ANALISI DEI DATI + LABORATORIO

prof. Claudio Barbaranelli

Dip. di Psicologia, via dei Marsi 78, 00185 Roma tel. 06/49917623 claudio.barbaranelli@uniroma1.it

Ricevimento studenti: Dal 25/9 al 23/11: Lunedì dalle 10.30 alle 12 Dal 27/11 al 22/12: Martedì dalle 12.30 alle 14 Dall' 1/1 al 17/9/2018: Martedì dalle 10.30 alle 12

Eventuali variazioni rispetto a quanto specificato sopra verranno comunicate per tempo sul sito di facoltà (www.psicologia1.uniroma1.it) e su elearning2.

ANALISI DEI DATI + LABORATORIO

prof. Claudio Barbaranelli

Orario Lezioni

Aula	Orario	
	Martedi	10:00:12:00
Aula 8	Mercoledi	11:00-14:00
	Giovedi	11:00-14:00

inizio 1° semestre	02/10/2017
fine 1° semestre	15/12/2017 possibili lezioni di recupero 18/20 dic.

5.2

ANALISI DEI DATI + LABORATORIO

CONTENUTO DEL CORSO

Il corso riguarderà i seguenti argomenti:

- Cenni di algebra matriciale
- I trattamenti preliminari dei dati
- La regressione lineare multipla
- L'Analisi della Varianza (ANOVA)
- L'analisi Fattoriale Esplorativa
- I modelli di equazioni strutturali

Le applicazioni informatiche verranno effettuate con i programmi SPSS e MPLUS

ANALISI DEI DATI + LABORATORIO

TESTI DI RIFERIMENTO

a) Barbaranelli, C. (2007). Analisi dei dati. II edizione. Milano: Led. (capitoli 1, 2, 3, 4, appendici 1 e 2).

b) Barbaranelli, C. (2006). Analisi dei dati con SPSS: Le analisi multivariate. Milano: Led. (capitoli 1, 2 e 3).

c) Barbaranelli, C. e D'Olimpio, F. (2007). Analisi dei dati con SPSS: Le analisi di base. Milano: Led. (capitoli 1, 2, 3, 4 e 6).

d) Lucidi e materiale integrativo presentato a lezione. Questo materiale è disponibile sul sito www.elearning2.uniroma.it.

ANALISI DEI DATI + LABORATORIO

METODI DIDATTICI

Gli argomenti del corso verranno presentati attraverso lezioni prevalentemente frontali sollecitando un ruolo attivo da parte degli studenti.

Le ore di laboratorio si alterneranno con le lezioni teoriche e prevedranno esercitazioni su MPLUS e su SPSS.

Gli studenti possono scaricare la *DEMO version* di MPLUS dal sito: <u>http://www.statmodel.com</u>

Tale versione è gratuita ed ha una licenza perpetua.

Gli studenti possono scaricare SPSS (licenza autorizzata per gli studenti e il personale della Sapienza) dal sito della Sapienza.

ANALISI DEI DATI + LABORATORIO

MODALITÀ DI FREQUENZA: La frequenza alle lezioni e ai laboratori non è obbligatoria, ma raccomandata. MODALITÀ D'ESAME: L'esame prevede una prova scritta costituita da:

- domande a risposta chiusa e aperta relative ai testi in programma;
- esercizi sull'interpretazione di output dei programmi SPSS e MPLUS;
- esercizi sulla programmazione in linguaggio MPLUS.

Esempi di esercizi su MPLUS sono scaricabili dal sito http://elearning2.uniroma.it

Per sostenere la prova è necessario prenotarsi entro i termini definiti sul sito della Facoltà.

Le modalità d'esame NON saranno differenziate per studenti frequentanti e non frequentanti.

Cenni di algebra matriciale

Matrici e operazioni tra matrici

Matrice: tabella di numeri tra due parentesi o linee. Indicate con *lettere maiuscole in carattere grassett*o (A).

Costituita da un certo numero di righe e da un certo numero di colonne.

Variabili sulle colonne, soggetti o casi sulle righe ("*matrici Casi X Variabili*")

Elemento generico (soggetto i-esimo sulla variabile jesima): indicato come x_{ij} : per i=2 e j=3 quindi $x_{2,3}$.

Es., con 15 righe e 3 colonne abbiamo la seguente matrice:

Matrici e operazioni tra matrici

Matrici e operazioni tra matrici

Vettore: particolare matrice che ha una sola riga o una sola colonna.

Vettore composto da una sola colonna: x. Vettore composto da una sola riga: x'.

$$\mathbf{x} = \begin{bmatrix} \mathbf{1} \\ \mathbf{2} \end{bmatrix}; \mathbf{x'} = \begin{bmatrix} \mathbf{2} & \mathbf{3} & \mathbf{4} \end{bmatrix};$$

Matrici e operazioni tra matrici

Matrice somma e differenza. Per sommare e sottrarre due matrici è necessario che esse abbiano lo stesso numero di righe e lo stesso numero di colonne. La matrice somma è composta da elementi $c_{ij} = a_{ij} + b_{ij}$

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} \mathbf{a}_{1,1} & \mathbf{a}_{1,2} \\ \mathbf{a}_{2,1} & \mathbf{a}_{2,2} \end{bmatrix} + \begin{bmatrix} \mathbf{b}_{1,1} & \mathbf{b}_{1,2} \\ \mathbf{b}_{2,1} & \mathbf{b}_{2,2} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{1,1} + \mathbf{b}_{1,1} & \mathbf{a}_{1,2} + \mathbf{b}_{1,2} \\ \mathbf{a}_{2,1} + \mathbf{b}_{2,1} & \mathbf{a}_{2,2} + \mathbf{b}_{2,2} \end{bmatrix} = \mathbf{C}$$

Esempio numerico:

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{3} & \mathbf{4} \end{bmatrix} + \begin{bmatrix} \mathbf{5} & \mathbf{6} \\ \mathbf{7} & \mathbf{8} \end{bmatrix} = \begin{bmatrix} \mathbf{1} + \mathbf{5} & \mathbf{2} + \mathbf{6} \\ \mathbf{3} + \mathbf{7} & \mathbf{4} + \mathbf{8} \end{bmatrix} = \begin{bmatrix} \mathbf{6} & \mathbf{8} \\ \mathbf{10} & \mathbf{12} \end{bmatrix} = \mathbf{C}$$

BARBARANELLI

6

Matrici e operazioni tra matrici

La matrice differenza è composta da elementi $c_{ij} = a_{ij} - b_{ij}$

$$\mathbf{A} - \mathbf{B} = \begin{bmatrix} \mathbf{a}_{1,1} & \mathbf{a}_{1,2} \\ \mathbf{a}_{2,1} & \mathbf{a}_{2,2} \end{bmatrix} - \begin{bmatrix} \mathbf{b}_{1,1} & \mathbf{b}_{1,2} \\ \mathbf{b}_{2,1} & \mathbf{b}_{2,2} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{1,1} - \mathbf{b}_{1,1} & \mathbf{a}_{1,2} - \mathbf{b}_{1,2} \\ \mathbf{a}_{2,1} - \mathbf{b}_{2,1} & \mathbf{a}_{2,2} - \mathbf{b}_{2,2} \end{bmatrix} = \mathbf{C}$$

Esempio numerico:

$$\mathbf{A} - \mathbf{B} = \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{3} & \mathbf{4} \end{bmatrix} - \begin{bmatrix} \mathbf{5} & \mathbf{6} \\ \mathbf{7} & \mathbf{8} \end{bmatrix} = \begin{bmatrix} \mathbf{1} - \mathbf{5} & \mathbf{2} - \mathbf{6} \\ \mathbf{3} - \mathbf{7} & \mathbf{4} - \mathbf{8} \end{bmatrix} = \begin{bmatrix} -\mathbf{4} & -\mathbf{4} \\ -\mathbf{4} & -\mathbf{4} \end{bmatrix} = \mathbf{C}$$

Matrici e operazioni tra matrici

SAPIENZA UNIVERSITÀ DI ROMA

5

BARBARANELLI

Prodotto di una matrice per uno scalare: Il risultato è una matrice in cui ogni elemento viene moltiplicato per lo scalare c (uno scalare è un singolo numero, ovvero una matrice composta da una sola riga e una sola colonna, 1x1).

$$\mathbf{C} * \mathbf{A} = \mathbf{C} * \begin{bmatrix} \mathbf{a}_{1,1} & \mathbf{a}_{1,2} \\ \mathbf{a}_{2,1} & \mathbf{a}_{2,2} \end{bmatrix} = \begin{bmatrix} \mathbf{C} * \mathbf{a}_{1,1} & \mathbf{C} * \mathbf{a}_{1,2} \\ \mathbf{C} * \mathbf{a}_{2,1} & \mathbf{C} * \mathbf{a}_{2,2} \end{bmatrix}$$

Esemption numerico:
$$\mathbf{2} * \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{3} & \mathbf{4} \end{bmatrix} = \begin{bmatrix} \mathbf{2} & \mathbf{4} \\ \mathbf{6} & \mathbf{8} \end{bmatrix}$$

Matrici e operazioni tra matrici

SAPIENZA UNIVERSITÀ DI ROMA

3

BARBARANELLI

Prodotto fra due matrici: è possibile se il numero di colonne della prima matrice è uguale al numero delle righe della seconda. La matrice prodotto risultante ha tante righe quante ne ha la prima matrice (A) e tante colonne quante ne ha la seconda matrice (B).

Esempio numerico:

$$AB = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 7 & 8 \\ 9 & 1 \end{bmatrix} = \begin{bmatrix} 1*7+2*9 & 1*8+2*1 \\ 3*7+4*9 & 3*8+4*1 \\ 5*7+6*9 & 5*8+6*1 \end{bmatrix} = \begin{bmatrix} 25 & 10 \\ 57 & 28 \\ 89 & 46 \end{bmatrix} = C$$

ANALISI DEI DATI + LAB

AA 2017-2018

Prodotto matriciale (o esterno): prodotto fra un vettore *colonna* a_j ed un vettore *riga* $b_{k'}$. Dà luogo ad una matrice $C_{j,k}$ con j righe e k colonne, come nell'esempio seguente:

SAPIENZA

5

BARBARANELLI

$$\mathbf{a}_{2} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; \quad \mathbf{b}_{3}' = \begin{bmatrix} 2 & 3 & 4 \end{bmatrix}; \quad \mathbf{a}_{2} * \mathbf{b}_{3}' = \begin{bmatrix} 1 * 2 & 1 * 3 & 1 * 4 \\ 2 * 2 & 2 * 3 & 2 * 4 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 4 \\ 4 & 6 & 8 \end{bmatrix}$$

Prodotto scalare (o interno): prodotto fra un vettore riga a_i' ed un vettore colonna b_j . Il numero di righe del primo vettore deve essere uguale al numero di colonne del secondo. Il risultato sarà uno scalare $c = \Sigma a_i b_{j'}$ come nell'esempio seguente:

$$\mathbf{a_3'} = \begin{bmatrix} 2 & 3 & 4 \end{bmatrix}; \quad \mathbf{b_3} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}; \quad \mathbf{a_3'*b_3} = 2*1+3*2+4*3 = 2+6+12 = 20$$

Alcune matrici caratteristiche

Matrice trasposta. Matrice A' (o A^T) che si ottiene scambiando le righe con le colonne della matrice A.

Alcune matrici caratteristiche

Matrice quadrata. Matrice che ha tante righe quante colonne.

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix}$$

Matrice simmetrica intorno alla diagonale principale: composta da elementi $a_{ij}=a_{ji}$. La trasposta di una matrice simmetrica è uguale alla matrice stessa.

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_{1,1} & \mathbf{a}_{1,2} \\ \mathbf{a}_{2,1} & \mathbf{a}_{2,2} \end{bmatrix} \qquad \mathbf{a}_{21} = \mathbf{a}_{12}$$

Alcune matrici caratteristiche

Matrice diagonale. Ha valori diversi da zero sulla diagonale principale e valori uguali a zero al di fuori di essa.

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_{1,1} & \mathbf{0} \\ \mathbf{0} & \mathbf{a}_{2,2} \end{bmatrix}$$

Matrice identità (I): contiene soltanto valori 1 sulla diagonale principale e valori 0 al di fuori di essa.

$$\mathbf{I} = \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}$$

Alcune matrici caratteristiche

Matrice inversa. Definita per le matrici quadrate. Data una matrice A, la sua inversa, indicata con la notazione A⁻¹, è tale che:

 $AA^{-1} = A^{-1}A = I$

Calcolo di una matrice inversa: piuttosto complesso.

Alcuni elementi notevoli delle matrici

Traccia. Sia A una matrice quadrata di ordine nXn (ovvero n righe e n colonne); la "traccia di A" è la somma degli elementi sulla sua diagonale principale: $trA = \Sigma_i \Sigma_j a_{ij}$, con i=j.

Determinante. E' un numero che si ottiene effettuando la somma algebrica dei prodotti ognuno costituito da elementi appartenenti a righe e colonne diverse della matrice. In una matrice 2x2 :

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_{1,1} & \mathbf{a}_{1,2} \\ \mathbf{a}_{2,1} & \mathbf{a}_{2,2} \end{bmatrix}$$
 il determinante è:
$$|\mathbf{A}| = (\mathbf{a}_{1,1} \mathbf{a}_{2,2}) - (\mathbf{a}_{1,2} \mathbf{a}_{2,1}).$$

Se |A| = 0 la matrice non ha un'inversa, e si definisce "singolare".

BARBARANELLI

6

Alcuni elementi notevoli delle matrici

Combinazione lineare. considerati p vettori $x_1, x_2, ..., x_p$ di ordine n, e p numeri reali $c_1, c_2, ... c_p$, si definisce combinazione lineare dei p vettori l'espressione:

 $\mathbf{c_1}\mathbf{x_1} + \mathbf{c_2}\mathbf{x_2} + \dots + \mathbf{c_p}\mathbf{x_p}$

consideriamo tre vettori di ordine 2 e tre scalari 3, 4, 1.

$$\mathbf{X}_{1} = \begin{bmatrix} \mathbf{1} \\ \mathbf{2} \end{bmatrix}; \quad \mathbf{X}_{2} = \begin{bmatrix} \mathbf{3} \\ \mathbf{1} \end{bmatrix}; \quad \mathbf{X}_{3} = \begin{bmatrix} -2 \\ \mathbf{5} \end{bmatrix}$$

Una combinazione lineare dei 3 vettori con i coefficienti 3, 4 e 1 si ottiene così:

$$3*\begin{bmatrix}1\\2\end{bmatrix}+4*\begin{bmatrix}3\\1\end{bmatrix}+1*\begin{bmatrix}-2\\5\end{bmatrix}=\begin{bmatrix}3+12-2\\6+4+5\end{bmatrix}=\begin{bmatrix}13\\15\end{bmatrix}$$

Un vettore che è combinazione lineare di altri vettori viene detto "linearmente dipendente".

Espressioni matriciali di indici statistici

Consideriamo la seguente matrice di dati X:

Si tratta di una matrice "casiXvariabili": i casi sono le righe, le variabili sono le colonne.

Espressioni matriciali di indici statistici

Da X possiamo ricavare diverse altre matrici.

Centroide: Vettore delle medie delle variabili, avrà una riga e tre colonne:

medie calcolate su tutti i soggetti, per ogni variabile

Espressioni matriciali di indici statistici

La matrice di covarianza S (o matrice delle varianze e delle covarianze) per le tre variabili considerate ha il seguente aspetto:

$$\mathbf{S} = \begin{bmatrix} \mathbf{S}_{1}^{2} & \mathbf{S}_{12} & \mathbf{S}_{13} \\ \mathbf{S}_{21} & \mathbf{S}_{2}^{2} & \mathbf{S}_{23} \\ \mathbf{S}_{31} & \mathbf{S}_{32} & \mathbf{S}_{3}^{2} \end{bmatrix} \quad \mathbf{S}_{j^{2}}^{2} = \frac{\sum_{i=1}^{i} (\mathbf{X}_{ii} - \overline{\mathbf{X}}_{.i})^{2}}{15}$$

$$\mathbf{S}_{j^{k}} = \frac{\sum_{i=1}^{15} (\mathbf{X}_{ij} - \overline{\mathbf{X}}_{.j})(\mathbf{X}_{ik} - \overline{\mathbf{X}}_{.k})}{15}$$

La matrice S è *simmetrica* intorno alla *diagonale principale*. Sulla diagonale principale: varianze (s_j^2) delle singole variabili. Fuori della diagonale: covarianze (s_{jk}) tra le variabili.

Espressioni matriciali di indici statistici

Dividendo le covarianze per le deviazioni standard delle singole variabili (come nel caso univariato) si trasforma la matrice di covarianza nella matrice di correlazione R. Infatti, per due variabili i e j:

 $r_{ij}=s_{ij}/(s_is_j)$.

R ha le stesse proprietà di S.

6

TRATTAMENTI PRELIMINARI DEI DATI

Trattamenti preliminari dei dati

Sommario

- * Forma della distribuzione
- * Valori anomali (outliers) univariati
- * Normalità bivariata e multivariata
- * Outlier multivariati
- * Le informazioni mancanti (*missing values*)

Forma della distribuzione

Distribuzione Normale Univariata

Forma "a campana", unimodale, simmetrica rispetto alla media (quindi media e mediana coincidono, e coincidono anche con la moda), presenta due punti di flesso per $x = \mu - \sigma$, e $x = \mu + \sigma$. Famiglia di distribuzioni normali univariate: diverse distribuzioni normali sono definite da due parametri, la media (μ) e la deviazione standard (σ) della distribuzione.

Funzione di probabilità della distribuzione normale:

$$\mathbf{f}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\sigma^2}) = \frac{1}{\sigma \sqrt{2\pi}} e^{-(\mathbf{x}-\boldsymbol{\mu})^2/2\sigma^2}$$

La probabilità dei suoi valori è stata tabulata: ciò la rende particolarmente utile nella verifica delle ipotesi statistiche.

Forma della distribuzione

Esame della normalità della distribuzione

Diversi metodi per esaminare se una variabile è normale. Le informazioni di questi diversi metodi vanno integrate.

- Indici di forma della distribuzione
- Test statistici
- Metodi grafici

Forma della distribuzione

Indici che valutano la forma della distribuzione: Curtosi e Asimmetria (o *skewness*)

Curtosi: riflette il grado in cui i punteggi sono distribuiti nelle code piuttosto che nelle zone centrali della distribuzione. Uguale a 0 quando la distribuzione è perfettamente normale.

Curtosi Negativa: distribuzione platicurtica, "più schiacciata", i valori estremi sono più frequenti rispetto alla normale.

Curtosi Positiva: distribuzione leptocurtica, "più appuntita", i valori estremi sono meno frequenti.

Forma della distribuzione

Forma della distribuzione

Indici che valutano la forma della distribuzione: Curtosi e Asimmetria (o *skewness*)

Asimmetria: riflette il grado in cui la distribuzione è disposta simmetricamente attorno ai valori di tendenza centrale. Uguale a 0 quando la distribuzione è perfettamente normale.

Asimmetria positiva: i valori bassi hanno frequenza maggiore, la media risulta maggiore della mediana.

Asimmetria negativa: i valori alti sono più frequenti, la media risulta inferiore alla mediana.

Forma della distribuzione

E

Forma della distribuzione Formula per la curtosi

$$\frac{\sum_{i=1}^{N} (x_i - \overline{x})}{N} \left(\frac{\sum_{i=1}^{N} (x_i - \overline{x})}{N} \right)^2$$

Errore standard della curtosi = $(24/N)^{1/2}$

Di solito viene sottratto il valore 3 per rendere la curtosi uguale a 0 nel caso di perfetta distribuzione normale.
Forma della distribuzione

Formule per l'asimmetria

$$\left(\frac{\sum_{i=1}^{N} (X_i - \overline{X})}{N}\right)^2 / \left(\frac{\sum_{i=1}^{N} (X_i - \overline{X})}{N}\right)^3$$

Errore standard della asimmetria = $(6/N)^{1/2}$

$$3\frac{(\overline{x} - Mediana)}{s_x}$$

Forma della distribuzione

SAPIENZA

6

BARBARANELLI

Verifica delle ipotesi per asimmetria e curtosi: dividere il singolo indice (di asimmetria o di curtosi) per il suo errore standard, ed utilizzare come distribuzione di riferimento la normale standardizzata. Test troppo potente, ovvero risulta significativo quasi sempre. Criterio empirico: accettabili valori compresi tra –1 e 1 Nella verifica delle ipotesi su asimmetria e curtosi utilizzare un livello di alpha più basso (.01 o .001).

Test statistici di Normalità: Kolmogorov-Smirnov e Shapiro-Wilk. Se risultano significativi si deve rifiutare l'ipotesi nulla che la distribuzione sia normale. Test molto potenti che conducono troppo spesso al rifiuto dell'ipotesi nulla.

Forma della distribuzione

Grafici per l'esame della normalità

Istogramma della distribuzione di frequenze della variabile

Forma della distribuzione

Grafici per l'esame della normalità

Plot dei quantili, o *Q-Q Plot* o *Cumulative Normal Plot* Si confrontano i quantili della distribuzione della variabile, rispetto ai quantili della distribuzione normale. In ascissa sono riportati i valori osservati, in ordinata i valori attesi se la distribuzione è normale. Se la variabile si distribuisce in forma normale, i punti di tale distribuzione congiunta sono addensati sulla diagonale.

Forma della distribuzione

1. Normale

2. Platicurtica

4. Asimmetria negativa

3. Leptocurtica

5. Asimmetria Positiva

Valori anomali (outliers) univariati

Valori che si distinguono in maniera particolare rispetto agli altri valori nella distribuzione.

Outliers univariati: casi che in una variabile presentano valori estremamente elevati o estremamente bassi.

Individuare gli outliers univariati

Standardizzare i punteggi relativi alla variabile in esame e calcolare una distribuzione delle frequenze.

Sono possibili outliers i casi che presentano un punteggio z maggiore di |3|.

Esame della distribuzione per vedere se i punteggi troppo elevati sono casi isolati dal resto dei punteggi.

Valori anomali (outliers) univariati Influenza degli outliers univariati

Gli outliers possono influenzare: la media, la deviazione standard, l'asimmetria e la curtosi, il coefficiente di correlazione di Pearson.

Indici che risultano meno influenzati dagli outliers:

mediana e moda;

statistiche "robuste" (es., media "*trimmed*" calcolata eliminando il 5% dei casi con punteggi più elevati e più bassi).

Linearità

Linearità della relazione tra due variabili

Relazione lineare tra X e Y: la variazione nei punteggi in Y attesa in concomitanza di una variazione di punteggi in X è costante per tutti i valori di X.

Diagramma di dispersione (o scatterplot)

5

Trasformazioni delle variabili

Non-linearità e non-normalità: fenomeni collegati. Tecniche per rendere "normale" la distribuzione.

Problema	Trasformazione [X*=f(X)]
Asimmetria Positiva Estrema (valori >2)	Reciproco: X* =1/X
Asimmetria Positiva Sostanziale (valori tra 1 e 2)	Logaritmo: X* =Log10(X)
Asimmetria Positiva Moderata (valori tra .5 e 1)	Radice Quadrata $X^* = \sqrt{X}$
Asimmetria Negativa Moderata (valori tra5 e -1)	Radice Quadrata X* = $\sqrt{(K - X)}$
Asimmetria Negativa Sostanziale (valori tra -1 e -2)	Logaritmo = X* =Log10(K-X)
Asimmetria Negativa Estrema (valori <-2)	Reciproco = X* =1/(K-X)

Nb. K è uguale al valore più elevato della variabile X, +1

Normalità bivariata

Distribuzione <u>normale bivariata</u>: ciascuna delle 2 variabili è distribuita normalmente rispetto all'altra. La loro distribuzione congiunta ha la seguente forma:

Normalità bivariata

Distribuzione <u>normale bivariata</u>: ciascuna delle 2 variabili è distribuita normalmente rispetto all'altra.

Funzione di probabilità della d.n.b.: f(x,y; μ_x , μ_y , σ_x^2 , σ_y^2 , ρ_{xy}) =

$$\frac{1}{2\pi\sigma_{x}\sigma_{y}\sqrt{1-\rho^{2}}}e^{-([(x-\mu_{x})^{2}/2\sigma_{x}^{2}+(y-\mu_{y})^{2}/2\sigma_{y}^{2}]-2\rho[(x-\mu_{x})^{2}/2\sigma_{x}^{2}+(y-\mu_{y})^{2}}$$

dove $\mu_x e \mu_y$ sono le medie di x e y, $\sigma_x^2 e \sigma_y^2$ sono le varianze di x e y, e ρ_{xy} è la correlazione tra x e y.

Normalità multivariata

Distribuzione normale multivariata: generalizzazione della normale bivariata per k>2 variabili. Normalità multivariata: assunzione che riguarda l'insieme delle variabili che vengono considerate in analisi. Funzione di probabilità della normale multivariata:

$$\mathbf{f}(\mathbf{y};\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{p/2}} \sum_{|\boldsymbol{\Sigma}|^{1/2}} EXP(\frac{1}{2}(\mathbf{y}-\boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\mathbf{y}-\boldsymbol{\mu}))$$

dove p è il numero di variabili nel vettore y, Σ è la matrice di varianze e covarianze tra le p variabili, $|\Sigma|$ è il suo determinante, μ è il centroide delle p variabili, e EXP è l'operatore della funzione esponenziale e^x . La funzione ha in tutto p(p+3)/2 parametri.

Normalità multivariata

La distribuzione multivariata di *p* variabili è normale se:

- tutte le distribuzioni univariate delle variabili sono normali;
- le distribuzioni congiunte di tutte le coppie di variabili seguono la distribuzione normale bivariata;
- tutte le combinazioni lineari delle variabili sono normali.

Di solito se la distribuzione univariata di ogni singola variabile è normale, anche la distribuzione multivariata delle variabili lo è. Se c'è normalità multivariata, le relazioni tra le variabili considerate sono sicuramente lineari.

Normalità multivariata

SAPIENZA

6

BARBARANELLI

Valutare la normalità multivariata: Test grafico basato sui quantili della distribuzione del chi quadrato. Distanza generalizzata o distanza di Mahalanobis per ogni singolo caso:

$$\mathbf{D}_{i}^{2} = (\mathbf{X}_{i} - \overline{\mathbf{X}})'\mathbf{S}^{-1}(\mathbf{X}_{i} - \overline{\mathbf{X}})$$

Rappresenta la distanza del vettore di punteggi di un soggetto (X_i) dal centroide del campione \overline{X} , pesata per le var/covarianze (S).

Se la distribuzione delle variabili è normale multivariata e il numero dei casi meno il numero di variabili è maggiore di 25, la distanza generalizzata segue la distribuzione del chi-quadrato.

Normalità multivariata

Grafico Q-Q Chi-quadrato di Mahalan

Valor e osservato

SAPIENZA

3

BARBARANELLI

In ascissa sono riportati i valori osservati (D²), in ordinata i valori attesi della distribuzione del chi-quadrato. Se la distribuzione è normale multivariata il grafico ha un andamento lineare.

Normalità multivariata

Coefficiente di curtosi multivariata di Mardia

SAPIENZA UNIVERSITÀ DI ROMA

$$\mathbf{k} = \sum_{i=1}^{N} \left(\mathbf{D}_{i}^{2} \right)^{2} / \mathbf{N}$$

Se la distribuzione delle p variabili è normale multivariata, e se n>50 soggetti) il coefficiente di curtosi multivariata di Mardia è $\leq p(p+2)$.

$$Z_k = \frac{k - E(k)}{\sqrt{VAR(k)}}$$

 Z_k si distribuisce approssimativamente come una variabile normale standardizzata se il campione è sufficientemente ampio. Esame dell'ipotesi nulla che k < p(p+2), con un test a due code per un livello di probabilità pari a $\alpha/2$.

Outlier multivariati

Combinazioni dei punteggi delle singole variabili che risultano particolarmente "strani".

Casi che hanno una combinazione di punteggi particolarmente rara rispetto al resto del campione.

