t)=t+o(t?)
quindi esiste § > O tale che

u(t) > In((1+12)  te(-6,0)

ut) <In((1+1?)  t€(0,0)

il che significa che intorno al punto tg = O la funzione cambia di concavita e che laffermazione iv & falsa. In fin
dei conti una funzione concava non potrebbe avere un minimo locale, la cui esistenza abbiamo provato in iii.
Infine calcoliamo esplicitamente la soluzione, procedendo per separazione di variabili

1
itz it+ cf(1 +t)dt = J-e”(t)u’(t)dt = eyl
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invertendo la funzione esponenziale otteniamo
1.2
u(t) =In it +t+1

dove abbiamo anche sfruttato la condizione iniziale per calcolare la costante di integrazione. ]

ESErcizIO 9. Data lequazione lineare omogenea a coefficienti non costanti
1
"
u’(t)+ —u(t)=0
412

i. si verifichi che z(t) = v/t é soluzione,
ii. si provi lesistenza di una seconda soluzione linearmente indipendente della forma w(t) = c(t)z(t),
iii. si trovi la soluzione dellequazione con dati iniziali u(1) = 1e u’(1) = O.

DISCUSSIONE. i. La verifica non presenta particolari difficolta, infatti

! 1
20=Vi=t =gt g

e sostituendo nellequazione abbiamo

1.3p. 1 p
——t —t2 2
4 T ©

ii. Per trovare una seconda soluzione della forma w(t) = c(t)z(t) = c(t)t”? dobbiamo calcolare alcune derivate e
sostituire nellequazione per ottenere un problema per la funzione incognita c, dunque

1
w/(t) =/ e

1
w'(t) = " (Ot + /(2 — Sty
e dallequazione differenziale otteniamo
1 1
M2+ (V2 - Zc(t)t_yz + Ec(t)tvz ="+t 2 -0

che possiamo considerare come unequazione lineare del primo ordine nella variabile y(t) = ¢/(t)

y'(t) + %y(t) =0 che ha soluzione  y(t) = %

La soluzione trovata ci permette di ottenere c(t) = In(t). Quindi abbiamo le due soluzioni z(t) = t"2 e w(t) =
t/21n(t) e siccome & facile verificare che non esistono A1, \; € R tali che \yz(t) + A;w(t) = O, abbiamo pro-
vato lesistenza di due soluzioni linearmente indipendenti dellequazione differenziale. Essendo lequazione
differenziale lineare e del secondo ordine possiamo concludere che

V= {u(t) =At"2 Bt 2n(t): AB € rR}

¢ lo spazio vettoriale delle soluzioni dellequazione.
iii. La soluzione del problema di Cauchy & un elemento dello spazio lineare V quindi € sufficiente imporre che
la soluzione soddisfi le condizioni iniziali per t =1

u(t) = AtY2 + BtV2 n(t) A=1
G = 221214 Dingy cioe { AB-0
2 2 2

Risolto il sistema abbiamo la soluzione cercata
1
u(t) = t'2 [1 ~5 ln(t)}

il che conclude lesercizio. ]
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EsercIzIO 10. Risolvere i seguenti sistemi differenziali nelle incognite u e v

{ u’(x) = u(x) + 2v(x) { u(x)+v(x)+x=0

v/ (x) = u(x) — cos(x) v/ (x) — v(x) + 2u(x) = 1

DISCUSSIONE.  Iniziamo dal primo sistema, il quale, scritto in forma vettoriale, diventa

MEREY My

Come abbiamo visto in altri esercizi, il sistema puo essere affrontato calcolando una matrice fondamentale del
sistema grazie allesponenziale di matrici, pero tale strategia richiede una notevole fatica, in realta € spesso piu
facile procedere nel segente modo: derivando la prima equazione otteniamo

u”(x) = u’(x) + 2v/(x) = u’(x) + 2 (u(x) — cos(x))

sostituendo la seconda equazione, in questo modo abbiamo ottenuto la seguente equazione di secondo grado
lineare a coefficienti costanti

u”’ (%) — u’(x) — 2u(x) = —2 cos(x)

il cui polinomio caratteristico & AZ—X—2=(\—2)(\+1) = 0. Da cui ricaviamo che lequazione omogenea
associata ha come nucleo il seguente spazio vettoriale

