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ESERCIZIO 1. Si riscrivano le definizioni di insieme aperto, chiuso, limitato, convesso e compatto per lo spazio di
Banach

(
C0[0, 1],∥ · ∥∞

)
.

ESERCIZIO 2. Si provi che l’insieme A =
{
f ∈ C0[0, 1] : f(x)> 0 per ogni x ∈ [0, 1]

}
è aperto in

(
C0[0, 1],∥ · ∥∞

)
, poi

si scriva l’espressione di Ac.

ESERCIZIO 3. i. Considerato lo spazio vettoriale C0[0, 1], si provi che

∥f− g∥X =
∫ 1

0
x|f(x)− g(x)|dx

è una norma su C0[0, 1].
ii. Sia {fn} la successione definita da

fn(x) =
{

n(1−nx) se x≤ 1/n
0 altrimenti

mostrare che fn converge alla funzione nulla rispetto alla norma∥·∥X. Stabilire se converge anche in
(
C0[0, 1],∥ · ∥∞

)
.

ESERCIZIO 4. Si consideri lo spazio vettoriale C0[0,π] e le norme ∥ · ∥i, con i = 1,2,+∞, definite in modo che, per
f ∈ C0[0,π], valga

∥f∥1 =
∫ π

0
|f(s)|ds ∥f∥2 =

[∫ π
0
|f(s)|2ds

]1/2
∥f∥∞ = max

s∈[0,π]
|f(s)|

i. si mostri che esistono due costanti C1,C2 > 0 tali che
∥f∥1 ≤ C1∥f∥∞ e ∥f∥2 ≤ C2∥f∥∞ per ogni f ∈ C0[0,π]

ii*. esistono delle costanti K1,K2 > 0 in modo che
∥f∥∞ ≤ Ki∥f∥i per ogni f ∈ C0[0,π] e i = 1,2?

iii*. esiste C0 > 0 tale che ∥f∥1 ≤ C0∥f∥2.

ESERCIZIO 5. Nello spazio C0[−1, 1] si provi che, per k = 1,2,3, ..., si ha
i. le funzioni fk(x) = e−kx2 costituiscono una successione di Cauchy rispetto a ∥ · ∥2,
ii. le funzioni fk(x) = e−kx2 non sono una successione di Cauchy rispetto a ∥ · ∥∞,
iii. le funzioni fk(x) = e−|x|/k costituiscono una successione di Cauchy rispetto a ∥ · ∥∞.

ESERCIZIO 6. Sia E = {p1, ...,pN} ⊆�
n un sottoinsieme finito, si dimostri che E è chiuso.
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ESERCIZIO 7. Si considerino gli spazi normati (�n,∥ · ∥1
), (�n,∥ · ∥2

) e (
�

n,∥ · ∥∞
). Si mostri che se A⊆�

n è aperto
rispetto una delle tre norme lo è anche rispetto alle altre due.

ESERCIZIO 8. Data un’applicazione lineare L : (�n,∥ · ∥2)−→ (�n,∥ · ∥2) si provi che
i. se {xk} ⊆�

n converge a O, allora L(xk)−→O,
ii. se xk −→ x0, allora L(xk)−→ L(x0).

ESERCIZIO 9. Data un’applicazione lineare L : (�n,∥ · ∥2) −→ (�n,∥ · ∥2) si provi l’esistenza di K > 0 tale che
∥L(x)∥2 ≤ K∥x∥2, per ogni x ∈�

n.

ESERCIZIO 10. Sia g ∈ C0[0, 1] una funzione positiva e definiamo

C =
{
f : |f(x)| ≤ g(x) per ogni x ∈ [0, 1]

}
⊆

(
C0[0, 1],∥ · ∥∞

)
i. si mostri che C è chiuso,
ii. si descriva ∂C.

ESERCIZIO 11. Calcolare i seguenti limiti

lim
x−→0

5x1x2√
x2

1 + 3x2
2

lim
x−→0

π ln(1 + x2
1 )x2

x1x2
lim

x−→0

x4
1

x2(x2
1 + x2

2)
lim

x−→0

√x1x2
1 + 2x2

1 + 3x2
2

ESERCIZIO 12. Identificare il dominio massimale e calcolare le derivate parziali del primo e del secondo ordine, cioè
∂j e ∂ji con j, i = 1,2,3, delle seguenti funzioni

f(x1, x2) = (x2
1 + 3x2

2) ln(2x2
1 + x2

2) g(x1, x2, x3) =
√

1 + 4x2
1 + x2

2 + 2x2
3 h(x1, x2, x3) = e−x2

1−5x2
2−7x2

3

ESERCIZIO 13. Data la funzione f(x1, x2
) = (x1− 2)2 x2

2
i. studiare la continuità della funzione e delle sue derivate parziali in �

2,
ii.studiare la differenziabilità della funzione �2,
iii. calcolare, se esistono, le derivate direzionali ∂wf.

ESERCIZIO 14. Data

f(x,y) =


(x− y)3[

(x− 1)2 + (y− 1)2
]a (x,y) , (1, 1)

0 (x,y) = (1, 1)

studiare la continuità, la derivabilità e la differenziabilità di f al variare del parametro a ∈�.

ESERCIZIO 15. Stabilire se le seguenti funzioni sono continue, derivabili, differenziabili o di classe C1 in �
2

f(x,y,z) = x2 + y2 + z3 g(x1, x2, x3) =


x3

1 − x3
2

x2
1 + x2

2 + 2x2
3

x ,O

0 x = O
h(x1, x2, x3) = x2

1 + x2
2− x2

3

Calcolare le equazioni cartesiane del piano tangente al grafico di f in (1, 1,2), del piano tangente al grafico di g in
(1,0, 1) e del piano tangente al grafico di h in (0,0,0).
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Ricordando che
∇ = (∂1, ...,∂n) e É = ∂11 + ∂22 + ... + ∂nn

si affrontino i seguenti esercizi

ESERCIZIO 16. Sia u(x) = 1
2∥x∥

2
2, con x ∈�

n, si calcolino le seguenti quantità

∂iu(x) per i = 1, ...,n ∂wu(x) per w ∈�
n \ {O} ∇u(x) Éu(x)

ESERCIZIO 17. Sia u(x) = 1
∥x∥2

, con x ∈�
3 \ {O}, si calcolino le seguenti quantità

∂iu(x) per i = 1,2,3 ∂wu(x) per w ∈�
3 \ {O} ∇u(x) Éu(x)

ESERCIZIO 18. Sia u(x) = ln(
∥x∥2

), con x ∈�
2 \ {O}, si calcolino le seguenti quantità

∂iu(x) per i = 1,2 ∇u(x) Éu(x)

ESERCIZIO 19. Sia w(x) = 1
2n (1−∥x∥2

2), con x ∈ B = B(O, 1), si verifichi che la funzione risolve il seguente problema{
−Éw(x) = 1 x ∈ B

w(x) = 0 x ∈ ∂B
inoltre si calcoli ∂nw(x) per x ∈ ∂B, dove n è il versore normale ∂B in x.

SVOLGIMENTI

ESERCIZIO 1. Si riscrivano le definizioni di insieme aperto, chiuso, limitato, convesso e compatto per lo spazio di
Banach (C0[0, 1],∥ · ∥∞).