Si possono considerare outliers multivariati i casi in cui la distanza di Mahalanobis D² risulta significativa al livello p<.001 (Tabachnick e Fidell, 2007), prendendo come distribuzione di riferimento quella del chi-quadrato con *p* gradi di libertà (dove *p* =numero di variabili).

Le informazioni mancanti (*missing values*)

In fase di codifica dei dati è bene che i valori mancanti siano opportunamente codificati, in modo da distinguerli dai valori *effettivi* che possono assumere le variabili.

In fase di analisi è necessario che il ricercatore decida cosa fare dei valori mancanti.

Ci sono diverse strategie possibili.

Le informazioni mancanti (*missing values*)

a) la limitazione dell'analisi ai soli casi che presentano valori validi per tutte le variabili in esame (esclusione *listwise*);

b) la limitazione dell'analisi ai casi che di volta in volta presentano valori validi nella coppia di variabili che viene considerata (esclusione *pairwise*);

c) la sostituzione del valore mancante con la media della variabile nel campione, o con la media ottenuta dal soggetto nelle variabili considerate;

d) la sostituzione del valore mancante con una sua stima ricavata tramite procedure statistiche (regressione, EM) effettuate sui soggetti che presentano dati completi.

Statistical Package for Social Sciences

https://www.spss.it/

https://web.uniroma1.it/infosapienza/

- Le <u>componenti fondamentali</u> di SPSS
- Lo <u>screening dei dati</u> (es. valutare la normalità della distribuzione; come trattare i dati mancanti)
- L'<u>analisi dei dati</u> (statistiche descrittive, attendibilità, analisi degli item, analisi della varianza, correlazione e regressione, analisi fattoriale)

- 1. LE FINESTRE
- 2. I MENÙ

- 3. LE FINESTRE DI DIALOGO
- 4. LE BARRE DEGLI STRUMENTI
- 5. LA BARRA DI STATO

LE FINESTRE DI SPSS

- I. LA FINESTRA EDITOR DEI DATI
- 2. LA FINESTRA VISUALIZZATORE
- 3. LA FINESTRA SINTASSI

SPSS <u>La finestra Editor dei dati</u>

QUESTA FINESTRA MOSTRA I CONTENUTI DEL FILE DEI DATI

🖕 Senza titolo1 [Dataset0] - IBM SPSS Statistics Editor dei dati												x						
<u>F</u> ile	Mo <u>d</u> ific	a <u>V</u> isual	lizza	<u>D</u> ati]	<u>T</u> rasforma	<u>A</u> nalizza	Direct <u>M</u> arketing	<u>G</u> rafici	Programmi o	di <u>u</u> tilità	<u>F</u> inestra <u>G</u>	uida						
6				5			M .	1	*,		s 📰	 1€		5				
22 :																	Visibili: 0	di 0 variabili
		var		var	var	var	var	var	var	var	var	var	var	var	var	var	var	var
	1																	
	2																	
	3																	
	4																	
	5																	
	7																	
	8																	
	9																	
	10																	
	11																	
	12																	
	13																	
	14																	
	15																	
	16																	
	10																	
	19																	
	20																	
	21																	
1	22																	
	າວ	4																
		ata Vasia bil																
Vist	a dati V	sta variabil	e															
													IBM SPSS St	atistics II proc	essore è pron	to Un	icode:ON	
L	.a f	fine	st	ra	DA ⁻	ΤΑ Ε	DITO	R s	si api	re a	auto	mati	cam	ente	e oai	ni va	lta e	che

La finestra DATA EDITOR si apre automaticamente ogni volta che ha inizio una sessione SPSS. Si possono aprire più data files alla volta. 60

Molte caratteristiche della finestra data editor sono simili a quelle dei fogli elettronici (es. excel). Vi sono comunque alcune importanti differenze.

 Le <u>righe</u> corrispondono ai casi (unità). Ciascuna riga rappresenta un caso o un'osservazione. Ad esempio ciascun individuo che compila un questionario è un caso.

- Le <u>colonne</u> sono le variabili. Ciascuna colonna rappresenta una variabile o una caratteristica rilevata. Ad esempio ciascun item di un questionario è una variabile.

- Le <u>celle</u> contengono i valori. Ogni cella contiene un singolo valore di una variabile relativa ad un caso. La cella è l'intersezione di un caso con una variabile. Diversamente da Excel, le celle contengono solo valori, e non possono contenere formule.

- Il data file è <u>rettangolare</u>

Le dimensioni del data file sono determinate dal numero di casi e di variabili

Si possono inserire dati in ogni cella. Se si inseriscono dati in una cella che è al di fuori dei confini che delimitano il data file, il rettangolo dei dati si estende fino ad includere ogni riga e/o colonna tra questa cella e i confini del file

Le celle vuote all'interno dei confini del data file vengono considerate come un valore mancante, ovvero vengono convertite in valori mancanti "di sistema"

Questa finestra si apre automaticamente la prima volta che viene eseguita una procedura che genera un output Nella finestra Visualizzatore vengono mostrati tutti i risultati statistici, le tabelle e i grafici (output)

SPSS La finestra Visualizzatore

La finestra visualizzatore è suddivisa in due parti:

- Il quadro di sinistra fornisce una visione d'insieme dei contenuti dell'output.
- -Il quadro di destra contiene gli elementi veri e propri dell'output (tabelle, grafici e testo).
- La maggior parte delle caratteristiche dell'output (es. il colore o l'ampiezza del testo) sono modificabili

SPSS La finestra Sintassi

I comandi SPSS possono essere eseguiti utilizzando il linguaggio di programmazione di SPSS in un file di sintassi

Un file "sintassi" è un file di testo che contiene dei comandi.

I comandi scritti nel linguaggio di programmazione di SPSS possono essere salvati in modo tale da rendere possibile la ripetizione delle analisi in un momento successivo

Ciascuna finestra in SPSS ha la propria barra dei menù, che consente la selezione dei menu appropriati per quel tipo di finestra.

I menu ANALIZZA e GRAFICI sono disponibili su tutte le finestre, rendendo più semplice la creazione di nuovi output senza dover passare ad altre finestre.

alba	albani_1_2_3_4_5_6_7.sav [Dataset1] - IBM SPSS Statistics Editor dei dati											
<u>F</u> ile	Mo <u>d</u> ifica	<u>V</u> isualizza	Dati	<u>T</u> rasforma	Analizza	Direct <u>Marketing</u>	<u>G</u> rafici	Programmi di <u>u</u> tilità	<u>F</u> inestra	<u>G</u> uida		

SAPIENZA

58

- Si tratta di un menù particolarmente importante poiché mette in comunicazione il programma SPSS con l'esterno.
- Il menù File può essere utilizzato per creare un nuovo file scegliendo File/Nuovo. A seconda del tipo di file desiderato è possibile scegliere tra file di dati (Dati), file testo per i comandi nel linguaggio di programmazione (Sintassi), file che contengono risultati sia in formato SPSS (Output), file che consentono di automatizzare alcune operazioni tramite appositi programmi (Script).

Sonza titolo1 (Datacato) IDM SDSS Statistics Editor doi o	dati	-	in the					
Nuovo		💿 <u>D</u> at	ii		Programmi d	i utilità Ein	ostra C	uida
Apri	*	🖹 <u>S</u> int	tassi	4 - E				
Apri data <u>b</u> ase	•	@ <u>O</u> ut	put		Kr 🖌		S	14
i Leggi <u>d</u> ati testo		Scri	ipt					
Le <u>g</u> gi dati Cognos	*	/ar	var	_	var	var	var	
🛨 Leggi dati triple-S			Ven		Yui	YEI	Yui	
Chiudi	Ctrl+F4							
📕 <u>S</u> alva	Ctrl+S							
S <u>a</u> lva con nome								
🔚 Sa <u>l</u> va tutti i dati								
Esporta	*							
📄 <u>C</u> ontrassegna file come di sola lettura								
🗄 Raccogli informazioni variabili								
₩ Rideno <u>m</u> ina dataset								
V <u>i</u> sualizza informazioni file di dati	•							
🛨 Gestisci dataset								
🥺 Memorizza in cache i dati								
Arresta processore	Ctrl+Punto							
于 Imposta opzioni di output Visualizzatore (Sintassi)								
😱 Ca <u>m</u> bia server								
Repository	*							
🔍 Anteprima di stampa								
📥 Stam <u>p</u> a	Ctrl+P							
Einestra di dialogo di benvenuto								
Dati utilizzati di recente	•					***		
	+							
Esci		_						

Tra i diversi tipi di file di dati che è possibile aprire segnaliamo i seguenti, rimandando il lettore al manuale di SPSS e alle funzioni di aiuto in linea per le ulteriori opzioni relative al menù:

- File SPSS (*.sav), SPSS/PC+ (*.sys) e Portabile SPSS (*.por);
- File testo "Tab delimitati", ovvero con i valori separati da tabulazioni, o fissi (*.dat);
- File di fogli elettronici come Excel (*.xls, xlsx), o Lotus (*.wk3, *.wk1, *.wks).
- File SYLK Symbolic Link per fogli elettronici di Microsoft Excel e Multiplan (*.slk).
- File dBASE IV, III o II (*.dbf)
- File SAS (*.sd2, *.ssd01, *.ssd04, *.sd7, *.sas7bdat, *.ssd01, *.xpt).

DATI_TRAT_PREL.xlsx

	K15		<u> </u>	se*				
	А	В	С	D	E	F	G	Н
1	sex	age	att	ns	contco	compas	int	
2	1	43	16	9	10	2	7	
3	1	30	54	6	3	0	3	
4	1	45	29	4	2	1	4	
5	1	34	30	8	2	0	2	
6	9	99	37	4	2	0	2	
7	2	51	32	2	8	0	6	
8	9	99	31	10	4	2	4	
9	2	28	30	6	2	0	4	
10	2	26	30	8	8	4	2	
11	1	30	42	8	10	0	2	
12	1	51	43	10	8	8	8	
13	1	50	22	8	9	0	4	
14	1	29	34	6	2	0	2	
15	2	32	27	8	10	4	8	
16	1	40	50	4	8	1	6	
17	1	28	28	6	10	0	2	
18	2	26	50	10	8	0	10	
19	1	28	32	6	3	1	4	
20	2	18	42	4	10	0	4	
24	_	25	24	1	Λ	^	2	

ANALISI DEI DATI + LAB

SAPIENZA UNIVERSITÀ DI ROMA

(

Aprire i dati

ta Se	🔚 Senza titolo3 [Dataset2] - IBM SPSS Statistics Editor dei dati											
<u>F</u> ile	Mo <u>d</u> ifica	<u>V</u> isualizza	<u>D</u> ati	<u>T</u> rasforma	Analizza	Direct I	Marketing) <u>G</u> rafici	Programm	ni di <u>u</u> tilità <u>F</u>	inestra <u>(</u>	Guida
	Nuovo					*	II PL	AA .			2	
	Apri					•	+ Pro	getto				1
	Apri data <u>b</u> ase					•	🔁 <u>D</u> ati	i)r	1	Ir
۱	_eggi <u>d</u> ati tesi	to					+ Dati	i Internet	var	var	var	var
	Le <u>q</u> gi dati Co	gnos				•	🔁 <u>S</u> int	assi				
+	_eggi dati trip	le-S					Dut	put				
<u> </u>	<u>C</u> hiudi				Ctrl+F	4	🔁 S <u>c</u> ri	pt				
	<u>S</u> alva				Ctrl+S						_	
:	S <u>a</u> lva con non	ne										
Ч <u>н</u>	Sa <u>l</u> va tutti i da	ti										
	Espor <u>t</u> a					•						
	<u>C</u> ontrassegna	a file come di	sola lett	ura								
+	Raccogli infor	mazioni varia	bili									
1	Rideno <u>m</u> ina o	dataset										
	V <u>i</u> sualizza info	ormazioni file	di dati			•						
+	Gestisci datas	set										
ا 🤕	Memorizza in	cache i dati										
•	Arresta proce:	ssore			CtrI+P	unto						
+	mposta opzio	oni di output V	isualizza	atore (Sintassi))							
*	Ca <u>m</u> bia serve	er										
	<u>R</u> epository					•						
	Antonrimo di a	etamna										

(

Aprire i dati

tati Apri dati					X
Cerca in:	퉬 dati 2017 2018	▼ ≦	a 🔯 🔢	E	
I DATI_ I es1.xis	FRAT_PREL.xlsx				
Nome file:					Apri
Tipo file:	Excel (*.xls, *.xlsx, *.xlsm)			•	Incolla
Codifica:				T	Annulla
	Recupera file dal Repositor	y			Guida
(

Leggere i dati

http://www.commune.com/approx/ap	dati Excel	x
C:\lezioni 2017 - 201	18\dati 2017 2018\DATI_TRAT_PREL.xlsx	
🔽 Leggi i nomi dell	le variabili dalla prima riga di dati	
Foglio di lavoro:	dati_trat_prel [A1:G200]	-
Intervallo:		
Larghezza massima	a per le colonne di stringhe: 32767	
	OK Annulla Guida	

(

Aprire i dati

ta *Senz	*Senza titolo2 [Dataset1] - IBM SPSS Statistics Editor dei dati													
<u>F</u> ile	Modifica	a <u>V</u> isualizza	<u>D</u> ati	<u>T</u> rasforma <u>A</u>	nalizza D	Direct <u>m</u> arketing	g <u>G</u> rafici	Prog	grammi di <u>u</u> tilità	Fines	tra Guida			
				· 🔺 📱		ч	H	*5			▲ 1 €		ABC	
			1		1	10		10				1		
		sex		age	а	tt	ns		contco		compas	int		١
1			1	43		16		9		10	2		7	
2			1	30		54		6		3	0		3	
3			1	45		29		4		2	1		4	
4			1	34		30		8		2	0		2	
5			9	99		37		4		2	0		2	
6			2	51		32		2		8	0		6	
7			9	99		31		10		4	2		4	
8			2	28		30		6		2	0		4	
9			2	26		30		8		8	4		2	
10			1	30		42		8		10	0		2	
11			1	51		43		10		8	8		8	
12			1	50		22		8		9	0		4	
13			1	29		34		6		2	0		2	
14			2	32		27		8		10	4		8	
15			1	40		50		4		8	1		6	
16			1	28		28		6		10	0		2	
17			2	26		50		10		8	0		10	
18			1	28		32		6		3	1		4	
19			2	18		42		4		10	0		4	
20			2	25		24		4		4	0		2	
21			2	33		50		10		10	0		10	
		1						_						

BARBARANELLI

Salvare ed esportare un file dati Per salvare un file di dati scegliere dal menu: File ⇒Salva oppure File ⇒Salva con nome.

Nel secondo caso si aprirà una finestra di dialogo analoga a quella relativa all'apertura dei file che consente di specificare il percorso per il file da salvare, e di definire il tipo di file che viene salvato.

I formati di file definibili sono quelli esaminati nella slide relativa all'apertura dei file.

Salvare i dati

ta ·	Senza titolo2 [l	Dataset1] - IBI	M SPSS S	Statistics Editor	dei dati						
<u>F</u> ile	e Mo <u>d</u> ifica	<u>V</u> isualizza	<u>D</u> ati	<u>T</u> rasforma	Analizza	Direct I	Marketing	<u>G</u> rafici	Pr	ogramn	ni c
	Nuovo					•	K	AA 🕴			
	Apri					•			- P.		
	Apri data <u>b</u> ase)				•				10	
0	Leggi <u>d</u> ati test	to						compas			
	Leggi dati Co	gnos				•	10		2	2	
+	Leggi dati tripl	le-S					3		0)	
	<u>C</u> hiudi				Ctrl+F4	l I	2		1		
	Salva				Ctrl+S		2		0		
	Salva con non	ne					8		0		
1	Salva tutti i da	ti					4		2	>	
	Esporta						2		0)	_
	Contrassegna	a file come di	sola lett	ига			8		4		
+	Raccogli infor	mazioni varia	bili				10		0)	
1	Ridenomina d	lataset					8		8	3	
	Visualizza info	ormazioni file	di dati				9		0)	
+	- Gestisci datas	set					2		0		
-00	Memorizza in	cache i dati					10		4	•	
	Arresta proces	ssore			Ctrl+Pi	into	0				
	Imposta onzio	ni di output V	icualizza	tore (Sintassi)	Garrie	into	8		0		
	Cambia contra	r a ouput v	isualizza	nore (onnassi)			3		1		
-	Danository	I					10		0)	_
	Antonrimo di c	tampa				,	4		0)	_
1.5.2	Anteonna di s	laillud									_

Salviamo il nostro file importato da excel per usarlo come file .sav nei prossimi esempi (altrimenti alla chiusra del programma andrebbe perso).

ANALISI DEI DATI + LAB

E' possibile escludere variabili dal file che viene salvato cliccando sul pulsante "Variabili" e scegliendo quali variabili eliminare.

Nella figura successiva viene mostrata la finestra di dialogo che consente di filtrare le variabili: se viene lasciata l'opzione di default tutte le variabili vengono mantenute nel file che viene salvato.

Per eliminare una variabile dal nuovo file è sufficiente effettuare un clic del mouse sul quadrato corrispondente alla variabile nella colonna "Mantieni".

.

	Verranno mantenute 7 di 7 variabili.	Variabili	
Nome file:	dati_TRAT_PREL	Salva	
Salva come tipo:	SPSS Statistics (*.sav)		
		incolla	

t	Salva dati com	ne: Variabili	3	AL all to	X
	Solo le variabi	III selezionate ver Nome sex age att ns contco compas int	ranno salvate sul	file di dati specifica Ordine 1 2 3 4 5 6 7	Mantieni tutto Solo visibili Rilascia tutto
	Selezionate: 7	7 di 7 variabili. Cont	tinua) Annulla	Guida	

SPSS Il menu modifica

Questo menu consente di copiare, tagliare, incollare e cancellare righe e colonne nell'Editor dei dati, trovare dei valori specifici per una data variabile e definire le opzioni di base per il programma (es. definire il tipo di visualizzazione delle variabili negli elenchi e negli output) per le quali si rimanda ai manuali specifici e alle funzioni di aiuto in linea.

Questo menù definisce il modo in cui vengono visualizzate la barra di stato, le barre degli strumenti, le variabili, le griglie della tabella dei dati, e definisce i caratteri utilizzati per visualizzare le diverse informazioni. In particolare:

- L'opzione *Barra di stato* consente di mostrare o nascondere la barra di stato, ovvero quella zona della parte inferiore di una finestra SPSS nella quale sono visualizzate le informazioni sullo stato di esecuzione dei programmi, sullo stato del filtro e della ponderazione dei casi

SPSS Il menu visualizza

*Senz	za titolo2 [[Dataset1] - IBM SP	SS Statistics Editor d	lei dati	
<u>F</u> ile	Modifica	<u>V</u> isualizza <u>D</u> a	iti <u>T</u> rasforma	<u>A</u> nalizza D	Direct marketing
		Barra di <u>s</u> Barre deg Editor del	tato gli s <u>t</u> rumenti <u>m</u> enu	۲	
1 2 3		Caratteri.	la griglia <u>v</u> alori eona dati asseona	ti	16 54 29
5		Personal	zza vista Variabile		37
6		🙀 V <u>a</u> riabili		Ctrl+T	32
7		9		99 28	31
9		2		26	30
10		1		30	42

	N N N N N N N N N N N N N N N N N N N
Vista dati Vista Variabile	
	IBM SPSS Statistics II processore è pronto Unicode:ON

SPSS <u>Vista dati</u>

ta *Se	*Senza titolo2 [Dataset1] - IBM SPSS Statistics Editor dei dati												
<u>F</u> ile	Modifica <u>V</u> isua		zza <u>D</u> a	iti <u>T</u> ras	sforma <u>A</u>	nalizza	Direct <u>m</u> arketing		Grafic	ci Pro	grammi		
			1		>	1		R	h.	*5			
5:													
		sex	C C		age		att		ns		с		
	1		1		43	3		16		9			
:	2		1		30)		54		6			
	3		1		45	5		29		4			
4	4		1		34	Ļ		30		8			
!	5		9		99)	37			4			
(6				51	1	32			2			
	7			1		99 31		31		10			
1	8		2		28	28 30		30		6			
	9	2				26		30		8			
1	0		1	30 42					8				

SAPIENZA UNIVERSITÀ DI ROMA

SAPIENZA UNIVERSITÀ DI ROMA (

🔚 *Senza ti	tolo2 [Dataset1] - I	BM SPSS Statist	tics Editor dei da	ati		MARCHINE 20	17 2018 ppm - N	Accession From	and and		
File Mod	lifica <u>V</u> isualizza	<u>D</u> ati <u>T</u> ra	asforma <u>A</u> na	lizza Dire	ct <u>m</u> arketing <u>G</u> ra	ifici Programi	mi di <u>u</u> tilità Fi	nestra Gu	iida		
			∽ 🖺	*						ABG	
	Nome	Tipo	Larghezza	Decimali	Etichetta	Valori	Mancante/i	Colonne	Allinea	Misura	Ruolo
1	sex	Numerico	12	0		Nessuno	Nessuno	12	🗏 Destra	\delta Nominale	🔪 Input
2	age	Numerico	12	0		Nessuno	Nessuno	12	🗃 Destra	I Scala	🔪 Input
3	att	Numerico	12	0		Nessuno	Nessuno	12	🗃 Destra	I Scala	🔪 Input
4	ns	Numerico	12	0		Nessuno	Nessuno	12	🗃 Destra	\delta Nominale	🔪 Input
5	contco	Numerico	12	0		Nessuno	Nessuno	12	遭 Destra	\delta Nominale	🔪 Input
6	compas	Numerico	12	0		Nessuno	Nessuno	12	遭 Destra	\delta Nominale	🔪 Input
7	int	Numerico	12	0		Nessuno	Nessuno	12	를 Destra	\delta Nominale	🔪 Input
8											
9											

3

SAPIENZA UNIVERSITÀ DI ROMA

senz	za titol	o2 [Dataset1] - II	3M SPSS Sta	tistics Edito	r dei dati	Married	A Prosterior			-	-			
<u>F</u> ile	Modifie	ca <u>V</u> isualizza	Dati	Trasforma	Analizza	a Dire	ct <u>m</u> arketing	Gra	afici Pr	ogram	ni di <u>u</u> tilità	à Fir	nestra	G
	H			7	i		k	ĥ	-Ale	4		5		
		Nome	Tipo	Larg	hezza D	ecimali	Etichet	tta	Va	lori	Manca	inte/i	Color	ine
1		sex	Numerico	12	0				Nessun	0	Nessun	.	12	
2		age	Numerico	12	0				Nessun	0	Nessund)	12	
3		att	Numerico	12	0				Nessun	0	Nessund)	12	
4									Y		Nessund)	12	
5	U	Valori ma	ncanti						^		Nessund)	12	
	 Nessun valore mancante Valori mancanti discreti Valori mancanti discreti Intervallo più un valore mancante discreto facoltativo Basso: Alto: Valore discreto: OK Annulla Guida 													

SAPIENZA UNIVERSITÀ DI ROMA

senz *	a titolo2 [Dataset1] - IE	M SPSS Statisti	cs Editor dei d	ati						
<u>F</u> ile M	Nodifica <u>V</u> isualizza	<u>D</u> ati <u>T</u> ras	sforma <u>A</u> na	alizza Dir	ect <u>m</u> arketing <u>G</u> ra	afici Program	mi di <u>u</u> tilità Fi	nestra Gu	uida	
			¥ 🎬		r H		- 4		A 📀 🌑	ABG
	Nome	Tipo	Larghezza	Decimali	Etichetta	Valori	Mancante/i	Colonne	Allinea	Misura
1	sex	Numerico	12	0		Nessuno	Nessuno	12	i Destra	\delta Nominale
2	age	Numerico	12	0		Nessuno	Nessuno	12	i Destra	Scala 🖉
3	att	Numerico	12	0		Nessuno	Nessuno	12	i Destra	Scala 🖉
4	ns	Numerico	12	0	Etichatta valori	Taxesure	Nessure	12	Cestra .	X
5	contco	Numerico	12	0		Terrore	Nessara	12	All Destra	ale
6	compas	Numerico	12	0	Etichette valori					ale
7	int	Numerico	12	0	Valore: 2				Controllo orteoro	ale
8									Controllo ortogra	
9					Etichetta: FEMMI	NA				
10					1	= "MASCHIO"				
11					Aggiungi					
12					Cambia					
13					Rimuovi					
14					(
15										
16						OF	K Annulla	Guida		
17										
18										

Effettua operazioni sulle variabili e sui casi.

• • • □ •	*) -		Definisci proprietà <u>v</u> ariabili		e_tabelle.dc	oc [Moda	lità di co	ompatib	ilità] - M	icrosoft \	Nord	
teams.sav [[Dataset1] - IBM SPS	34	Imposta livello di misurazione per sconosciuto									
File Medific	vo Vieuolizzo	+	Crea etichette valore dai dati		Drogrammi	di utilità	Fin	ostro	Cuide			
File Modific	a <u>v</u> isualizza	Ē	<u>C</u> opia proprietà dei dati		Programm	di <u>u</u> tilita	<u>E</u> ine	estra	Guida		_	
	🖨 🛄		Nuovo a <u>t</u> tributo personalizzato		ş 👱		5		A	0)
		Ħ	D <u>e</u> finisci data e ora									
	dysfunc	+	Definisci data dai dati		var		var	V	ar	var		١
1	-,23		Definisci insie <u>m</u> i a risposta multipla									
2	-,13		Convalida	•								
3	,00		Identifica casi d <u>u</u> plicati									
4	-,33		Identifica casi insoliti									
5	,39	-	Confronta dataset									
6	1,02		Ordina casi									
7	-,35											
8	-,23	23	varia <u>b</u> ili di ordinamento									
9	,39		Traspo <u>n</u> i									
10	-,08	+	Adatta larghezze stringa tra i file									
11	-,23		Unisci file									
12	,09	+	Prodotto cartesiano									
13	-,29	*	<u>R</u> istruttura									
14	-,06	+	Esegui raking dei pesi									
15	,27	+	Messa in corrispondenza punteggi propensione									
10	, 10	+	Corrispondenza controllo casi									
18	,30		Aggrega									
19	,43	-66										
20	- 50		Suddividi in file									
	20 -,50											
Mada dati Mi	ista Variabila	K	Copia <u>d</u> ataset									
vista dati	ista vallabile		<u>F</u> ile suddiviso									
		Eleziona casi				IBM SPSS						
na 20 a 00 mga 1 comma 2 ma			Pesa casi									

87

SAPIENZA

SPSS Il menu dati

I sotto-menù più utili sono:

"Copia proprietà dei dati" consente all'utente di prendere un file dati SPSS esterno ed utilizzarlo come modello per la definizione del file dati corrente. In particolare, sia le proprietà del file (es., etichetta del file, insiemi a risposta multipla, ecc.), sia quelle delle variabili (es., etichette dei valori, valori mancanti, etichette delle variabili, ecc.) del file "modello" possono essere utilizzate per definire quelle del file corrente

SAPIENZA

SPSS Il menu dati

I sotto-menù più utili sono:

"*Unisci file*" consente di unire due file in un unico file e presenta due diverse modalità fondamentali: Aggiungi casi e Aggiungi variabili. Aggiungi casi unisce il file attivo con un secondo file che contiene le stesse variabili ma casi differenti. Aggiungi variabili unisce il file attivo con un file dati esterno che contiene gli stessi casi ma variabili differenti da quelle nel file attivo. I casi devono avere lo stesso ordine in entrambi i file. Se si utilizza una "variabile chiave" per appaiare i casi, i due file devono essere ordinati in modo crescente rispetto alla variabile chiave.

