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ESERCIZIO 1. Si riscrivano le definizioni di insieme aperto, chiuso, limitato, convesso e compatto per lo spazio di
Banach (C°[0,11, | - [|oc )

ESERcIZIO 2. Si provi che linsieme A = {f € C9[0,1]: f(x) > O perognix € [0, 1]} é aperto in (CO[O,1], . ||Oo), poi

si scriva lespressione di A°.

ESERCIZIO 3. i. Considerato lo spazio vettoriale C°[0,1], si provi che
1
If~ gl | ift - goa
0]
¢ una norma su C°[0, 1].
ii. Sia {fn} la successione definita da

frlx) = n(1—nx) sex<1/n
=Y o altrimenti

oo )

mostrare che f,, converge alla funzione nullarispetto alla norma || -|| x. Stabilire se converge anche in ( cOro,1,

ESERCIZIO 4. Si consideri lo spazio vettoriale CO[0, 7] e le norme I| -
f € C9[0, 7], valga

i con i = 1,2,+o0, definite in modo che, per

T T 172
||f||1=j |f(s)|ds f||2=[f |f(S)|2dS] [flloc = max_[f(s)|
0 0 se[0,n]

i. si mostri che esistono due costanti C,C, > O tali che

Il < Gillfllc € Ifl2 < Callfllc  perognif e CO[0,n]
ii*. esistono delle costanti Kq,K3 > O in modo che

Ifllco < K;[If]l; perognif o, 7] e i=12?

iii*. esiste Co > O tale che ||f||; < Col|f|l2-

Esercizio 5. Nello spazio C°[—1,1] si provi che, perk =1,2,3,.., si ha
i. le funzioni f (x) = e~ costituiscono una successione di Cauchy rispetto a || -

2
. .. —kx2 . . .

ii. le funzioni f.(x) = e * non sono una successione di Cauchy rispetto a || - || oo,

iii. le funzioni f, (x) = e~ X/ k costituiscono una successione di Cauchy rispetto a || - || co-

ESERCIZIO 6. Sia E = {p;,...pN} € R" un sottoinsieme finito, si dimostri che E é chiuso.
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Esercizio 7. Siconsiderino gli spazinormati (R™, || - ||1), (R™, ]| - ||2) e (R,
rispetto una delle tre norme lo e anche rispetto alle altre due.

“ |loo )- Simostriche se A C IR™ e aperto

ESercCIzIO 8. Data unapplicazione lineare L: (R",]| - ||3) — (R™, |
i.se {x,} C R" converge a O, allora L(x;) — O,
ii. se X, — X, allora L(x,) — L(xg).

- |I2) si provi che

ESErcIZIO 9. Data unapplicazione lineare L : (R™, || - [l;) — (R, - ||3) si provi lesistenza di K > O tale che
[IL()[I2 < K]|x]|,, per ognix € R".

Esercizio 10. Sia g € CO[0,1] una funzione positiva e definiamo
C={f:[f(x)] < g(x) per ognix € [0,1} € (C°10,11.]| - [|oo)

i. simostri che C é chiuso,
ii. si descriva 8C.

Esercizio 11. Calcolare i seguenti limiti
4

2
. 5x1Xy . min(T+x7)x, . X . SR
lim —=— im BT lim — lim —
x—0 /X12+3X% x—s0 1X2 x—0 x2(x1 +x2) x—>01+2)(1 +3X2

ESERCIZIO 12. Identificare il dominio massimale e calcolare le derivate parziali del primo e del secondo ordine, cioé
8, e g conj,i =1,2,3, delle seguenti funzioni

2

fOuxg) = 0 + 3 IN2xF +x9) gl Xz x3) = [+ axexd+2x2 hixg,xp,x3) = e X =547

ESERCIZIO 13. Data la funzione f(xq,Xy) = (x; — 2)2 x%

i. studiare la continuita della funzione e delle sue derivate parziali in R?,
ii.studiare la differenziabilita della funzione R2,

iii. calcolare, se esistono, le derivate direzionali O,f.

ESERCIZIO 14. Data
(x—y)3
fooy) =1 [x=n2+(y—02]°
0 (x,y)=(1,1)

studiare la continuita, la derivabilita e la differenziabilita di f al variare del parametro a € R.

(x,y) = (1,1)

ESERCIZIO 15. Stabilire se le seguenti funzioni sono continue, derivabili, differenziabili o di classe C' in R

3 3

1 2
e e——— xz0
804, X2.%3) =3 52 +x2 + 22 h(x1, X2.X3) =X} +X5 — X3

1
0] x=0

X7 —X

f(x,y,z) = x2 + y2 +23

Calcolare le equazioni cartesiane del piano tangente al grafico di f in (1,1,2), del piano tangente al grafico di g in
(1,0,1) e del piano tangente al grafico di h in (O, 0, 0).
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Ricordando che
V= (81,...,8n) e A =811 +822+...+8nn
si affrontino i seguenti esercizi
1
EsercIzIO 16. Sia u(x) = 3 ||x|\%, con x € R", si calcolino le seguenti quantita

du(x) peri=1,..,n dwu(x) perwe R"\ {O} Vu(x) Au(x)

1
ESERCIZIO 17. Sia u(x) = T con x € R3\ {0}, si calcolino le seguenti quantita
2

du(x) peri=12,3 Bwu(x) perw e R3 \ {O} Vu(x) Au(x)

ESERCIZIO 18. Sia u(x) = In(||x||3), con x € RZ\ {O}, si calcolino le seguenti quantita
Gu(x) peri=1,2 Vu(x) Au(x)

1
ESERCIZIO 19. Sia w(x) = %(1 — ||x\|%), con x € B = B(O,1), si verifichi che la funzione risolve il seguente problema

—Aw(x) =1 xeB
w(x) =0 x € OB

inoltre si calcoli 6,w(x) per x € OB, dove n é il versore normale 6B in x.