DISCUSSIONE. Ricordando le definizioni date per un generico spazio normato possiamo scrivere che A ⊆
(C0[0, 1],∥ · ∥∞) è aperto se per ogni f ∈ A esiste r0 = r0(f)> 0 tale che

B(f, r0) =
{
h ∈ C0[a,b] : ∥f− h∥∞ < r0

}
=
{

h : max
x∈[a,b]

|f(x)− h(x)|< r0

}
=
{
h ∈ C0[a,b] : |f(x)− h(x)|< r0 per ogni x ∈ [a,b]

}
⊆ A

E⊆ C0[a,b] è chiuso se il suo complementare è aperto,
W⊆ C0[a,b] è limitato se esiste M> 0 tale che

W⊆ B(O,M) =
{

h ∈ C0[a,b] : max
x∈[a,b]

|h(x)|<M
}

=
{
h ∈ C0[a,b] : |h(x)|<M per ogni x ∈ [a,b]

}
C ⊆ C0[a,b] è convesso se per ogni f,g ∈ C si ha che la funzione (tf + (1− t)g) ∈ C per ogni t ∈ [0, 1], cioè la
funzione definita nel seguente modo

ht(x) := tf(x) + (1− t)g(x) con dom(h) = [a,b]
appartiene all’insieme C, per ogni valore del parametro t nell’intervallo [0, 1].
K ⊆ C0[a,b] è compatto se per ogni successione {fk} ⊆ K si ha che esistono una sottosuccessione {fk(j)} ⊆ K
ed una funzione f∞ ∈ K tali che

fk(j) −→ f∞ per j−→ +∞ cioè ∥fk(j)− f∞∥∞ −→ 0 per j−→ +∞
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ESERCIZIO 2. Si provi che l’insieme A =
{
f ∈ C0[0, 1] : f(x)> 0 per ogni x ∈ [0, 1]

}
è aperto in

(
C0[0, 1],∥ · ∥∞

)
, poi

si scriva l’espressione di Ac.

DISCUSSIONE. Sia g ∈ A, dalla definizione segue che g(x) > 0 per ogni x ∈ [0, 1], poiché [0, 1] è un intervallo
chiuso e limitato, per il teorema di Weierstrass, abbiamo che esiste xm ∈ [0, 1] tale che min |g(x)| = min[g(x)] =
g(xm) = m > 0. Allora consideriamo l’insieme B(g,m/2) e proviamo che tale insieme è contenuto in A: sia
h ∈ B(g,m/2), allora possiamo scrivere che

|h(x)− g(x)| ≤ ∥h− g∥∞ <m/2 per ogni x ∈ [0, 1]

dalle proprietà del valore assoluto ricaviamo

h(x) = h(x)− g(x) + g(x)≥ g(x)− |h(x)− g(x)|>m− 1
2 m = 1

2 m> 0 per ogni x ∈ [0, 1]

essendo la funzione h positiva in tutto l’intervallo possiamo affermare che h ∈ A, l’arbitrarietà di h ci permette
di dedurre che B(g,m/2)⊆ A.
Ricordiamo che Ac = C0[0, 1] \A = {f ∈ C0[0, 1] : f < A}, per caratterizzare una funzione che non appartiene ad
A è necessario ricordare come si nega una affermazione, siccome la proprietà che definisce A è che le funzio-
ni nell’insieme sono positive in ogni punto di [0, 1], la negazione di questa affermazione è che deve esistere
almeno un punto dell’intervallo su cui la richiesta non è soddisfatta, quindi abbiamo che

Ac =
{
f ∈ C0[0, 1] : esiste s ∈ [0, 1] tale che f(s)≤ 0

}
il che conclude lo svolgimento.

ESERCIZIO 3. i. Considerato lo spazio vettoriale C0[0, 1], si provi che

∥f− g∥X =
∫ 1

0
x|f(x)− g(x)|dx

è una norma su C0[0, 1].
ii. Sia {fn} la successione definita da

fn(x) =
{

n(1−nx) se x≤ 1/n
0 altrimenti

mostrare che fn converge alla funzione nulla rispetto alla norma∥·∥X. Stabilire se converge anche in
(
C0[0, 1],∥ · ∥∞

)
.

DISCUSSIONE. i. Dimostriamo, più in generale, che se w ∈ C0[a,b], con w(x)> 0 per ogni x ∈ (a,b), allora

∥f∥w :=
∫ b

a
w(x)|f(x)|dx

è una norma sullo spazio vettoriale C0[a,b]. Naturalmente nel caso che ci interessa maggiormente w(x) = x.
La positività della norma segue dal fatto che w(x) > 0 e dalle proprietà del valore assoluto. Mostriamo che è
assurdo supporre che ∥h∥w = 0 e che esista x0 ∈ [a,b] tale che h(x0) > 0. Essendo h continua per il teorema
della permanenza del segno possiamo pensare che x0 ∈ (a,b) (altrimenti h≡ 0 in [a,b]), per la continuità di h
in x0 con ε = h(x0)/2> 0 dovrebbe esistere δ = δ(ε)> 0 (che possiamo scegliere in modo che (x0−δ, x0 +δ)⊆
(a,b)) tale che

|h(x)− h(x0)|< h(x0)
2 per ogni x ∈ (x0− δ, x0 + δ)

quindi tale che

h(x)> h(x0)
2 per ogni x ∈ (x0− δ, x0 + δ)

Ma allora

0 =
∫ b

a
h(x)dx≥

∫ x0+δ

x0−δ
h(x)dx>

∫ x0+δ

x0−δ

h(x0)
2 dx = δh(x0)> 0

e abbiamo raggiunto una contraddizione.
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L’omogeneità dell̀ıapplicazione ∥ · ∥w segue dall’omogeneità del valore assoluto, cioè dal fatto che il valore
assoluto di un prodotto è uguale al prodotto dei valori assoluti dei fattori.
Infine verifichiamo la disuguaglianza triangolare per il ∥ · ∥w, infatti vale

∥f + g∥w =
∫ b

a
w(x)|f(x) + g(x)|dx≤

∫ b

a
w(x)[|f(x)| + |g(x)|]dx

=
∫ b

a
w(x)|f(x)|dx +

∫ b

a
w(x)|g(x)|dx = ∥f∥w + ∥g∥w

per ogni f,g ∈ C0[a,b], perché w(x)> 0 in (a,b).
ii. Cominciamo osservando che

∥fn∥w = ∥fn−0∥w =
∫ 1

0
x|fn(x)|dx =

∫ 1/n

0
[nx−n2x2]dx = 1

6n −→ 0

per n −→ +∞, quindi fn converge alla funzione nulla nello spazio normato (X,∥ · ∥w). Invece lo studio della
convergenza rispetto alla norma ∥ · ∥∞ è più semplice visto che fn(0) = n per ogni n ∈�, questo implica che

∥fn∥∞ ≥ |fn(0)| = n−→ +∞

quindi la successione non è convergente (neppure limitata!) rispetto alla norma ∥ · ∥∞.