1.02			
1,02	🖓 Ordina casi		
-,35			
-,23	Varia <u>b</u> ili di ordinamento		
,39	💐 Traspo <u>n</u> i		
-,08	🛨 Adatta larghezze stringa tra i file		
-,23	Unisci file 🕨 🕨	😳 Aggiungi casi	
,09	+ Prodotto cartesiano	Aggiungi yariahili	
-,29	🚟 Ristruttura		
-,06			
,27			
40	🔚 Messa in corrispondenza punteggi propensione		

Aggiungi variab	ili a teams.sav[Dataset1]	x					
Seleziona un dataset dall'elenco di dataset aperti o da un file per unirlo al dataset attivo							
lon dataset aj	pert <u>o</u>						
On file di d <u>a</u> u	esterno SPSS Statistics	Sfoglia					
l file di dati non S	PSS Statistics devono essere aperti in SPSS Statistics per poter essere usati in un'operazione	e di unione					
	Continua Annulla Guida						

SPSS Il menu dati

I sotto-menù più utili sono:

"Seleziona Casi" consente di definire sottoinsiemi di casi che vengono selezionati tramite un criterio specificato dall'utente stesso. Per la selezione dei casi l'utente può specificare un'operazione di natura più o meno complessa, oppure avvalersi del generatore di numeri casuali di SPSS. I casi non selezionati possono essere *filtrati* o *cancellati* del tutto dal file. La modalità che prevede che i casi siano filtrati crea una nuova variabile, "filter_\$", che serve per indicare lo stato attuale del filtro. Il valore di tale variabile è uguale a 1 per i casi che soddisfano la condizione di selezione, mentre è uguale a 0 per i casi che non soddisfano tale condizione e che quindi vengono esclusi dall'analisi.

 \otimes

3

ta *Senza titolo2 [Dataset1] - IBM SPSS Statistics Editor dei dati								and the second second
Seleziona casi	ni Mancantoli Colorne Allinea	File Modifie	a <u>V</u> isualizza	Dati	Trasforma	Analizza	Direct <u>m</u> arketir	ng <u>G</u> rafici Pi
sex	Seleziona O Tutti i c <u>a</u> si O Se la condizione è coddisfatta			5	7	E		H 👪
	Se		sex		age		att	ns
Conico	Campione	1		1		43 30	16 54	((
••• •••	© Basato su intervallo di tempo o di casi	3		1		45	29	2
	O Usa variabile filtro:	4		1 9		34 99	30 37	{
				2		51	32	1
	Output © Escludi casi non selezionati			2		28	30	(
	Copia casi selezionati in un nuovo dataset			2		26	30 42	<u>د</u>
	© E <u>l</u> imina casi non selezionati	11		1		51	43	1(
Stato corrente: non filtrare	i casi	12 13		1		50 29	22 34	{ {
OK	ncolla <u>R</u> eimposta Annulla Guida	14		2		32	27	Ę
		15 16		1		40 28	50 28	4
		17		2		26	50	1(
		10		2		18	42	2
		20		2		25	24	4

SPSS Il menu Trasforma

Consente di modificare le variabili (o definirne delle nuove) operando trasformazioni su variabili già esistenti

Sono presenti i seguenti comandi:

- 1. <u>Calcola variabile</u>: consente di calcolare i valori di una variabile in base alle trasformazioni numeriche di altre variabili.
- 2. <u>Ricodifica</u>: è possibile scegliere tra due opzioni <u>ricodifica nelle stesse</u> <u>variabili</u> e <u>ricodifica in</u> <u>variabili differenti</u>

ta *Se	*Senza titolo2 [Dataset1] - IBM SPSS Statistics Editor dei dati								
<u>F</u> ile	Modifie	a <u>V</u> isi	ualizza	Dati	<u>T</u> rasforma	<u>A</u> nalizza	Direct marketin	ig <u>G</u> rafici	Pro
				5	Trasform	ariabile azione prog ori all'intern	rammabilità 10 dei casi		
			sex		Sposta va	alori			
	1			1	Ricodifica	nelle stes	se variahili		9
	2			1	Disadifies	in veriebili	differenti		6
	3			1			unierenu		4
	4			1	Ricodifica	automatic	а		8
	5			9	Crea varia	abili dumm	y		4
	6			2	Raccolta	visuale			2
	7			9	💦 Raccolta	ottimale			10
	8			2	Prepara	dati per mo	dellazione	*	6
	9			2	Classifica	azione casi.			8
1	10			1	Procedur	a quidata D	ata e ora		8
1	11			1		a staricha			10
	12			1		e stonche			8
	13			1	Sostituise	ci valori mai	ncanti		6
1	14			2	😵 <u>G</u> enerato	ri numeri ra	indom		8
1	15			1	🐻 Esegui tra	asformazio	ni in sospeso	Ctrl+G	4
1	16			1		20	20		- 6
1	17	-		2		26	50		10
1	18			1		28	32		6
1	19			2		18	42		4
2	20			2		25	24		4
2	21			2		33	50		10

BARBARANELLI

SPSS

SAPIENZA UNIVERSITÀ DI ROMA

Ir

ANALISI DEI DATI + LAB

Il menu Analizza

È il menu più importante di SPSS, quello che consente di effettuare le <u>analisi statistiche</u>

asforma	<u>A</u> nalizza Di	irect <u>M</u> arketing	<u>G</u> rafici	Program	nmi di <u>u</u> ti
~ 🖺	Report			•	
- •	Statistich	e descrittive		•	
	Ta <u>b</u> elle p	ersonalizzate		•	10
ORARIO	Confronta	medie		•	va
	Modello li	neare <u>q</u> enerale		•	
	<u>M</u> odelli lin	ieari generalizzat	ti	•	
	Modelli m	i <u>s</u> ti		•	
	Correlazio	one		•	
	<u>R</u> egressi	one		•	_
	L <u>o</u> glinear	e		•	
	<u>R</u> eti neura	ali		•	
	Classifica	I		•	
	Ri <u>d</u> uzione	delle dimension	ni	•	
	Sc <u>a</u> la			•	
	Test <u>n</u> on	parametrici		•	
	Previsioni	l)		•	
	<u>S</u> oprawiv	enza		•	
	Risposta	m <u>u</u> ltipla		•	
	<u> A</u> nalisi val	ori mancanti			
	Assegnaz	ione mul <u>t</u> ipla		•	
	Campioni	comp <u>l</u> essi		•	
1	Simulazio	ne			
	Controllo	gualità		•	
	Curva RO	C			
	Modellazi	one spaziale e te	mpo <u>r</u> ale	•	

Il menù ANALIZZA si trova in tutte le finestre di SPSS

La maggior parte delle opzioni nel menu "Analizza" consentono di aprire delle "finestre di dialogo"

Frequenze			X		
 Sex Image <l< td=""><td>•</td><td><u>V</u>ariabili:</td><td>Statistiche Grafi<u>c</u>i Eormato Stile Bootstrap</td></l<>	•	<u>V</u> ariabili:	Statistiche Grafi <u>c</u> i Eormato Stile Bootstrap		
Visualizza tabelle <u>d</u> elle frequenze OK Incolla <u>R</u> eimposta Annulla Guida					

Le finestre di dialogo vengono utilizzate per selezionare le variabili da analizzare (e le diverse opzioni disponibili)

Le finestre di dialogo sono composte da alcuni elementi fondamentali

- Lista delle variabili origine: è la lista delle variabili contenute nel data file attivo al momento. Non tutte le variabili del file possono comparire in questa lista, ma solo i tipi di variabili consentite dalla procedura selezionata. Ad esempio. una variabile alfanumerica (o "stringa") può apparire soltanto in alcune procedure elementari.

<u>- Lista delle variabili bersaglio (o variabili attive):</u>

Una o più liste che indicano quali variabili sono state scelte per le analisi. Ad esempio, quali sono le variabili dipendenti e quelle indipendenti

Il comando calcola la distribuzione di frequenza delle variabili incluse nella lista delle variabili bersaglio (a destra)

6

-<u>Bottoni dei comandi</u>: sono i pulsanti che consentono al programma di realizzare un'azione, ad esempio eseguire una procedura di analisi statistica

Premendo sul pulsante OK si eseguono le analisi. REIMPOSTA azzera tutte modifica apportate nella finestra di dialogo. CANCELLA chiude la finestra. AIUTO rappresenta una funzione di aiuto on-line relativa alla finestra di dialogo

INCOLLA consente di "tradurre" i comandi e le opzioni selezionate nella finestra di dialogo nel linguaggio di programmazione di SPSS.

Le linee di sintassi vengono inserite nella finestra Sintassi attiva al momento (se non c'è nessuna finestra Sintassi aperta, ne viene creata una nuova).

I pulsanti posti a destra nella finestra di dialogo consentono di aprire delle ulteriori finestre di dialogo in cui è possibile specificare una serie di opzioni relative alla procedura in corso

Frequenze	Variabili:	X Statistiche Grafici Eormato Stile Bootstrap	Questi pulsanti consentono di aprire ulteriori finestre di dialogo
Visualizza tabelle <u>d</u> elle frequ OK Incolla	uenze Reimposta Annulla	Guida	

Questi pulsanti sono diversi per ciascuna finestra di dialogo

Ogni finestra ha la propria barra degli strumenti, che fornisce un metodo più rapido, grazie all'utilizzo di un unico pulsante, per accedere ad alcuni dei comandi utilizzati più frequentemente

Posizionandosi con il mouse sulle icone, viene fornita una breve descrizione di ciascun comando

Analisi dei dati con SPSS

<u>Analisi monovariate</u>: prendono in esame una sola variabile per volta: indici di tendenza centrale, indici di dispersione (<u>statistiche descrittive</u>

-> frequenze e/o descrittive)

<u>Analisi bivariate</u>: prendono in esame l'andamento congiunto di due variabili: correlazione (<u>correlazione</u> -> <u>bivariata</u>), regressione (<u>regressione</u> -> <u>lineare</u>), analisi della varianza (<u>modello lineare generalizzato</u> -> <u>univariata</u>)

<u>Analisi multivariate</u>: prendono in esame simultaneamente più di due variabili: analisi fattoriale (<u>riduzione dimensione</u> -> <u>fattoriale</u>)

Esplorazione dei dati: data screening

SPSS consente di calcolare una serie di statistiche che riassumono l'informazione nei dati.

L'esplorazione iniziale dei dati è necessaria per esaminare se:

- ci sono errori nei dati, e quindi le variabili assumono valori fuori scala (ad esempio, un item che varia da 1 a 5 ha un punteggio di 8)

- ci sono "valori anomali" (outliers) ovvero soggetti che presentano valori estremamente elevati in una variabile

- ci sono casi con valori mancanti

L'esplorazione iniziale dei dati è necessaria anche per studiare le caratteristiche distributive delle variabili.

Esplorazione dei dati: data screening

E' possibile esplorare i dati richiedendo:

SAPIENZA

- distribuzioni di frequenza (procedura Frequenze)
- statistiche descrittive come media, deviazione standard, curtosi, asimmetria (procedura Descrittive)
- tabelle di esplorazione (procedura Esplora)
- tabelle di contingenza

BARBARANELLI

50

- rappresentazioni grafiche

ta *Ser	nza titolo2	[Dataset1] - IBN	A SPSS S	tatistics Editor of	dei dati				
File	Modifica	Visualizza	Dati	Trasforma	<u>A</u> nalizza	Direct <u>m</u> arketing	<u>G</u> rafici	Programmi di <u>u</u> tilità Finestra	Guid
P			10		Report	t	*		A
					Statist	ich <u>e</u> descrittive	•	123 Frequenze	14
					Ta <u>b</u> ell	e	•	Descrittive	
		sex		age	Confro	nta <u>m</u> edie	*	A Esplora	npas
1	1		1		Modell	o lineare <u>g</u> eneralizz	ato 🕨	Tabelle di contingenza	
2	2		1		Modell	i lineari generali <u>z</u> za	ti 🕨		
3	3		1		Modell	i misti	•	Analisi TURF	
4	L		1		Correl	azione		Rapporto	
5	5		9		Regre	ssione	*	🛃 Grafici <u>P</u> -P	
6	5		2		Log-lir	leare	•	🛃 Grafici <u>Q</u> -Q	_
1	<u> </u>		9		Reti ne	eurali	•	0 4	

SPSS La procedura Frequenze

La procedura "<u>Frequenze</u>" consente di effettuare una serie di analisi preliminari, tramite statistiche descrittive e grafici. Selezionando la procedura frequenze si aprirà questa finestra di dialogo:

Frequenze	6	X			
 Sex Sex age att ns contco compas int 	<u>V</u> ariabili:	<u>Statistiche</u> Grafi <u>c</u> i <u>F</u> ormato Sti <u>l</u> e <u>B</u> ootstrap			
✓ Visualizza tabelle delle frequenze OK Incolla Reimposta Annulla Guida					

SPSS La procedura Frequenze

Una volta selezionate la variabili di interesse (es. "Estroversione"), possiamo chiedere diversi tipi di <u>statistiche</u> (tramite il pulsante STATISTICHE) e di <u>grafici</u> (tramite il pulsante GRAFICI).

Il pulsante FORMATO (sulla destra) consente di specificare il <u>formato</u> in cui i dati sono presentati nelle tabelle

Cliccando sul pulsante "Statistiche" si aprirà questa finestra:

	Frequenze: Statistiche	Tendenza centrale	
	Quartili Quartili Punti di divisione per: 10 gruppi uguali Percentili: Aggiungi	 ✓ Media ✓ Mediana ✓ Moda ✓ Somma 	<u>Indici di</u> <u>tendenza</u> <u>centrale</u>
	Modifi <u>c</u> a <u>R</u> imuovi	🔲 I valori sono punti centrali del gruppo	
<u>Indici di</u> <u>dispersione</u>	Dispersione ✓ Deviazione std. ✓ Minimo ✓ Varianza ✓ Massimo Intervallo S.E. media	Distribuzione A <u>s</u> immetria Curtosi	
	Continua Annull	a Guida	

L'opzione "Statistiche" consente calcolare una serie di statistiche, come ad gli indici di <u>tendenza centrale</u> e gli indici di <u>dispersione</u>

A

È possibile inoltre calcolare i quartili e percentili.

Frequenze: Statistiche	×
- Valori percentili Quartili Punti di divisione per: 10 gruppi uguali Percentili: Aggiungi Modifica Rimuovi	 Tendenza centrale ✓ Media ✓ Mediana ✓ Moda ✓ Somma
Dispersione Deviazione std. Minimo Varianza Massimo Intervallo S.E. media	Distribuzione Asimmetria Curtosi Guida

<u>RICORDA</u>: i Quartili indicano quei valori che dividono la distribuzione in quattro parti uguali.</u>

I Percentili indicano quei valori che dividono la distribuzione in 100 parti uguali.

50

Selezionando il pulsante "Grafici" si aprirà la finestra riportata in basso, che consente di specificare il tipo di grafico che vogliamo utilizzare per rappresentare la distribuzione di frequenze.

ta Frequenze	×
 ✓ age ✓ att ✓ ns ✓ contco ✓ compas ✓ int ✓ filter_\$ 	Variabili: Statistiche Sex Grafici Fornato Stile Bootstrap Bootstrap tabelle delle frequenze Market Stile
ОК	Incolla <u>R</u> eimposta Innulla Guida
	 Frequenze: Grafici Tipo di grafico Nessuno Grafici a barre Grafici a torta Istogrammi: Mostra curva normale nell'istogramma
]	Valori del grafico Erequenze Percentuali Continua Annulla Guida

SPSS L'output della procedura Frequenze

Nell'output vengono riportate una serie di tabelle e un grafico

La tabella seguente contiene i valori delle statistiche descrittive che abbiamo richiesto nella finestra "Statistiche"

112

SPSS L'output della procedura Frequenze

Nell'output vengono riportate una serie di tabelle e un grafico

La tabella seguente contiene i valori delle statistiche descrittive che abbiamo richiesto nella finestra "Statistiche"

		Frequenza	Percentuale	Percentuale valida	Percentuale cumulativa
Valido	1 MASCHIO	76	38,2	39,0	39,0
	2 FEMMINA	119	59,8	61,0	100,0
	Totale	195	98,0	100,0	
Mancante/i	9	4	2,0		
Totale		199	100,0		

1
 i

SPSS L'output della procedura Frequenze

- Nell'output vengono riportate una serie di tabelle e un grafico
- Il grafico seguente contiene il diagramma a barre delle frequenze

SPSS L'output della procedura Frequenze

Nell'output vengono riportate una serie di tabelle e un grafico

La tabella seguente contiene i valori delle statistiche descrittive che abbiamo richiesto nella finestra "Statistiche"

aye		
Ν	Valido	192
	Mancante/i	7
Media		36,67
Mediana		32,00
Modalità		28
Deviazione std.		11,575
Varianza		133,983
Asimmetria		,425
Errore standar	,175	
Curtosi		-1,219
Errore standar	,349	
Minimo		18
Massimo		62

Statistiche

L'output della procedura Frequenze

In questa figura viene riportato l'istogramma della variabile

Una curva normale sovrapposta all'istogramma consente di valutare se i dati sono distribuiti normalmente

SPSS La procedura Descrittive

La procedura "Descrittive" consente di calcolare alcune statistiche univariate. Questa procedura è consigliabile per lo screening di file che contengono molte variabili

轴 *Senza titolo2 [Dataset1] - IBM SPSS Statistics Editor dei dati									
File	Modifica	Visualizza	Dati	Trasforma	Analizza	Direct <u>m</u> arketing	<u>G</u> rafici	Programmi di <u>u</u> tilità Finestra	Guida
P			IC		Repo	rt	•		
					Statis	tich <u>e</u> descrittive	•	123 Frequenze	
		ļ			Ta <u>b</u> el	le	*	Descrittive	
		sex		age	Confr	onta <u>m</u> edie	•	& Esplora	npas
	1		1		Model	llo lineare <u>g</u> eneralizz	ato 🕨	Toballa di contingonza	2
	2		1		Model	lli lineari generalizzat	i 🕨	rabelle di <u>c</u> ontingenza	0
	3		1		Model	lli misti	•	Analisi TURF	1
. a	4		1		Corre	lazione	•	wapporto	0
	5		9		Regre	essione	*	🛃 Grafici <u>P</u> -P	0
	6		2		Log-li	neare	•	🛃 Grafici <u>Q</u> -Q	0
	7		9		Retin	eurali	•	0 4	2
	8		2		Class	ifica	•	6 2	0
	9		2		Diduz	ione delle dimension	ni k	8 8	4
1	10		1		Riguz	ione delle dimension		8 10	0
1	11		1		Scala		r	0 8	8

Massimo

E.S. media

Guida

X

Chiedere le statistiche descrittive per vedere se le distribuzioni delle variabili sono normali

Descrittive	Descrittive: Opzioni
Variabili: Page Sex age Contco Compas Compas int Salva valori standardizzati come variabili OK Incolla Reimposta Annulla Guida	 Media Somma Dispersione ✓ Deviazione std. ✓ Minimo ✓ Varianza ✓ Massim ✓ Intervallo E.S. me Distribuzione ✓ Curtosi ✓ Asimmetria
Selezionando il pulsante "Opzioni" si apre questa finestra di dialogo:	 Elenco di varia<u>b</u>ili Alfabetico Medie <u>c</u>rescenti Me<u>d</u>ie decrescenti Continua Annulla Guid

Statistiche descrittive

	Ν	Minimo	Massimo	Media	Deviazione std.	Asimr	netria	Cur	tosi
	Statistica	Statistica	Statistica	Statistica	Statistica	Statistica	Errore std	Statistica	Errore std
att	199	16	54	42,80	7,311	-,869	,172	,209	,343
ns	199	2	10	7,88	1,801	-,554	,172	-,339	,343
contco	199	2	10	8,68	1,863	-1,850	,172	3,444	,343
compas	199	0	8	2,64	1,969	† ,391	,172	-,446	,343
int	199	2	10	7,29	2,544	-,680	,172	-,630	,343
Validi (listwise)	199								

Questa variabile ha una distribuzione fortemente non normale !

Ricodificare la variabile "contco"

Asimmetria	Negativa	Sostanziale
(valori tra -	- 1 e -2)	

Logaritmo = X* =Log10(K-X) (qui, K = 10+1=11)

*Senza titolo2 [Dataset1] - IBM SPSS Statistics Editor dei dati								
<u>F</u> ile M	lodifica	<u>V</u> isualizza	<u>D</u> ati	<u>T</u> rasforma	<u>A</u> nalizza	Direct <u>m</u> arketing	<u>G</u> rafici	Prog
		🔒 🛄	5	Calcola v	ariabile azione proc	arammahilità		i
		sex		Conta val	lori all'interr	no dei casi		
1			1	Ricodifica	a nelle stes	se variabili		9
2			1	Ricodifica	a in variabili	differenti		6 4
4			1	🛐 Ricodifica	<u>a</u> automatic	а		8
5			9	Crea vari	abili dumm	у		4
6			2	Raccolta	visuale			2
7			9	🔀 Raccolta	ott <u>i</u> male			10
8			2	Prepara	dati per mo	dellazione	•	6
9			2	Classific	azione casi			8
10			1					8
11			1	Procedur	a guidata D	ata e ora		10
12			1	🚩 Crea seri	ie storiche			8

Ricodificare la variabile "contco"

Logaritmo = X* =Log10(K-X) (K = max(X)+1=10+1=11)

🚰 Calcola variabile	2 🗖 🖧 🧮 🦽 🍋 💆	X			
Variabile di destinazione: contco_2 Tipo ed etichetta	<u>Espressione numerica:</u> = LG10(11-contco)				
 Sex age att ns contco compas int 	+ < > 7 8 9 - <= >= 4 5 6 * = ~= 1 2 3 / & 1 0 . ** ~ () Elimina LG10(esprnum). Numerica. Fornisce il logaritmo in base 10 di esprnum, che deve essere numerico e maggiore di 0.	Gruppo di funzioni: Tutto Aritmetico CDF e CDF noncentrale Conversione Data/Ora corrente Aritmetica data Tronziono dota Funzioni e variabili speciali: Idf.Srange Idf.T Idf.Uniform Idf.Weibull Lag(1) Lag(2) Length Lg10 Ln Lngamma Lower			
OK Incolla <u>R</u> eimposta Annulla Guida					

Ricodificare la variabile "contco"

Asimmetria Negativa Sostanziale	Logaritmo = X* =Log10(K-X)
(valori tra -1 e -2)	(qui, K = 10+1=11)

Comando di Sintassi:

COMPUTE contco_2=LG10(11-contco).

(

ta *Sen	*Senza titolo2 [Dataset1] - IBM SPSS Statistics Editor dei dati										
<u>F</u> ile	Modifica	<u>V</u> isualizza	<u>D</u> ati	<u>T</u> rasforma <u>A</u>	nalizza Direct <u>m</u> arke	eting <u>G</u> rafici	Programmi d	li <u>u</u> tilità Fi	nestra Guida		
		🔒 耳	5		¥ 1 1 1	H 🔠		4	▲ (
1 : cont	tco_2	,0									
		sex		age	att	ns	CO	ntco	compas	int	contco_2
1			1	43	16		9	10	2	7	,00
2			1	30	54		6	3	0	3	,90
3			1	45	29		4	2	1	4	,95
4			1	34	30		8	2	0	2	,95
5			9	99	37		4	2	0	2	,95
6			2	51	32		2	8	0	6	,48
7			9	99	31		10	4	2	4	,85
8			2	28	30		6	2	0	4	,95
9			2	26	30		8	8	4	2	,48
10)		1	30	42		8	10	0	2	,00
11	1		1	51	43		10	8	8	8	,48
12	2		1	50	22		8	9	0	4	,30
13	3		1	29	34		6	2	0	2	,95
14	1		2	32	27		8	10	4	8	,00
15	5		1	40	50		4	8	1	6	,48
16	6		1	28	28		6	10	0	2	,00
17	7		2	26	50		10	8	0	10	,48
18	3		1	28	32		6	3	1	4	,90
19)		2	18	42		4	10	0	4	,00
20)		2	25	24		4	4	0	2	,85
21	1		2	33	50		10	10	0	10	,00
	4										

Controlliamo se la normalizzazione è avvenuta chiedendo di nuovo le descrittive

	N	Minimo	Massimo	Media	Deviazione std.	Asim	metria	Cui	tosi
	Statistica	Statistica	Statistica	Statistica	Statistica	Statistica	Errore std	Statistica	Errore std
att	199	16	54	42,80	7,311	-,869	,172	,209	,343
ns	199	2	10	7,88	1,801	-,554	,172	-,339	,343
contco	199	2	10	8,68	1,863	-1,850	,172	3,444	,343
compas	199	0	8	2,64	1,969	,391	,172	-,446	,343
int	199	2	10	7,29	2,544	-,680	,172	-,630	,343
contco_2	199	,00	,95	,2576	,29111	,664	,172	-,767	,343
Validi (listwise)	199								

Statistiche descrittive

Ora i valori sono accettabili !

SAPIENZA

Esplorazione dei dati: gli outliers (valori anomali)

I valori anomali sono quei valori che risultano differenziarsi particolarmente nella distribuzione dei punteggi.

I valori anomali, o outliers, univariati sono quei casi che in una variabile presentano valori estremamente elevati o estremamente bassi rispetto al resto della distribuzione.

Per individuare gli outliers univariati è possibile standardizzare i punteggi relativi alla variabile in esame e chiedere una distribuzione delle frequenze.

Vengono considerati come possibili valori anomali quei punteggi che corrispondono a una z maggiore di 3 in valore assoluto.

E' necessario considerare la distribuzione nella sua interezza e vedere se i punteggi troppo alti o troppo bassi rappresentano casi isolati dal resto della distribuzione oppure no.