SVOLGIMENTI

ESercizio 1. Si riscrivano le definizioni di insieme aperto, chiuso, limitato, convesso e compatto per lo spazio di
Banach (CO[0, 1], || - oo )-

DiscussiONE. Ricordando le definizioni date per un generico spazio normato possiamo scrivere che A C
(cOr0,1], I - lloc) € aperto se per ogni f € A esiste rg =rg(f) > O tale che

B(f,ro) = {h € COla,bl: If — hlleo <o} = {h : max_[f(x) — h(x)| < ro}
x€[a,b]

= {h € C%a,b] : [f(x) — h(x)| < rg per ogni x € [a,b]} C A

E C COa,b] & chiuso se il suo complementare é aperto,
W C CO[a,b] & limitato se esiste M > O tale che

W C B(O,M) = {h € COa,b]: m[a>t<)]|h(x)| < M} = {h € COla,b]: [h(x)| < M per ogni x € [a,b]}
Xela,

C C COa,b] & convesso se per ogni f,g € Csi ha che la funzione (tf + (1 — t)g) € C per ogni t € [0,1], cioé la
funzione definita nel seguente modo

ht(x) := tF(x) + (1 — t)g(x) con dom(h) = [a,b]

appartiene all'insieme C, per ogni valore del parametro t nell'intervallo [0, 1].
K C CO[a,b] & compatto se per ogni successione {f, } C K si ha che esistono una sottosuccessione {fk(j)} CK
ed una funzione f, € K tali che

fip — foo perj—rvoo  ciod i) —foslloo — O perj— +oc
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ESERCIZIO 2. Si provi che l'insieme A = {f € CO[0,1]: f(x) > O per ognix € [O, 1]} é aperto in (CO[O,1], Il - ||oo), poi
si scriva lespressione di A°.

DISCUSSIONE. Sia g € A, dalla definizione segue che g(x) > O per ogni x € [0, 1], poiché [0, 1] & un intervallo
chiuso e limitato, per il teorema di Weierstrass, abbiamo che esiste xy € [0, 1] tale che min |g(x)| = min[g(x)] =
g(xm) = m > O. Allora consideriamo linsieme B(g,m/2) e proviamo che tale insieme & contenuto in A: sia
h € B(g,m/2), allora possiamo scrivere che

lh(x) — g(x)| < ||lh—gllecc <mM/2 per ogni x € [O,1]
dalle proprieta del valore assoluto ricaviamo

h(x) = h(x) — g(x) + g(x) > g(x) — |h(x) — g(x)| > m — %m = %m >0 per ogni x € [0,1]

essendo la funzione h positiva in tutto l'intervallo possiamo affermare che h € A, larbitrarieta di h ci permette
di dedurre che B(g,m/2) C A.

Ricordiamo che A° = CO[0, 1] \A={fe CO[0,1]: f ¢ A}, per caratterizzare una funzione che non appartiene ad
A & necessario ricordare come si nega una affermazione, siccome la proprieta che definisce A é che le funzio-
ni nellinsieme sono positive in ogni punto di [0,1], la negazione di questa affermazione € che deve esistere
almeno un punto dell’intervallo su cui la richiesta non & soddisfatta, quindi abbiamo che

AC = {f € CO[0,1]: esiste s € [0,1] tale che f(s) < 0}

il che conclude lo svolgimento. n

ESeRrCIzIO 3. i. Considerato lo spazio vettoriale C910,11, si provi che

1
If— glly - L XIF(x) — g)ldx

é una norma su C°[0, 1]
ii. Sia {fn } la successione definita da

_J n(1—nx) sex <1/n
flx) _{ 0 altrimenti

mostrare che fr, converge alla funzione nullarrispetto alla norma || -|| . Stabilire se converge anche in (CO [O,10 1] oo )

DISCUSSIONE. i. Dimostriamo, pili in generale, che se w € CO[a,b], con w(x) > O per ogni x € (a,b), allora

b
||f||w:=j W[ dx

& una norma sullo spazio vettoriale C°[a, b]. Naturalmente nel caso che ci interessa maggiormente w(x) = .

La positivita della norma segue dal fatto che w(x) > O e dalle proprieta del valore assoluto. Mostriamo che &
assurdo supporre che ||h||y = O e che esista xg € [a,b] tale che h(xg) > O. Essendo h continua per il teorema
della permanenza del segno possiamo pensare che xqg € (a,b) (altrimenti h = O in [a,b]), per la continuita di h
in Xg con € = h(xg)/2 > O dovrebbe esistere § = d(€) > O (che possiamo scegliere in modo che (xg —§,xg +6) C

(a,b)) tale che
|h(x) — h(xg)| < @ per ogni x € (xg — ,Xg +9)

quindi tale che

h(x) > @ per ogni X € (xg — d,Xg +6)

Ma allora
b X0+5 X0+6
0 f hix)dx > f hix)dx > f hiX0) 4y _ shix) > 0
a Xo—0 Xo—0 2
e abbiamo raggiunto una contraddizione.
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Lomogeneita delliapplicazione || - ||w segue dallomogeneita del valore assoluto, cioé dal fatto che il valore
assoluto di un prodotto € uguale al prodotto dei valori assoluti dei fattori.
Infine verifichiamo la disuguaglianza triangolare peril || - ||w, infatti vale

b b
[[f+gllw = J w(x)[f(x) + g(x)|dx < j w(x) [|f(x)] + |g(x)|] dx

b b
= j w(x)[f(x)|dx + J w(x)[g(x)[dx = [[f[lw * [|glw
a a
per ogni f,g € CO[a,b], perché w(x) > Oin (a,b).
ii. Cominciamo osservando che

1 1/n 1
Ifnllw = [|fn — Ol = J X|fn(x)|dx = [nx — n2x%]dx = e —0
0 0 n

per n — +oo, quindi f, converge alla funzione nulla nello spazio normato (X, || - ||w)- Invece lo studio della
convergenza rispetto alla norma || - || oo € piti semplice visto che fr(0) = n per ogni n € N, questo implica che

[Ifnlloo > [fa(O)] =N — +c0

quindi la successione non & convergente (neppure limitata!) rispetto alla norma || - || - ]

ESERCIZIO 4. Si consideri lo spazio vettoriale C°[0, ] e le norme | - ||;, con i = 1,2,+0c, definite in modo che, per
f € CO[0, 7], valga