ESERCIZIO 4. Si consideri lo spazio vettoriale C0[0,π] e le norme ∥ · ∥i, con i = 1,2,+∞, definite in modo che, per
f ∈ C0[0,π], valga

∥f∥1 =
∫ π

0
|f(s)|ds ∥f∥2 =

[∫ π
0
|f(s)|2ds

]1/2
∥f∥∞ = max

s∈[0,π]
|f(s)|

i. si mostri che esistono due costanti C1,C2 > 0 tali che

∥f∥1 ≤ C1∥f∥∞ e ∥f∥2 ≤ C2∥f∥∞ per ogni f ∈ C0[0,π]

ii*. esistono delle costanti K1,K2 > 0 in modo che

∥f∥∞ ≤ Ki∥f∥i per ogni f ∈ C0[0,π] e i = 1,2?

iii*. esiste C0 > 0 tale che ∥f∥1 ≤ C0∥f∥2.

DISCUSSIONE. i. Notiamo che f ∈ C0[0,π] è integrabile, in quanto continua, quindi tutte le norme coinvolte
sono ben definite. Dalla proprietà di monotonia dell’integrale e dalla definizione di ∥ · ∥∞ ricaviamo

∥f∥1 =
∫ π

0
|f(s)|ds≤

∫ π
0

[
max

s∈[0,π]
|f(s)|

]
ds = ∥f∥∞

∫ π
0

ds = π∥f∥∞

∥f∥2
2 =

∫ π
0
|f(s)|2ds≤

∫ π
0

[
max

s∈[0,π]
|f(s)|

]2
ds = ∥f∥2

∞

∫ π
0

ds = π∥f∥2
∞

dunque valgono le disuguaglianze proposte dal testo dell’esercizio con costanti C1 = π e C2 =
√
π.

ii. Le disuguaglianze scritte sono false, per provare questo fatto consideriamo la seguente successione di fun-
zioni continue su [0,π]

fk(s) =
{

1− eks s ∈ [0,e−k]
0 s ∈ (e−k,π] k = 1,2,3, ...

allora, per ogni k, abbiamo che

∥fk∥∞ = fk(0) = 1 ∥f∥1 =
∫ π

0
|f(s)|ds = 1

2ek ∥f∥2 =
[∫ π

0
|f(s)|2ds

]1/2
=
√

3
3ek/2

Dai precedenti calcoli deduciamo che le costanti Ki non posso esistere visto che ∥fk∥∞ = 1 è costante rispetto
all’indice k, mentre le due norme integrali sono entrambe infinitesime rispetto a k.
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iii. Per provare quest’ultima disuguaglianza usiamo le proprietà del prodotto scalare, precisamente la disugua-
glianza di Cauchy-Schwartz. Infatti possiamo scrivere che

∥f∥1 =
∫ π

0
|f(s)|ds =

∫ π
0

1 · |f(s)|ds = (1|f)2 ≤ ∥1∥2∥f∥2 =
[∫ π

0
ds

]1/2 [∫ π
0
|f(s)|2ds

]1/2
=
√
π∥f∥2

ottenendo in questo modo la tesi desiderata.

ESERCIZIO 5. Nello spazio C0[−1, 1] si provi che, per k = 1,2,3, ..., si ha
i. le funzioni fk(x) = e−kx2 costituiscono una successione di Cauchy rispetto a ∥ · ∥2,
ii. le funzioni fk(x) = e−kx2 non sono una successione di Cauchy rispetto a ∥ · ∥∞,
iii. le funzioni fk(x) = e−|x|/k costituiscono una successione di Cauchy rispetto a ∥ · ∥∞,

DISCUSSIONE. i. & ii. La successione fk(x) = e−kx2 è una successione di funzioni limitate, positive e pari, quindi
vale

∥fk∥∞ = max
x∈[−1,1]

e−kx2 = fk(0) = 1≥ e−kx2 per ogni x ∈ [−1, 1] e k ∈�

però la successione converge puntualmente ad una funzione discontinua, infatti si ha

fk(x)−→ f∞(x) =
{

1 x = 0
0 x ∈ [−1,0)∪ (0, 1] per k−→ +∞

Dal punto di vista della norma integrale abbiamo che

∥fk− fk+j∥2
2 =

∫
[−1,1]

|fk(x)− fk+j(x)|2dx =
∫

[−1,1]
e−2kx2

|1− e−2jx2
|2dx≤

∫
[−1,1]

e−2kx2 dx

=
∫

[−
√

k,
√

k]
e−2s2 1√

k
ds≤ 1√

k

∫
�

e−2s2 ds = C√
k
−→ 0 per k−→ +∞

quindi la successione è di Cauchy rispetto alla norma ∥ · ∥2.
Rispetto alla norma uniforme abbiamo che

∥fk− fk+j∥∞ = max
x∈[−1,1]

[
e−kx2

− e−(k+j)x2
]

=
[

k
k + j

]k/j j
k + j −→ 1 per j−→ +∞

e il limite calcolato mostra che la successione non può essere di Cauchy rispeto a ∥ · ∥∞, visto che per k fissato
la successione tende ad 1 rispetto all’indice j.
iii. La funzione fk(x) = e−|x|/k è una funzione positive, pari e decrescente su [0, 1], e notiamo che

fk(x) = e−|x|/k −→ 1 per ogni x ∈ [−1, 1]
Poiché vale

ex/(k+j)− e−x/k = e−x/k [ejx/k(k+j)− 1
]
≤ e−x/k [ex/k− 1

]
= 1− ex/k per ogni x ∈ [0, 1]

segue che

∥fk− fk+j∥∞ = max
x∈[−1,1]

[
e−|x|/(k+j)− e−|x|/k]≤ max

x∈[−1,1]

[
1− e−|x|/k] =

[
1− e−1/k]−→ 0 per k−→ +∞

il che ci permette di concludere che la successione è di Cauchy, e quindi convergente alla funzione 1, nello
spazio di Banach (C0[−1, 1],∥ · ∥∞).

ESERCIZIO 6. Sia E = {p1, ...,pN} ⊆�
n un sottoinsieme finito, si dimostri che E è chiuso.

DISCUSSIONE. Mostriamo che un insieme composto da un solo punto Ep = {p} è un insieme chiuso, dopo di
che la tesi segue, ricordando che l’unione di un numero finito di chiusi è un chiuso.
Nella prima scheda abbiamo già provato questo risultato mostrando che l’insieme Ec

p = {x : ∥x−p∥2 , 0} ⊆�
n

è aperto, ora proviamo che Ep è chiuso per successioni. Sia {xk} ⊆ Ep, poiché l’insieme è composto da un solo
elemento segue che xk = p per ogni k ∈�, quindi la successione è automaticamente convergente (in quanto
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costante) ed E contiene il suo punto limite, che è sempre p! Si noti che questo ragionamento prova che Ep è
compatto, non solo chiuso.

ESERCIZIO 7. Si considerino gli spazi normati (�n,∥ · ∥1
), (�n,∥ · ∥2

) e (
�

n,∥ · ∥∞
). Si mostri che se A⊆�

n è aperto
rispetto una delle tre norme lo è anche rispetto alle altre due.