Esplorazione dei dati: gli outliers (valori anomali)

Standardizziamo (z) le variabili

Descrittive	2	X						
sex age contco	Variabili: Att Compas Compas Compas Contco_2	Opzioni Sti <u>l</u> e Bootstrap						
Salva valori standardizzati come variabili								
	lla <u>R</u> eimposta Annulla	Guida						

 $\langle \rangle$

Esplorazione dei dati: gli outliers (valori anomali)

Chiediamo le frequenze delle nuove z

Esplorazione dei dati: gli outliers (valori anomali)

			Punteg(att)								
		Frequenza	Percentuale	Percentuale	Percentuale				Punteg(ns)		
Validi	-3,66545	1	,5	,5	,5			Frequenza	Percentuale	Percentuale	Percentuale
	-2,84479	1	,5	,5	1,0	N (+ 11 + 12	0.00700	Trequenza	r crocilidaic	valida	cumulata
	-2,57124	1	,5	,5	1,5	validi	-3,26703	1	,5	,5	,5
	-2,29769	2	1,0	1,0	2,5		-2,15663	9	4,5	4,5	5,0
	-2,16092	1	,5	,5	3,0		-1,60143	10	5,0	5,0	10,1
	-2,02414	3	1,5	1,5	4,5		-1.04623	30	15,1	15,1	25,1
	-1,88737	3	1,5	1,5	6,0		10103	17	8.5	8.5	33.7
	-1,75059	5	2,5	2,5	8,5		-,49103	17	0,5	0,5	55,7
	-1,61381	2	Ì,Q	1,0	9,5		,06417	62	31,2	31,2	64,8
	-1,47704	2	1,0	1,0	10,6		,61987	14	7,0	7,0	71,9
	-1,34026	1	,5	,5	11,1		1,17457	56	28,1	28,1	100,0
	-1,20349	8	4,0	4,0	15,1		Totale	199	100.0	100.0	
	-1,06671	1	,5	5	15,6		Totale	100	100,0	100,0	
	-,92994	5	2,5	2,5	18,1						
	-,79316	8	4,0	4,0	22,1						
	-,65639	10	5,0	5,0	27,1						
	-,51961	10	5,0	5,0	\$2,2						
	-,38283	6	3,0	3,0	35,2						
	-,24606	8	4,0	4,0	39,2						
	-,10928	12	6,0	6,0	45,2						
	,02749	/	3,5	3,5	48,7						
	,16427	1	3,5	3,5	52,3		\mathbf{i}				
	,30104	2	1,0	1,0	53,3		\mathbf{X}				
	,43782	6	3,0	3,0	56,3		$\overline{\}$				
	,57459	12	6,0 2.5	6,U 2,F	62,3		Chi	cono	auoct		
	,71137	(3,5	3,5	65,8			50110	quesi	.i uue	
	,04010 ,98492	8 59	4,0 29,6	4,0 29,6	69,8 99,5			604	7 ittar		
	1,53202	1	,5	,5	100,0			JUY	jelli :		
	Totale	199	100,0	100,0							1 7 0
											120

Esplorazione dei dati: gli outliers (valori anomali)

	DATI_TRAT_PREL.sav [Dataset3] - IBM SPSS Statistics Editor dei dati									
File Modifi	ica <u>V</u> isualizza <u>D</u>	ati <u>T</u> rasforma	Analizza Direct ma	rketing <u>G</u> rafici P	rogrammi di <u>u</u> tilità Fii	nestra Guida				
2	😑 📄 🖨 📭 🖚 🎬 🏪 🚅 🃭 🏦 🎆 🖾 🚍 🖧 🗮 滑 ⊘ 🦫 и									
1:Zatt	I:Zatt -3,66544756828786									
	int	contco_2	Zatt	Zns	Zcompas	Zint	Zcontco_2			
1	7	,0(-3,66545	,61937	-,32667	-,11458	-,88476			
2	3	, <mark>9</mark> 0	1,53202	-1,04623	-1,34239	-1,68712	2,21750			
3	4	,95	-1,88737	-2,15663	-,83453	-1,29399	2,39322			
4	2	,95	-1,75059	,06417	-1,34239	-2,08026	2,39322			
5	2	,95	-,79316	-2,15663	-1,34239	-2,08026	2,39322			
6	6	,48	-1,47704	-3,26703	-1,34239	-,50772	,75423			
7	4	,85	-1,61381	1,17457	-,32667	-1,29399	2,01829			
8	4	,95	-1,75059	-1,04623	-1,34239	-1,29399	2,39322			
9	2	,48	-1,75059	,06417	,68906	-2,08026	,75423			
10	2	,00	-,10928	,06417	-1,34239	-2,08026	-,88476			
11	8	,48	,02749	1,17457	2,72051	,27855	,75423			
12	4	,30	-2,84479	,06417	-1,34239	-1,29399	,14933			
13	2	,95	-1,20349	-1,04623	-1,34239	-2,08026	2,39322			
14	8	,00	-2,16092	,06417	,68906	,27855	-,88476			
15	6	,48	,98492	-2,15663	-,83453	-,50772	,75423			
16	2	,00	-2,02414	-1,04623	-1,34239	-2,08026	-,88476			
17	10	,48	,98492	1,17457	-1,34239	1,06482	,75423			
18	4	,90	-1,47704	-1,04623	-,83453	-1,29399	2,21750			

BA	RB	AR	AN	EL.	LJ

SAPIENZA I DUIVERSITÀ DI ROMA

Filtrare i soggetti escludendo i due outliers

Filtrare i soggetti escludendo i due outliers

<pre>sex sex age age att ns contco compas int contco_2 Zatt Zns Zcompas Zint Zcontco_2</pre>	Seleziona Tutti i c <u>a</u> si Se la <u>c</u> ondizione è soddi: Seleziona casi: Se Seleziona	sfatta Zatt > -3 & Zns > -3 + < > 7 8 9 - <= >= 4 5 6 \star = ~= 1 2 3 / & 1 0 . ** ~ () Elimina	Gruppo di funzioni: Tutto Aritmetico CDF e CDF noncentrale Conversione Data/Ora corrente Aritmetica data Creazione data Eunzioni e variabili speciali:
Stato cc	att > -3 & Zns	s > -3 Continua Annulla Guida	

Filtrare i soggetti escludendo i due outliers

	*DATI_TRAT_PREL.sav [Dataset3] - IBM SPSS Statistics Editor dei dati									
File Modifi	ca <u>V</u> isualizza <u>D</u> a	iti <u>T</u> rasforma <u>A</u> nal	lizza Direct <u>m</u> arketin	g <u>G</u> rafici Program	mi di <u>u</u> tilità Finestra	Guida				
😑 H	🖨 🛄 🛛		▙ ⊒ ₽	#4 👫 🔛	- A					
1:sex	1									
	Zatt	Zns	Zcompas	Zint	Zcontco_2	filter_\$				
	-3,66545	,61937	-,32667	-,11458	-,88476	0				
2	1,53202	-1,04623	-1,34239	-1,68712	2,21750	1				
3	-1,88737	-2,15663	-,83453	-1,29399	2,39322	1				
4	-1,75059	,06417	-1,34239	-2,08026	2,39322	1				
5	-,79316	-2,15663	-1,34239	-2,08026	2,39322	1				
	-1,47704	-3,26703	-1,34239	-,50772	,75423	0				
7	-1,61381	1,17457	-,32667	-1,29399	2,01829	1				
8	-1,75059	-1,04623	-1,34239	-1,29399	2,39322	1				
9	-1,75059	,06417	,68906	-2,08026	,75423	1				
10	-,10928	,06417	-1,34239	-2,08026	-,88476	1				
11	,02749	1,17457	2,72051	,27855	,75423	1				

Filtrare i soggetti escludendo i due outliers

	N	Minimo	Massimo	Media	Deviazione std.	Asimmetria		Curtosi	
	Statistica	Statistica	Statistica	Statistica	Statistica	Statistica	Errore std	Statistica	Errore std
att	197	22	54	42,99	7,050	-,760	,173	-,290	,345
ns	197	4	10	7,91	1,759	-,451	,173	-,674	,345
compas	197	0	8	2,66	1,969	,382	,173	-,452	,345
int	197	2	10	7,30	2,555	-,687	,173	-,639	,345
contco_2	197	,00	,95	,2578	,29159	,667	,173	-,765	,345
Validi (listwise)	197								

Statistiche descrittive

Le distribuzioni migliorano !

Esplorazione dei dati: la normalità multivariata

Per esaminare l'ipotesi di normalità multivariata Mardia ha sviluppato dei coefficienti di curtosi e di asimmetria multivariata. Se la distribuzione delle p variabili è normale multivariata, il coefficiente di curtosi multivariata di Mardia dovrebbe essere uguale a p(p+2) [p=numero di variabili].

Per valutare la normalità multivariata è possibile utilizzare un test grafico che si basa sull'utilizzo dei quantili della distribuzione del chi quadrato e sulla distanza generalizzata o distanza di Mahalanobis.

In SPSS la distanza di Mahalanobis è calcolabile utilizzando la procedura della regressione lineare multipla.

Esplorazione dei dati: la normalità multivariata e outliers multivariati

* Calcoliamo preliminarmente una nuova variabile (nord) alla quale vengono assegnati i valori della variabile di sistema \$casenum: questa variabile fornisce il numero d'ordine del soggetto nel file (es., il primo soggetto nel file avrà \$casenum = 1, e coì via).

* Questa nuova variabile verrà utilizzata come variabile dipendente in una regressione multipla che ha il solo scopo di calcolare per ogni soggetto la distanza di Mahalanobis, la quale viene salvata nel file come una nuova variabile con il nome mah_1.

I comandi tramite le finestre di dialogo dei menù sono descritti di seguito.

60

 $\langle \rangle$

Calcolo della variabile "nord"

Calcolo della distanza di Mahalanobis tramite regressione

Regressione lineare	-19458 - 18475	×	
<pre> sex age age age age att ns contco compas int for contco_2</pre>	Dipendente: nord Blocco 1 di 1 Indietro Indipendenti: Metodo: Imme	Statistiche Grafici Salva Opzioni Stile Bootstrap Regressione lineare: Salva	X
✓ Zcompas ✓ Zint ✓ Zcontco_2 ✓ filter_\$	Variabil <u>e</u> di selezione: Yariabile di selezione: Etichette casi: Peso Minimi quadrati pesati Incolla Reimposta	Valori previsti Non standardizzati Standa <u>r</u> dizzato Adattati Errore standard delle <u>p</u> revisioni delle medie	Residui Non standardizzati Standardizzato Studentizzato Eliminato Per cancellazione studentizzati
		Distanze Di Mahalanobis Di Cook Valori di leva	Statistiche di influenza Diff <u>B</u> eta DiffBeta standardizzate DifFit

Esplorazione dei dati: la normalità multivariata e

ei c	lati						
а	Direct marketing	Grafici	Programmi di <u>u</u> tilità	Finestra	Guida		
			🔛 🔚 4	2		M	

Zcompas	Zint	Zcontco_2	filter_\$	nord	MAH_1
-,32667	-,11458	-,88476	0	1,00	
-1,34239	-1,68712	2,21750	1	2,00	21,76511
-,83453	-1,29399	2,39322	1	3,00	10,37619
-1,34239	-2,08026	2,39322	1	4,00	9,71748
-1,34239	-2,08026	2,39322	1	5,00	9,69798
-1,34239	-,50772	,75423	0	6,00	
-,32667	-1,29399	2,01829	1	7,00	12,99378
-1,34239	-1,29399	2,39322	1	8,00	7,21699
,68906	-2,08026	,75423	1	9,00	14,27052
-1,34239	-2,08026	-,88476	1	10,00	15,05194
2,72051	,27855	,75423	1	11,00	14,89854
-1,34239	-1,29399	,14933	1	12,00	14,29484
-1,34239	-2,08026	2,39322	1	13,00	6,67944
,68906	,27855	-,88476	1	14,00	14,09949
-,83453	-,50772	,75423	1	15,00	12,84113
-1,34239	-2,08026	-,88476	1	16,00	11,75779
-1,34239	1,06482	,75423	1	17,00	10,98545
-,83453	-1,29399	2,21750	1	18,00	5,74019
-1,34239	-1,29399	-,88476	1	19,00	11,17339
-1,34239	-2,08026	2,01829	1	20,00	9,14158

Viene creata la variabile MAH_1 nel datafile

Test grafico Q-Q Plot

3M SPSS Statistics Editor dei dati						
Trasforma	Analizza	Direct <u>m</u> arketing	Grafici	Programmi di <u>u</u> tilità Finestra	Guida	
	Repor	t	Þ		A (
	Statist	ich <u>e</u> descrittive	•	123 Frequenze	14	
	Ta <u>b</u> ell	e	*	Descrittive		
Zns	Confro	onta <u>m</u> edie		A Esplora	filter_	
,6	Model	lo lineare <u>g</u> eneralizz	ato 🕨 🕨	Tabelle di contingenza		
-1,04	Model	li lineari generalizzat	ti 🕨	rabelle di contingenza		
-2,1	Model	li misti		Analisi TURF		
.00	Correl	azione		Rapporto		
-2,1	Regre	ssione	*	🛃 Grafici <u>P</u> -P		
-3,20		heare		🛃 Grafici <u>Q</u> -Q		
1,1	Reti n	eurali	•	29399 2,01829		

Si chiede tramite Statistiche descrittive...

Test grafico Q-Q Plot

Grafici Q-Q	Zet Zontos,2	X
sex age age att age att age contco compas int contco_2 Zatt Zatt Zatt Zompas Zcompas filter_\$ filter_\$ nord	Variabili: MAH_1 MAH_1 Trasforma Trasformazione logaritmica naturale Standardizza i valori Differenza: Differenza: Periodicità corrente: Nessuna OK Incolla Reimposta Annul	Distribuzione del test Chi-quadrato gl: 5 - Parametri della distribuzione Stima dai dati Parametro 1: Parametro 2: Formula di stima della proporzione e di Blom © Rankit © di Tukey o di Van der Waerden Classificazione assegnata alle correlazioni e Media © Alto © Basso interrompi correlazioni arbitrariamente Ila Guida

Specificare la distribuzione chi-quadrato con 5 gradi di libertà (ci sono 5 variabili)

 \odot

Test grafico Q-Q Plot

SAPIENZA UNIVERSITÀ DI ROMA

Calcolo del coefficiente di curtosi multivariata

Calcolo del coefficiente di curtosi multivariata

Statistiche descrittive

	N	Minimo	Massimo	Media	Deviazione std.
DM_quad	197	,45	473,72	35,7249	53,18476
Validi (listwise)	197				

Il coefficiente è 35.72, di poco superiore a 35 (=5*7), il valore critico con 5 variabili.

Esplorazione dei dati: individuare gli outlier multivariati

00-10E	1000		100
Guida			
	ARG		
- 10)r)r	1
nord	MAH_1		
1,00		Taglia	
2,00	21,76	<u>C</u> opia	
3,00	10,37	Incolla	
4,00	9,71	Canc <u>e</u> lla	
5,00	9,69	Z Inserisci variabile	
6,00		Ordinamento crescente	
7,00	12,99		
8,00	7,21	Or <u>d</u> inamento decrescente	
9,00	14,27	Statistica descrittiva	
10,00	15,05	Controllo ortografico	
11,00	14,8985	221,97	
12,00	14,2948	204,34	
13,00	6,6794	44,61	
Esplorazione dei dati: la normalità multivariata e outliers multivariati

narketing <u>G</u> rafic	i Programmi di <u>u</u> tilità Fir	inestra Guida	
r #		▲ (14	2 🌒 🦓

lint	Zcontco_2	filter_\$	nord	MAH_1	DM_quad	var
-1,68712	2,21750	1	2,00	21,76511	473,72	
-2,08026	-,88476	1	10,00	15,05194	226,56	
,27855	,75423	1	11,00	14,89854	221,97	
-1,29399	,14933	1	12,00	14,29484	204,34	
-2,08026	,75423	1	9,00	14,27052	203,65	
,27855	-,88476	1	14,00	14,09949	198,80	
-1,29399	2,01829	1	7,00	12,99378	168,84	
-,50772	,75423	1	15,00	12,84113	164,89	

Vanno considerati come outliers multivariati i casi il cui valore risulta significativo al livello p<.001, considerando come distribuzione di riferimento quella del chi-quadrato con p gradi di libertà (dove p = numero di variabili). Con p = 5 (abbiamo infatti 5 variabili) il livello di significatività del χ^2 è 20.51, quindi c'è un possibile outlier multivariato.

 $\langle \rangle$

Filtrare i soggetti escludendo i due outliers uni- e l'outlier multi-variato

Validi (listwise)

Calcolo del coefficiente di curtosi multivariata

ta Des	scrittive	79423 94803		12,00	×		
	sex age att ns contco compas int contco_2 Zatt		bili: DM_quad	Opz St Boot	tioni ti <u>l</u> e strap		
Salva valori standardizzati come variabili OK Incolla Reimposta Annulla Guida Statistiche descrittive							
		N	Minimo	Massimo	Media	Deviazione std.	
	DM_quad	196	,45	226,66	33,4903	43,06171	

196

Il coefficiente è 33.49, ora inferiore a 35 (=5*7). Ora i dati sono pronti per le analisi !!

ESERCIZIO 1: TRATTAMENTI PRELIMINARI CON SPSS

Utilizzare i dati in formato testo nel file es1.xlsx

VARIABILI: ATTEGGIAMENTO, NORME SOGGETTIVE, SENSO DI CONTROLLO, COMPORTAMENTO PASSATO, INTENZIONE. LA VARIABILE DIPENDENTE E' "INTENZIONE"

Verificare le caratteristiche distributive delle variabili, l'eventuale presenza di outlier, ed eventualmente trasformare le variabili non normali.

Salvare il file in formato .sav

LA REGRESSIONE LINEARE

Sommario

- * Scopo dell'analisi della regressione
- * Regressione bivariata: Modello di base
- * Regressione multipla: Modello di base
- * Stima e interpretazione dei parametri
- * Adeguatezza della soluzione
- * Misure dell'associazione lineare tra Variabili Indipendenti (VI) e Variabile Dipendente (VD)
- * Assunzioni
- * Approcci analitici alla regressione
- * Limiti

La Regressione esamina la relazione <u>lineare</u> tra una o più variabili esplicative (o indipendenti, VI, o "predittori") e una variabile criterio (o dipendente, VD).

Duplice scopo:

a) <u>esplicativo</u>: studiare e valutare gli effetti delle VI sulla VD in funzione di un determinato modello teorico

b) <u>predittivo</u>: individuare una combinazione lineare di
 VI per predire in modo ottimale il valore assunto dalla
 VD

Da dove si parte: Modello concettuale

Da dove si parte: Matrice delle covarianze

	1	2	3	4	5
1.INT	6.438				
2.ATT	12.491	53.186			
3.NS	2.657	6.791	3.228		
4.CONTCO	2.650	5.534	1.149	3.453	
5.COMPAS	3.235	7.114	1.637	1.596	3.858

Dove si arriva: Modello empirico

Dove si arriva: Risultati del modello empirico

Variabile	В	Beta	Т	Р
Atteggiamento	.12	.34	6.38	.001
Norma Soggettiva	.28	.19	3.83	.001
Senso di Controllo	. 32	.23	4.82	.001
Comport. Passato	. 38	.29	5.65	.001

 $R^2 = .66; t = 16.74. p < .0001$

Regressione bivariata (o semplice)

Una sola variabile indipendente (VI) sulla quale "regredisce" la variabile dipendente (VD). Si ipotizza che la VI "determini" o "influenzi" o "predica" la VD.

Individuare quella retta che consente di prevedere al meglio i punteggi nella VD a partire da quelli nella VI.

Individuare la retta che "interpola" meglio la nuvola di punti (o "scatterplot") della distribuzione congiunta delle due variabili.

La retta di regressione (regressione bivariata)

Regressione bivariata (o semplice)

La relazione lineare è quella più parsimoniosa ed è quella più realistica in moltissimi casi. L'equazione che lega Y a X è la seguente:

 $\mathbf{Y} = \boldsymbol{\alpha} + \boldsymbol{\beta} \mathbf{X}$

Parametri dell'equazione:

<u>Intercetta</u>: α, punto in cui la retta incrocia l'asse delle ordinate (altezza della linea).

<u>Coefficiente angolare</u>: β inclinazione della retta di regressione di Y su X; indica di quante unità cambia Y per una variazione unitaria che si verifica nella X.

SAPIENZA

Errore o residuo

I punti sono dispersi intorno alla retta di regressione perché:

- le variabili sono misurate con errore;
- la relazione può non essere perfettamente lineare;
- predittori importanti possono essere omessi.

L'equazione quindi deve incorporare un termine di errore (o residuo) per ogni caso.

 $\mathbf{Y} = \alpha + \beta \mathbf{X} + \mathbf{e} = \mathbf{Y'} + \mathbf{e}$

 $Y' = \alpha + \beta X$: valore "teorico" della Y, ottenuto dalla regressione.

"<u>e</u>": Residuo, deviazione del punteggio osservato Y dal punteggio teorico Y'.

La Stima dei parametri

Bisogna identificare la retta che meglio si <u>adatta</u> ai punti che descrivono la distribuzione delle Y sulle X.

La retta che interpola meglio il diagramma di dispersione, cioè quella retta che passa più vicina possibile alla nuvola dei punti, è quella che rende minima la somma delle differenze al quadrato tra le Y osservate e le Y' teoriche.

I parametri $\alpha \in \beta$ vengono stimati nel campione attraverso il metodo dei minimi quadrati, ovvero il metodo che rende minimo l'errore che si commette quando Y viene "stimato" dalla equazione di regressione.

Equazione dei minimi quadrati:

 $\Sigma(\mathbf{Y}_{i} - \mathbf{Y}_{i}')^{2} = \Sigma(\mathbf{Y}_{i} - (\mathbf{a} + \mathbf{b}\mathbf{x}_{i}))^{2} = \min$

Identifica la retta che riduce al minimo l'errore che viene commesso nello stimare Y da X.

Formule dei minimi quadrati per il calcolo di a e b:

$$\mathbf{b} = \frac{\sum (\mathbf{X} - \overline{\mathbf{X}})(\mathbf{Y} - \overline{\mathbf{Y}})}{\sum (\mathbf{X} - \overline{\mathbf{X}})^2} = \frac{\operatorname{cov}(\mathbf{X}, \mathbf{Y})}{\operatorname{var}(\mathbf{X})} \qquad \mathbf{a} = \overline{\mathbf{Y}} - \mathbf{b}\overline{\mathbf{X}}$$

Il coefficiente "a" rappresenta il valore atteso di Y quando X è uguale a 0.

Il coefficiente "b" rappresenta il cambiamento atteso in Y associato a un cambio di una unità in X.

Stime standardizzate

Il coefficiente di regressione esprime la relazione tra Y e X nell'unità di misura delle 2 variabili. Per esprimere questa relazione in una scala di misura comprensibile si deve <u>standardizzarlo</u>.

Il coefficiente standardizzato si ottiene moltiplicando il coefficiente "grezzo" (non standardizzato) per il rapporto delle deviazioni standard della VI e della VD:

 $\beta^{*} = \mathbf{b} \left(\mathbf{s}_{\mathsf{x}} / \mathbf{s}_{\mathsf{y}} \right)$

Nella regressione semplice è uguale al coefficiente di correlazione "semplice", ovvero: $\beta^{*} = r_{yx}$

La regressione multipla

Una variabile dipendente che regredisce su <u>almeno</u> due variabili indipendenti. Equazione di regressione:

$\mathbf{Y} = \alpha + \beta_1 \mathbf{X}_1 + \beta_2 \mathbf{X}_2 + \dots + \beta_n \mathbf{X}_n + \varepsilon_i$

Piano di regressione (due VI);

Iperpiano (più di 2 VI).

Equazione del piano di regressione:

 $\mathbf{Y'} = \alpha + \beta_1 \mathbf{X}_1 + \beta_2 \mathbf{X}_2$

(

Coefficienti di regressione della regressione multipla: coefficienti "parziali" o "netti" (partial slope o partial regression coefficient).

Dipendenza della variabile Y da ciascuna delle VI X_i, al netto delle altre VI nell'equazione. Per ogni VI rappresentano l'inclinazione della retta di regressione della variabile dipendente, ottenuta <u>mantenendo costanti</u> i valori delle altre VI.

Nel piano:

 $\begin{array}{l} \beta_1 \stackrel{}{\text{e}} l'inclinazione della retta di regressione di Y su X_1 \\ quando si mantiene costante X_2 \\ \beta_2 \stackrel{}{\text{e}} l'inclinazione della retta di regressione di Y su X_2 \\ se si mantiene costante X_1. \end{array}$

Stime dei coefficienti: minimi quadrati.

Individuare un <u>iperpiano</u> di dimensioni k che si adatti meglio ai punti nello spazio di dim. k+1 (k VI e 1 VD).

 $\Sigma \left[\mathbf{Y} - (\alpha + \beta_1 \mathbf{X}_1 + \beta_2 \mathbf{X}_2 + \dots + \beta_k \mathbf{X}_k) \right]^2 = \min$

Espressioni matriciali delle equazioni:

- y = bX + eequazione di regressioneb=(X'X)⁻¹ X'Ycoefficienti di regressionee=Y (Xb+a)residui
 - X'X rappresenta la codevianza tra le VI, X'Y rappresenta la codevianza tra VI e VD.

(1)

(2)

(3)

Relazioni tra una VD Y e due VI X1 e X2, espresse in termini della varianza che condividono:

- "a+c": varianza in comune tra X1 e Y, e "a": varianza che Y condivide <u>solo</u> con X1;
 - "c+b": varianza in comune tra X2 e Y, e "b": che Y condivide <u>solo</u> con X2;
 - "c+d": varianza in comune tra X1 e X2;
 - "e" var. che Y non condivide né con X1 né con X2;

Relazioni tra una VD Y e due VI X1 e X2

Coefficienti che misurano l'associazione tra VD e VI.

1. Coefficiente di Correlazione Semi-parziale: corr. tra X1 e Y, se X2 viene parzializzata solo da X1.

$$\begin{split} \mathbf{Sr}_{y_{1,2}} &= \frac{\mathbf{r}_{y_{1}} - \mathbf{r}_{y_{2}} \mathbf{r}_{12}}{\sqrt{1 - \mathbf{r}_{12}^{2}}} \qquad \mathbf{Sr}_{y_{1,2...k}}^{2} = \mathbf{R}_{y_{1,2...k}}^{2} - \mathbf{R}_{y_{1,2...k}}^{2} - \mathbf{R}_{y_{1,2...k}}^{2} \\ &= \mathbf{Sr}_{y_{1,2}}^{2} = \mathbf{a}/(\mathbf{a} + \mathbf{c} + \mathbf{b} + \mathbf{e}) \end{split}$$

Proporzione della varianza totale di Y spiegata <u>unicamente</u> da X1 al netto di X2,

$$F_{i} = \frac{sr_{y1.2..k}^{2}}{(1-R^{2})/df_{res}}, df = (1, N-k-1)$$

Coefficienti che misurano l'associazione tra VD e VI.

SAPIENZA

BARBARANELLI

2. Coefficiente di Correlazione Parziale: corr. tra X1 e Y, se X2 viene parzializzata da X1 e da Y.

$$\mathbf{pr}_{y_{1,2}} = \frac{\mathbf{r}_{y_1} - \mathbf{r}_{y_2} \mathbf{r}_{12}}{\sqrt{(1 - \mathbf{r}_{y_2}^2)(1 - \mathbf{r}_{12}^2)}}$$

pr²y1.2 = a/(a+e)
Proporzione della varianza di Y <u>non</u> spiegata da X2,
spiegata <u>unicamente</u> da X1 al netto di X2.

Formula alternativa:

$$pr_{y_{1.2...k}}^2 = \frac{sr_{y_{1.2...k}}^2}{1 - R_{y_{1.2..(i)...k}}^2}$$

Coefficienti che misurano l'associazione tra VD e VI.

3. Coefficiente di Regressione:

Inclinazione della retta di regressione di Y su X_1 per valori costanti di X_2 , cambiamento atteso in Y in seguito ad un cambiamento di una unità (b) o di una deviazione standard (b^) in X_1 al netto di X_2 .

$$\mathbf{b}_{y_{1,2}} = \frac{\mathbf{b}_{y_1} - \mathbf{b}_{y_2} \mathbf{b}_{12}}{\mathbf{1} - \mathbf{r}_{12}^{2}} \qquad \beta_{y_{1,2}}^{1} = \mathbf{b}_{y_{1,2}} \frac{\mathbf{s}_{y}}{\mathbf{s}_{1}} = \frac{\mathbf{r}_{y_1}^{2} - \mathbf{r}_{y_2}^{2} \mathbf{r}_{12}}{\mathbf{1} - \mathbf{r}_{12}^{2}}$$

 b_{y1} , b_{y2} , b_{12} : coefficienti delle regressioni bivariate rispettivamente di Y su X₁, di Y su X₂ e di X₁ su X₂.

Adeguatezza della equazione di regressione

1) $\Sigma(Y_i - \overline{Y})^2$ <u>devianza totale</u> delle Y_i dalla loro media.

2) $\Sigma(Y_i' - \overline{Y})^2$ devianza di Y_i <u>spiegata dalla regressione</u>. Scarto tra la retta dei minimi quadrati e la media: quanto migliora la previsione di Y per il fatto di conoscere X.

3) $\Sigma(Y_i - Y_i')^2$ è la devianza di Y_i <u>non spiegata dalla</u> <u>regressione</u>. Scarto di Y_i dalla retta dei minimi quadrati: quantità di errore che si commette per predire Y con Y'.

Adeguatezza della equazione di regressione

E' possibile dimostrare che:

 $\mathbf{r}^{2} = \frac{\sum (\mathbf{Y}_{i}^{'} - \mathbf{Y})^{2}}{\sum (\mathbf{Y}_{i} - \overline{\mathbf{Y}})^{2}} = \frac{\text{Devianza Spiegata}}{\text{Devianza Totale}}$

Dividendo i due termini per n:

$$\mathbf{r}^{2} = \frac{\sum (\mathbf{Y}_{i}^{'} - \overline{\mathbf{Y}})^{2} / n}{\sum (\mathbf{Y}_{i}^{'} - \overline{\mathbf{Y}})^{2} / n} = \frac{\text{Varianza Spiegata}}{\text{Varianza Totale}}$$

r² = <u>coefficiente di determinazione</u> = indice della proporzione della varianza totale di Y che viene spiegata dalla regressione lineare di Y su X.

Adeguatezza della equazione di regressione

ANALISI DEI DATI + LAB

SAPIENZA

6

BARBARANELLI

(1-r²) = proporzione della varianza totale di Y che <u>non</u> è spiegata dalla regressione di Y su X.