™ 7r 12
- [ s 1t - U |f<s)|2ds] [Flloc = max_[fs)
0 0 s€[0,7]
i. si mostri che esistono due costanti C;,C, > O tali che
Ifl < Gillfllc € Ifl2 < Callfllc  perognif e CO[O, 7]
ii*. esistono delle costanti Kq,K3 > O in modo che
Ifllco < Killf]l; perognif € cOlo,n] e i=12?
iii*. esiste Co > O tale che ||f||; < Col|fll>-

DISCUSSIONE. i. Notiamo che f € CO[0, 7] & integrabile, in quanto continua, quindi tutte le norme coinvolte
sono ben definite. Dalla proprieta di monotonia dell’integrale e dalla definizione di || - || ricaviamo

s s s
||f||1=j |f(s)|ds<f [max |f(s)|]ds=f||oof ds = [foc
0 0 [s€l0,r] 0

s s 2 s
||f||%=f |f<s)|2dssf [max |f(s>|] ds=||f|§oj ds = 7|2,
0 0 |s€l0,r] 0

dunque valgono le disuguaglianze proposte dal testo dellesercizio con costanti C; = m e C; = /.
ii. Le disuguaglianze scritte sono false, per provare questo fatto consideriamo la seguente successione di fun-
zioni continue su [0, 7]

1= eks se[0,e7K] _
fi(s) = { 0 JPI k=12,3,..
allora, per ogni k, abbiamo che
s 1 big 2 1/2 \/§
L I | ST e

Dai precedenti calcoli deduciamo che le costanti K; non posso esistere visto che ||f, || = 1€ costante rispetto
allindice k, mentre le due norme integrali sono entrambe infinitesime rispetto a k.
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iii. Per provare questultima disuguaglianza usiamo le proprieta del prodotto scalare, precisamente la disugua-
glianza di Cauchy-Schwartz. Infatti possiamo scrivere che

T T T 172 T 12
Hﬂh=J;|ﬂ9ws=J;1wﬂ9ws=mﬂzsn1znmz=Lf d% [J;Iﬂﬂﬁd% - VAl

0
ottenendo in questo modo la tesi desiderata. ]

Esercizio 5. Nello spazio C°[—1,1] si provi che, perk =1,2,3,.., si ha

i. le funzioni fi (x) = e~ costituiscono una successione di Cauchy rispetto a || -
ii. le funzioni f (x) = e~ non sono una successione di Cauchy rispetto a || - || oo,
jii. le funzioni f, (x) = e~ XV/k costituiscono una successione di Cauchy rispetto a |

2

oo

o , ;
DISCUSSIONE.  i. &ii. La successione f, (x) = e &

vale

€ una successione di funzioni limitate, positive e pari, quindi

Ifilloo = g[laﬁ]e*kxz “f(0)=1>e "  perognixe[-1,1] e keN
Xel—1,

pero la successione converge puntualmente ad una funzione discontinua, infatti si ha

1 x=0
0 xe[-1,00uU(0,1]

Dal punto di vista della norma integrale abbiamo che

||fk*fk+j||% =f \fk(X)ffk,,j(x)\zdx:J-
[—11] [

fix) — foo(x) = { per k — +00

2 iy2 2
ekaX 1 7e72]x |2dX < f ekaX dx

—1.1] [—11]

1 1
e __ds<— [ e >"ds= < — 0  perk— +x

=me WA I8 K

quindi la successione & di Cauchy rispetto alla norma || - ||;.
Rispetto alla norma uniforme abbiamo che

f _f+_ - [ —kXZ_ —(k+])xz]= — __>1 lH"’
[fk = fisjlloo x| e | ke per | 00

e il limite calcolato mostra che la successione non puo essere di Cauchy rispeto a || - || o0, Visto che per k fissato
la successione tende ad 1rispetto all'indice j.
iii. La funzione fi (x) = e "%’k & una funzione positive, pari e decrescente su [0, 1], e notiamo che

fix) = e Xk 4 per ognix € [—1,1]
Poiché vale
X/(k+j) _ oq—x/k _ q—x/k [ejx/k(k+j) _ 1] < e Xk [ex/k o 1] -1_ ek per ogni x € [0, 1]

segue che

i~ fle = pag [e 00— < mpa [1- < [1- ] 0 perk oo
il che ci permette di concludere che la successione & di Cauchy, e quindi convergente alla funzione 1, nello
spazio di Banach (CO[—1,11,]| - ||oo)- ]

ESERcCIZIO 6. Sia E = {py,...pN} € R" un sottoinsieme finito, si dimostri che E é chiuso.

DISCUSSIONE.  Mostriamo che un insieme composto da un solo punto Ep = {p} € un insieme chiuso, dopo di
che la tesi segue, ricordando che lunione di un numero finito di chiusi & un chiuso.

Nella prima scheda abbiamo gia provato questo risultato mostrando che l'insieme Ef, ={x:|lx—pll 0} CR"
€ aperto, ora proviamo che E;, € chiuso per successioni. Sia {x } C Ep, poiché l'insieme &€ composto da un solo
elemento segue che x = p per ogni k € N, quindi la successione & automaticamente convergente (in quanto
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costante) ed E contiene il suo punto limite, che &€ sempre p! Si noti che questo ragionamento prova che E, &
compatto, non solo chiuso. [

Esercizio 7. Siconsiderino gli spazinormati (R™, || - ||1), (R, || - ||2) e (R,
rispetto una delle tre norme lo e anche rispetto alle altre due.