DISCUSSIONE. Sia A ⊆ �
n un insieme aperto rispetto ∥ · ∥k, cioè una delle tre norme studiate a lezione (nel

nostro caso k può assumere uno tra i valori 1,2,∞). Sappiamo che, per definizione, per ogni punto x0 ∈ A esiste
un reale r = r(x0)> 0 tale che

Bk(x0, r) = {y ∈�
n : ∥x0− y∥k < r}⊆ A con k ∈ {1,2,∞}

Per dimostrare che A è aperto anche in�
n dotato di una delle altre due distanze è sufficiente provare che esiste

Bj(x0, r′) ⊆ Bk(x0, r′) con j , k e j, k ∈ {1,2,∞}. Il disegno che segue suggerisce la veridicità dell’affermazione
Nella precedente figura sono illustrate alcune sfere concentriche (rispetto alle diverse norme) in modo da sug-

B1(O,2)

B∞(O,2)
B2(O, 1)

gerire la costruzione dell’inclusione. Si noti che, siccome i tre spazi normati hanno gli stessi aperti, segue che
possiedono gli stessi chiusi e anche gli stessi compatti e che il concetto di funzione continua è indipendente
da quale delle tre metriche stiamo considerando su �

n!

ESERCIZIO 8. Data un’applicazione lineare L : (�n,∥ · ∥)−→ (�n,∥ · ∥) si provi che
i. se {xk} ⊆�

n converge a O, allora L(xk)−→O,
ii. se xk −→ x0, allora L(xk)−→ L(x0).

DISCUSSIONE. i. Sappiamo, dai corsi di geometria afrontati, che ad ogni operatore lineare è possibile associare
una matrice (dipendente dal sistema di riferimento in uso) tale che

L(x) = Ax =

 n¼
j=1

aijxj


i=1,...,n

con A = (aij) ∈Mn,n(�) per ogni x ∈�
n

fatta questa premessa possiamo procedere. Osserviamo che in �
n vale che

w−→O se e solo se ∥w∥ −→ 0 se e solo se ∥w∥∞ −→ 0
allora possiamo ragionare come segue

∥L(x)∥2 = ∥Ax∥2 =

∥∥∥∥∥∥∥∥
 n¼

j=1
aijxj


i=1,...,n

∥∥∥∥∥∥∥∥
2

=

 n¼
j=1

a1jxj


2

+ ... +

 n¼
j=1

anjxj


2

=
n¼
i=1

 n¼
j=1

aijxj


2

≤
n¼
i=1

 n¼
j=1
|aij|∥x∥∞


2

≤

 n¼
i=1

n¼
j=1
|aij|


2

∥x∥2
∞ =


n¼
i=1
j=1

|aij|


2

∥x∥2
∞ = ∥A∥2

1 ∥x∥
2
∞
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ed estraendo una radice quadrata otteniamo che
∥Ax∥ ≤ ∥A∥1∥x∥∞ per ogni x ∈�

n

la maggiorazione ottenuta implica l’affermazione da provare. Si noti che, in maniera surrettizia, abbiamo in-
trodotto un’altra norma nello spazio delle matrici (la verifica che tale oggetto sia effettivamente una norma
è, ovviamente, lasciata al lettore...). Si provi a dimostrare il risultato provato usando esclusivamente norme
euclidee.
ii. La seconda parte del testo è una veloce conseguenza della prima parte, infatti, per linearità, possiamo scrivere
che

0≤ ∥L(x)− L(x0)∥ = ∥Ax−Ax0∥ = ∥A(x− x0)∥2 ≤ ∥A∥1∥x− x0∥∞
quindi se x−→ x0, cioè se ∥x− x0∥ −→ 0, allora L(x)−→ L(x0).

ESERCIZIO 9. Data un’applicazione lineare L : (�n,∥·∥)−→ (�n,∥·∥) si provi l’esistenza di K> 0 tale che ∥L(x)∥ ≤
K∥x∥, per ogni x ∈�

n.

DISCUSSIONE. L’esercizio richiede la produzione di una maggiorazione simile, almeno come idea, ai calcoli
fatti nel punto i dell’esercizio precedente. Sia A ∈ Mn,n(�) la matrice che rappresenta l’operatore nella base
attuale, allora abbiamo che

∥L(x)∥2
2 = ∥Ax∥2

2 =
n¼
i=1

 n¼
j=1

aijxj


2

≤
n¼
i=1

 n¼
j=1
|aij||xj|


2

≤
n¼
i=1

 n¼
j=1

[
max

ij
|aij|

]
|xj|


2

[
max

ij
|aij|

]2 n¼
i=1

 n¼
j=1
|xj|


2

=
[
max

ij
|aij|

]2 n¼
i=1

n|xj|2 = n
[
max

ij
|aij|

]2
∥x∥2

2 = n∥A∥2
∞∥x∥2

2

dalla maggiorazione fatta deduciamo che
∥L(x)∥2 ≤

√
n∥A∥∞∥x∥2 = K∥x∥2 per ogni x ∈�

n

Si noti che, incidentalmente, abbiamo introdotto un’altra norma per lo spazio vettoriale delle matrici.

ESERCIZIO 10. Sia g ∈ C0[0, 1] una funzione positiva e definiamo

C =
{
f : |f(x)| ≤ g(x) per ogni x ∈ [0, 1]

}
⊆

(
C0[0, 1],∥ · ∥∞

)
i. si mostri che C è chiuso,
ii. si descriva ∂C.

DISCUSSIONE. i. Per mostrare che C è chiuso possiamo procedere in due modi differenti: mostrare che Cc

è aperto o provare che ogni successione covergente contenuta in C tende ad un elemento di C, discutiamo
entrambi i modi.
Sia {fk} ⊆ C una successione convergente e denominiamo f∞ il suo punto limite. Per definizione di C sappiamo
che |fk(x)| ≤ g(x) o, più chiaramente
(1) −g(x)≤ fk(x)≤ g(x) per ogni x ∈ [0, 1] e per ogni k ∈�

Notiamo anche che, per ogni x ∈ [0, 1] valgono le seguenti maggiorazioni
0≤ |fk(x)− f∞(x)| ≤ max

x∈[0,1]
|fk(x)− f∞(x)| = ∥fk− f∞∥∞ −→ 0 per k−→ +∞

da cui possiamo dedurre che
fk(x)−→ f∞(x) per ogni x ∈ [0, 1]

Passando al limite per k che tende a +∞ in (1) otteniamo che
−g(x)≤ f∞(x)≤ g(x) per ogni x ∈ [0, 1]

cioè abbiamo provato che f∞ ∈ C, provando che C è chiuso.
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Analogamente possiamo provare a mostrare che Cc è aperto. Prendiamo in esame h ∈ Cc, dalla definizione
segue che deve esistere almeno un punto p ∈ [0, 1] tale che |h(p)| > g(p) e, per semplicità, supponiamo che
h(p) > g(p), o meglio che h(p) − g(p) = δ > 0. Allora, per il teorema di permanenza del segno, possiamo
affermare che esiste ε > 0 tale che h(x)− g(x)> δ/2 per ogni x ∈ (p− ε,p + ε).
A questo punto consideriamo l’insieme B(h, r): Cc è aperto se riusciamo a mostrare che B(h, r) ⊆ Cc per un
opportuno r> 0. Poniamo r = δ/2, allora segue che se f ∈ B(h,δ/2) possiamo affermare che