E' possibile dimostrare infatti che:

$$(1-r^{2}) = \frac{\sum (Y_{i} - Y_{i}')^{2}}{\sum (Y_{i} - \overline{Y})^{2}} = \frac{\text{Devianza Residua}}{\text{Devianza Totale}}$$

 $\sqrt{(1-r^2)} = \frac{\text{coefficiente di alienazione}}{\text{parte di deviazione standard di Y}}$ non spiegata dalla regressione

Adeguatezza della equazione di regressione

Da √(1-r²) è possibile ricavare il coefficiente che rappresenta la dispersione intorno alla retta dei minimi quadrati per ogni valore di X: "<u>errore standard della</u> <u>stima</u>" ed è un indice della precisione della retta di regressione

$$S_{e} = \sqrt{(1 - r^{2})}S_{y} = \sqrt{\frac{\sum(Y - Y')^{2}}{n - 2}}$$

Se r = 0, S_e = S_y e la varianza d'errore coincide con la varianza totale di Y; Se r = 1 S_e = 0 tutti gli Y cadono sulla retta di regressione Y', quindi l'errore è uguale a 0.

Varianza spiegata nella regressione multipla

Coefficiente di <u>determinazione</u> multiplo (R²): indica la proporzione di varianza della VD spiegata dalle VI prese nel loro complesso.

$$\mathbf{R}_{\mathbf{y}.\mathbf{12...k}}^{\mathbf{2}} = \sum \mathbf{r}_{\mathbf{y}i} \hat{\beta}_{\mathbf{y}i}$$

Nel caso di due variabili indipendenti la formula è:

$${\sf R}^{\sf 2}_{{\sf y}.{\sf 12}}={\sf r}_{{\sf y}{\sf 1}}\hat{eta}_{{\sf y}{\sf 1}}+{\sf r}_{{\sf y}{\sf 2}}\hat{eta}_{{\sf y}{\sf 2}}$$

Somma dei prodotti delle correlazioni semplici (o "di ordine zero") e dei coefficienti β^{h} tra VD e ogni VI.

Varianza spiegata nella regressione multipla

R² non diminuisce mai se si aggiungono altre VI. Correzione per il numero di VI: coefficiente <u>corretto</u> (<u>Adjusted</u>, o Shrunken).

$$AR^2 = R^2 - (1-R^2)*(k/(N-k-1))$$

Può diminuire rispetto a R² se le VI aggiunte forniscono un contributo mediocre alla spiegazione della varianza della VD.
Coefficiente di <u>correlazione</u> multiplo (R o RM): associazione tra una VD e un insieme di VI.

Coefficiente di correlazione multiplo:

$$\mathsf{R}_{\mathsf{y.12...k}} = \sqrt{\mathsf{R}_{\mathsf{y.12...k}}^2}$$

R è sempre maggiore/uguale a 0, ed è maggiore dei singoli coefficienti di ordine zero.

VI molto correlate: R vicino al più elevato coefficiente di correlazione semplice tra le VI e la VD.

VI poco correlate: R più elevato del più grande dei coefficienti di correlazione di ordine zero.

Verifica delle ipotesi (test di significatività)

ANALISI DEI DATI + LAB

SAPIENZA UNIVERSITÀ DI ROMA

6

BARBARANELLI

Significatività statistica di R² Ipotesi statistiche: H₀: r = 0; H₁: r > 0(equivale a H₀: $\beta_1 = \beta_2 = ... = \beta_k = 0$)

Varianza	Somme dei quadrati	Gradi di Libertà	Stime della Varianza	F
Totale	Σ y ²	N-1		
Spiegata	$R^2\Sigma y^2$	k	$R^2\Sigma y^2$	(N-k-1)R ²
Non Spiegoto	(1-R²)∑ <i>y</i> ²	<mark>N-k-1</mark>	κ (1-R²)Σ <i>y</i> ²	k(1-R ²)
Spiegata			(N-k-1)	

dove $y=(Y - \overline{Y}) e k e il numero di VI.$

S

Verifica delle ipotesi (test di significatività)

Significatività statistica dei singoli b:

 $H_0: b = 0; H_1: b \neq 0$

 $t = (b - 0)/S_{b'}$ con N-k-1 gradi di libertà.

Stima dell'errore standard di β:

$$\mathbf{S_{b}} = \frac{\mathbf{S_{y}}}{\mathbf{S_{i}}} \sqrt{\frac{1 - \mathbf{R_{y}^{2}}}{\mathbf{N} - \mathbf{k} - 1}} \sqrt{\frac{1}{1 - \mathbf{R_{i}^{2}}}} = \sqrt{\frac{\mathbf{S_{e}^{2}}}{\mathbf{S_{i}^{2}(1 - R_{i}^{2})}}}$$

Assunzioni alla base della regressione multipla

1. Assenza di errore di specificazione

- a. Relazione tra le X_i e Y lineare
- **b.** Non sono state omesse VI rilevanti
- c. Non sono state incluse VI irrilevanti
- 2. Assenza di errore di misurazione: variabili misurate senza errore
- 3. VI quantitative o dicotomiche, VD quantitativa
- 4. Varianza della VI è > 0
- **5.** Campionamento casuale
- 6. Nessuna VI è combinazione lineare perfetta delle altre (assenza di perfetta multicollinearità)

BARBARANELLI

50

Assunzioni alla base della regressione multipla

7. Assunzioni sui residui (o termini di errore) ϵ_i

- a. <u>Media uguale a zero</u>: $E(\varepsilon_i)=0$
- b. <u>Omoschedasticità</u>, VAR($\hat{\epsilon}_i$)=s2
- c. <u>Assenza di autocorrelazione</u>: $Cov(\varepsilon_i, \varepsilon_j)=0$
- d. VI <u>non correlate</u> con gli errori: $Cov(\epsilon_i, X_i)=0$
- e. <u>Normalità</u>: Le distribuzioni dei valori di ϵ_i per ogni valore dato di X sono di forma normale

Violazione delle assunzioni:

Esame della distribuzione dei residui e=(Y-Y') rispetto ai punteggi teorici Y'.

Utile per rilevare:

- La non linearità della relazione tra VI e VD, e tra VI,
- La non omogeneità della varianza
- La non normalità dei residui

1.Assunzioni rispettate

2.Non normalità

3.Non linearità

4. Eteroschedasticità

5. Casi estremi

Nei riquadri 1-5: Punteggi predetti Y': in ascisse; Residui (Y-Y'): in ordinate. Nel riquadro 6: Tempo o ordine di acquisizione: in ascisse; Residui (Y-Y'): in ordinate.

Rilevare la collinearità (correlazione elevata tra le VI):

- Correlazioni tra le VI (se sono >.8);
- R² elevati e b bassi;
- Errori standard elevati;
- Indici di <u>tolleranza</u> e <u>VIF</u>.

<u>Tolleranza</u> di una VI: quantità di varianza che *non* è spiegata dalle altre VI: T_i = (1 - R_i²) valori bassi di tolleranza indicano alta collinearità, valori alti bassa collinearità.

Variance Inflaction Factor (VIF): VIF_i=1/T_i=1/(1 - R_i²);

valori bassi del VIF indicano bassa collinearità, valori alti elevata collinearità.

Non indipendenza degli errori (Autocorrelazione):

SAPIENZA

BARBARANELLI

Test di Durbin-Watson.

Ha un valore compreso tra 0 e 4: se i residui di osservazioni consecutive non sono correlati il test di Durbin-Watson ha un valore intorno a 2.

Se n≥ 100 e le VI almeno 2, valori compresi tra 1.5 e 2.2 possono essere considerati indicativi di assenza di autocorrelazione, quindi:

Valori inferiori a 1.5 = autocorrelazione positiva. Valori superiori a 2.2 = autocorrelazione negativa.

Rimedi per risolvere le violazioni: trasformazione delle variabili originali (logaritmo, reciproco, radice quadr.).

Scomposizione degli effetti

La *ridondanza* riguarda il caso in cui i coefficienti di correlazione semiparziale (sr), parziale (pr) e di regressione standardizzato (β) sono inferiori (in valore assoluto) al coefficiente di correlazione semplice r e hanno il suo stesso segno.

Allora ogni variabile indipendente porta un'informazione sulla variabile dipendente che in parte si sovrappone con quella veicolata dalle altre variabili indipendenti.

Ridondanza

r(X1,Y)=r(X2,Y)=r(X3,Y)=.50

BARBARANELLI

Scomposizione degli effetti

SAPIENZA

La *soppressione* riguarda il caso in cui i coefficienti sr, pr e β sono maggiori (in valore assoluto) del coefficiente di correlazione semplice r.

Il termine soppressione indica che la relazione tra le variabili indipendenti "maschera" o "sopprime" la loro reale relazione con la variabile dipendente, che potrebbe essere maggiore o addirittura di segno opposto se le variabili indipendenti *non* fossero correlate. Il soppressore è una VI la cui inclusione nella regressione aumenta l'effetto di un'altra VI sulla VD.

Un caso particolare di soppressione è il ribaltamento, dove il coefficiente parziale assume il segno opposto del coefficiente semplice.

Soppressione

r(X1,Y)=.40; r(X2,Y)=0

REGRESSIONE

CON SPSS

BARBARANELLI SAPIENZA				Α	NALISI DEI	DATI + LAB		AA 2017-2018			
(Caricl tratta reg_c	hiamo Imento Iati.sav)	i dati prelimin).	utili ari	zzati (rino	per minar	e il	esem fil	ipio s le cor	sul ne	
<u> </u>	t) and define		Continuine Editors dai dati	teg_dati.sav	v [Dataset4] - IBN	M SPSS Statistics	Editor dei dat			-	
	Elle Modific	Visueli n Da	ti Trasforma Analizza	<u>F</u> ile Modifi	ica <u>V</u> isualizza	<u>D</u> ati <u>T</u> ras	sforma <u>A</u> na	lizza Dire	ect <u>m</u> arketing <u>G</u> r	afici	
						, in 1	1				
					Nome	Tipo	Larghezza	Decimali	Etichetta		
			le le	1	sex	Numerico	12	0		{1 ,	
		sex	age	2	age	Numerico	12	0		Ne	
	1	1	30	3	att	Numerico	12	0		Ne	
	2	1	30	4	ns	Numerico	12	0		Ne	
	3	1	51	5	contco	Numerico	12	0		Ne	
	4	1	50	6	compas	Numerico	12	0		Ne	
	5	2	26	7	int	Numerico	12	0		Ne	
	6	2	32	8	contco_2	Numerico	8	2		Ne	
	7	9	99	9	Zatt	Numerico	11	5	Punteggio Z(att)	Ne	
	8	1	40	10	Zns	Numerico	11	5	Punteggio Z(ns)	Ne	
	9	1	28	11	Zcompas	Numerico	11	5	Punteggio Z(co	Ne	
	10	2	18	12	Zint	Numerico	11	5	Punteggio Z(int)	Ne	
	11	2	26	13	Zcontco_2	Numerico	11	5	Punteggio Z(co	Ne	
	12	1	45	14	filter_\$	Numerico	1	0	Zatt > -3 & Zns	. {0,	
	13	2	32	15	nord	Numerico	8	2		Ne	
	14	2	33	16	MAH_1	Numerico	11	5	Mahalanobis Di	Ne	
	15	2	23	17	DM_quad	Numerico	8	2		Ne	
	16	1	45	18							
	17	0	07		7	10				_	

Riattiviamo il filtro per i 3 outliers

🔚 Senza titolo5 [Dataset5] - IBM SPSS Statistics Editor dei dati										
<u>F</u> ile	Modifie	ca <u>V</u> isualizza	<u>D</u> ati <u>T</u> ras	sforma <u>A</u> na	alizza Dire	ect <u>m</u> arketing	<u>G</u> rafici	Programm	ni di <u>u</u> tilità F	inestra
				>	*	벽				
		Nome	Tipo	Larghezza	Decimali		Eti	chetta		Va
1	l	sex	Numerico	12	0					{1, MA
2	2	age	Numerico	12	0					Nessu
3	}	att	Numerico	12	0					Nessu
4	Ļ	ns	Numerico	12	0					Nessu
5	;	contco	Numerico	12	0					Nessu
6	;	compas	Numerico	12	0					Nessu
7	7	int	Numerico	12	0					Nessu
8	}	contco_2	Numerico	8	2					Nessu
9)	Zatt	Numerico	11	5	Punteggio Z((att)			Nessu
1	0	Zns	Numerico	11	5	Punteggio Z(ns)			Nessu
1	1	Zcompas	Numerico	11	5	Punteggio Z((compas)			Nessu
1	2	Zint	Numerico	11	5	Punteggio Z((int)			Nessu
1	3	Zcontco_2	Numerico	11	5	Punteggio Z(contco_2)			Nessu
1	4	filter_\$	Numerico	1	0	Zatt > -3 & Z	'ns > -3 &	MAH_1 < 2	0 (FILTER)	{0, Not
1	5	nord	Numerico	8	2					Nessu
1	6	MAH_1	Numerico	11	5	Mahalanobis	Distance			Nessu

 $\langle \rangle$

Riattiviamo il filtro per i 3 outliers

Questa procedura però cancella l'etichetta della variabile filter_\$

Riattivare il filtro per i 3 outliers senza cancellare l'etichetta della variabile filter_\$

Sintassi1 - IBM SPSS Statistics Ed	litor di sintassi		NOR ADDRESS OF DR
<u>F</u> ile Mo <u>d</u> ifica <u>V</u> isualizza <u>D</u>	ati <u>T</u> rasforma <u>A</u> nalizza	Direct <u>Marketing</u> Grafici	Programmi di <u>u</u> tilità Es
	r 🤉 🧮 🎇	📥 🗐 👬 🕨	
K K /* 57.	🟹 🏹 🔴 🌖		Attivo: Dataset1 💌
FILTER	1		
FILTER	2 FILTER BY filter	S .	
	3		

Dalla finestra Sintassi lanciare il comando FILTER BY filter_\$ posizionando il cursore sulla linea del comando e cliccando sul triangolino verde.

BARBARANELLI

SAPIENZA UNIVERSITÀ DI ROMA ANALISI DEI DATI + LAB

(

<u>V</u> isua	alizza	<u>D</u> ati	<u>T</u> rasforma	Analizza	Direct <u>M</u> arketing	Grafici	Progra	mmi di <u>u</u> tilità <u>F</u> ir	nestra <u>G</u> uida		
		5	∼ [Re <u>p</u> or Statist Ta <u>b</u> ell	t tich <u>e</u> descrittive le personalizzate		*		A 14		
S	ex		age	Confre	onta <u>m</u> edie			contco	compas	int	cont
		1		Model	lo lineare <u>g</u> enerale			3	0	3	
		1		Model	li lineari generalizza	ti	•	10	0	2	
		1		Model	li mi <u>s</u> ti		•	8	8	8	
		1		Correl	lazione			9	0	4	
		2	(<u>R</u> egre	ssione		•	Modellazione	incare automatica		
		2		L <u>og</u> lin	eare	~	•	Lineare	\rightarrow		
		9		<u>R</u> eti n	eurali		,	Stima di curve			_
		1		Class	ifica		•	Minimi quadra	ti narziali		_
		2		Ri <u>d</u> uzi	ione delle dimensio	ni	•	I esistise hine	ni paiziai		
		2		Sc <u>a</u> la			•	Logistica bina	na		_
		1		Test n	on parametrici		•	Logistica <u>m</u> ult	inomiale		-
		2		Previs	ioni		•	Or <u>d</u> inale			
		2		Sopra	wivenza		•	Probit			
		2		Rispo	sta m <u>u</u> ltipla		•	PROCESS, by	Andrew F. Hayes (htt	p://www.afhayes.com)	
		1		Analis	i valori mancanti			Mon lineare			
		2		Asseg	nazione mul <u>t</u> ipla		•	K Stima del pes	0		
		1		Camp	ioni comp <u>l</u> essi		•	🔛 Minimi quadra	ti a <u>2</u> stadi		
		9		Bimula	azione			Scaling ottima	le (CATREG)		
		1		Contro	ollo <u>q</u> ualità			5_	U	۷	
		2		Curva	ROC			4	0	2	

Regressione standard

SAPIENZA

6

BARBARANELLI

Selezionare la variabile dipendente ("int") e poi tutte le variabili indipendenti ("att", "ns", "contco_2", "compas") che verranno inserite in un unico blocco. Lasciare nell'opzione "Metodo" il valore di default "Inserisci".

Regressione lineare	Dipendente: Dipendente: Statistiche. Grafici Salva Opzioni Stile Bootstrap.
 Zcompas Zint Zcontco_2 filter_\$ nord MAH_1 DM_quad 	Metodo: Inserisci T
	Variabile selezione: Regola Etichette del caso:
ОК	Peso WLS:

Strategie Analitiche per la regressione

Regressione standard:

Quale è l'entità della relazione globale tra VD e VI? Quale è il contributo unico di ciascuna VI nel determinare questa relazione ?

Regressione gerarchica:

- Se la VI X1 è inserita dopo la VI X2, quale contributo aggiuntivo dà alla spiegazione della VD ?

Regressione statistica:

- Quale è la migliore combinazione lineare di VI per predire la VD in un determinato campione ?

La regressione standard

Tutte le VI vengono inserite nell'equazione simultaneamente.

Ogni VI è trattata come se fosse inserita nell'equazione dopo aver preso in considerazione tutte le altre VI.

Ogni VI è valutata per quanto aggiunge, nello spiegare la VD, a quanto viene spiegato da tutte le altre VI.

Ogni VI spiega solo quella parte di varianza della VD che condivide unicamente con la VD, al netto delle VI.

La variabilità che la VD condivide simultaneamente con più VI viene ad aggiungersi all'R² ma non è assegnata individualmente a nessuna delle VI.

Regressione standard

Nella finestra di dialogo "Statistiche" bisogna selezionare determinati parametri per ottenere nell'output le informazioni necessarie per interpretare e valutare la soluzione.

Regressione lineare: Statistiche						
 Coefficienti di regressi Stime Intervalli di confidenza Livello (%): 95 Matrice di covarianza Residui Adattamento del modello Cambiamento di R quadrato Descrittive Correlazioni di ordine zero e parziali Diagnostiche di collinearità 						
 Durbin-Watson Diagnostiche casewise Valori anomali oltre: 3 deviazioni standard Tutti i casi 						
Continua Annulla Guida						

Regressione standard

Nella finestra di dialogo "Opzioni" vengono presentate le opzioni relative al trattamento dei valori mancanti.

Regressione lineare: Opzioni								
Criteri di accettazione e rifiuto Utilizza pr <u>o</u> babilità di F Ins <u>e</u> rimento: ,05 Ri <u>m</u> ozione: ,10								
O Usa valore F Inserimento: 3,84 Rimozione: 2,71								
✓ Includi costante nell'equazione ✓ Valori mancanti								
Scludi casi listwise Scludi casi pairwise								
© Sostituisci con la media <u>Continua</u> Annulla Guida								

Vengono utilizzati tutti i valori disponibili Le analisi vengono effettuate considerando <u>tutti i</u> <u>soggetti che hanno valori validi sulle variabili di</u> <u>volta in volta considerate</u>

<u>Listwise</u>

Vengono utilizzati <u>solo quei soggetti che NON</u> <u>hanno alcun valore mancante</u>. È sufficiente che un soggetto presenti un valore mancante in una sola variabile per essere escluso dalle analisi Per molte procedure è il metodo di *default* di SPSS

Sostituzione con la media

Sostituisce i valori mancanti con la media della variabile nel campione

Statistiche descrittive

Statistica descrittiva

	Media	Deviazione std.	Ν
int	7,32	2,543	196
att	42,93	7,024	196
ns	7,92	1,758	196
compas	2,67	1,965	196
contco_2	,2545	,28864	196

Correlazioni

		1	- 11			
		Int	aπ	ns	compas	contco_2
Correlazione di Pearson	int	1,000	,721	,589	,645	-,544
	att	,721	1,000	,556	,520	-,449
	ns	,589	,556	1,000	,454	-,315
	compas	,645	,520	,454	1,000	-,445
	contco_2	-,544	-,449	-,315	-,445	1,000
Sign. (a una coda)	int		,000,	,000,	,000,	,000
	att	,000		,000	,000	,000
	ns	,000	,000,		,000	,000
	compas	,000	,000,	,000,		,000
	contco_2	,000,	,000,	,000	,000	
Ν	int	196	196	196	196	196
	att	196	196	196	196	196
	ns	196	196	196	196	196
	compas	196	196	196	196	196
	contco_2	196	196	196	196	196

Regressione standard

Il pannello iniziale evidenzia come che tutte le variabili siano state inserite in un unico passo

Variabili immesse/rimosse^a

Modello	Variabili immesse	Variabili rimosse	Metodo
1	contco_2, ns, compas, att ^b		Inserisci

a. Variabile dipendente: int

b. Sono state immesse tutte le variabili richieste.

La varianza spiegata si trova in questa tabella

Riepilogo del modello^b

Modello	R	R-quadrato	R-quadrato adattato	Errore std. della stima	Durbin- Watson
1	,819 ^a	,671	,664	1,474	1,709

a. Predittori: (costante), contco_2, ns, compas, att

b. Variabile dipendente: int

ANOVA^a

Model	lo	Somma dei quadrati	gl	Media quadratica	F	Sign.
1	Regressione	845,599	4	211,400	97,259	,000 ^b
	Residuo	415,151	191	2,174		
	Totale	1260,750	195			

a. Variabile dipendente: int

b. Predittori: (costante), contco_2, ns, compas, att

Regressione standard

Per interpretare gli effetti delle VI guardare questa tabella

		Coefficienti non standardizzati		Coefficienti standardizzati		
Modello)	В	Errore std.	Beta	t	Sign.
1	(Costante)	-1,422	,816		-1,742	,083
	att	,141	,020	,390	7,045	,000,
	ns	,273	,074	,189	3,676	,000,
	compas	,354	,067	,273	5,274	,000
	contco_2	-1,656	,426	-,188	-3,885	,000

Coefficientia

a. Variabile dipendente: int

Correlazioni Statis			Statistiche d	i collinearità	
Ordine zero	Parziale	Parte	Tolleranza	VIF	
,721	,454	,293	,563	1,775	
,589	,257	,153	,653	1,530	
,645	,357	,219	,642	1,557	
-,544	-,271	-,161	,737	1,358	

Risultati della regressione standard

$sr^2 = contributo unico della VI all'R^2 nell'insieme di VI.$

Somma degli sr²: può non raggiungere il valore di R².

Differenza tra somma degli sr² e R²: proporzione di varianza della VD spiegata simultaneamente da più VI, ma non attribuita a nessuna VI in particolare.

Dati dell'esempio:

 $\Sigma sr^2 = (.29)^2 + (.15)^2 + (.22)^2 + (-.16)^2 = .183; R^2 = .671;$

 R^2 - $\Sigma sr^2 = .67 - .183 = .488$

E' la varianza spiegata simultaneamente dalle VI

Regressione standard

Varianza unica e varianza comune spiegata dalla VI

	varianza unica	
	sr	sr^2
att	,293	0,086
ns	,153	0,023
compas	,219	0,048
contco_2	-,161	0,026
Varianza totale	0,671	
Varianza unica	0,183	
Varianza comu	0,488	

La regressione gerarchica

SAPIENZA

BARBARANELLI

Le VI vengono inserite nell'equazione secondo un ordine specificato dal ricercatore.

L'ordine di "entrata" viene assegnato dal ricercatore secondo considerazioni teoriche o logiche.

L'analisi procede attraverso "passi" sequenziali. Ogni VI è valutata per quanto aggiunge, nello spiegare la VD, rispetto a quanto è stato spiegato dalle VI inserite precedentemente. Partizione ordinata della varianza di VD spiegata dalle VI.

Contributo di una VI: può variare se la sua posizione nella gerarchia viene cambiata

Regressione gerarchica

Selezionare la variabile dipendente ("int"). Quindi tutte le variabili indipendenti verranno inserite in blocchi separati, secondo un ordine consistente con il modello teorico che il ricercatore vuole esaminare.

Inserita la prima variabile ("att") cliccare sul pulsante "Avanți"

 Sex age age att ns contco compas contco_2 Zatt Zatt Zns Zcompas Zint Zcontco_2 filter_S nord 	Dipendente: int Blocco 1 di 1 Indietro Ava <u>n</u> ti Marafici Statistici Salva Opzioni Stije Bootstrap
MAH_1 DM_quad	Metodo: Inserisci 💌
	Variabile selezione: Regola Eti <u>c</u> hette del caso:
	Peso WLS:

 $\langle \rangle$

Regressione gerarchica

Inserire la seconda variabile nel "Blocco 2 di 2" ("ns") e di nuovo cliccare sul pulsante "Avanti"

 $\langle \rangle$

Regressione gerarchica

Inserire la terza variabile nel "Blocco 3 di 3" ("contco_2") e di nuovo cliccare sul pulsante "Avanti"

Regressione gerarchica

Inserire la quarta e ultima variabile nel "Blocco 4 di 4" ("compas"). In questi passaggi non cambiare mai il tipo di Metodo !!!

Regressione gerarchica

Nella finestra di dialogo "Statistiche" bisogna selezionare determinati parametri per ottenere nell'output le informazioni necessarie per interpretare e valutare la soluzione.

Regressione lineare: Statistiche
 Coefficienti di regressi Stime Intervalli di confidenza Livello (%): 95 Matrice di covarianza
Residui Durbin-Watson Diagnostiche casewise Valori anomali oltre: 3 deviazioni standard Tutti i casi
Continua Annulla Guida
Regressione gerarchica

Il pannello iniziale riporta un riepilogo delle variabili inserite nel modello nei 4 passi della regressione: è diverso dal pannello analogo della regressione standard poiché ora non c'è più un unico blocco

Modello	Variabili immesse	Variabili rimosse	Metodo
1	att ^b		Inserisci
2	ns ^b		Inserisci
3	contco_2 ^b		Inserisci
4	compas ^b		Inserisci

Variabili immesse/rimosse^a

a. Variabile dipendente: int

b. Sono state immesse tutte le variabili richieste.

Regressione gerarchica

La varianza spiegata attraverso i diversi passi e il contributo unico delle variabili aggiunte ad ogni blocco si trova in questa tabella

					Statistiche delle modifiche				
			R-quadrato	Errore std.	Modifica R-				Sign. Modifica
Modello	R	R-quadrato	adattato	della stima	quadrato	Modifica F	gi1	gl2	F
1	,721 ^a	,520	,517	1,766	,520	210,108	1	194	,000
2	,756 ^b	,571	,567	1,674	,051	23,011	1	193	,000
3	,789°	,623	,617	1,574	,052	26,310	1	192	,000
4	,819 ^d	,671	,664	1,474	,048	27,812	1	191	,000

Riepilogo del modello

a. Predittori: (costante), att

b. Predittori: (costante), att, ns

c. Predittori: (costante), att, ns, contco_2

d. Predittori: (costante), att, ns, contco_2, compas

Regressione gerarchica

La tabella dei coefficienti cambia a seconda del numero di predittori inseriti: l'ultima sezione (Modello 4) presenta risultati identici a quelli della regressione standard.

		Coefficienti non standardizzati		Coefficienti standardizzati			с	orrelazioni	
Mode	lo	В	Errore std.	Beta	t	Sign.	Ordine zero	Parziale	Parte
1	(Costante)	-3,886	,783		-4,960	,000			
	att	,261	,018	,721	14,495	,000	,721	,721	,721
2	(Costante)	-4,652	,759		-6,126	,000			
	att	,206	,021	,570	10,051	,000	,721	,586	,474
	ns	,393	,082	,272	4,797	,000	,589	,326	,226
3	(Costante)	-2,227	,856		-2,601	,010			
	att	,170	,021	,469	8,245	,000	,721	,511	,365
	ns	,358	,077	,248	4,627	,000	,589	,317	,205
	contco_2	-2,250	,439	-,255	-5,129	,000	-,544	-,347	-,227
4	(Costante)	-1,422	,816		-1,742	,083			
	att	,141	,020	,390	7,045	,000	,721	,454	,293
	ns	,273	,074	,189	3,676	,000	,589	,257	,153
	contco_2	-1,656	,426	-,188	-3,885	,000	-,544	-,271	-,161
	compas	,354	,067	,273	5,274	,000	,645	,357	,219

Coefficienti^a

a. Variabile dipendente: int

Risultati della regressione gerarchica Cambiamento di R e R² attraverso i riversi passi

Step	Variabile	R	R ²	R ² C	F	р
1	Atteggiamento	.72	.52	.52	210	.00
2	Norma Soggettiva	.76	.57	.05	23	.00
3	Senso di Controllo	.79	.62	.05	26	.00
4	Comport. Passato	.82	.67	.05	28	.00

sr²: quantità di varianza aggiunta all' R² da ciascuna VI nel punto in cui la VI entra nell'equazione ("incremental sr²" o cambiamento in R²).