“ loo )- Simostriche se A C R" e aperto

DiscussioNE. Sia A C R" un insieme aperto rispetto || - ||, cioé una delle tre norme studiate a lezione (nel
nostro caso k pud assumere uno trai valori 1,2, c0). Sappiamo che, per definizione, per ogni punto xg € A esiste
un reale r =r(xg) > O tale che

Bi(xo.)={yeR":|lxo —yllk <r} CA  conke {1,2,00}
Per dimostrare che A & aperto anche in R" dotato di una delle altre due distanze & sufficiente provare che esiste
Bj(xo,r") C By(xo,r') conj = k ejk € {1,2,00}. Il disegno che segue suggerisce la veridicita dellaffermazione
Nella precedente figura sono illustrate alcune sfere concentriche (rispetto alle diverse norme) in modo da sug-

1.(0', 2)

B.0(0,2)

gerire la costruzione dell'inclusione. Si noti che, siccome i tre spazi normati hanno gli stessi aperti, segue che
possiedono gli stessi chiusi e anche gli stessi compatti e che il concetto di funzione continua € indipendente
da quale delle tre metriche stiamo considerando su R™! ]

Esercizio 8. Data unapplicazione lineare L: (R",]| - ||) — (R",
i.se {x; .} € R" converge a O, allora L(x;) — O,
ii. se X, — X, allora L(x,,) — L(xg).

- ||) si provi che

DISCUSSIONE. i. Sappiamo, dai corsi di geometria afrontati, che ad ogni operatore lineare é possibile associare
una matrice (dipendente dal sistema di riferimento in uso) tale che

n

L(x) = Ax = Za--x- con A = (a;) € Mnn(R) per ognix € R"
1 i=1,...n
fatta questa premessa possiamo procedere. Osserviamo che in R" vale che

w— 0O seesolose |w||—0O seesolose ||w|[cxc — O

allora possiamo ragionare come segue

n n

)

i=1 | =1

2 n 2 n 12 2
= Za1ij +..t Zanjxj =
n =1 =1 ]

12

n
LG = AXI2 = Il ) agpg
j=1

i=1,...,

n n n

12 n n 2
2 2 2 2
<D laillixlloo| <) laygl| X1 =| ) layl] 1A = IAIEIX]IA

=1 | =1 ] i
] -
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ed estraendo una radice quadrata otteniamo che
|AX|| < [[AlllIxlloc  perognix € R"

la maggiorazione ottenuta implica laffermazione da provare. Si noti che, in maniera surrettizia, abbiamo in-
trodotto unaltra norma nello spazio delle matrici (la verifica che tale oggetto sia effettivamente una norma
&, ovviamente, lasciata al lettore...). Si provi a dimostrare il risultato provato usando esclusivamente norme
euclidee.

ii. La seconda parte del testo € una veloce conseguenza della prima parte, infatti, per linearita, possiamo scrivere
che

0 < [[L(x) = L{xo)[| = [|Ax — Axo | = [|A(x — x0)[l < [[All1]Ix = X0 lloo

quindi se x — X, cio€ se ||x — Xg|| — O, allora L(x) — L(xg). ]

L) <

DISCUSSIONE. Lesercizio richiede la produzione di una maggiorazione simile, almeno come idea, ai calcoli
fatti nel punto i dellesercizio precedente. Sia A € My n(R) la matrice che rappresenta loperatore nella base
attuale, allora abbiamo che
n
Y laylh|
=1

n n 2 n 2 n
LGN = AXIZ=) | ) ap| <) <y
i=1 | j=1 i=1 i=1
2 n|n 2 2.n 2
[mi?x|ai,-] 21 ;w} =[mijax|ai,-] Zn|x2—n[rq;ax|au|] I3 = nllA % I3

i=1

5 s }

=1

dalla maggiorazione fatta deduciamo che
IL6AN2 < VAlAllsoliXll2 =Kilxl,  perognix € R”

Si noti che, incidentalmente, abbiamo introdotto unaltra norma per lo spazio vettoriale delle matrici.

Esercizio 10. Sia g € CO[0,1] una funzione positiva e definiamo
= {f: [f(x)| < g(x) per ognix € [0,1]} - (CO[O,1], || - ||Oo)

i. si mostri che C é chiuso,
ii. si descriva 8C.

DISCUSSIONE. i. Per mostrare che C & chiuso possiamo procedere in due modi differenti: mostrare che C¢
€ aperto o provare che ogni successione covergente contenuta in C tende ad un elemento di C, discutiamo
entrambi i modi.

Sia {f,} € Cunasuccessione convergente e denominiamo f il suo punto limite. Per definizione di C sappiamo
che |fi (x)| < g(x) o, piti chiaramente

(1 —g(x) < fi(x) < glx) per ogni x € [0,1] e perognik e N
Notiamo anche che, per ogni x € [0, 1] valgono le seguenti maggiorazioni

0 < [fi(x) — foo(X)| < rg[:ca))%] [f(X) — foo(¥)] = [Ifx — foolloo — O perk — +00
x€[o,

da cui possiamo dedurre che
fi(x) — foo(x) per ogni x € [0, 1]

Passando al limite per k che tende a +oc in (1) otteniamo che
—g(x) < foolx) < g(x) per ogni x € [0,1]

cioé abbiamo provato che fo, € C, provando che C & chiuso.
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Analogamente possiamo provare a mostrare che C© € aperto. Prendiamo in esame h € C¢, dalla definizione
segue che deve esistere almeno un punto p € [0, 1] tale che |h(p)| > g(p) e, per semplicita, supponiamo che
h(p) > g(p), o meglio che h(p) — g(p) = § > O. Allora, per il teorema di permanenza del segno, possiamo
affermare che esiste ¢ > O tale che h(x) — g(x) > §/2 perognix € (p —¢,p +¢€).

A questo punto consideriamo l'insieme B(h,r): C© & aperto se riusciamo a mostrare che B(h,r) C C® per un
opportuno r > O. Poniamo r = §/2, allora segue che se f € B(h,/2) possiamo affermare che

0 < If(x) — h(x)] < max [f(x) — h(x)| < 16 per ogni x € [O,1]
x€[0,1] 2
questo significa che per ogni x € [0,1] vale
h(x) — %5 < f(x) < h(x)+ %5
e siccome h(x) — g(x) > /2 per ogni x € (p — €,p + €), abbiamo ottenuto che
1
g(x) < h(x) — 56 < f(x) perognix € (p—¢,p+¢)

il che implica che B(h,6/2) C C, e cosi abbiamo dimostrato che C* & aperto, cioé che C & chiuso.

ii. A lezione abbiamo caratterizzato i punti della frontiera di C come punti che sono di accumulazione sia per C
che per C€, questo vuol dire che b* € AC se e soltanto se esistono due successioni {a,} C Ce {¢} C C° tali
che le distanze ||a, — b*|| € ||cx — b*||oo sONO infinitesime per k — +cc.