0≤ |f(x)− h(x)| ≤ max
x∈[0,1]

|f(x)− h(x)|< 1
2δ per ogni x ∈ [0, 1]

questo significa che per ogni x ∈ [0, 1] vale

h(x)− 1
2δ < f(x)< h(x) + 1

2δ

e siccome h(x)− g(x)> δ/2 per ogni x ∈ (p− ε,p + ε), abbiamo ottenuto che

g(x)< h(x)− 1
2δ < f(x) per ogni x ∈ (p− ε,p + ε)

il che implica che B(h,δ/2)⊆ Cc, e cos̀ı abbiamo dimostrato che Cc è aperto, cioè che C è chiuso.
ii. A lezione abbiamo caratterizzato i punti della frontiera di C come punti che sono di accumulazione sia per C
che per Cc, questo vuol dire che b∗ ∈ ∂C se e soltanto se esistono due successioni {ak} ⊆ C e {ck} ⊆ Cc tali
che le distanze ∥ak− b∗∥∞ e ∥ck− b∗∥∞ sono infinitesime per k−→ +∞.
Per quanto discusso nella prima parte dello svolgimento dell’esercizio possiamo affermare che

|ak(x)| ≤ g(x) per ogni x ∈ [0, 1] e (|ck(x)| − g(x))> 0 per ogni x ∈ [p− ε,p + ε]
si noti che sulle funzioni ck non abbiamo ulteriori informazioni, il fatto che si trovi fuori dell’insieme C signi-
fica solo che assume valori maggiori (in valore assoluto) degli output della funzione g in (almeno) un punto
dell’intervallo [0, 1] e nulla più...
Siccome abbiamo già osservato che

0≤ |b∗(x)− ak(x)| ≤ ∥ak− b∗∥∞ −→ 0
0≤ |b∗(x)− ck(x)| ≤ ∥ck− b∗∥∞ −→ 0

per ogni x ∈ [0, 1]

possiamo dedurre che
ak(p)−→ b∗(p) e ck(p)−→ b∗(p)

da cui ricaviamo che
|b∗(p)| ≤ g(p) e |b∗(p)| ≥ g(p)

Le due disuguaglianze ottenute ci permettono di caratterizzare l’insieme ∂C, infatti abbiamo mostrato che

∂C =
{

f ∈ C0([0, 1]) : |f(x)| ≤ g(x) per ogni x ∈ [0, 1]
esiste p ∈ [0, 1] tale che |f(p)| = g(p)

}

ESERCIZIO 11. Calcolare i seguenti limiti

lim
x−→0

5x1x2√
x2

1 + 3x2
2

lim
x−→0

π ln(1 + x2
1 )x2

x1x2
lim

x−→0

x4
1

x2(x2
1 + x2

2)
lim

x−→0

√x1x2
1 + 2x2

1 + 3x2
2

DISCUSSIONE. Discutiamo i limiti nell’ordine proposto dal testo dell’esercizio.
Nel calcolo del primo limite usiamo le coordinate polari per ottenere che∣∣∣∣∣∣∣∣∣

5x1x2√
x2

1 + 3x2
2

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣5r2 sin(θ)cos(θ)

r
√

1 + 2sin2(θ)

∣∣∣∣∣∣ = 5 |r| ·
∣∣∣∣∣∣ sin(θ)cos(θ)√

1 + 2sin2(θ)

∣∣∣∣∣∣≤ 5
2 r−→ 0 per r−→ 0+

dove l’ultima maggiorazione segue dal fatto che∣∣∣∣∣∣ sin(θ)cos(θ)√
1 + 2sin2(θ)

∣∣∣∣∣∣≤
∣∣∣∣∣sin(θ)cos(θ)√

1

∣∣∣∣∣ = 1
2 |sin(2θ)| ≤ 1

2 per ogni θ ∈�



10 ��

Per il secondo limite sfruttiamo la struttra di prodotto per scrivere

π ln(1 + x2
1 )x2

x1x2
= π

ln(1 + x2
1 )

x1

x2
x2

= π
ln(1 + x2

1 )
x1

≃ π
x2

1
x1

= πx1 −→ 0 per x−→ 0

Notiamo che

x4
1

x2(x2
1 + x2

2)
= r4

r3 sin(θ)
= r

sin(θ)

il cui limite (per r −→ 0) non esiste, infatti è sufficiente considerare le due seguenti successioni di punti che
convergono ad O

xk =
(
0, 1

1 + k2

)
da cui abbiamo

(xk)4
1

(xk)2
(
(xk)2

1 + (xk)2
2
) = 0−→ 0

yk =
(
e−k, e−3k) da cui otteniamo

(yk)4
1

(yk)2
(
(yk)2

1 + (yk)2
2
) = e−4k

e−3k
(
e−2k + e−4k

) −→ +∞

Per l’ultimo limite è sufficiente osservare che∣∣∣∣∣∣∣
√
|x1x2|

1 + 2x2
1 + 3x2

2

∣∣∣∣∣∣∣≤√
|x1x2| = r

√
|cos(θ) sin(θ)| ≤ r−→ 0 per r−→ 0+

il che ci permette di concludere l’esercizio.

ESERCIZIO 12. Identificare il dominio massimale e calcolare le derivate parziali del primo e del secondo ordine, cioè
∂j e ∂ji con j, i = 1,2,3, delle seguenti funzioni

f(x1, x2) = (x2
1 + 3x2

2) ln(2x2
1 + x2

2) g(x1, x2, x3) =
√

1 + 4x2
1 + x2

2 + 2x2
3 h(x1, x2, x3) = e−x2

1−5x2
2−7x2

3

DISCUSSIONE. La funzione f ha dominio massimale Af = {2x2
1 + x2

2}, ovvero Af = �
2 \ {O}, in tutti i punti del

dominio la funzione è prodotto e composizione di funzioni regolari, quindi f ∈ C∞(Af), in particolare possiamo
calcolare le derivate parziali ricorrendo alle usuali regole di derivazione

∂1f(x) = 2x1 ln(2x2
1 + x2

2) + (x2
1 + 3x2

2) 4x1
2x2

1 + x2
2

∂2f(x) = 6x2 ln(2x2
1 + x2

2) + (x2
1 + 3x2

2) 2x2
2x2

1 + x2
2

∂11f(x) = 2 ln(2x2
1 + x2

2) +
24x4

1 −4x2
1 x2

2 + 12x4
2

(2x2
1 + x2

2)2 ∂12f(x) = ∂21f(x) =
4(12x3

1 x2 + x1x3
2)

(2x2
1 + x2

2)2

∂22f(x) = 6 ln(2x2
1 + x2

2) +
4x4

1 + 34x2
1 x2

2 + 6x4
2

(2x2
1 + x2

2)2

La funzione g ha dominio massimale Ag = �
3, visto che l’espressione della legge ha senso per qualsiasi input

x = (x1, x2, x3) ∈ �
3, in quanto sotto la radice quadrata appare una somma di quadrati, cioè una quantità mai

negativa. Come prima la funzione è molto regolare, per cui calcoliamo le derivate parziali del primo ordine della
funzione usando le ben note regole di derivazione

∂1g(x1, x2, x3) = 4x1[
1 + 4x2

1 + x2
2 + 2x2

3
]1/2 ∂2g(x1, x2, x3) = x2[

1 + 4x2
1 + x2

2 + 2x2
3
]1/2

∂3g(x1, x2, x3) = 2x3[
1 + 4x2

1 + x2
2 + 2x2

3
]1/2
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Derivando le funzioni ottenute otteniamo le derivate parziali del secondo ordine