La somma degli sr² è uguale al valore di R².

Test statistico per valutare l'incremento nell'R² (Tabachnik & Fidell, 2007, p. 149)

$$F_{inc} = \frac{(R_{wi}^2 - R_{wo}^2)/m}{(1 - R^2)/df_{res}}$$

$$\label{eq:Rwi} \begin{split} R^2_{wi} &= R^2 \, ottenut \mbox{cdall' inseriment o della nuovavariabile} \\ R^2_{wo} &= R^2 \, senza \, la nuovavariabile \\ m &= numero \, di \, variabili \, nel nuovoblocco \\ df_{res} &= (N-k-1) \end{split}$$

La regressione statistica

L'ordine di ingresso delle VI nell'equazione, e la decisione su quali VI vengono incluse o escluse dall'equazione di regressione sono determinati da criteri statistici

Limite: Differenze marginali rispetto a questi criteri possono influenzare in modo sostanziale l'importanza attribuita alle diverse VI

Tipi di regressione statistica

<u>Regressione forward</u>: equazione inizialmente "vuota"; ad ogni step viene aggiunta la VI che presenta la correlazione più elevata con la VD. Se una VI entra in equazione, vi rimane

Regressione backward: l'equazione inizialmente comprende tutte le VI; ad ogni step viene eliminata la VI che non correla significativamente con la VD. Se una VI esce dall'equazione, non può più rientrarvi

<u>Regressione stepwise</u>: equazione inizialmente "vuota"; ad ogni step viene aggiunta la VI che correla di più con la VD. Le variabili che non forniscono più un contributo significativo vengono eliminate

S

Regressione Stepwise

Effettuare le stesse selezioni fatte per la regressione standard ma specificare "Stepwise" nel Metodo. Selezionare nelle Statistiche l'opzione per ottenere l'incremento dell'R².

Regressione lineare		×
 Sex age att ns contco compas contco_2 Zatt Zatt Zcompas Zcompas Zint Zcontco_2 filter_\$ nord MAH_1 DM_quad 	▶ Dipendente: ▲ int Blocco 1 di 1 Indipendenti: Indipendenti: Indipendenti: Incolla Reimposta Avanti Avanti Avanti Incolla Reimposta Annulla Guida	Statistiche Grafici Salva Opzioni Stile Bootstrap

Regressione Stepwise

Variabili immesse/rimosse^a

Modello	Variabili immesse	Variabili rimosse	Metodo
1	att		Stepwise (criteri: Probabilità-di- F-da-inserire <= ,050, Probabilità-di- F-da- rimuovere >= 100)
2	compas		Stepwise (criteri: Probabilità-di- F-da-inserire <= ,050, Probabilità-di- F-da- rimuovere >= .100)
3	contco_2		Stepwise (criteri: Probabilità-di- F-da-inserire <= ,050, Probabilità-di- F-da- rimuovere >= ,100).
4	ns		Stepwise (criteri: Probabilità-di- F-da-inserire <= ,050, Probabilità-di- F-da- rimuovere >= ,100).

Il pannello iniziale segnala quali variabili sono state inserite o rimosse durante la procedura Stepwise. Nella colonna metodo viene specificato quale è il metodo di inserimento/rimozione nell'equazione, e quali criteri determinano inserimento e rimozione

Regressione Stepwise

La varianza spiegata attraverso i diversi passi e il contributo unico delle variabili aggiunte ad ogni blocco si trova in questa tabella

Rienilogo del modello

						Statistic	he delle moo	difiche	
Modello	R	R-quadrato	R-quadrato adattato	Errore std. della stima	Modifica R- quadrato	Modifica F	gl1	gl2	Sign. Modifica F
1	,721 ^a	,520	,517	1,766	,520	210,108	1	194	,000
2	,787 ^b	,620	,616	1,575	,100	50,872	1	193	,000
3	,805°	,647	,642	1,522	,027	14,887	1	192	,000
4	,819 ^d	,671	,664	1,474	,023	13,515	1	191	,000

a. Predittori: (costante), att

b. Predittori: (costante), att, compas

c. Predittori: (costante), att, compas, contco_2

d. Predittori: (costante), att, compas, contco_2, ns

La partizione della varianza è molto diversa da quella ottenibile nelle regressioni standard e gerarchica. L'ordine di importanza delle VI è quello dell'ultimo "modello"(ovvero passo): Atteggiamento, Comportamento Passato, Controllo, Norme Soggettive

Regressione Stepwise

La tabella dei coefficienti cambia a seconda dei predittori inseriti o rimossi: l'ultima sezione (Modello 4) presenta risultati identici a quelli della regressione standard e della gerarchica.

		Coefficienti non standardizzati		Coefficienti standardizzati			c	orrelazioni	
Model	0	В	Errore std.	Beta	t	Sign.	Ordine zero	Parziale	Parte
1	(Costante)	-3,886	,783		-4,960	,000			
	att	,261	,018	,721	14,495	,000	,721	,721	,721
2	(Costante)	-2,175	,739		-2,945	,004			
	att	,191	,019	,529	10,179	,000	,721	,591	,452
	compas	,479	,067	,370	7,132	,000	,645	,457	,316
3	(Costante)	-,657	,815		-,806	,421			
	att	,171	,019	,471	9,003	,000	,721	,545	,386
	compas	,407	,068	,315	6,027	,000	,645	,399	,258
	contco_2	-1,697	,440	-,193	-3,858	,000	-,544	-,268	-,165
4	(Costante)	-1,422	,816		-1,742	,083			
	att	,141	,020	,390	7,045	,000	,721	,454	,293
	compas	,354	,067	,273	5,274	,000	,645	,357	,219
	contco_2	-1,656	,426	-,188	-3,885	,000	-,544	-,271	-,161
	ns	,273	,074	,189	3,676	,000	,589	,257	,153

Coefficienti^a

a. Variabile dipendente: int

Regressione Stepwise

Questa tabella è utile per capire quale variabile verrà inclusa nel prossimo passo. In questo caso è chiaro che tutte le variabili verranno incluse nell'analisi.

					Correlazione	Statistiche di collinearità
Mode	llo	Beta in	t	Sign.	parziale	Tolleranza
1	ns	,272 ^b	4,797	,000	,326	,691
	compas	,370 ^b	7,132	,000	,457	,730
	contco_2	-,276 ^b	-5,289	,000	-,356	,798
2	ns	,194 [°]	3,647	,000	,255	,654
	contco_2	-,193°	-3,858	,000	-,268	,737
3	ns	,189 ^d	3,676	,000	,257	,653

Variabili escluse^a

a. Variabile dipendente: int

- b. Predittori nel modello: (costante), att
- c. Predittori nel modello: (costante), att, compas
- d. Predittori nel modello: (costante), att, compas, contco_2

Differenti metodi \Rightarrow Differenti risultati

$\frac{\text{Standard}}{\text{nessuna variabile.}} \Rightarrow 48\% \text{ di varianza non attribuibile a}$

Gerarchica ⇒ Norma Soggettiva spiega più varianza del comportamento passato

Stepwise ⇒ Comportamento passato variabile più importante dopo l'atteggiamento

Regressione <u>standard</u>: strategia analitica migliore per studi esplorativi.

Regressione <u>gerarchica</u>: controllo maggiore sul processo della regressione; subordinata alla formulazione di ipotesi; studi confermativo.

Conclusioni

Tecnica flessibile per studiare la relazione di dipendenza tra variabili soprattutto nelle fasi esplorative di una ricerca.

Possibilità di definire modelli a priori (nel caso della regressione *gerarchica*): estensione anche a contesti di tipo confermativo.

Lo scopo è comunque quello di spiegare al meglio una variabile dipendente (y). E' una tecnica poco adatta a rendere ragione di modelli teorici complessi, in cui ci sono diverse variabili dipendente.

Conclusioni

Limiti legati alle assunzioni statistiche:

- * Assenza di errore nelle variabili: assai irrealistica.
- * Problema della *multicollineratià:* spesso risolvibile all'interno del modello della regressione.
- * Impossibile considerare <u>simultaneamente</u> più di una variabile dipendente alla volta nello stesso modello. Modelli complessi sono esaminabili solo scindendoli in tanti pezzi separati.
- * Risultati soggetti ad interpretazioni assai differenti a seconda del metodo di regressione scelto (standard, gerarchica, statistica).

Accertare le condizioni di applicabilità Scegliere l'approccio più adeguato per gli scopi del ricercatore

ESERCIZIO 2:

REALIZZAZIONE DI UN MODELLO DI REGRESSIONE CON SPSS

Utilizzare i dati in formato testo nel file ES1.SAV, risultato dell'esercizio 1.

VARIABILI: ATTEGGIAMENTO, NORME SOGGETTIVE, SENSO DI CONTROLLO, COMPORTAMENTO PASSATO, INTENZIONE. LA VARIABILE DIPENDENTE E' "INTENZIONE"

1) Effettuare una regressione standard, calcolando la varianza unica spiegata da ogni variabile e la varianza comune

2) Effettuare una regressione gerarchica nella quale l'ordine di entrata della VI è il seguente: comportamento passato, norme soggettive, senso di controllo, atteggiamento

L'ANALISI DELLA VARIANZA (ANOVA)

Sommario

- * Il modello lineare: forma e assunzioni
- * Disegni ad un fattore
- * Confronti post-hoc e pianificati
- * Disegni fattoriali: effetti principali ed interazione
- * Potenza della verifica e ampiezza degli effetti

Scopo dell'analisi della varianza: verificare ipotesi relative a differenze tra medie di due o più popolazioni.

Variabile dipendente: su scala a intervalli o rapporti equivalenti

Variabile indipendente: categoriale.

- Una sola V.I.: Disegni a una via
- Due o più V.I.: Disegni Fattoriali
- Una sola V.D.: Analisi univariata
- Due o più V.D.: Analisi multivariata (MANOVA)

L'ANALISI DELLA VARIANZA UNIVARIATA (ANOVA): DISEGNI TRA I SOGGETTI AD UN SOLO FATTORE

SAPIENZA UNIVERSITÀ DI ROMA

6

BARBARANELLI

Ad ogni livello della variabile indipendente corrisponde un diverso gruppo di soggetti. In ogni condizione ci sono soggetti <u>diversi</u>: un soggetto esposto ad una condizione <u>non</u> viene esposto a nessuna altra condizione.

OBIETTIVI				
SI	NO			
S 1	S 6			
S2	S7			

MODELLO LINEARE DELL'ANOVA

Il punteggio y_{ij} di un soggetto "j" nel gruppo "i" è scomponibile così:

$$\mathbf{y}_{ij} = \mu + \alpha_j + \varepsilon_{ij}$$

- μ: media generale ("grand mean") dei punteggi sul campione totale
- α_i: effetto dovuto al trattamento (livello i della variabile indipendente)
- ϵ_{ij} : è una componente "residua", di errore casuale, specifica per ogni soggetto.

Stime campionarie dei parametri di popolazione:

media generale del campione

ANALISI DEI DATI + LAB

$$\hat{\alpha}_i = (\bar{y}_{i.} - \bar{y}_{..})$$

differenza tra la media del gruppo cui appartiene il soggetto e la media generale del campione (contributo della condizione "i" al punteggio del soggetto "j")

differenza tra punteggio del soggetto e media del gruppo in cui è inserito (variabilità dei punteggi individuali all'interno di ogni gruppo).

$$\hat{\varepsilon}_{ij} = (y_{ij} - \overline{y}_{i.})$$

 $\hat{\mu} = \overline{y}$

Scomposizione della devianza totale

Devianza totale

$$SS_{T} = \sum_{i} \sum_{j} (y_{ij} - \overline{y}_{..})^{2}$$

Somma dei quadrati degli scarti al quadrato tra i singoli punteggi e la media generale (tutti i soggetti possono essere considerati come appartenenti ad un unico campione).

Scomposizione della devianza totale

Devianza tra i gruppi (o between)

$$SS_{B} = \sum_{i} \sum_{j} (\overline{y}_{i.} - \overline{y}_{..})^{2}$$

Si calcola sostituendo ad ogni punteggio la media del gruppo cui appartiene (come se tutti i soggetti sottoposti allo stesso trattamento avessero ottenuto esattamente lo stesso punteggio).

Scomposizione della devianza totale

Devianza entro i gruppi (o within)

$$SS_{W} = \sum_{i} \sum_{j} (y_{ij} - \overline{y}_{i.})^{2}$$

Somma dei quadrati degli scarti al quadrato tra i punteggi di ogni soggetto e la media del gruppo cui il soggetto appartiene.

 $\langle \rangle$

BARBARANELLI

E' possibile dimostrare che $SS_T = SS_B + SS_W$:

$$SS_{T} = \sum_{i} \sum_{j} (y_{ij} - \overline{y}_{..})^{2} =$$

$$SS_{B} = \sum_{i} \sum_{j} (\overline{y}_{i.} - \overline{y}_{..})^{2} +$$

$$SS_{W} = \sum_{i} \sum_{j} (Y_{ij} - \overline{y}_{i.})^{2}$$

GRADI DI LIBERTA' E "QUADRATI MEDI"

ANALISI DEI DATI + LAB

SAPIENZA

$$SS_{T} = \sum_{i} \sum_{j} (y_{ij} - \overline{y}_{..})^{2}$$

BARBARANELLI

58

2 = n -1 (il gdl perso è quello della media totale)

$$SS_{B} = \sum_{i} \sum_{j} (\overline{y}_{i.} - \overline{y}_{..})^{2}$$

= k-1 (il gdl perso è quello della media totale)

 $SS_W = \sum_i \sum_i (y_{ij} - \overline{y}_i)^2 = n-k$ (1 gdl perso per ogni media di gruppo)

> La scomposizione che vale per le devianze vale anche per i gradi di libertà: n-1=(k-1)+(n-k).

GRADI DI LIBERTA' E "QUADRATI MEDI"

Dividendo le devianze per i rispettivi gdl si ottengono le varianze ovvero i "quadrati medi" (mean squares).

<u>Varianza totale</u> $(MS_T) =$ Devianza totale/(n-1) = $SS_T/(n-1)$

<u>Varianza tra i gruppi</u> (MS_B)= Devianza tra i gruppi/(k-1)= SS_B/(k-1)

<u>Varianza entro i gruppi</u> (MS_w)= Devianza entro i gruppi/(n-k)=SS_w/(n-k)

dove: n = numero totale di soggetti k = numero di gruppi

RAPPORTO "F"

Il rapporto tra le varianze MS_B/MS_W segue la distribuzione F (che è <u>tabulata</u>) quindi può essere utilizzato per esaminare ipotesi sulla significatività della differenza tra la variabilità dovuta al trattamento e quella residua.

La F testa le seguenti ipotesi statistiche:

H₀: μ₁=μ₂= =μ_k (Le popolazioni di provenienza dei campioni hanno medie uguali sulla V. D.)

H₁: almeno due μ diverse − μ₁≠μ₂, o μ₁≠μ₃, ecc.
 (Almeno due campioni provengono da popolazioni con medie tra loro diverse)

RAPPORTO "F"

Varianza tra i gruppi, o *between*: è data dalle differenze tra le medie dei gruppi sottoposti a trattamenti diversi; riflette l'effetto della <u>VI</u>.

Varianza entro i gruppi, o within:

riflette le differenze tra i punteggi di soggetti appartenenti allo stesso gruppo, può essere attribuita <u>all'errore casuale</u>.

BARBARANELLI

58

RAPPORTO "F"

H₀ vera:

il trattamento non produce effetti, le due varianze sono molto simili, il rapporto F assume valori molto bassi (vicini ad 1 o inferiori), i punteggi dei soggetti pei diversi gruppi sono simili

i punteggi dei soggetti nei diversi gruppi sono simili.

H₀ falsa:

varianza tra i gruppi (trattamento) maggiore della varianza entro i gruppi (errore casuale), il rapporto F assume valori elevati, i punteggi dei soggetti nei diversi gruppi sono diversi.

RAPPORTO "F"

a) F significativa (Rifiuto H₀: $\mu_1 = \mu_2 = \dots = \mu_k$)

Se la varianza tra i gruppi è maggiore della varianza entro i gruppi, le medie dei gruppi saranno piuttosto <u>distanziate</u>.

RAPPORTO "F"

b) F non significativa (Non rifiuto $H_0: \mu_1 = \mu_2 = \dots = \mu_k$)

Se invece la varianza tra i gruppi non è significativamente diversa dalla varianza entro i gruppi, le medie dei gruppi saranno piuttosto <u>ravvicinate</u>.

ASSUNZIONI

a) gli errori (ε_{ij}) seguono la distribuzione normale ed hanno media uguale a 0. <u>Non normalità</u>: ha un effetto debole sull'errore di I tipo (leggera inflazione) soprattutto nel caso in cui le celle non sono bilanciate (numero di soggetti diversi nelle differenti condizioni).

 b) la varianza degli errori (σ_ε) è uguale in ogni gruppo (OMOSCHEDASTICITA').
 <u>Eteroschedasticità</u>: La F è "robusta" anche rispetto a questa assunzione. Gli effetti più gravi si hanno nei disegni non bilanciati. L'omoschedasticità viene valutata con il test di <u>Levene</u>.

ASSUNZIONI

c) gli errori (ε_{ij}) sono indipendenti (il punteggio di un soggetto non è correlato con quello di altri soggetti).
 Non Indipendenza delle osservazioni: può avere effetti notevoli sul livello di significatività (aumento incontrollato del livello reale di α) e sulla potenza del test. L'indipendenza viene valutata con il coefficiente di correlazione intraclasse (vedi pp. 195-197).

ASSUNZIONI

d) gli effetti hanno una natura additiva: la variabile sperimentale "aggiunge" qualcosa alla condizionebase e lo fa in maniera "identica" per tutti i soggetti.
Non additività degli effetti: aumenta debolmente l'errore sperimentale e diminuisce la potenza del test. E' un fattore di cui non ci si deve molto preoccupare.
EFFECT SIZE

La F è fortemente dipendente dalla numerosità dei gruppi considerati.

Non basta allora dimostrare che la F è statisticamente significativa per rilevare la presenza di un effetto. Bisogna dimostrare che l'effetto è importante anche da un punto di vista pratico.

Coefficienti che quantificano l'associazione tra variabile dipendente e variabile indipendente: possono essere interpretati come proporzione della varianza della variabile dipendente spiegata dalla variabile indipendente.

6

 $\omega^2 = [SS_B - (k-1) * MS_W] / (SS_T + MS_W) omega quadro$

EFFECT SIZE

Effect size nell'ANOVA:

$$\omega^2, \eta^2 = .01 - .05 \rightarrow Basso$$

 $\omega^2, \eta^2 = .06 - .13 \rightarrow Moderato$
 $\omega^2, \eta^2 = .14 \rightarrow Elevato$

POTENZA DELLA VERIFICA

Probabilità di rifiutare l'ipotesi nulla quando essa è falsa. Probabilità di rilevare un effetto quando esso è presente.

Errore del II tipo: non rifiutare l'ipotesi nulla quando essa è falsa. La probabilità di commetterlo è indicata con il simbolo β . La potenza si indica con 1- β .

Errore di I tipo (la cui probabilità è α), ed errore di II tipo sono inversamente proporzionali.

ANALISI DEI DATI + LAB POTENZA DELLA VERIFICA

BARBARANELLI

 \otimes

AA 2017-2018

POTENZA DELLA VERIFICA

Esempio: differenze tra 2 gruppi, entrambi di 15 soggetti.

α	β	1-β
.10	.37	.63
.05	.52	.48
.01	.78	.22

Se α diminuisce da .10 a .05, β aumenta da .37 a .52, e la potenza (1- β) diminuisce da .63 a .48

BARBARANELLI

POTENZA DELLA VERIFICA

La potenza della verifica dipende da tre fattori: - livello di α

- ampiezza del campione

- effect size: quanto i gruppi differiscono effettivamente nella popolazione.

Esempio: cambiamento nella potenza in funzione di n, considerando un effect size pari a .5.

n per gruppo	1-β
10	.18
20	.33
50	.70
100	.94

COME AUMENTARE LA POTENZA DELLA VERIFICA

* Aumentare l'effect size

- Ridurre la variabilità entro i gruppi:

- # gruppi più omogenei
- # disegni fattoriali invece che a una via
- # analisi della covarianza
- # disegni within subjects
- Essere sicuri che ci sia un legame forte tra variabile indipendente e variabile dipendente (validità interna dell'esperimento)
- * Aumentare il numero di soggetti
- * Aumentare a/Usare test a una coda [soluzione poco efficiente]

STIME DELLA POTENZA POST-HOC:

Consentono di calcolare il livello (1-β) dopo aver effettuato l'analisi. Permettono di interpretare meglio i risultati (soprattutto in presenza di F non significativa, ed effect size moderato/elevato).

STIME DELLA POTENZA A PRIORI:

Consentono di stabilire (una volta identificato l'effect size che si attende nell'esperimento) quale sarà la potenza della verifica per un dato numero di gruppi (k) e di numerosità di soggetti per gruppo (nk).

Consentono anche di stabilire quanti soggetti sono necessari per ogni gruppo per ottenere un determinato livello (1-β) dato un certo valore dell'effect size.

Le stime della potenza della verifica vengono effettuate utilizzando delle apposite tabelle sviluppate da Cohen, ed opportune formule per stimare l'effect size.

Nella maggior parte delle ricerche psicologiche si considera adeguata una potenza pari a .80 (ovvero, la probabilità di commettere errore di II tipo, cioè non rifiutare l'ipotesi nulla quando è falsa, è uguale a .20). Raggiungere livelli di potenza più elevati richiede spesso troppi soggetti. SAPIENZA

Esempio di disegno univariato ad 1 fattore

Si vuole verificare l'efficacia di programmi di formazione che prevedono:

- a) l'assegnazione di obiettivi (condizione A);
 b) l'assegnazione di obiettivi e un feedback sui risultati (condizione B);
- c) una condizione di controllo in cui non si danno né obiettivi né feedback (condizione C).

Tre gruppi di soggetti vengono sottoposti ognuno ad una condizione diversa ottenendo i seguenti risultati (Y = numero di problemi risolti):

Tre gruppi di soggetti vengono sottoposti ognuno ad una condizione diversa ottenendo i seguenti risultati (Y = numero di problemi risolti):

Obiettivi (Y₁):	10	7	4	5	8	n = 5
Obiettivi + Feedback (Y ₂):	9	10	5	4	7	n = 5
Controllo (Y ₃):	3	2	2	3	1	n = 5

Disegno:

Analisi della varianza univariata (una sola V.D.) ad un fattore (una sola V.I.) tra i soggetti (un diverso gruppo di sogg. per ogni livello della V.I.)

Formulazione delle ipotesi statistiche:

H₀: $\mu_1 = \mu_2 = \mu_3$ (le 3 medie sono relative a campioni che provengono dalla stessa popolazione)

H₁: $\mu_1 \neq \mu_2$, $o \mu_1 \neq \mu_3$, $o \mu_2 \neq \mu_3$ ovvero, almeno due μ diverse (almeno due medie sono relative a campioni che provengono da popolazioni diverse)

ANOVA IN SPSS

ta one	ONEWAY.B.sav [InsiemeDati1] - IBM SPSS Statistics Data Editor														
<u>F</u> ile <u>N</u>	odifica <u>V</u> isualizz	a <u>D</u> ati T <u>r</u> asforma	Analizza Direct marketing	Grafici	<u>U</u> tilità Fi <u>r</u>	nestra <u>A</u> i	iuto								
			Report	•	- S		A (ABC						
			Statistiche descrittive	•	₩ ≈										
		1	Tabelle	•	I	Ir			1	1	1	1	1	1	
	case	condizio r	Confronta medie		r vai	r V	ar	var	var	var	var	var	var	var	
1	1,00	1,00	Modello lineare generalizza	ato 🕨	📖 Univari	ata									
2	2,00	1,00	Modelli lineari generalizzati	•		rioto									
3	3,00	1,00	Modelli misti	•		nala									
4	4,00	1,00	Correlazione		Misure	ripetute									
5	5,00	1,00	Bagrassiana	,	<u>C</u> ompo	onenti della	a vari	anza							
6	6,00	2,00	Regressione												
7	7,00	2,00													
8	8,00	2,00	Reti neurali												
9	9,00	2,00	Classifica	•											
10	10,00	2,00	Riduzioni dimensione	•											
11	11,00	3,00	Sc <u>a</u> la	•											
12	12,00	3,00	Test non parametrici	•											
13	13,00	3,00	Previsioni	•											
14	14,00	3,00	Sopravvivenza	•											
15	15,00	3,00	Risposte m <u>u</u> ltiple	•											
16			🔛 Analisi dei valori mancanti.												
17			Assegnazione multipla	•											
18			Campioni complessi	•											
19			Controllo gualità	•											
20			Curva ROC												
21															
22															
23															
	4														
Visual	izzazione dati V	isualizzazione variabi	li												

Oneway.B.sav

ANOVA A UNA VIA "BETWEEN" IN SPSS

ta Univariata	X
Case	 Variabile dipendente: Image: Variabile dipende
	Minimi guadrati ponderati:
	Reimposta Annulla Aiuto

ANOVA A UNA VIA "BETWEEN" IN SPSS

🕼 Univariata: Profili	X
<u>F</u> attori: condizio	Asse <u>o</u> rizzontale:
	Linee separate:
	Grafici separati:
Gr <u>a</u> fici: Aggiun	gi <u>C</u> ambia <u>R</u> imuovi
condizio	
Continua	Annulla Aiuto

ANOVA A UNA VIA "BETWEEN" IN SPSS

🔄 Univariata: Opzioni	X
Medie marginali stimate <u>F</u> attori e interazioni fra fattori : (OVERALL) condizio	Visualizza medie per: condizio ✓
Statistiche descrittive	I Test di <u>o</u> mogeneità
Stima della dimensione degli effe	etti 📃 Grafico di variabilità contro densità
✓ Potenza osservata	Grafici dei residui
🗏 Stime dei parametri	Mancanza di adattamento
Matrice dei coefficienti di contras	sto 🔄 Forma funzionale generalizzata
Li <u>v</u> ello di significatività: .05 Gli i Continua	intervalli di confidenza sono 95,0%

ANOVA A UNA VIA "BETWEEN" IN SPSS

Fattori tra soggetti

		Etichetta di valore	N
condizio	1,00	obiettivi	5
	2,00	obiettivi + feedback	5
	3,00	controllo	5

Statistiche descrittive

Test di Levene di uguaglianza delle varianze dell'errore^a

Variabile dipendente:risolti

F	df1	df2	Sig.	
2,626	2	12	,113	

Verifica l'ipotesi nulla per la quale la varianza dell'errore della variabile dipendente è uguale tra i gruppi.

a. Disegno: Intercetta + condizio

Variabile dipendente:risolti

condizio	Media	Deviazione standard Variabile	Ν
1,00 obiettivi	6,8000	2,38747	5
2,00 obiettivi + feedback	7,0000	2,54951	5
3,00 controllo	2,2000	,83666	5
Totale	5,3333	2,99205	15

Test di Levene di uguaglianza delle varianze dell'errore^a

ANOVA A UNA VIA "BETWEEN" IN SPSS

Test degli effetti fra soggetti

Variabile dipendente:risolti

Sorgente	Somma dei quadrati Tipo III	df	Media dei quadrati	F	Sig.	Eta quadrato parziale
Modello corretto	73,733°	2	36,867	8,574	,005	,588
Intercetta	426,667	1	426,667	99,225	,000	,892
condizio	73,733	2	36,867	8,574	,005	,588
Errore	51,600	12	4,300			
Totale	552,000	15				
Totale corretto	125,333	14				

Test degli effetti fra soggetti

Variabile dipendente:risolti

Sorgente	Non centralità Parametro	Potenza osservata ^b
Modello corretto	17,147	,911
Intercetta	99,225	1,000
condizio	17,147	,911

a. R quadrato = ,588 (R quadrato corretto = ,520) b. Calcolato usando alfa = ,05

F (8.57) significativo al 1%: bisogna rifiutare l'ipotesi nulla.