V= {uo(x) =AeXX+Be *:ABc [R}
Inoltre possiamo trovare una soluzione particolare ricorrendo al metodo della somiglianza
up(x) = acos(x) + bsin(x) U|/o(X) = —asin(x) + b cos(x) uF’,’(x) = —acos(x) — bsin(x)

e sostituendo nellequazione otteniamo i valori dei parametri e, di conseguenza, l'integrale generale dellequa-
zione

1
u(x) = gcos(x) tg sin(x) + AeZX + Be * ABcER

La prima equazione ci permette di ottenere anche laltra incognita, infatti

v(x) = % (ux) — u'(x)) = % sin(x) — % cos(x) — Ae?+ ;e_x

conA,BecR.
Affrontiamo il secondo sistema nella stessa maniera, derivando la seconda equazione abbiamo

v (x) = =20’ (x) + V' (x) = =2 (—v(X) — x) +V/(x)
ottenendo la seguente equazione differenziale lineare del secondo ordine a coefficienti costanti
v (x) — v/ (x) — 2v(x) = 2x
Come sopra lequazione omogenea possiede le soluzioni
V= {vo(x) =AeXX+Be *:ABc TR}
mentre possiamo cercare una soluzione particolare della forma
Vp(x) =ax+b v",(x)=a vl’o’(x)=0

e sostituendo nellequazione si ottiene

1
v(x)=—x+§+Ae2X+Be_x ABcER

Infine notiamo che la seconda equazione puo essere letta

u(x) = %(v(x) —v/(x) +1)

il che permette di ricavare anche laltra incognita.
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Esercizio 11. Determinare la soluzione dei seguenti problemi:

y'+2y'+5y=0 y' =3y'+2y=0
y(0)=1 y'(0)=0 yh=0 y'(h=2

DiscussiONE.  Affrontiamo questi problemi di Cauchy, impiegando una strategia rapida che ci permette di
aggirare la costruzione della matrice esponenziale. Prendiamo in esame il primo sistema e calcoliamo le radici
del polinomio caratteristico

1
A 420+5=0 se e solo se >\=i[—2i4i]
quindi lequazione omogenea ha il seguente spazio vettoriale come insieme delle soluzioni
V= {yo(x) = e *[Acos(2x) + Bsin(2x)] : A,B € R}

La soluzione del problema di Cauchy appartiene allo spazio V, visto che la forzante & nulla (o, per meglio dire,
lequazione completa &€ omogenea), inoltre vale

Yo (x) = e *[—Acos(2x) — Bsin(2x) — 2Asin(2x) + 2B cos(2x)]

con A,B € R, quindi imponendo i dati iniziali otteniamo per i parametri il sistema

A=1
—-A+2B=0

da cui ricaviamo lespressione esplicita della soluzione del problema di Cauchy

y(x)=e™* [cos(Zx) + %sin(Zx)]

La seconda equazione ha polinomio caratteristico
A _3)+2=0 che ha radici A2 = %[311]=1,2
in questo caso abbiamo che
V={yo(x) = Ae™ +Be*: A B € R}
e siccome vale che y/, (x) = 2Ae?x + BeX abbiamo, per i parametri il sistema

A+B=0
2A+B=2

il che significa che

y(x) = 2e* — 2¢* |

ESERcIZIO 12. Datia,b € R, si consideri il sistema di equazioni differenziali lineari

X' (t) = —y(t)
y'(t) = ax(t) — 2by(t)

e si individui per quali tra le seguenti scelte dei parametri
(a,b) =(—1,0) (a,b) =(0,2) (a,b)=(1,2)

lorigine (O, 0) é un punto di sella per il sistema. Per tale coppia, si calcolino autovalori ed autovettori poi si disegni
qualitativamente le traiettorie nel piano delle fasi.

DIScUSSIONE. Il sistema da studiare & un sistema di due equazioni differenziali lineari il cui campo vettoriale
& definito dalla matrice

o -1
A= ( a -2b )
Per tali sistemi lorigine O(0, O) & sempre un punto di equilibrio, un putno critico, una soluzione stazionaria, per
capirne la natura dobbiamo studiare gli autovalori della matrice. In realta O € una sella se e solo se gli autovalori
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sono non nulli e discordi (quindi anche reali), el loro prodotto € svelato dal determinante di A, per cui dobbiamo
cercare per quali coppie vale
det(A)=a< O
quindi lunica coppia da considerare & (a,b) = (—1,0). Per calcolare effettivamente gli autovalori dobbiamo
trovare gli zeri del polinomio caratteristico, e ricordando che (a,b) = (—1,0) otteniamo
p(\)=det(A—Aly)=A(A+2b)+a=22+2br+a=22—1=0  ciod  Ny=+1