∂11g(x1, x2, x3) =
4 + 4x2 + 8x2

3[
1 + 4x2

1 + x2
2 + 2x2

3
]3/2 ∂12g(x1, x2, x3) =− 4x1x2[

1 + 4x2
1 + x2

2 + 2x2
3
]3/2

∂13g(x1, x2, x3) =− 16x1x3[
1 + 4x2

1 + x2
2 + 2x2

3
]3/2 ∂22g(x1, x2, x3) =

1 + 4x2
1 + 2x2

3[
1 + 4x2

1 + x2
2 + 2x2

3
]3/2

∂23g(x1, x2, x3) =− 2x2x3[
1 + 4x2

1 + x2
2 + 2x2

3
]3/2 ∂33g(x1, x2, x3) =

1 + 4x2
1 + x2

2[
1 + 4x2

1 + x2
2 + 2x2

3
]3/2

Lasciamo al lettore il calcolo delle derivate mancanti, cioè ∂21g, ∂31g e ∂32g.
Anche la funzione h è ben definita in tutto lo spazio, quindi Ah = �3, per le derivate parziali procediamo come
fatto sopra

∂1h(x1, x2, x3) =−2x1e−x2
1−5x2

2−7x2
3 ∂2h(x1, x2, x3) =−10x2e−x2

1−5x2
2−7x2

3

∂3h(x1, x2, x3) =−14x3e−x2
1−5x2

2−7x2
3

∂11h(x1, x2, x3) = 2(2x2
1 − 1)e−x2

1−5x2
2−7x2

3 ∂12h(x1, x2, x3) = 20x1x2e−x2
1−5x2

2−7x2
3

∂13h(x1, x2, x3) = 28x1x3e−x2
1−5x2

2−7x2
3 ∂22h(x1, x2, x3) = 10(10x2

2− 1)e−x2
1−5x2

2−7x2
3

∂23h(x1, x2, x3) = 70x2x3e−x2
1−5x2

2−7x2
3 ∂33h(x1, x2, x3) = 14(14x2

3− 1)e−x2
1−5x2

2−7x2
3

questi ultimi calcoli (se corretti) concludono l’esercizio.

ESERCIZIO 13. Data la funzione f(x1, x2
) = (x1− 2)2 x2

2
i. studiare la differenziabilità in �

2,
ii. calcolare, se esistono, le derivate direzionali ∂wf.

DISCUSSIONE. i. Dalla teoria studiata sappiamo che il concetto di differenziabilità in un punto è equivalente
all’esistenza dell’iperpiano tangente nel corrispondente punto del grafico della funzione o alla validità della for-
mula (del primo ordine) di Taylor, quindi scriviamo subito l’espressione della formula di Taylor (o dell’iperpiano
tangente) centrata in x

T(x,w) = f(x) +∇f(x) ·w = (x1− 2)2x2
2 + 2((x1− 2)x2

2, (x1− 2)2x2) · (w1,w2)

Se la funzione è differenziabile in un punto x ∈�
2, allora deve valere che

lim
w−→O

f(x + w)− f(x)−∇f(x) ·w
∥w∥2

= 0

cioè se

f(x + w)− f(x)−∇f(x) ·w
∥w∥2

=
(x1 + w1− 2)2(x2 + w2)2− (x1− 2)2x2

2− 2((x1− 2)x2
2, (x1− 2)2x2) · (w1,w2)

[w2
1 + w2

2]1/2 −→ 0
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per w−→O. Svolgendo alcuni calcoli sulla precedente espressione e passando a coordinate polari w1 = rcos(θ)
e w2 = rsin(θ) abbiamo

f(x + w)− f(x)−∇f(x) ·w
∥w∥2

=
[(x1− 2)2 + 2(x1− 2)w1 + w2

1 )(x2
2 + 2x2w2 + w2

2)
[w2

1 + w2
2]1/2

−
(x1− 2)2x2

2 + 2(x1− 2)x2
2w1 + 2(x1− 2)2x2w2

[w2
1 + w2

2]1/2

=
4(x1− 2)x2w1w2 + x2

2w2
1 + (x1− 2)2w2

2 + 2(x1− 2)w1w2
2 + 2x2w2

1 w2 + w2
1 w2

2
[w2

1 + w2
2]1/2

= 4(x1− 2)x2rcos(θ) sin(θ) + x2
2rcos2 +(x1− 2)2r sin2(θ)

+ 2(x1− 2)r2 cos(θ) sin2(θ) + 2x2r2 cos2(θ) sin(θ) + r3 cos2(θ) sin2(θ)

mandando r−→ 0+ si ottiene l’affermazione desiderata.
ii. La teoria ci dice che per le funzioni differenziabili vale ∂wf(p) =∇f(p) ·w, quindi segue che

∂wf(x) =∇f(x) ·w = 2((x1− 2)x2
2, (x1− 2)2x2) · (w1,w2) = 2(x1− 2)x2

2w1 + 2(x1− 2)2x2w2
= 2(x1− 2)x2[(x2, (x1− 2)) · (w1,w2)]

ESERCIZIO 14. Data

f(x,y) =


(x− y)3[

(x− 1)2 + (y− 1)2
]a (x,y) , (1, 1)

0 (x,y) = (1, 1)

studiare la continuità, la derivabilità e la differenziabilità di f al variare del parametro a ∈�.

DISCUSSIONE. Osserviamo subito che la funzione per (x,y) , (1, 1) è un rapporto tra un polinomio un poli-
nomio elevato a potenza, inoltre il denominatore è sempre non nullo, le funzioni sono funzioni di classe C∞,
quindi il rapporto è differenziabile (e quindi continuo e derivabile) in tutti i punti di �2\{(1, 1)}, quindi possiamo
concentrarci sullo studio della funzione nel punto (1, 1).
Rammentiamo che f è continua nel punto (1, 1) se è vero che

|f(x,y)− f(1, 1)| =
∣∣∣∣∣∣ (x− y)3

((x− 1)2 + (y− 1)2)a

∣∣∣∣∣∣−→ 0 per (x,y)−→ (1, 1)

Esprimendo x e y in coordinate polari centrate nel punto (1, 1), cioè ponendo{
x = 1 + ρcos(θ)
y = 1 + ρsin(θ)

abbiamo che∣∣∣∣∣∣ (x− y)3

((x− 1)2 + (y− 1)2)a

∣∣∣∣∣∣ =
∣∣∣∣∣∣ (1 + ρcos(θ)− 1− ρsin(θ))3

((ρcos(θ))2 + (ρ(sin(θ)))2)a

∣∣∣∣∣∣ = ρ
3|cos(θ)− sin(θ)|3

ρ2a

= ρ3−2a|cos(θ)− sin(θ)|3 ≤ Cρ3−2a

infatti sappiamo che |cos(θ)|, |sin(θ)| ≤ 1 e quindi segue la disuguaglianza

|cos(θ)− sin(θ)|3 ≤ [|cos(θ)| + |sin(θ)|]3 ≤ 8 per ogni θ ∈ [0,2π]