Confronti tra le medie dei gruppi

F significativo: esiste una differenza significativa tra almeno due delle medie dei gruppi messi a confronto, ma non sappiamo tra quali.

Confronto tra le medie dei gruppi con un test statistico adeguato per individuare la fonte della significatività:

a) i confronti post hoc;

b) i confronti pianificati.

a) I confronti post hoc

Ogni media in genere viene confrontata con tutte le altre. Il ricercatore non stabilisce in anticipo i confronti rilevanti ai fini della sua ipotesi.

Svantaggio: all'aumentare del numero di gruppi aumenta il numero di confronti e aumenta la probabilità di commettere l'errore di primo tipo (livello α), cioè rifiutare l'ipotesi nulla quando è vera.

Esempio. 3 possibili confronti di medie: la condizione A con la B, la A con la C e la B con la C.

a) I confronti post hoc – inflazione del livello α

Si esamina l'ipotesi che o il primo, o il secondo, o il terzo confronto risultino significativi.

Livello α = 0.05 per ognuno dei 3 confronti: La probabilità che <u>almeno</u> uno dei tre confronti risulti significativa è uguale a .05 + .05 + .05 = .15. Livello reale di α per i 3 confronti: 3*.05 = .15.

Con k confronti il livello di probabilità che almeno uno di essi risulti significativo non è α ma k α .

Soluzione: scegliere un valore α minore di .05 (es., .05/3=.017, e in genere .05/k).

 \otimes

Confronti a coppie

Variabile dipendente:risolti

(I) condizio	(J) condizio	Differenza media (I-J)	Deviazione standard Errore	Sig. ^a
1,00 obiettivi	2,00 obiettivi + feedback	-,200	1,311	,998
	3,00 controllo	4,600*	1,311	,013
2,00 obiettivi + feedback	1,00 obiettivi	,200	1,311	,998
	3,00 controllo	4,800	1,311	,010
3,00 controllo	1,00 obiettivi	-4,600	1,311	,013
	2,00 obiettivi + feedback	-4,800*	1,311	,010

Confronti a coppie

Variabile dipendente:risolti

		Intervallo di confidenza per la differenza al 95% ^a	
(I) condizio	(J) condizio	Limite inferiore	Limite superiore
1,00 obiettivi	2,00 obiettivi + feedback	-3,833	3,433
	3,00 controllo	,967	8,233
2,00 obiettivi + feedback	1,00 obiettivi	-3,433	3,833
	3,00 controllo	1,167	8,433
3,00 controllo	1,00 obiettivi	-8,233	-,967
	2,00 obiettivi + feedback	-8,433	-1,167

Basato sulle medie marginali stimate

a. Correzione per confronti multipli: Sidak. *. La differenza media è significativa al livello ,05.

(

ANOVA IN SPSS

ta Univariata	
✓ case ✓ risolti Contrasti ✓ risolti Contrasti ✓ condizio Post hot ✓ condizio Post hot ✓ condizio Salva ✓ covariate: Opzioni ✓ Minimi quadrati ponderati:	Univariata: Confronti multipli post hoc per medie osservate Eattori Test post hoc per: condizio Condizio Varianze uguali presunte Varianze uguali presunte SD S-N-K
OK Incolla Reimposta Annulla Aiuto	Bonferroni Tukey Rapporto dell'errore tipo l/tipo II: 100 Sidak Tukey's-b Dunnett
	Scheffe Duncan Categoria di controllo: Ultima 🔨
	R-E-G-W-F GT2 di Hochberg Test
	R-E-G-W-Q Gabriel Image: Second control in the secon
	Varianze uguali non presunte T2 di Ta <u>m</u> hane T3 di Dunnett Games-Howell C di Dunnett Continua Annulla Guida

Sottoinsiemi omogenei

risolti

B di Tukey^{a,b}

		Sottoinsieme	
condizio	Ν	1	2
controllo	5	2,2000	
obiettivi	5		6,8000
obiettivi + feedback	5		7,0000

Vengono visualizzate le medie per i gruppi nei sottoinsiemi omogenei.

Si basa sulle medie osservate.

Il termine di errore è media quadratica(errore) = 4,300.

 a. Utilizza dimensione del campione della media armonica = 5,000.

b. Alfa = 0,05.

 \otimes

ANOVA A UNA VIA "BETWEEN" IN SPSS

Grafici di profilo

b) I confronti pianificati.

Effettuare solo i confronti che appaiono più rilevanti ai fini dell'ipotesi di ricerca. Il ricercatore pianifica in anticipo quali medie (gruppi) verranno confrontate.

I confronti pianificati consentono di esaminare la differenza tra 2 medie.

Si possono confrontare 2 medie di 2 singoli gruppi, oppure "combinare" insieme le medie di più gruppi e confrontare la media "aggregata" così ottenuta con la media di un gruppo singolo, o con un'altra media "aggregata", ottenuta da più gruppi.

Il confronto comunque sarà sempre tra 2 medie.

b) I confronti pianificati sull'esempio empirico

La presenza di una consegna ben precisa (obiettivo, oppure obiettivo + feedback) rispetto all'assenza di tale consegna si accompagna a maggiore facilità nella soluzione dei problemi.

E' sufficiente un set di due confronti tra le medie (invece dei tre confronti visti per i post hoc):

nel primo si contrasta il gruppo di controllo con i gruppi "obiettivi" e "obiettivi+feedback" combinati insieme (come se fossero un unico gruppo);

nel <u>secondo</u> si contrastano tra loro i due gruppi "obiettivi" e "obiettivi+feedback".

b) I confronti pianificati.

Per effettuare i confronti (con il computer o manualmente) si deve attribuire ad ogni media un coefficiente, con segno positivo o negativo.

Le medie con segno diverso vengono contrastate tra loro, quelle con segno uguale vengono combinate, quelle con coefficiente 0 non vengono considerate nel confronto.

La somma dei coefficienti deve dare 0. Se anche la somma dei <u>prodotti</u> tra i coefficienti di un set di confronti è uguale a 0, si dice che i confronti sono tra loro <u>ortogonali</u>, cioè indipendenti.

Coefficienti per i dati dell'esempio:

	Obiettivi	Ob. + Feed.	Controllo	Somme
1° confronto	-1	-1	2	0
2° confronto	1	-1	0	0
Prodotti	-1	1	0	0

Sono definiti bene (le somme sono uguali a zero per ogni riga).

Sono ortogonali (le somme dei prodotti sono uguali a zero).

Set di confronti <u>non</u> ortogonali:

	Obiettivi	Ob. + Feed.	Controllo	Somme
1° confronto	1	-1	0	0
2° confronto	0	1	-1	0
3° confronto	1	0	-1	0

I confronti sono tutti corretti (Somme = 0), ma non sono ortogonali. Per verificare l'ortogonalità bisogna confrontare ciascuna coppia di confronti. Per ognuna di esse la somma dei prodotti dei coefficienti deve essere uguale a zero.

		Prodotti		Somme
1° vs. 2 °	0 (=1*0)	-1 (=-1*1)	0 (=0*-1)	-1
1 ° vs. 3°	1 (=1*1)	0 (=-1*0)	0 (=0*-1)	1
2° vs. 3°	0 (=0*1)	0 (= 1*0)	1 (=-1*-1)	1

AA 2017-2018

3

ANOVA IN SPSS

ta Univariata: Contrasti	
<u>F</u> attori:	
condizio(Nessuno)	
Cambia contrasto	
Contrasto: Nessuno	
Categoria di riferimento: Finale Primo	
Continua Annulla Aiuto	

ta Univariata: Contrasti
<u>F</u> attori:
condizio(Differenza)
Cambia contrasto
Contrasto: Differenza Cambia
Categoria di riferimento: Finale Primo
Continua Annulla Aiuto

ANOVA IN SPSS

Risultati del contrasto (matrice K)

			Variabile
Contrasto differenza condizi	D		risolti
Livello 2 vs livello 1	Stima contrasto		,200
	Valore ipotizzato		0
	Differenza (Stima-Ipotesi)		,200
	Deviazione standard Errore		1,311
	Sig.		,881
	Intervallo di confidenza per la differenza al 95%	Limite inferiore	-2,657
		Limite superiore	3,057
Livello 3 contro	Stima contrasto		-4,700
precedente	Valore ipotizzato		0
	Differenza (Stima-Ipotesi)		-4,700
	Deviazione standard Errore		1,136
	Sig.		,001
	Intervallo di confidenza per la differenza al 95%	Limite inferiore	-7,175
		Limite superiore	-2,225

Contrasto 1: Obiettivi vs. Obiettivi&Feedback Contrasto 2: Obiettivi+ Obiettivi&Feedback vs. Controllo

ANOVA A UNA VIA "BETWEEN" IN SPSS

Per richiedere i confronti pianificati bisogna ricorrere alla programmazione Syntax aggiungendo le seguenti linee dopo /INTERCEPT = INCLUDE: /Imatrix condizio 1 1 –2 /Imatrix condizio 1 -1 0 <u>oppure</u> /CONTRAST (condizio)=special (1 1 -2) /CONTRAST (condizio)=special (1 -1 0)

DATASET ACTIVATE InsiemeDati1. UNIANOVA risolti BY condizio /CONTRAST(condizio)=Difference /METHOD=SSTYPE(3) /INTERCEPT=INCLUDE

/LMATRIX CONDIZIO 1 1 -2/LMATRIX CONDIZIO 1 -1 0

/PLOT=PROFILE(condizio)
/EMMEANS=TABLES(condizio) COMPARE ADJ(SIDAK)
/PRINT=OPOWER ETASQ HOMOGENEITY DESCRIPTIVE
/CRITERIA=ALPHA(.05)
/DESIGN=condizio.

ANOVA IN SPSS

Test di ipotesi personalizzate #2

Risultati del test

Variabile dipendente:risolti

Sorgente	Somma dei quadrati	df	Media dei quadrati	F	Sig.	Eta quadrato parziale
Contrasto	73,633	1	73,633	17,124	,001	,588
Errore	51,600	12	4,300			

Risultati del test

Variabile dipendente:risolti

Sorgente	Non centralità Parametro	Potenza osservata
Contrasto	17,124	,966

a. Calcolato usando alfa = ,05

Contrasto: Obiettivi+ Obiettivi&Feedback vs. Controllo

ANOVA IN SPSS

Test di ipotesi personalizzate #3

Risultati del test

Variabile dipendente:risolti

Sorgente	Somma dei quadrati	df	Media dei quadrati	F	Sig.	Eta quadrato parziale
Contrasto	,100	1	,100	,023	,881	,002
Errore	51,600	12	4,300			

Risultati del test

Variabile dipendente:risolti

Sorgente	Non centralità Parametro	Potenza osservata
Contrasto	,023	,052

a. Calcolato usando alfa = ,05

Contrasto: Obiettivi vs. Obiettivi&Feedback

Confronto 1

Fonte	SS	df	MS	F	Sig.
Contrasto	73.63	1	73.63	17.12	.001
Errore	51.60	12	4.30		

Confronto 2

Fonte	SS	df	MS	F	Sig.
Contrasto	.10	1	.10	.023	.881
Errore	51.60	12	4.30		

Il denominatore utilizzato nella F dei due confronti è sempre quello relativo alla varianza residua del test "omnibus" (Errore = 4.30).
Significato dell'ortogonalità

I confronti ortogonali forniscono informazioni indipendenti, cioè il risultato del primo non consente di ottenere indicazioni sul possibile risultato del secondo, e viceversa.

Numero massimo di confronti ortogonali = k - 1.

In un set completo di k-1 confronti ortogonali la somma delle devianze tra i gruppi dei singoli confronti è uguale alla devianza spiegata dall'effetto "omnibus" nell'ANOVA. La devianza spiegata dall'effetto viene <u>scomposta</u> in un certo numero di "porzioni" tra loro indipendenti (nell'esempio: 73.63 + .10 =73.73).

ESERCIZIO 3:

REALIZZAZIONE DI UN'ANOVA AD UNA VIA

Effettuare un Anova ad una via.

I dati sono nel file spss esercizio.anova.sav

VARIABILE DIPENDENTE: atte

VARIABILE INDIPENDENTE: tits

L'ANALISI DELLA VARIANZA UNIVARIATA (ANOVA): DISEGNI FATTORIALI

Vengono definiti fattoriali (o a più vie) i disegni di analisi della varianza in cui vi sono due o più variabili indipendenti.

Disegno fattoriale più semplice: Disegno "2X2", Due fattori, ciascuno con due differenti livelli ("condizioni").

Vantaggi dei disegni fattoriali

1) Aumento della <u>potenza</u> del test, perché viene ridotta la varianza di errore.

- 2) Maggiore <u>economia</u> nel numero dei soggetti da esaminare, mantenendo la stessa potenza del test.
- 3) Studio dell'<u>interazione</u>, cioè dell'effetto congiunto delle VI sulla VD.

EFFETTI PRINCIPALI E INTERAZIONI

Effetto principale: effetto medio di una VI sulla VD, indipendentemente dai valori delle altre VI.

Interazione:

effetto di una VI sulla VD che si verifica solo a determinati livelli dell'altra VI;

effetto di una VI sulla VD che <u>non</u> è lo stesso per tutti i livelli delle altre VI.

Esempio con un disegno fattoriale 2x3

Ipotesi per effetti principali e interazione

Effetti principali:

Trattamento: ipotesi <u>sulle medie</u> delle colonne. H₀: $\mu_{.1} = \mu_{.2} = \mu_{.3}$ (A livello di campione: 72.5 = 71.5 = 72)

H₁: Almeno due medie sono differenti: ($\mu_{.1} \neq \mu_{.2}$) o ($\mu_{.1} \neq \mu_{.3}$) o ($\mu_{.2} \neq \mu_{.3}$)

Abilità: ipotesi <u>sulle medie</u> delle righe $H_0: \mu_{1.} = \mu_{2.}$ (A livello di campione: 80.33 = 63.67) $H_1: \mu_{1.} \neq \mu_{2.}$

Ipotesi per effetti principali e interazione

Interazione: Ipotesi sulle <u>differenze delle medie</u> nelle diverse

combinazioni delle condizioni sperimentali.

$$H_0: (\mu_A - \mu_B)_{T1} = (\mu_A - \mu_B)_{T2} = (\mu_A - \mu_B)_{T3}$$

[A livello di campione: (85-60) = (80-63) = (76-68), cioè, 25 =17= 8 ?]

H₁: Almeno una differenza tra differenze di medie è sign.

Tutte le volte che c'è un'interazione nei dati, sarebbe fuorviante interpretare gli effetti principali <u>senza</u> discutere le interazioni.

Disegni fattoriali "Tra i soggetti" (Between Subjects):

I soggetti vengono assegnati casualmente ad ognuna delle singole celle (incrocio di due livelli diversi dei due fattori). Ogni soggetto è esposto solamente ad una particolare combinazione delle condizioni sperimentali. Ogni cella contiene soggetti diversi.

	FEEDBACK		
OBIETTIVI	SI	NO	
SI	S ₁ S ₂	S ₆ S ₇	
NO	S ₁₁ S ₁₂	S ₁₆ S ₁₇	
	•••		

Modello Teorico dei Disegni fattoriali "Tra i soggetti"

ANALISI DEI DATI + LAB

SAPIENZA

In un disegno fattoriale con 2 fattori "between" F1 e F2, il punteggio y_{ijk} di un soggetto "k" contenuto nella "cella" "ij" è scomponibile nel modo seguente:

 $\mathbf{y_{ijk}} = \mu + \alpha_i + \beta_j + \phi_{ij} + \varepsilon_{ijk}$

- $\alpha_i = \mu_{i..} \mu$: effetto principale di F1 (deviazione della media della iesima riga dalla media generale)
- $\beta_j = \mu_{.j.}-\mu$: effetto principale di F2 (deviazione della media della j-esima colonna dalla media generale)
- $\phi_{ij} = \mu_{ij.} \mu (\alpha_i + \beta_j)$: effetto dell'interazione. Parte della media di una cella ij che non dipende dall'errore, e che non è spiegata né dalla media generale, né dagli effetti principali.
- ε_{ijk}: termine residuale ("errore")

6

BARBARANELLI

AA 2017-2018

le

In base al modello precedente è possibile definire le seguenti devianze:

$$SS_{T} = \sum_{i} \sum_{j} \sum_{k} (y_{ijk} - \overline{y}_{...})^{2} \quad \text{dev. tota}$$

- $SS_{F1} = \sum_{i} \sum_{j} \sum_{k} (\overline{y}_{i..} \overline{y}_{...})^2$ dev. eff. princ. di F1
- $SS_{F2} = \sum_{i} \sum_{j} \sum_{k} (\overline{y}_{.j.} \overline{y}_{...})^2$ dev. eff. princ. di F2

 $SS_{F1XF2} = \sum_{i} \sum_{j} \sum_{k} (\overline{y}_{ij.} - \overline{y}_{i..} - \overline{y}_{.j.} + \overline{y}_{...})^2 \text{ dev. interazione}$

- $SS_W = \sum_i \sum_j \sum_k (y_{ijk} \overline{y}_{ij.})^2$ devianza residua
- $SS_{T} = SS_{B} + SS_{W} = SS_{F1} + SS_{F2} + SS_{F1XF2} + SS_{W}$

Gradi di libertà e test di significatività

ANALISI DEI DISEGNI FATTORIALI

Esempio da Keppel et al., pp. 260 e segg. 2 fattori (o var. indipendenti): Rinforzo e Compito; 1 variabile dipendente: n. di problemi risolti.

		Etichetta di valore	N
RINFORZO	1,00	LODE	10
	2,00	CRITICA	10
	3,00	SILENZIO	10
COMPITO	1,00	SEMPLICI	15
	2,00	COMPLESSI	15

Fattori tra soggetti

ANOVA FATTORIALE BETWEEN IN SPSS

ta Univariata		X
	Variabile <u>d</u> ipendente:	<u>M</u> odello <u>C</u> ontrasti <u>G</u> rafici Post <u>h</u> oc <u>S</u> alva <u>O</u> pzioni
OK <u>I</u> ncolla	<u>C</u> ovariate: Minimi guadrati ponderati: Reimposta Annulla	Bootstrap

ANOVA.FAC.B.sav

ANOVA FATTORIALE BETWEEN IN SPSS

ta Univariata: Profili	X	
<u>Fattori:</u>	Asse <u>o</u> rizzontale:	Univariata: Opzioni
compito Gr <u>a</u> fici: Aggiu rinforzo*compito	Linee <u>s</u> eparate: Grafici separati: Ingi Cambia Rimuovi	Medie marginali stimate Fattori e interazioni fra fattori : (OVERALL) rinforzo compito rinforzo*compito inforzo*compito Image: Confronta effetti principali Correzione intervallo di confidenza: Sidak
Continua	Annulla Aiuto	Visualizza
		✓ Statistiche descrittive ✓ Test di omogeneità
		Stima della dimensione degli effetti 📃 Grafico di variabilità contro densità
		✓ Potenza osservata □ Grafici dei residui
		Stime dei parametri <u>M</u> ancanza di adattamento
		Matrice dei coefficienti di contrasto Forma funzionale generalizzata
		Livello di significatività: .05 Gli intervalli di confidenza sono 95,0% Continua Annulla Aiuto

ANOVA FATTORIALE BETWEEN IN SPSS

Fattori tra soggetti

		Etichetta di valore	N
rinforzo	1,00	LODE	10
	2,00	CRITICA	10
	3,00	SILENZIO	10
compito	1,00	SEMPLICI	15
	2,00	COMPLESSI	15

Statistiche descrittive

Variabile dipendente:risposte

valiable apender	пелізрозіе			
rinforzo	compito	Media	Deviazione standard Variabile	N
1,00 LODE	1,00 SEMPLICI	7,6000	1,51658	5
	2,00 COMPLESSI	7,0000	2,00000	5
	Totale	7,3000	1,70294	10
2,00 CRITICA	1,00 SEMPLICI	7,2000	2,16795	5
	2,00 COMPLESSI	2,0000	1,58114	5
	Totale	4,6000	3,27278	10
3,00 SILENZIO	1,00 SEMPLICI	4,4000	1,94936	5
	2,00 COMPLESSI	3,2000	1,92354	5
	Totale	3,8000	1,93218	10
Totale	1,00 SEMPLICI	6,4000	2,29285	15
	2,00 COMPLESSI	4,0667	2,78944	15
	Totale	5,2333	2,77530	30

Test di Levene di uguaglianza delle varianze dell'errore^a

Variabile dipendente:risposte

F	df1	df2	Sig.
,348	5	24	,879

Verifica l'ipotesi nulla per la quale la varianza dell'errore della variabile dipendente è uguale tra i gruppi.

a. Disegno: Intercetta + rinforzo + compito + rinforzo * compito

ANOVA FATTORIALE BETWEEN IN SPSS

Test degli effetti fra soggetti

Variabile dipendente:risposte

	Somma dei quadrati Tipo		Media dei		
Sorgente		df	quadrati	F	Sig.
Modello corretto	139,367	5	27,873	7,964	,000
Intercetta	821,633	1	821,633	234,752	,000
rinforzo	67,267	2	33,633	9,610	,001
compito	40,833	1	40,833	11,667	,002
rinforzo * compito	31,267	2	15,633	4,467	,022
Errore	84,000	24	3,500		
Totale	1045,000	30			
Totale corretto	223,367	29			

Test degli effetti fra soggetti

Variabile dipendente:risposte

Sorgente	Eta quadrato parziale	Non centralità Parametro	Potenza osservata ^b
Modello corretto	,624	39,819	,997
Intercetta	,907	234,752	1,000
rinforzo	,445	19,219	,966
compito	,327	11,667	,906
rinforzo * compito	,271	8,933	,710

a. R quadrato = ,624 (R quadrato corretto = ,546) b. Calcolato usando alfa = ,05

ANALISI DEI DISEGNI FATTORIALI

Risultati ottenuti da SPSS e/o tramite le formule definite per i disegni ANOVA fattoriali:

Fonte	SS	df	MS	F	Sig.
RINFORZO	67.27	2	33.63	9.61	.001
COMPITO	40.83	1	40.83	11.67	.002
RINFORZO X COMPITO	31.27	2	15.63	4.47	.022
Errore	84.00	24	3.50		
Totale	223.37	29			

ANOVA FATTORIALE BETWEEN IN SPSS

Stime

Variabile dipendente:risposte

			Intervallo di confidenza 95%	
rinforzo	Media	Deviazione standard Errore	Limite inferiore	Limite superiore
1,00 LODE	7,300	,592	6,079	8,521
2,00 CRITICA	4,600	,592	3,379	5,821
3,00 SILENZIO	3,800	,592	2,579	5,021

Stime

Variabile dipendente:risposte

			Intervallo di confid	
compito	Media	Deviazione standard Errore	Limite inferiore	Limite superiore
1,00 SEMPLICI	6,400	,483	5,403	7,397
2,00 COMPLESSI	4,067	,483	3,070	5,064

1. ANALISI DEGLI EFFETTI PRINCIPALI

Effetto principale del fattore "COMPITO":

SEMPLICI	COMPLESSI
6.400	4.067

Effetto principale del fattore "RINFORZO":

LODE	CRITICA	SILENZIO
7.30	4.60	3.80

C<u>onfronti post-ho</u>c con il metodo di Tukey-HSD: i due tipi di rinforzi Silenzio e Critica hanno medie uguali e significativamente diverse dal rinforzo Lode.

ANOVA FATTORIALE BETWEEN IN SPSS – post hoc Tukey-b

ta Univariata: Confronti multipli post hoc per medie osservate							
<u>F</u> attori:	Test post-hoc per:						
rinforzo	rinforzo						
compito							
Assumi varianze uguali							
<u>L</u> SD <u>S</u> -N-K	── Waller-Duncan						
🔲 <u>B</u> onferroni 🔲 Tu <u>k</u> ey	Rapporto dell'errore Tipo I / Tipo II: 100						
🔲 Sidak 🛛 🗹 Tukey-b	Dunn <u>e</u> tt						
Scheffé 🔲 Duncan	Categoria di controllo:						
R-E-G-W-F Education (GT2)	Test						
🔲 R-E-G-W- <u>Q</u> 🕅 <u>G</u> abriel	O 2 vie $O < Controllo O > Controllo$						
Non assumere varianze uguali							
Tamhane (T2) Dunnett (T3) Games-Howell C di Dunnett							
Continua	Annulla Aiuto						

 $\langle \rangle$

ANOVA FATTORIALE BETWEEN IN SPSS

Sottoinsiemi omogenei

risposte

B di Tukey^{a,b}

		Sottoinsieme		
rinforzo	Ν	1	2	
3,00 SILENZIO	10	3,8000		
2,00 CRITICA	10	4,6000		
1,00 LODE	10		7,3000	

Sono visualizzate le medie per gruppi in sottoinsiemi omogenei. Tali medie sono basate sulle osservazioni.

Tali medie sono basate sulle osservazioni. Il termine di errore è Media dei quadrati(errore)

= 3,500.

a. Utilizza dimensione campionaria media armonica = 10,000 b. Alfa = ,05

AA 2017-2018

ANOVA FATTORIALE BETWEEN IN SPSS – Confronti pianificati

Confronti pianificati. Possiamo confrontare le condizioni di Lode con quelle di Critica e Silenzio aggregate, e la condizione di Critica con Silenzio.

ţ	Univariata: Contrasti	
	<u>F</u> attori:	
	rinforzo(Helmert)	
	compito(Nessuno)	
	r Modifica contrasto	
	Co <u>n</u> trasto: Helmert Modifi <u>c</u> a	
	Categoria di riferimento: O Ultima O Prima	
	Continua Annulla Guida	

ANOVA FATTORIALE BETWEEN IN SPSS – Confronti pianificati

Risultati del contrasto (matrice K)

		Variabile dipendente	
Contrasto di Helmert rinforz	:0		risposte
Confronto tra livello 1 e	Stima del contrasto		3,100
successivo	Valore ipotizzato		0
	Differenza (stima - ipotizzato	o)	3,100
	Errore std.	,725	
	Sign.	,000	
	95% intervallo di confidenza per differenza	Limite inferiore	1,605
		Limite superiore	4,595
Confronto tra livello 2 e	Stima del contrasto		,800
livello 3	Valore ipotizzato		0
	Differenza (stima - ipotizzato	o)	,800
	Errore std.		,837
	Sign.		,349
	95% intervallo di	Limite inferiore	-,927
	confidenza per differenza	Limite superiore	2,527

Contrasto 1: Lode vs. Critica + Silenzio Contrasto 2: Critica vs. Silenzio

Confronti pianificati. Possiamo utilizzare anche i contrasti personalizzati tramite la Sintassi: /CONTRAST(rinforzo)=SPECIAL (2-1-1) /CONTRAST(rinforzo)=SPECIAL (0 1-1)

Risultati dei test

Variabile dipendente: risposte

Origine	Somma dei quadrati	gl	Media quadratica	F	Sign.	Eta quadrato parziale	Parametro di non centralità	Potenza osservataª
Contrasto	64,067	1	64,067	18,305	,000	,433	18,305	,984
Errore	84,000	24	3,500			1 /		

a. Calcolato utilizzando alfa = ,05

Risultati dei test

Variabile dipendente: risposte

Origine	Somma dei quadrati	gl	Media quadratica	F	Sign.	Eta quadrato parziale	Parametro di non centralità	Potenza osservataª
Contrasto	3,200	1	3,200	,914	,349	,037	,914	,151
Errore	84,000	24	3,500					

a. Calcolato utilizzando alfa = ,05

2. ANALISI DELL'INTERAZIONE

Nel nostro esempio l'interpretazione degli effetti principali può condurre a conclusioni errate.

RINFORZO	COMPITO	Media
LODE	SEMPLICI	7.6
	COMPLESSI	7.0
CRITICA	SEMPLICI	7.2
	COMPLESSI	2.0
SILENZIO	SEMPLICI	4.4
	COMPLESSI	3.2

La variabile Rinforzo produce un effetto sulla Variabile Risposte che è differente a seconda dei livelli della variabile Compito.