Per quanto discusso nella prima parte dello svolgimento dellesercizio possiamo affermare che

lay (x)| < g(x) per ogni x € [O,1] e (Jei(x)| —g(x)) > O perognix € [p—¢€,p+e€]

si noti che sulle funzioni ¢, non abbiamo ulteriori informazioni, il fatto che si trovi fuori dell'insieme C signi-
fica solo che assume valori maggiori (in valore assoluto) degli output della funzione g in (almeno) un punto
dell'intervallo [0,1] e nulla pit...

Siccome abbiamo gia osservato che

0 < [b*(x) —ak(x)| < [lagy —b*[|oc — O
0 < b*(x) — ()| <[l —b*|loc — O

possiamo dedurre che

per ogni x € [0,1]

ap) —b*(p) e  clp) — b (p)
da cui ricaviamo che
b*(p) <gp) e  [b*(p)l =g(p)
Le due disuguaglianze ottenute ci permettono di caratterizzare l'insieme 9C, infatti abbiamo mostrato che

[f(x)| < g(x) per ogni x € [0,1] }

_ (0] .
oC= {f € C=(o.1m): esiste p € [0, 1] tale che [f(p)| = g(p)

Esercizio 11. Calcolare i seguenti limiti

2 4
. 5x1%3 . mln(1+x7)x; . X . ey
im —=— lim B lim L lim W W]
x—0 /X12 + 3X% x—0 1X2 x—0 X2(X1 + XZ) x—0 1+ 2x1 + 3X2

DiscussIiOoNE. Discutiamo i limiti nell'ordine proposto dal testo dellesercizio.
Nel calcolo del primo limite usiamo le coordinate polari per ottenere che

S5xx | 5r25in(9)cos(9)‘_5r|

/x12 +3x2 ry1+2sin2(6)

dove lultima maggiorazione segue dal fatto che

sin(0) cos(9) sin(0) cos(9) ‘ 1 1

= —|sj < — H
1+2sin2(6) Vi 7Isin(20)< 35 perognid €R

sin(6) cos(6)
1+25sin2(0)

ggr—>0 perr — O*
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Per il secondo limite sfruttiamo la struttra di prodotto per scrivere

min(1+x2)x;  In(1+x?) x,  In(1+x?)  x?
=T <=7 ~m—=7x — 0 perx — O
X1X2 X1 X2 X1 X1

Notiamo che

Xf r4 r

xz(x12 +x%) E sin(6) " sin(6)

il cui limite (per r — 0) non esiste, infatti & sufficiente considerare le due seguenti successioni di punti che
convergono ad O

(xi);
1 . . Xi)q
Xy = (O, 2) da cui abbiamo > N - 0—0
1+k (Xk)2 ((Xk)1 + (Xk)z)
4 —4k
Yi = (e_k,e_3k) da cui otteniamo S € — +00

()2 ()2 + (y)3)  e—3k(e=2kse—4k)
Per lultimo limite & sufficiente osservare che

X1 |
2. 22
1+ 2x1 + 3x2

< X%z = ry/| cos(8) sin(8)| <r — O perr— O*

il che ci permette di concludere l'esercizio. ]

Esercizio 12. Identificare il dominio massimale e calcolare le derivate parziali del primo e del secondo ordine, cioé
0, e gj con j,i =1,2,3, delle seguenti funzioni

fox.xg) = 02 + 3 IN@2 +xd)  glaxgxa) = [T+ 2032 +D2 hlxy,xp,x3) =e X 3574

DISCUSSIONE. La funzione f ha dominio massimale A; = {2x12 + X%}, ovvero A¢ = R?\ {O}, in tutti i punti del
dominio la funzione & prodotto e composizione di funzioni regolari, quindi f € C°°(Ay), in particolare possiamo
calcolare le derivate parziali ricorrendo alle usuali regole di derivazione

4x 2x
Bif(x) = 2x¢ In(2x? + x3) + (x? + 3x§)?+‘x% () = 67 In(2x2 +x3) + (x2 + 3x§)?+2x%

4(12x13x2 + x1x§)

(2x2 +x2)?

24xf - 4x12x% + 12x‘2‘
(2x12 + x%)2
4x;1r + 34x12x% + 6x‘2‘

(2x? +x3)?

Bnrf(x) = 2In(2x? + x3) + Aaf(x) = Oy f(x) =

By2f(x) = 61n(2xZ +x3) +

La funzione g ha dominio massimale Ag = R3, visto che lespressione della legge ha senso per qualsiasi input
X = (X1,X2,X3) € R3, in quanto sotto la radice quadrata appare una somma di quadrati, cio& una quantita mai
negativa. Come prima la funzione & molto regolare, per cui calcoliamo le derivate parziali del primo ordine della
funzione usando le ben note regole di derivazione

X2

4x
7 0gbaxaxa) - 7
[1+4X12+X%+2X§] 1+4X12+X%+2X§]

2X3

12
2 2 2
[1 + 4x1 X5+ 2x3]

Org(xq,x2,x3) =

838(x1,%2,%3) =
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Derivando le funzioni ottenute otteniamo le derivate parziali del secondo ordine

4+ 4%y + 8x§ Axyxy
Onglq,x7,x3) = 55 Onglaxa.x3)=— ”
[1+4X12+X%+2X§] [1+4X12+X%+2X§]
16x1x3 1+4x2 +2x2

O138(x1,%2,X3) = — 0228(x1,%2,X3) = T
[1+ 42 2+ 22 /
+4X1 +X2+2X3]
2
2

3/2
2.2 2
[1+4x1 +X5 +2x3]

3/2

2,2 2

[1 + 4X1 X5+ 2X3]
2x7X3 1+ 4x12 +X

3/2
2.2 2
[1+4x1 +X5 +2x3]

