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ESERCIZIO 2. Perx = (xq,X;) € RZ si consideri
1/2

Il =il + beal iz = [bxal + beal?] = VX [l o= miax{bel, )

i. Si provi che tutte le norme precedenti rendono R% uno spazio metrico completo.
ii. Si mostri che solo || - ||, & invariante per rotazioni.

ii. Si disegni B(O,1) € R2 per le tre norme.
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ESERCIZIO 3. Si provi che non esiste un prodotto scalare su R2 che induce la norma || - ||
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ESERCIZIO 9. Siano A e A; due sottoinsiemi aperti di (R", || - ||,), si mostri che gli insiemi Ay N A; e A; U A, sono
aperti.

Si concluda lesercizio provando quali tra gli aggettivi chiuso, convesso e compatto possono sostituire [aggettivo
aperto nellaffermazione della prima parte del quesito.

Aﬁ%mwmwcsuc - Ao . ]
Fxych | sgmafo Ry Ch-.
7b A‘
c " = > lo
. =) Qo B

- \
y T
S X T c &
o= minSELG v c
= Br)e otz
—)
TEOR « L C . o> o L Y Uno od

.QQIQ{ Ve exte  <@10..043) & opeio




!@Eo e . .
et ‘Ug L‘ C \ g\
C omespSe ollere 43 xeC
RO
-
=
/’é'\ 160
%o
>y
cho N
.= wo o' o




\“») (%)

S

)

/

o)

o

Vil

N

(Tx/

e N1 v

\COn 1 ﬁ*tw\~ &A I

<6Mﬁ>'bq°

Pria AY(]

Parvnan

oSS,




2
(<4 . (S (o —~ - k

.C _g TR ® x< R Uem
v ‘ k . oA i(-:,(?ﬁ)\

'(\, oh ¢ obiie Lh @9) XK:"%IAH’ £21
N

(:Qq} t(? ,(§__ <t L _/so= g@g
IERE R,

l[(;(j;‘g\,h(;(g,g)‘\ o _50:=29% (00
.e |\"
A

\
£ J

i

Qx\li)

R

, 1 T\ P . XY Y a
s (_ wlkthl =4 S - xi
=

Xll*l 5 (I Ik TN

Q'[E 5 R <R :Iz(‘\'iblgl

how  Llottl-€6) Q‘@@\
\ < ’

30

Y ( : —

ts0 ¢

[ -~ %o {064 m(i-x




hon $R- LfCo)¢ \\E}C’("’d =0

X% Wi—xo iy,
I = [) g
Cner= (00 -Nx0) ¢ g Wi g — t W0
M A '

\K

] ('\‘ = [ N0y, . K\~ ~c—(k»\ —
K)o X=ako \ | WM

\"4 \
o kh‘\ﬂ-bro

*(;_K\" ‘(‘()Q\-\)L@Y%\ > o

&%l ,
IERA-£06)-W G| [CRG _ AWy o
We- 5ol T Ml =%

= [CE-C&M W“t_.\_l{z(?\-gfﬂ—\t\!-@-%HM
AKX~ on, = AKXy,

AP

o : ARG O




)(":. )Q+tgk {(.‘613..\‘(\:

(K- 10~ W (-%) _ L(ko+tRi) - Clow) - Wotex

A X= Kol Kteel,

Ll -(0d _

Pra—y

to\ Wl ]
h} _(‘Cmtq.) el W)

D O fle- W =0 D W=l ketm

ya % X=O
K — =@
k4o lo 2 Kke(o)
B - = \,x)_| x
®r) ! o
o | 4
AN *\zo — —1
N\ L—o~--~~-~ \
N\