Per il calcolo degli autovettori wy e w; procediamo come al solito iniziando da ker (A — I,), quindi dal sistema

X -1 - X 0]
(A_'Z)( y )( -1 )( y )( 0 )
da cui otteniamo
. s X1 1 )
+y=0 cioé = =
Y | " ( Y1 ) ( -1
dopo di che passiamo allo studio di ker (A +1,)

X 1T -1 X 0]
(A+'2)(Y)=(—1 1 )(yHO)
e ricaviamo che
s 1
x—y=0 cioe WZ:(;Z )=(1)

Infine tracciamo un disegno qualitativo delle traiettorie del sistema risultante ricordando che il sistema & con-
trattivo lungo lautospazio Vq = (wy) ed espansivo lungo V5 = (w>)

Y,

7

4

Si noti che le traiettorie sono dei rami di iperbole i cui asintoti sono le due rette passanti per lorigine aventi
(rispettivamente) gli autovettori di A come giacitura. n

ESERcIZIO 13. Assegnato il seguente problema di Cauchy

w”(s) — k2w(s) = f(s)
{ w(0)=wo  W/(0)=w, conk >0
si ottenga una formula risolutiva generale.

DiscUsSIONE. Abbiamo a che fare con un'equazione del secondo ordine con termine forzante generico, il
problema consiste nel trovare una soluzione particolare dellequazione completa in quanto lespressione delle
soluzioni dellequazione omogenea non costituisce un problema, infatti il polinomio caratteristico associato &

A k2=(A-kA+k=0 dacui  Ny=zk
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il che ci permette di descrivere lo spazio vettoriale bidimensionale delle soluzioni dellequazione omogenea
nel seguente modo

W = {wo(s) =Ae S +Bef:ABc [R}
Ricorrendo alla strategia della variazione dei parametri, imponiamo la seguente forma
Wp(s) = A(s)e ks + B(s)ek
Eseguendo le derivate, imponendo (come al solito) che
A(s)e ks +B/(s)eks = 0
e sostituendo nellequazione completa si ottiene
—A(s)e ™ +B/(s)es = %f(s)

insieme le due relazioni sono un sistema di equazioni lineari non omogeneo del primo ordine, sommando e
sottraendo otteniamo

LI LI (g
Als) = _ﬂjo f(t)e*'dt  B(s) = ﬂfo f(t)e " 'dt
sostituendo le funzioni ottenute nellespressione di wp(s) troviamo la seguente espressione

1[ e V[ (P - .
Wp(S)=ﬂ[Jo f(t)ektdt]e k ﬂUo f(t)e ktdt]ek

ricordando la definizione delle funzioni trigonometriche ipoerboliche sinh(s) e cosh(s) possiamo riscrivere le-
spressione della soluzione ottenendo la seguente espressione generale

S
w(s) = wo(s) + wp(s) = Acosh(ks) + Bsinh(ks) + % [J f(t) sinh(k(t — s))dt] ABcR
(0]
Infine, dai dati iniziali, otteniamo lespressione desiderata dellunica soluzione

w(s) = wg cosh(ks) + % sinh(ks) + % [Jsf(t) sinh(k(t — s))dt] O
(0]

ESERCIZIO 14. E ben noto che il Quidditch & uno sport magico che si pratica a cavallo di manici di scopa volanti
con quattro palle e presenta elementi in comune con vari sport del mondo dei babbani. Il Quidditch é lo sport pit
popolare del mondo magico ed esistono numerose squadre professionistiche di questo sport e la scuola di magia e
stregoneria di Hogwarts ha una squadra per ognuna delle case (Grifondoro, Serpeverde, Corvonero e Tassorosso)...
Il boccino doro é una palla incantata dorata dal diametro di una noce dotata di ali. Ogni squadra mette in campo un
proprio giocatore, il cercatore, il cui compito é darle la caccia e cercare di prenderla. & molto piccola e molto veloce, al
punto che a stento la si vede, e per questo motivo i cercatori sono solitamente i giocatori pitl piccoli ed agili. La cattura
del boccino segna la fine della partita, ed alla squadra del cercatore che é riuscito a catturarlo vengono assegnati
150 punti.