0p38(x1,%2,X3) = — 0338(x1,X2,X3) =

Lasciamo al lettore il calcolo delle derivate mancanti, cioé 9,18, O31g € 03,8
Anche la funzione h & ben definita in tutto lo spazio, quindi Ay, = R3, per le derivate parziali procediamo come
fatto sopra

x2—

2_7y2 2_ 5272
¢ sz 7x3 X 5)(2 7x3

a1h(X1,X2,X3) = —2x1e_ azh(X1,X2,X3) = —1OX2€_

2 2 2
B3h(xq,%9,X3) = —14x3e X~ 7%
2 2 2 2 2 2
Brh(x1,x2,x3) = 2(2x2 — e ™1 ™25 gph(xq,x,%3) = 20x1xe X1~ 7%
2 2 2 2 2 2
813h(X1,X2,X3) = 28X1X3€7x1 R azzh(X1,X2,X3) = 10(1OX% — 1)e7x1 3%~ 7x3

By3h(x4,X9,%3) = 70X2X3€7X1275X%77X§ B33h(xq1,%7,%3) = 14(14X§ - 1)67)(1275)(%77)(g

questi ultimi calcoli (se corretti) concludono lesercizio. ]

ESErcizIO 13. Data la funzione f(xq,%3) = (x| — 2)2 x%

i. studiare la differenziabilita in R2,
ii. calcolare, se esistono, le derivate direzionali 8,,f.

DiscussIoNE. i. Dalla teoria studiata sappiamo che il concetto di differenziabilita in un punto é equivalente
allesistenza dell'iperpiano tangente nel corrispondente punto del grafico della funzione o alla validita della for-

mula (del primo ordine) di Taylor, quindi scriviamo subito lespressione della formula di Taylor (o dell’iperpiano
tangente) centrata in x

T(x,w) = f(x) + VE(x) - w = (x; — 2)2x3 + 2((x1 — 2)x3, (% — 2)2x7) - (wy, W)

Se la funzione é differenziabile in un punto x € R?, allora deve valere che

f(x+w) — f(x) — VF(x) - w )

lim 0]
w—0 w2
cioé se
f(x +w) — f(x) — VFf(x) - w
w2
_ (xq +wq — 2)2(x2 + wz)2 — (% — 2)2x% —2((xq — 2)x%,(x1 - 2)2x2) - (wq,W5)

2 . w22
[wy +w3]
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per w — O. Svolgendo alcuni calcoli sulla precedente espressione e passando a coordinate polari wy = rcos(6)
e wj = rsin(#) abbiamo
o w) — Fx) — VF(x) - w [0 — 2%+ 20¢ — 2)wy + )3 + Dqwy + w))
[Iwll2 [w2 +w2]'/2
(% — Z)ZX% +2(xq — 2)x%w1 +2(xq — 2)2x2w2
[W12 + W%]VZ
i 4(x1 — 2)xawWiw5 + x%w12 +(xg— Z)ZW% +2(xq — 2)w1w% + 2x2w12w2 + wfw%
[WZ + W2]1/2

= 4(xq — 2)x,rcos(6) sin(6) + x%rcos +{xq — 2)2rsm2(9)
+2(x) — 2)r% cos(6) sin%(6) + 2x,r% cos?(6) sin(6) + r> cos2(6) sin®(6)

mandando r — O* si ottiene laffermazione desiderata.
ii. La teoria ci dice che per le funzioni differenziabili vale oy f(p) = VF(p) - w, quindi segue che

Bwf(x) = VF(x) - w = 2((x) — 2)x3, (x1 — 2)2x7) - (Wy, W) = 2(xq — 2)x3wy + 2(xq — 2)2x;w;,
= 2(X1 — 2)X2[(X2, (X1 — 2)) . (W],Wz)]

ESeRrcizio 14. Data
(x—y)3
fooy) =1 [x=02+(y—02]°
0 (xy)=(1,1)

studiare la continuita, la derivabilita e la differenziabilita di f al variare del parametro a € R.

(x,y) = (1,1)

DIScUSSIONE. Osserviamo subito che la funzione per (x,y) = (1,1) & un rapporto tra un polinomio un poli-
nomio elevato a potenza, inoltre il denominatore € sempre non nullo, le funzioni sono funzioni di classe C°°,
quindi il rapporto & differenziabile (e quindi continuo e derivabile) in tutti i punti di R2\ {(1,1)}, quindi possiamo
concentrarci sullo studio della funzione nel punto (1,1).

Rammentiamo che f & continua nel punto (1,1) se € vero che

(x—y)?
(x=12+(y—12)2

Esprimendo x e y in coordinate polari centrate nel punto (1,1), cioé ponendo

x =1+ pcos(9)
y =1+ psin(6)

If(x,y) — f(1,1)] =

—0 per (x,y) — (1,1)

abbiamo che
x—y)?3
(x—1Z+(y—1)2)a

_|(1+pcos(6) —1— psin(6)*| _ p?
((pCOS( ))2 + (p(sin(6)))?)2
3-22) cos(9) — sin(9)|® < Cp> 22

| cos(6) — sin(9)|3
p2a

infatti sappiamo che |cos(6)],|sin(6)| < 1 e quindi segue la disuguaglianza
| cos(0) — sin(6)|3 < [|cos(0)] + |sin(9)|]3 <8 per ogni 6 € [0, 27]

Poiché la maggiorazione ottenuta & uniforme rispetto alla variabile 6 e la quantita risulta infinitesima se (3 —
2a) > 0, abbiamo provato che f & continuain (1,1) se a < 3/2. Se a = 3/2 abbiamo che

x—y)3

- g 3
((X — 1)2 + (y _ 1)2)a - (COS(@) S|n(9))

f(x,y) =
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che non ¢ infinitesima per p che tende a O. Mentre se a > 3/2 si trova

i (x—y)? _ (cos(6) —sin(6))®
Y=y e s

che diverge, per p che tende a O, se 6 = 7/4,57/4.
Per quanto riguarda la derivabilita, calcoliamo i rapporti dei limiti incremental

