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ESERCIZIO 4. i. Si calcoli il massimo e il minimo assoluti della funzione f(x1,x;) = ax; + bx,, con (a,b) = (0,0), per
(x1,x7) D= {x12 +x% <1} CR2
ii. Si generalizzi il punto precedente considerando la funzione f(x) =w-x,conw = O,ex € D" = {x € R": ||x||, < 1}.
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ESERCIZIO 6. Determinare gli eventuali punti di massimo e minimo relativo delle seguenti funzioni

f(x1,%2) = Xq[xq]%2 g(x1,X;) = xf - 4x12x2 +x%

h(xq,%;) = x12 In(1+x5) + xfx%
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ESERCIZIO 6. Sianor = {xq = X3,x3 = 0} es = {X1 + X3 = 1,x3 = 1} due rette di R> prive di punti comuni:
i.sideterminip € req € staliche ||p—qll, < ||[x—y|| perognixcrey€s,
ii. si verifichi che la retta per p e q € ortogonale alle due rette r ed's.
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ESERCIZIO 12. Determinare (se esiste) il massimo assoluto della funzione f(x,,x;,x3) = x1x2x§ nella regione dello
spazio D = {x12 + 4x% + 2x§‘ <6}
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