Poiché la maggiorazione ottenuta è uniforme rispetto alla variabile θ e la quantità risulta infinitesima se (3−
2a)> 0, abbiamo provato che f è continua in (1, 1) se a< 3/2. Se a = 3/2 abbiamo che

f(x,y) = (x− y)3

((x− 1)2 + (y− 1)2)a = (cos(θ)− sin(θ))3
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che non è infinitesima per ρ che tende a 0. Mentre se a> 3/2 si trova

f(x,y) = (x− y)3

((x− 1)2 + (y− 1)2)a = (cos(θ)− sin(θ))3

ρ2a−3

che diverge, per ρ che tende a 0, se θ , π/4,5π/4.
Per quanto riguarda la derivabilità, calcoliamo i rapporti dei limiti incrementali

lim
h−→0

f(1 + h, 1)− f(1, 1)
h = lim

h−→0

h3

h2a+1 = lim
h−→0

h2−2a =


0 se a< 1
1 se a = 1
∄ se a> 1

e analogamente

lim
k−→0

f(1, 1 + k)− f(1, 1)
k = lim

k−→0

−k3

k2a+1 = lim
k−→0

−k2−2a =


0 se a< 1
−1 se a = 1
∄ se a> 1

Quindi f è derivabile in (1, 1) per ogni a≤ 1 e abbiamo che

∂1f(1, 1) =
{

0 se a< 1
1 se a = 1 e ∂2f(1, 1) =

{
0 se a< 1
−1 se a = 1

Se a> 1, la funzione f, non essendo derivabile, non può essere differenziabile in (1, 1).
Invece se a< 1 possiamo scrivere

lim
(h,k)−→(0,0)

f(1 + h, 1 + k)− f(1, 1)− ∂1f(1, 1)h− ∂2f(1, 1)k√
h2 + k2

= lim
(h,k)−→(0,0)

(h− k)3

(h2 + k2)a+1/2

= lim
ρ−→0+

ρ3(cos(θ)− sin(θ))3

ρ1+2a = 0

perché 3− (1 + 2a)> 0 per ogni a< 1 e |cos(θ)− sin(θ)|3 ≤ 8.
Infine se a = 1 otteniamo

lim
(h,k)−→(0,0)

f(1 + h, 1 + k)− f(1, 1)− ∂1f(1, 1)h− ∂2f(1, 1)k√
h2 + k2

= lim
(h,k)−→(0,0)

1√
h2 + k2

·
[

(h− k)3

h2 + k2 − h + k
]

= lim
(h,k)−→(0,0)

(h− k)3− h3− hk2 + h2k + k3

(h2 + k2)3/2
= lim

(h,k)−→(0,0)

−2h2k + 2hk2

(h2 + k2)3/2

= lim
ρ−→0+

2cos(θ) sin(θ)(sin(θ)− cos(θ))

e questo limite non esiste, come si vede testando i valori θ = 0 e θ = π/3.
Dunque f è differenziabile in (1, 1) solo per a< 1.

ESERCIZIO 15. Stabilire se le seguenti funzioni sono continue, derivabili, differenziabili o di classe C1 in �
2

f(x,y,z) = x2 + y2 + z3 g(x1, x2, x3) =


x3

1 − x3
2

x2
1 + x2

2 + 2x2
3

x ,O

0 x = O
h(x1, x2, x3) = x2

1 + x2
2− x2

3

Calcolare le equazioni cartesiane del piano tangente al grafico di f in (1, 1,2), del piano tangente al grafico di g in
(1,0, 1) e del piano tangente al grafico di h in (0,0,0).

DISCUSSIONE. Le funzioni f e h sono palesamente di classe C∞(�3), in quanto polinomi, quindi sono funzioni
continue e derivabili e differenziabili. In particolare vale

∇f(x,y,z) =
(
2x,2y,3z2) e ∇h(x1, x2, x3) = (2x1,2x2,−2x3

)
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e ricordando l’espressione del piano tangente, possiamo ricavare rapidamente l’equazione del piano tangente
per la funzione f

w = f(1, 1,2) +∇f(1, 1,2) · (x− 1,y− 1,z− 2) = 10 + (2,2, 12) · (x− 1,y− 1,z− 2)
= 10 + 2x− 2 + 2y− 2 + 12z− 24
= 2x + 2y + 12z + 18

mentre per la funzione h otteniamo
x4 = h(0,0,0) +∇h(0,0,0) · (x1, x2, x3) = 0 + (0,0,0) · (x1, x2, x3) = 0

La funzione g è sicuramente regolare in �
3 \ {O}, cominciamo lo studio della continuità in O usando le coor-

dinate sferiche
x3

1 − x3
2

x2
1 + x2

2 + 2x2
3

= r3 sin3(φ)(cos3(θ)− sin3(θ))
r2[1 + cos2(φ)]

=
[

sin3(φ)(cos3(θ)− sin3(θ))
1 + cos2(φ)

]
r−→ 0

per r−→ 0+, visto che∣∣∣∣∣∣sin3(φ)(cos3(θ)− sin3(θ))
1 + cos2(φ)

∣∣∣∣∣∣≤ |sin3(φ)|·|cos3(θ)−sin3(θ)| ≤ |cos(θ)|3+|sin(θ)|3 ≤ 2 per ogni θ ∈ [0,2π]

Riguardo alle derivate parziali in O vale che

∂1g(O) = lim
h−→0

g(h,0,0)− g(0,0,0)
h = lim

h−→0

h3

h(h2)
= 1

∂2g(O) = lim
h−→0

g(0,h,0)− g(0,0,0)
h = lim

h−→0
−

h3

h(h2)
=−1

∂1g(O) = lim
h−→0

g(0,0,h)− g(0,0,0)
h = lim

h−→0

0
h(2h2)

= 0

per cui possiamo dire che la funzione è derivabile in O e scrivere che∇g(O) = (1,−1,0).
Studiare la differenziabilità in O significa, in questo caso, stimare il seguente rapporto

g(w)−∇g(O) ·w
∥w∥2

= 1
∥w∥2

·
 w3

1 −w3
2

w2
1 + w2

2 + 2w2
3
− (1,−1,0) · (w1,w2,w3)


=
−w1w2

2− 2w1w2
3 + w2

1 w2 + 2w2w2
3

[w2
1 + w2

2 + 2w2
3][w2

1 + w2
2 + w2

3]1/2

= r3 sin(φ)[sin2(φ) sin(θ)cos(θ)(cos(θ)− sin(θ)) + 2cos2(φ)(sin(θ)− cos(θ))]
r3(1 + cos2(φ))1/2

semplificando r rimane un quoziente che dipende da θ e che in generale non è infinitesimo, quindi la funzione
g non è differenziabile in O. Infine, per x ,O abbiamo che

∇g(x) =
x4

1 + 3x2
1 x2

2 + 2x1x3
2 + 6x2

1 x2
3

(x2
1 + x2

2 + 2x2
3)2 ,

−3x2
1 x2

2− x4
2 − 2x3

1 x2 + 2x1x3
2−6x2

2x2
3

(x2
1 + x2

2 + 2x2
3)2 ,

x3
2− x3

1
(x2

1 + x2
2 + 2x2

3)2


e, in particolare, vale

∇g(1,0, 1) =
(

7
9 ,0,− 1

9

)
da cui ricaviamo l’equazione del piano tangente nel punto

x4 = g(1,0, 1) +∇g(1,0, 1) · (x1− 1,x2, x3− 1) = 1
3 +

(
7
9 ,0,− 1

9

)
· (x1− 1,x2, x3− 1) =− 1

3 + 7
9 x1−

1
9 x3

concludendo l’esercizio.