. B 3 0O seax<1
fim D ZHD i P i h222) 1 seast
h—0 h h—0h2*!1 h—o0 A sea>
e analogamente
Cfasl—f) k3, | O sea<d
im ————— = lim = lim —k =y —1 sea=1
k—s0 k k—0 k21 k—0 A sea>t
Quindi f & derivabile in (1,1) per ogni a < 1e abbiamo che
0 sea<1 0 seax1
81f(1’1)_{ 1 sea=1 € azf(1,1)—{ -1 sea=1

Se a > 1, la funzione f, non essendo derivabile, non pud essere differenziabile in (1,1).
Invece se a < 1 possiamo scrivere

im f(1+h,1+k) —(1,1) — 5,f(1,)h — 8, f(1, )k lim (h—k)3
(h,k)—(0,0) VhZ 12 (hk)—(0,0) (h2 + k2)a+1/2
3 o 3
_ lim 0°(cos(8) — sin(6)) -0
p_)o+ p1+2a

perché 3 — (1+2a) > O per ognia < 1e|cos() — sin(9)|3 < 8.
Infine se a = 1 otteniamo

lim f(1+h,1+k) —£(1,1) — 5f(1,1)h — 6,f(1, 1)k lim 1 [(h —k)3 h k]
= . —h+
(hk)—(0,0) Vh2+ K2 (hK)—(0.0) \hZ 4|2 | h%+k?
: (h—k)3 —h3 —hk? +h2k+ k3 _ —2hZk + 2hk?
= im = lm ———
(h.k)—(0,0) (h? +k%)3/2 (hk—(0,0) (h%+k?)3/2
= lim 2cos(8)sin(9)(sin(8) — cos(8))
p—0*
e questo limite non esiste, come si vede testando i valori 6 =0 e 6 = /3.
Dunque f ¢ differenziabile in (1,1) solo pera < 1. ]

ESERCIZIO 15. Stabilire se le seguenti funzioni sono continue, derivabili, differenziabili o di classe C' in R?

x3 —x3
2,.2,3 —2_  x=0 2,2 .2
fx,y,z) =x“+y“+z g(xq,%7,X3) = x12+x%+2x§ h(x1,x2,X3) = X7 + x5 — X3
0] x=0

Calcolare le equazioni cartesiane del piano tangente al grafico di f in (1,1,2), del piano tangente al grafico di g in
(1,0,1) e del piano tangente al grafico di h in (O, 0, O).

DISCUSSIONE.  Le funzioni f e h sono palesamente di classe C>°(R3), in quanto polinomi, quindi sono funzioni
continue e derivabili e differenziabili. In particolare vale

Vilx,y,z) = (2x, 2y,322) e Vh(xy,X7,%3) = (21, 2%3, —2x3)
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e ricordando lespressione del piano tangente, possiamo ricavare rapidamente lequazione del piano tangente

per la funzione f
w=f(1,1,2)+Vf(1,1,2) - (x— 1,y —1,2—2)=10+(2,2,12) - (x -,y — 1,z — 2)
=10+2x—2+2y —2+12z - 24
=2x+2y+122+18

mentre per la funzione h otteniamo
X4 = h(0,0, O) + Vh(0,0,0) . (X1,X2,X3) =0+ (0,0,0) . (X1,X2,X3) =0
La funzione g & sicuramente regolare in R3 \ {O}, cominciamo lo studio della continuita in O usando le coor-

dinate sferiche
X} —x3  Bsind(¢)(cos3(6) —sin3(6)) _ [

X2 +x2 + 2:2 r2[1+cos?(¢)]
perr — O*, visto che

sin3(<1>)(cos3(9) —sin3())

. 3 .
sin (d))(cos3(6)fsm3(9)) 0
1+ cos2(¢)

< |sin3(¢)|-|cos®(6)—sin3(6)| < |cos(6)|3+|sin(8)]> <2 perognif € [0,2n]

1+ cos2(¢)
Riguardo alle derivate parziali in O vale che
_gh,0,0)-g000) . h

O)= | = | =1

%g(0) h— 30 h h-—J0 h(h2)
_ 3
5,8(0) = lim g(0.h.0) —g(0.0,0) = lim o = —
h—0 h h—0 h(h?)

O)= = | =0

%g(0) h— o h h-J0 h(2h2)

per cui possiamo dire che la funzione € derivabile in O e scrivere che Vg(O) = (1,—1,0).
Studiare la differenziabilita in O significa, in questo caso, stimare il seguente rapporto
3 3
w) —Vg(0) -w 1 Wy —w
g( ) g( ) - . - 1 - 2 5 7(1,71,0)'(W1,W2,W3)
Wiz Wiz | w2+ w2202
—w1w% — 2w1w§ + w12w2 + 2w2w§
) [w? + w2 + 2w2][w? + w3 + w2]V2
_ r3 sin(¢)[sin2(¢) sin(0) cos(6)(cos(8) — sin(6)) + 2 cos2(¢)(sin(6) — cos(6))]
r3(1+cos?(¢))2
semplificando r rimane un quoziente che dipende da 6 e che in generale non é infinitesimo, quindi la funzione
g non é differenziabile in O. Infine, per x = O abbiamo che

42,22 3,6v2v2 2242 _ 4 93 3 gy2y2
Xy + 3XPX5 + 2X0X5 + 6X7X3 —3XTX) — X5 — 2X]Xp + 2X1X5 — 6X)X3

3.3
XX

2+ x2+2x3)2

2,42 2)2 !
(x1 X5+ 2x3) (x1

Vg(x) = [

e, in particolare, vale

2,42 2)2
(x1 X5+ 2x3)

1

7
Vg(1,0,1) = (6,0,6)
da cui ricaviamo lequazione del piano tangente nel punto
17 1

7 1
—,0 ——)~ (X1 —1,X2,X3 —1) = —§ + §X1 — §X3

1
x4 =g(1,0,1) +Vg(1,0,1) - (xy —1,x2,x3 — 1) = 3 +(9, '3

concludendo lesercizio.