Supponiamo che, all'istante t = O, il boccino parta dal punto di coordinate Pg(xg,0), con xg > O, e proceda con
velocita costante pari a 1in linea retta con direzione e, quindi seguendo la traiettoria descritta dalla parametrizza-
zione b(t) = (xq,t). Contemporaneamente un cercatore parte dal punto O(O, O) e deve scegliere la sua traiettoria di
inseguimento (x(t),y(t)) sapendo che si muove con velocita costante (in modulo) pari a v > 1. Si cerchi di aiutare il
cercatore!

DISCUSSIONE. Riassumiamo le informazioni salienti del problema nel seguente disegno

A

o

b(t) = (xo,1)

(x(t).y(t) o
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La prima osservazione che possiamo fare € che il cercatore si muove con velocita (in modulo) costante, quindi
per raggiungere il boccino € conveniente supporre che la sua traiettoria sia il grafico di una funzione y = y(x) e il
cercatore deve indirizzare la sua traiettoria verso il boccino, cioé il suo vettore velocita deve puntare verso b(t)
t—y(x) ) y(x) —t

Xo — X X—Xo

2 Y= dacuiricaviamo  t=y(x) -y (x)(x — xg)

inoltre, ricordando la relazione che intercorre tra spazio e tempo nei moti a velocita costante, deve anche valere

1 X
- 14 2
t= ;L 1+]y’(s)|%ds

e uguagliando le relazioni ottenute otteniamo

y() =y (X — x0) = %JO Ji+1y/(s)/2ds

Ponendo y’(x) = p(x) e derivando rispetto ad x trasformiamo la precedente equazione integro-differenziale
nella seguente

kq/1+p2(x) = —p’(x)(x — o)

dove k = 1/v € (0,1) & un parametro che esprime il rapporto tra le velocita del boccino e del cercatore. Dalla
precedente uguaglianza (di fatto lequazione € a variabili separabili) troviamo
Pk

NEE T

e passando alle corrispondenti primitive possiamo scrivere che

ln(p(x) +4/1 +p2(x)) = —ln((xo - x)k)+C

dove abbiamo anche sfruttato il fatto che deve valere x < xg lungo la traiettoria percorsa dal cercatore. Osser-
viamo che il calcolo della primitiva a sinistra pud risultare piti impegnativo, si effettua nel seguente modo

L2
p’(x) dp £1—sds=—j%=—ln(|s)+c

1[14.p2()( 1[1+p2 1+52 252
1
=ln| —— +c=ln(w/1+ 2 )+c
(x/1+p2p] P

dove abbiamo applicato la sostituzione

1-s2 146
+ 2 = + 2 i = =
T+p©=(p+s) (da cui o p=o eanche dp-= 22 ds)

e razionalizzato la frazione finale nellargomento del logaritmo.

Sappiamo che la traiettoria del cercatore ha origine in O(0, 0), il che significa che quando x = O vale anche
t =0 e, di conseguenza y = O, cio € y(O) = O per cui da (2) otteniamo che p(0) = y’(0) = O e nella precedente
relazione possiamo calcolare C ottenendo

k
ln(p(x)+,/1+p2(x))=_ln((xo—x) )+In(x§) = ln[(1—%) ]
e svolgendo alcuni semplici conti abbiamo
k
ln([p(x)+ 1+p2(x)](1—1) ]=o
X0
X k
[p(x)+ 1+p2(x)}(1——) =1

X0
PO + 1+ p2(x) =

(1—x/%0)"
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La precedente relazione & del tipo

P+,/1+p2=o da cui segue ‘/1+p2=0—p

a questo punto possiamo elevare al quadrato ed esplicitare l'incognita p

Qr-1 1 1
+ 2= 2— + 2 = — = — —_—
1+p“=Q° —2pQ+p ovvero P=—q =2 [O O]

e giungere cosi allespressione

=pbo= (1= %) (i XY
T

integrando la relazione trovata otteniamo lespressione esplicita della funzione y(x)

k1 (1=x/x0)¢ (1—x/xg) ¥
Y(X)—1_k2Xo 2(Xo—X)[ Tk 1ok

Possiamo concludere che il cercatore intercetta il boccino quando x = xq per cui risulta y(xg) = k/(1— k2)xo.
[