ESERCIZIO 16. Sia u(x) = 1
2∥x∥

2
2, con x ∈�

n, si calcolino le seguenti quantità

∂iu(x) per i = 1, ...,n ∂wu(x) per w ∈�
n \ {O} ∇u(x) Éu(x)
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DISCUSSIONE. Poiché possiamo scrivere che

u(x) = 1
2∥x∥

2
2 = 1

2
[
x2

1 + x2
2... + x2

n
]

per ogni x ∈�
n

segue, per calcolo diretto, che

∂iu(x) = 1
2∂i

[
x2

1 + x2
2... + x2

n
]

= 1
2 2xi = xi per ogni i = 1, ...,n

∇u(x) = (∂1u(x), ...,∂nu(x)) = (x1, ..., xn) = x

∂wu(x) =∇u(x) ·w = x ·w =
n¼
i=1

wixi

∂iiu(x) = ∂i [∂iu(x)] = ∂ixi = 1
Éu(x) = ∂11u(x) + .. + ∂nu(x) = 1 + ... + 1 = n

Si noti che, essendo ∂iu(x) = xi ∈ C1(�n), la funzione è differenziabile in tutto lo spazio e possiamo dedurre le
derivate direzionali tramite il prodotto scalare del gradiente con il versore direzione che ci interessa.

ESERCIZIO 17. Sia u(x) = 1
∥x∥2

, con x ∈�
3 \ {O}, si calcolino le seguenti quantità

∂iu(x) per i = 1,2,3 ∂wu(x) per w ∈�
3 \ {O} ∇u(x) Éu(x)

DISCUSSIONE. Procediamo esattamente come abbiamo fatto nello svolgimento dell’esercizio precedente,
quindi abbiamo

u(x) = 1
∥x∥2

=
[
x2

1 + x2
2... + x2

n
]−1/2

per ogni x ∈�
n \ {O}

da cui, per calcolo diretto, ricaviamo

∂iu(x) =− 1
2
[
x2

1 + x2
2... + x2

n
]−3/2

2xi =− xi
∥x∥3

2
per ogni i = 1, ...,n

∇u(x) = (∂1u(x), ...,∂nu(x)) =− x
∥x∥3

2

∂wu(x) =∇u(x) ·w =− x
∥x∥3

2
·w =− 1

∥x∥3
2

n¼
i=1

wixi

∂iiu(x) = ∂i [∂iu(x)] =−∂i

 xi[
x2

1 + x2
2... + x2

n
]3/2

 =−
∥x∥3

2− xi
3
2∥x∥2 · 2xi[

x2
1 + x2

2... + x2
n
]3 =−

∥x∥2
2− 3x2

i
∥x∥5

2

Éu(x) = ∂11u(x) + .. + ∂nu(x) =
3x2

1 + 3x2
2 + 3x2

3− 3∥x∥2
2

∥x∥5
2

= 0

sorprendentemente (?) abbiamo ottenuto che il laplaciano della funzione è nullo, dove la funzione esiste. Le
soluzioni dell’equazione differenziale Éw(x) = 0 sono dette funzioni armoniche, come vedremo in futuro tali
funzioni hanno un ruolo interessante in varie questioni dell’analisi matematica e della fisica. Concludiamo la
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discussione inserendo un disegno di una parte del grafico della funzione

Si noti che il grafico di u è un sottoinsieme di�4, la figura si riferisce all’intersezione del grafico con il sottospazio
vettoriale x3 = 0.

ESERCIZIO 18. Sia u(x) = ln(
∥x∥2

), con x ∈�
2 \ {O}, si calcolino le seguenti quantità

∂iu(x) per i = 1,2 ∇u(x) Éu(x)

DISCUSSIONE. Osserviamo che

u(x) = ln
(√

x2
1 + x2

2

)
= ln

([
x2

1 + x2
2
]1/2)

= 1
2 ln

(
x2

1 + x2
2
)

e quindi segue che

∂ju(x) = ∂j
1
2 ln

(
x2

1 + x2
2
)

= 1
2

2xj

x2
1 + x2

2
=

xj

∥x∥2
2

∇u(x) =
 x1
∥x∥2

2
, x2
∥x∥2

2

 = x
x2

1 + x2
2

= x
∥x∥2

2

∂jju(x) = ∂j

 xj

x2
1 + x2

2

 =
(x2

1 + x2
2)− xj(2xj)

(x2
1 + x2

2)2 =
x2

i − x2
j

(x2
1 + x2

2)2 con i , j

Éu(x) = ∂11u(x) + ∂22u(x) =
x2

2− x2
1

(x2
1 + x2

2)2 +
x2

1 − x2
2

(x2
1 + x2

2)2 = 0 per ogni x ,O

L’ultimo calcolo mostra che u(x) = ln(∥x∥2) è una funzione armonica nel suo dominio, cioè in �
2 \ {O}, torne-

remo sull’argomento più avanti.

ESERCIZIO 19. Sia w(x) = 1
2n (1−∥x∥2

2), con x ∈ B = B(O, 1), si verifichi che la funzione risolve il seguente problema{
−Éw(x) = 1 x ∈ B

w(x) = 0 x ∈ ∂B

inoltre si calcoli ∂nw(x) per x ∈ ∂B, dove n è il versore normale ∂B in x.

DISCUSSIONE. Cominciamo scrivendo per esteso l’espressione della funzione

w(x) = 1
2n

[
1− x2

1 − x2
2− ...− x2

n
]

x ∈ B = {x2
1 + x2

2 + ... + x2
n < 1} ⊆�

n
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e, grazie alle usuali (e ben note) regole di derivazione calcoliamo le derivate parziali (del primo e del secondo
ordine) della funzione

∂jw(x) = 1
2n∂j

[
1− x2

1 − x2
2− ...− x2

n
]

=−
2xj
2n =− 1

n xj j = 1, ...,n

∂jiw(x) = ∂i
[
∂jw(x)

]
= ∂i

[
−

xj
n

]
=

 − 1
n se j = i

0 se j , i

Éw(x) =
n¼
j=1
∂jjw(x) = ∂11w(x) + ∂22w(x) + ... + ∂nnw(x) =− 1

n − ...− 1
n =−1

l’ultima espressione ottenuta prova che la funzione w soddisfa l’equazione differenziale contenuta nel proble-
ma. Per concludere la prima parte dell’esercizio è sufficiente notare che se x ∈ ∂B allora ∥x∥2 = 1, quindi vale
w(x) = (1− ∥x∥2

2)/2n = (1− 1)/2n = 0. Come prima inseriamo una appresentazione del grafico di w per il caso
n = 2

Per il calcolo della derivata direzionale facciamo affidamento al fatto che w ∈ C2(�n), per cui abbiamo ∂nw(x) =
∇w(x) ·n, inoltre osserviamo che x = n in ogni punto di ∂B, da cui ricaviamo che

∂nw(x) =∇w(x) · x =− x
n · x =− 1

n per ogni x ∈ ∂B