1 .
ESERCIZIO 16. Sia u(x) = 5 ||x|\%, con x € R", si calcolino le seguenti quantita

dwu(x) perwe R"\ {O} Vu(x) Au(x)

du(x) peri=1,..,n
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DISCUSSIONE.  Poiché possiamo scrivere che
u(x) = = ||XH2 Z[Xl +x2 +xn] per ognix € R"
segue, per calcolo diretto, che
1
du(x) = Eai [x12 + x% + xn] > =2X = X perognii=1,..,n
Vu(x) = (Bu(x), ..., Onu(x)) = (Xq, ...y Xn) = X
n
Owu(x) = Vu(x) - w=x-w= Zwixi
i=1

Giu(x) = 6 [Gu(x)] = 8% =1
Au(x) = 0u(x) +..+ Opu(x) =1+...+1=n

Si noti che, essendo Ju(x) = x; € C'(R"), la funzione é differenziabile in tutto lo spazio e possiamo dedurre le
derivate direzionali tramite il prodotto scalare del gradiente con il versore direzione che ci interessa. n

1
ESERrcIzIO 17. Sia u(x) = Tlor conx & R3\ {0}, si calcolino le seguenti quantita
2

du(x) peri=1,2,3 dwu(x) perwe R3\ {O} Vu(x) Au(x)

DISCUSSIONE.  Procediamo esattamente come abbiamo fatto nello svolgimento dellesercizio precedente,
quindi abbiamo

= 1 = + + i n
u(x)-m [ x2 xn] per ognix € R"\ {O}

da cui, per calcolo diretto, ricaviamo

2 —3/2 _ X o
[X1 +X2 ] Xj = —m perognii=1,..,n
X
= (B1u(x), ... opu(x)) = ———
I3
X
Owu(x) = Vu(x) - w=——— -w=—
X113 ||x||; 21
3
Ou(x) = 8, [Gux)] = -5, X ”X”%_xii”XHZ'ZXi ) HX||%—3Xi2
= = T g INE
[ +xd..oxd] [}2+x2..+x3] >

3x2 +3x2+3x3 = 3IIx3
5
13

Au(x) = Oyyu(x) +.. + Onu(x) =

sorprendentemente (?) abbiamo ottenuto che il laplaciano della funzione € nullo, dove la funzione esiste. Le
soluzioni dellequazione differenziale Aw(x) = O sono dette funzioni armoniche, come vedremo in futuro tali
funzioni hanno un ruolo interessante in varie questioni dellanalisi matematica e della fisica. Concludiamo la
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discussione inserendo un disegno di una parte del grafico della funzione

inf20]= Plot3D[{1/ (xA2+yA2)}, {x, 0, 1}, {y, 0, 1},
RegionFunction » Function[{x, ¥, 7z}, 0 < x22+y22<1]]

Si noti che il grafico di u & un sottoinsieme di R4, la figura si riferisce all'intersezione del grafico con il sottospazio
vettoriale x3 = O. ]

ESERCIZIO 18. Sia u(x) = In(||x||3), con x € R2\ {O}, si calcolino le seguenti quantita
du(x) peri=1,2 Vu(x) Au(x)

DISCUSSIONE. Osserviamo che

u(x) = ln( x12 +x%)= ln([x12+x%]1/2)= %ln(x12+x%)

e quindi segue che

1 1 2X] Xj
Au(x) =9 = In x2+x2)= = -
J 12 ( 1 2) 2x12+x% HX”%
VU(X)=( X12' X22)= ZX 2 X2
Iz lixll ) +xg  [Ixlly
2 2
Xi (X2+X2)—X-(2x-) X% — x
Ghu(x)zai[zlz}= L L — L conix]
Xy +X5 (X1 +x2) (X1 +X2)
XZ—X2 XZ—XZ
Au(x) = Bu(x) + Bppu(x) = —2—1-+ 12 -0 perognix=0
(X12+X%)2 (X12+x%)2

Lultimo calcolo mostra che u(x) = In([|x||5) & una funzione armonica nel suo dominio, cioé in R2 \ {O}, torne-

remo sullargomento piu avanti. n
1
ESERCIZIO 19. Sia w(x) = %(1 — ||x\|%), con x € B = B(O,1), si verifichi che la funzione risolve il seguente problema
—Aw(x) =1 XxeB
w(x) =0 X € OB

inoltre si calcoli 6nw(x) per x € OB, dove n é il versore normale 6B in x.
DiscussioNE.  Cominciamo scrivendo per esteso lespressione della funzione

W(X)=_n 1—x12—x%—...—x% X€B={X12+X%+...+Xr21<1}§fRn
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e, grazie alle usuali (e ben note) regole di derivazione calcoliamo le derivate parziali (del primo e del secondo
ordine) della funzione

1 22 2 2x; 1 .
aIW(X)=%6][1—X1 —X2—...—Xn]=—%=_ﬁxj ]=1,...,n
Xi 1 .
ajiW(X) =0 [ajw(x)] =0 [__]] = { n sej=1i
n o sej#i
J
n 1 1
Aw(x) = E 1 Ojw(x) = Oyw(x) + BaW(X) + ... + GnW(x) = RS 1
j=

lultima espressione ottenuta prova che la funzione w soddisfa lequazione differenziale contenuta nel proble-
ma. Per concludere la prima parte dellesercizio é sufficiente notare che se x € 0B allora ||x||; = 1, quindi vale
w(x) = (1— ||x||§)/2n = (1 —1)/2n = 0. Come prima inseriamo una appresentazione del grafico di w per il caso
n=2

In[21]:= P'LotBD[{(l -xMh2-ynh2)y/4y, {x, -1, 1}, {v, -1, 1},

RegionFunction » Function[{x, y, 2z}, x*2+ y*2 <1], ViewPoint » Above]

1.0 %
out[21]= \\

05

Per il calcolo della derivata direzionale facciamo affidamento al fatto che w € C2(RM), per cui abbiamo d,w(x) =
Vw(x) - n, inoltre osserviamo che x = n in ogni punto di 8B, da cui ricaviamo che

1
anw(x)=Vw(x)-x=f§~x=—ﬁ per ogni x € 0B