 \otimes

ANOVA FATTORIALE BETWEEN IN SPSS

3. rinforzo * compito

Variabile dipendente:risposte

				Intervallo di confidenza 95%		
rinforzo	compito	Media	Deviazione standard Errore	Limite inferiore	Limite superiore	
1,00 LODE	1,00 SEMPLICI	7,600	,837	5,873	9,327	
	2,00 COMPLESSI	7,000	,837	5,273	8,727	
2,00 CRITICA	1,00 SEMPLICI	7,200	,837	5,473	8,927	
	2,00 COMPLESSI	2,000	,837	,273	3,727	
3,00 SILENZIO	1,00 SEMPLICI	4,400	,837	2,673	6,127	
	2,00 COMPLESSI	3,200	,837	1,473	4,927	

 \otimes

ANOVA FATTORIALE BETWEEN IN SPSS

2. ANALISI DELL'INTERAZIONE

Analisi degli EFFETTI SEMPLICI:

Serve per identificare le combinazioni dei fattori che danno un'interazione significativa.

Effetti Semplici ("Simple Effects"):

esame dei valori della variabile dipendente associati ai valori di una VI, quando i valori dell'altra VI sono mantenuti costanti.

Analisi degli EFFETTI SEMPLICI:

SAPIENZA

6

BARBARANELLI

- Disegno fattoriale semplificato effettuando tanti disegni "monofattoriali" quanti sono i livelli della VI che viene mantenuta costante.
- Se c'è un'interazione significativa, gli effetti semplici relativi ad una VI sono diversi nei livelli della VI che viene controllata.
- Gli Effetti Semplici consentono di evidenziare l'effetto di modulazione che una VI ha sulla relazione tra un'altra VI e la VD.
- L'analisi degli effetti principali annulla tale effetto, poiché confronta le medie marginali, nelle quali i livelli dell'altra variabile indipendente vengono sommati tra di loro.

ANOVA FATTORIALE BETWEEN IN SPSS

Poiché l'interazione è risultata significativa interpretare gli effetti principali isolatamente sarebbe inappropriato. Attraverso l'analisi degli effetti semplici possiamo vedere come l'effetto di un fattore sulla VD non è lo stesso per i diversi livelli dell'altro fattore.

Non è possibile ottenere gli effetti semplici dal menu di Spss. Per ottenerli è necessario ricorrere al linguaggio di programmazione Syntax.

Gli effetti semplici relativi al fattore Compito nei diversi livelli del fattore Rinforzo possono essere richiesti tramite la seguente sintassi:

UNIANOVA risposte BY rinforzo compito /METHOD = SSTYPE(3) /INTERCEPT = INCLUDE /EMMEANS = TABLES(rinforzo*compito) COMPARE (COMPITO) ADJ(SIDAK) /CRITERIA = ALPHA(.05) /DESIGN = rinforzo compito rinforzo*compito.

Per ottenere gli effetti semplici relativi al fattore Rinforzo nei diversi livelli del fattore Compito dobbiamo utilizzare la seguente sintassi:

UNIANOVA

risposte BY rinforzo compito /METHOD = SSTYPE(3) /INTERCEPT = INCLUDE /EMMEANS = TABLES(rinforzo*compito) COMPARE (rinforzo) ADJ(SIDAK) /CRITERIA = ALPHA(.05) /DESIGN = rinforzo compito rinforzo*compito .

 \mathfrak{T}

ANOVA FATTORIALE BETWEEN IN SPSS

Test univariati

Variabile dipendente:risposte

rinforzo		Somma dei quadrati	df	Media dei quadrati	F	Sig.
1,00 LODE	Contrasto	,900	1	,900	,257	,617
	Errore	84,000	24	3,500		
2,00 CRITICA	Contrasto	67,600	1	67,600	19,314	,000
	Errore	84,000	24	3,500		
3,00 SILENZIO	Contrasto	3,600	1	3,600	1,029	,321
	Errore	84,000	24	3,500		

F verifica l'effetto di compito. Questo test è basato sui confronti a coppie indipendenti e lineari tra le medie marginali stimate. Questi test sono basati sui confronti a coppie linearmente indipendenti tra le medie marginali stimate.

Analisi degli EFFETTI SEMPLICI nell'esempio empirico:

Analisi degli effetti semplici per il fattore "Compito" mantenendo costante il fattore "Rinforzo" (l'analisi del fattore "Rinforzo" mantenendo costante il fattore "Compito" dà risultati analoghi).

RINFORZO		SS	df	MS	F	Sig.
LODE	Contrasto	.90	1	.90	.26	.62
	Errore	84.00	24	3.50		
CRITICA	Contrasto	67.60	1	67.60	19.31	.000
	Errore	84.00	24	3.50		
SILENZIO	Contrasto	3.60	1	3.60	1.03	.32
	Errore	84.00	24	3.50		

La devianza Between che viene scomposta è data dalla somma della devianza del fattore "COMPITO" (40.83) più la devianza dell'interazione (31.27), ovvero: .90+67.60+3.60=72.1 = 40.83+31.27. La devianza Within è quella del disegno fattoriale completo (84.00).

ESERCIZIO 4:

REALIZZAZIONE DI UN'ANOVA FATTORIALE

Effettuare una Anova fattoriale.

I dati sono nel file spss esercizio.anova.sav

VARIABILE DIPENDENTE: inte

VARIABILI INDIPENDENTI: tits marcpast

 $\langle \rangle$

L'ANALISI FATTORIALE ESPLORATIVA (EFA)

323

Sommario

- * Concetti fondamentali
- * Equazioni fondamentali
- * Metodi di estrazione dei fattori
- * Metodi per stabilire il numero di fattori
- * Metodi di rotazione dei fattori
- * Assunzioni statistiche e prerequisiti

Analisi Fattoriale Esplorativa

Scopo dell'Analisi Fattoriale è quello di studiare le relazioni in un insieme di variabili per:

a) individuare "*dimensioni latenti*" che spieghino le relazioni tra le variabili

questo solitamente porta a...

b) ridurre l'informazione in un insieme di dati

Da dove si parte.... Dati non strutturati

- 1.00
 - .36 1.00
 - .25 .37 1.00
 - .33 .43 .41 1.00
 - .05 .16 .12 .12 1.00
 - .04 .05 .16 .06 .31 1.00
 - .08 .06 .12 .14 .31 .24 1.00
 - .02 .10 .17 .04 .29 .34 .29 1.00

Non viene formulata nessuna ipotesi su cosa genera le correlazioni tra le variabili. Si osserva semplicemente che alcune variabili sono più correlate tra loro di altre.

Dove si arriva.... Dati strutturati

Le relazioni tra le variabili osservate sono ricondotte alla presenza di fattori latenti.

E' un'ipotesi teorica sottoponibile a verifica empirica

Dove si arriva.... Dati strutturati

	F1	F2	
Y1	0.516	-0.061	
Y2	0.659	-0.010	
Y3	0.539	0.119	
Y4	0.685	-0.027	
¥5	0.047	0.531	
Y6	-0.039	0.570	
¥7	0.033	0.481	
Y8	-0.034	0.594	

Le relazioni tra variabili osservate e fattori sono le saturazioni fattoriali.

Modello teorico dell'analisi fattoriale

Esame della varianza che le variabili hanno in comune, ovvero della <u>varianza</u> <u>comune</u>.

Ipotesi di base:

La correlazione tra le variabili è determinata da dimensioni non osservabili (i fattori) che "causano" le variabili osservate.

 \otimes

Modello dell'analisi Fattoriale – Rappresentazione Grafica

SAPIENZA UNIVERSITÀ DI ROMA

66

BARBARANELLI

Modello dell'analisi Fattoriale

- F = fattori comuni; rappresentano la variabilità condivisa tra le variabili in analisi. Possono influenzare più di una variabile osservata.
- a = saturazioni; relazioni tra variabili e fattori.
- u = termine unico o "unicità della variabile". Parte di varianza <u>non</u> condivisa. Dovuta a cause sistematiche specifiche, o all'errore casuale di misurazione.

6

Rappresentazione grafica della varianza comune Parte di varianza comune delle 3 var: area (a+b+c+d). Varianza unica: aree u_i.

Rappresentazione grafica della varianza comune Parte di varianza comune delle 3 var: area (a+b+c+d). Varianza unica: aree u_i.

Modello dell'analisi fattoriale

Punteggio (standardizzato) di un soggetto in una variabile = somma "ponderata" del punteggio ottenuto dallo stesso soggetto:

a) nei <u>fattori</u> <u>comuni</u>;

b) in una componente unica.

a) e b) sono individuati tramite l'analisi fattoriale.

Equazione del modello teorico dell'analisi fattoriale

ANALISI DEI DATI + LAB

 $z_{ik} = F_{i1} a_{k1} + F_{i2} a_{k2} + ... + F_{im} a_{km} + u_{ik}$ (1)

z_{ik} = punteggio standardizzato per la persona i nella variabile k

SAPIENZA

6

BARBARANELLI

- F_{ij} = punteggi standardizzati per la persona i nei fattori comuni j
- a_{kj} = saturazioni fattoriali della variabile k nei fattori comuni j
- u_{ik} = punteggio standard. per la persona i nella componente unica associata alla variabile k

Espressione matriciale dell'equazione (1):

$\mathbf{Z} = \mathbf{F}\mathbf{A'} + \mathbf{U}$

Z: matrice dei punteggi standardizzati nelle variabili,
F: matrice dei punteggi nei fattori comuni,
A: matrice delle saturazioni delle variabili nei fattori,
U: matrice delle componenti uniche delle variabili.

Scomposizione della varianza di ogni variabile:

<u>Varianza totale</u> = $1 = h^2 + u^2$

<u>Comunalità = h².</u>

Parte di varianza totale spiegata dai fattori comuni

<u>Unicità</u> o <u>varianza unica</u> = u² = 1 - h². Parte di varianza totale non spiegata dai fattore comuni

Assunzioni:

Cov(u_i,F_j)=0, per ogni i e per ogni j Cov(u_i,u_j)=0 per ogni i diversa da j Cov(F_i,F_j) diversa da 0 solo nelle soluzioni "oblique"

In base alle assunzioni e considerando che: $R = Z'Zn^{-1}$ e che Z = FA'+ U

si ha che:

 $\mathbf{R} = \mathbf{A}\mathbf{A}' + \mathbf{U}^2$

A = matrice delle saturazioni nei fattori comuni
 U² = matrice diagonale delle varianze uniche.
 AA': rende conto degli elementi fuori della diagonale principale, e della comunalità di ogni variabile.
 U²: contribuisce a rendere conto degli elementi sulla diagonale principale di R.

BARBARANELLI

La correlazione tra due variabili i e j può essere riprodotta dalla somma dei prodotti delle loro saturazioni in ciascuno dei fattori comuni:

$$\mathbf{r}_{ij} = \mathbf{a}_{i1}\mathbf{a}_{j1} + \mathbf{a}_{i2}\mathbf{a}_{j2} + \dots + \mathbf{a}_{im}\mathbf{a}_{jm} = \Sigma \mathbf{a}_{ir}\mathbf{a}_{jr}, \text{ se } \mathbf{i} \neq \mathbf{j}$$
$$\mathbf{r}_{ii} = \mathbf{a}_{i1}\mathbf{a}_{i1} + \mathbf{a}_{i2}\mathbf{a}_{i2} + \dots + \mathbf{a}_{im}\mathbf{a}_{im} + \mathbf{u}_{i}^{2} = \Sigma \mathbf{a}_{ir}\mathbf{a}_{ir} + \mathbf{u}_{i}^{2}, \text{ se } \mathbf{i} = \mathbf{j}$$

Rappresentiamolo con un diagramma....

Correlazione residua

Differenza tra la correlazione osservata e la correlazione riprodotta tramite le saturazioni.

r(determinato, scrupoloso) = .40

r^(determinato, scrupoloso) = .39

r residua (e) = .40-.39 = .01

$R=AA'+U^2$

"<u>Equazione fondamentale dell'analisi fattoriale</u>" (Thurstone, 1947).

Mette in relazione il punto di <u>partenza</u> dell'Analisi fattoriale con il suo punto di <u>arrivo</u>.

- Per riprodurre le correlazioni tra le variabili che stanno fuori la diagonale principale sono necessari solo i fattori comuni.
- Per "riprodurre" anche gli elementi sulla diagonale principale (varianza totale delle variabili) sono necessarie anche le unicità.

"Equazione fondamentale dell'analisi fattoriale" Equazione che definisce la Struttura di R (Thurstone, 1947).

 $\mathbf{R}^* = \mathbf{A}\mathbf{A}'$

6

 $\mathbf{R} = \mathbf{A}\mathbf{A}' + \mathbf{U}^2$

(2)

(1)

R*: matrice delle correlazioni che contiene le comunalità sulla diagonale principale.

Come ricavare A, la matrice delle saturazioni nei fattori comuni, in maniera tale che il numero di fattori comuni sia strettamente minore del numero di variabili osservate.

Una soluzione di questo problema è rappresentata dal calcolo delle componenti principali (vedi oltre).

Calcolo di alcuni <u>elementi</u> che caratterizzano la matrice di correlazione

radici caratteristiche di R (autovalori, L)
vettori ad essi associati (autovettori, V)

Autovalori e autovettori di una matrice

Gli autovalori sono scalari di enorme importanza nell'analisi multivariata (es., nell'analisi fattoriale).

Per identificare gli autovalori di A è necessario effettuare alcuni calcoli sulla matrice, per i quali si rimanda al libro di testo.

In una matrice quadrata ci sono tanti autovalori quante sono le righe (ovvero le colonne) della matrice.

Ogni autovettore relativo ad un autovalore è un vettore che ha una colonna e tante righe quante quelle della matrice

Autovalori e autovettori di una matrice

Esempio: data la matrice seguente:

$$\mathbf{A} = \begin{bmatrix} \mathbf{1} & \mathbf{.50} \\ \mathbf{.50} & \mathbf{1} \end{bmatrix}$$

Gli autovalori sono: $\lambda_1 = 1.5$, e $\lambda_2 = .5$.

Gli autovettori x_1 relativo a λ_1 e x_2 relativo a λ_2 sono:

$$\mathbf{x_1} = \begin{bmatrix} .707 \\ .707 \end{bmatrix}; \mathbf{x_2} = \begin{bmatrix} .707 \\ -.707 \end{bmatrix}$$

Autovalori e autovettori di R

Elementi che sintetizzano l'informazione relativa alla varianza delle variabili, e alla correlazione tra le variabili.

Il calcolo di questi elementi è un passo preliminare per il calcolo delle soluzioni di analisi fattoriale.

Ogni autovalore è associato ad un autovettore.

BARBARANELLI

Scomposizione della matrice di correlazione R Se si considerano V la matrice degli autovettori e L la matrice degli autovalori, allora è possibile dimostrare che R= VLV'.

Una volta calcolate le matrici V e L, è possibile ricavare da V e da L la matrice A. In particolare:

 $A = V\sqrt{L}$

E' possibile dimostrare che: $R = V\sqrt{L(V\sqrt{L})'} = AA'$.

Scomposizione della matrice di correlazione R R= VLV'

A

Una volta calcolate le matrici V e L, è possibile ricavare da V e da L la matrice A delle saturazioni fattoriali. In particolare, $A = V\sqrt{L}$

Nell'esempio precedente la matrice A è data da:

$$\begin{bmatrix} -.73 & .64 & .24 \\ -.85 & -.07 & -.53 \\ -.77 & -.54 & .35 \end{bmatrix} = \begin{bmatrix} -.54 & .76 & .36 \\ -.63 & -.08 & -.78 \\ -.57 & -.64 & .52 \end{bmatrix} * \begin{bmatrix} 1.36 & 0 & 0 \\ 0 & .84 & 0 \\ 0 & 0 & .68 \end{bmatrix}$$

Primo autovalore di R: quello più elevato di tutti, associato al primo fattore che spiega una proporzione di varianza maggiore degli altri.

Secondo autovalore: quello più elevato dopo il primo, associato al secondo fattore.

La grandezza degli autovalori rappresenta una progressione decrescente che corrisponde alla progressione della varianza spiegata dai fattori associati ad essi.

> Nella matrice precedente: 1.84, .70, .46

Autovalori e varianza spiegata

- Somma delle saturazioni elevate al quadrato per ogni fattore (colonna) = autovalore associato al fattore;
- Autovalore diviso per il numero di variabili osservate in analisi = proporzione di varianza spiegata dal fattore;
- Somma delle saturazioni al quadrato per ogni variabile (riga) = comunalità delle variabili.

Autovalori e varianza spiegata

	F1	F2	h²	
Determinato	. 68	.51	.72	
Dinamico	.74	.48	.78	
Energico	. 78	.33	.72	
Affidabile	.80	41	.81	
Responsabile	.84	43	.89	
Scrupoloso	. 82	33	.78	
Autovalori	3.66	1.08		
Proporzione di				
Varianza Spiegata	.61	.18		

Metodi di Estrazione dei Fattori

Metodi che cercano di rendere conto di R tramite fattori che ne spiegano il massimo di varianza.

Metodi che cercano invece di rendere conto di R massimizzandone la "riproduzione".

Metodi che richiedono una stima iniziale delle comunalità.

Metodi che utilizzano solo gli elementi al di fuori della diagonale principale e richiedono una stima del numero di fattori da estrarre.

Metodi di Estrazione dei Fattori

Nelle analisi che utilizzano stime delle comunalità viene analizzata la matrice di correlazione R*, con la stima delle comunalità (\hat{h}_j^2) sulla diagonale principale.

Nelle analisi che non utilizzano stime delle comunalità viene analizzata la matrice R₁ nella quale non si considerano gli elementi fuori della diagonale principale.

Analisi delle Componenti Principali (ACP)

- Identifica una serie di combinazioni lineari ortogonali delle variabili originali X_i (c_i=X_iV, con V = autovettori di R) tali che spieghino più varianza possibile delle variabili originali X_i, e che riducano la complessità dei dati iniziali.
- L'<u>ACP</u> analizza la varianza totale delle variabili (analizza R con valori 1 sulla diagonale principale). La varianza unica è assorbita dai fattori comuni. Nella soluzione ci sono solo "fattori comuni" (le componenti principali).
- Le saturazioni si basano sul calcolo diretto degli autovalori e degli autovettori di R: $A = V\sqrt{L}$

ANALISI DEI DATI + LAB

- Le saturazioni fattoriali risultano gonfiate dalla presenza di varianza comune e varianza unica.

SAPIENZA

2

BARBARANELLI

- L'<u>ACP</u> estrae il massimo della varianza per ogni componente, cioè massimizza la varianza spiegata ad ogni estrazione.
- La prima componente è la combinazione lineare dei dati originali che spiega più varianza, la seconda è quella che spiega più varianza dopo la prima, ecc.
- Le componenti principali sono semplici <u>trasformazioni lineari</u> delle variabili originali che forniscono un <u>sommario empirico</u> dei dati. La matrice R è perfettamente replicata se vengono estratte tante componenti quante sono le variabili.

Analisi dei Fattori Principali (AFP o PAF)

- Massimizza lo stesso criterio della ACP, ma con stime della comunalità inserite nella diagonale principale.
- Analizza solo la varianza attribuibile ai fattori "comuni" (ovvero la <u>comunalità</u>) per ottenere una soluzione non contaminata dalla varianza unica.
- Estrae il massimo di varianza per ogni fattore, ma considera solo la varianza dovuta ai fattori comuni, quindi spiega meno varianza della ACP.

SAPIENZA

1

Analisi dei Fattori Principali (AFP o PAF)

- Primo passo: rimuovere dalla diagonale principale di R la varianza unica (cioè, $u^2 = 1-h^2$).
- Stima iniziale delle comunalità delle variabili:
- * coefficiente di correlazione multipla al quadrato (SMC)
- * correlazione più elevata
- * media delle correlazioni
- Le saturazioni si basano sul calcolo diretto degli autovalori e degli autovettori di R₁: A= V√L, dove R₁ è la matrice delle correlazioni con le stime delle comunalità sulla diagonale principale

Analisi dei Fattori Principali (AFP o PAF)

	fp10	fp15	fp26	fp30
fp10	1,000	,368	,256	,344
fp15	,368	1,000	,390	,444
fp26	,256	,390	1,000	,418
fp30	,344	,444	,418	1,000

fp10	,180
fp15	,288
fp26	,231
fp30	,294

Matrice di correlazione originale

Stima delle Comunalità

	fp10	fp15	fp26	fp30
fp10	,180	,368	,256	,344
fp15	,368	,288	,390	,444
fp26	,256	,390	,231	,418
fp30	,344	,444	,418	,294

Matrice di correlazione analizzata da PAF
Analisi dei Fattori Principali (AFP o PAF) Calcolo iterativo delle comunalità

Nell'AFP le stime delle comunalità rappresentano soltanto un valore iniziale che viene cambiato e ricalcolato nel corso dell'estrazione dei fattori.
Le stime iniziali servono per estrarre gli autovalori e gli autovettori di R₁ e quindi per individuare la matrice A delle saturazioni.

Questa soluzione iniziale consente di calcolare empiricamente le comunalità: le comunalità empiriche vengono quindi sostituite alle stime iniziali e il processo di estrazione dei fattori viene ripetuto, dando origine a nuove saturazioni e quindi a nuove comunalità. Il processo si interrompe quando i valori empirici delle comunalità diventano stabili.

AA 2017-2018

Analisi dei Fattori Principali (AFP o PAF) Calcolo iterativo delle comunalità

Durante il processo di iterazione delle comunalità, il numero di fattori deve rimanere costante. Una volta che la soluzione fattoriale si è stabilizzata, i valori finali delle comunalità possono essere ricavati dalla soluzione stessa, elevando al quadrato le saturazioni di ogni variabile in ogni fattore comune e sommando tali quadrati.

Ci sono dei problemi che possono presentarsi nel processo iterativo di calcolo delle comunalità. In alcuni casi si può assistere a valori di comunalità che eccedono 1 (tale problema viene definita spesso *"Heywood case"*).

Minimi Quadrati (ULS e GLS) (Minimum residuals / Minres)

Minimizza le differenze al quadrato tra gli elementi della matrice di correlazione osservata (R), e quella riprodotta (R^) utilizzando i fattori estratti.

Minimizza le correlazioni residue (R- R^) cioè la parte di correlazione tra le variabili non spiegata dai fattori.

Funzione dei minimi quadrati ordinari (ULS) minimizzata nel processo di estrazione dei fattori:

 $\Sigma_{j}\Sigma_{k} (\mathbf{r}_{jk} - \mathbf{r}_{jk}^{2})^{2}$

Minimi Quadrati (ULS e GLS) (Minimum residuals /Minres)

Massimizza la riproduzione dei coefficienti <u>fuori</u> della diagonale principale di R.

Si inizia il processo stabilendo il numero di fattori.

Si stimano le saturazioni iniziali con l'ACP.

Le saturazioni vengono modificate iterativamente finché lo scarto tra R e R^ non è molto piccolo.

Minimi quadrati generalizzati (GLS): si introduce un fattore di ponderazione, per cui le variabili con fattore unico più elevato hanno peso minore.

Maximum Likelihood (Massima verosimiglianza)

Calcola le saturazioni che rendono massima la probabilità di riprodurre la matrice R, ovvero identifica la soluzione che meglio riproduce R.

<u>Stima</u> le saturazioni della popolazione che hanno la massima verosimiglianza (ovvero la massima probabilità) nel riprodurre R, quindi che rendono minima la differenza tra matrice osservata e riprodotta.

Si considerano gli elementi fuori della diagonale principale, si fornisce il numero di fattori da estrarre. BARBARANELLI

5

Maximum Likelihood (Massima verosimiglianza)

La stima delle saturazioni avviene attraverso la minimizzazione di una funzione (F_{ML}) delle matrici delle correlazioni osservate R e riprodotte R^.

 $F_{ML} = tr(RC^{-1}) + ln|C| - ln|R| - n$

dove C =AA'+U², è la matrice riprodotta dalla soluzione (A matrice delle saturazioni, U² stima della varianza unica), *n* è il numero di variabili, | | indica il determinante e tr() la traccia della matrice.

Per calcolare la funzione è necessario che:

 $(n-k)^2 > (n + k)$

dove n = numero di variabili, k = numero di fattori.

NUMERO MASSIMO DI FATTORI

Il numero massimo di fattori che è possibile estrarre dipende dai gradi di libertà che sono determinati dal numero di parametri da stimare e dal numero di correlazioni non ridondanti.

Gradi di libertà = $[(n-k)^2 - (n+k)]/2$,

Deve valere sempre: $(n-k)^2 > (n+k)$

n = numero di variabili; k = il numero di fattori.

Esempio: n = 8

Se k = 1, (8-1)²-(8+1)= 49-9=40, gdl=20 Se k = 2, (8-2)²-(8+2)= 36-10=26, gdl=13 Se k = 3, (8-3)²-(8+3)= 25-11=14, gdl=7

Se k = 4, (8-4)²-(8+4)= 16-12=4, gdl=2

Se k = 5, (8-5)²-(8+5)= 9-13=-4, gdl=-2

Con 8 variabili osservate si possono estrarre al massimo 4 fattori.

Test di bontà dell'adattamento (goodness of fit)

Si ottiene dalle funzioni ML e GLS che vengono minimizzate se le variabili seguono la distribuzione normale multivariata.

Ipotesi nulla: $R = R^{-1}$ Il test segue la distribuzione del χ^2 Gradi di libertà del test: df=[(n-k)² - (n+k)]/2

 χ^2 <u>non</u> significativo: il modello che ipotizza k fattori è consistente con i dati empirici, non si può rifiutare l'ipotesi nulla H₀:R=R^, quindi non vi sono più fattori da estrarre

χ² significativo: il modello che ipotizza k fattori è consistente con i dati empirici, quindi è necessario procedere all'estrazione di fattori ulteriori.
 Test fortemente dipendente dal numero di casi.

Stabilire il numero dei fattori da estrarre

Decisione che ha conseguenze cruciali sulla soluzione fattoriale.

Salvaguardare la parsimonia della soluzione, e la sua adeguatezza (capacità di riprodurre R).

Metodi per stabilire il numero di fattori

- Mineigen (Kaiser-Guttman rule)

SAPIENZA

50

BARBARANELLI

- Scree test degli autovalori (Cattell e Vogelman)
- Test statistico, indici di bontà dell'adattamento
- Percentuale di varianza spiegata
- Massima correlazione residua

Mineigen (Kaiser-Guttman rule)

Estrae tutti quei fattori che hanno un autovalore maggiore di 1 quando viene analizzata la matrice R completa (con 1 sulla diagonale principale).

I fattori devono spiegare almeno la stessa varianza spiegata dalle variabili osservate.

Il numero di autovalori maggiori di 1 è uguale approssimativamente ad un numero compreso tra 1/3 e 1/5 del numero delle variabili.

Criterio inappropriato per soluzioni diverse dall'ACP

Scree test degli autovalori (Cattell e Vogelman)

I primi fattori sono i più attendibili e i più validi, poiché spiegano una percentuale di varianza maggiore rispetto ai rimanenti, e avranno autovalori più grandi degli altri.

<u>Progressione decrescente degli autovalori</u>: grafico in cui ogni autovalore è in ordinata, e il numero del fattore ad esso relativo in ascissa.

Il processo di estrazione si interrompe nel punto in cui la curva degli autovalori decrescenti cambia pendenza e diventa sostanzialmente piatta. Vanno presi quei fattori i cui autovalori sono al di sopra della linea piatta formata dagli autovalori dei fattori più piccoli.

Applicazione più attendibile quando il campione è grande, le comunalità elevate, e ogni fattore satura diverse variabili.

Analisi parallela

E' un procedimento che si basa sul confronto tra gli autovalori della matrice di correlazione campionaria e gli autovalori ottenuti da una matrice calcolata su un set di dati casuali generati artificialmente.

I risultati di questi studi suggeriscono di mantenere nella soluzione quei fattori associati ad un autovalore superiore a quello associato ad un fattore omologo estratto nei dati artificiali.

Analisi parallela

Supponiamo che i primi 5 autovalori dei dati reali siano: 5.72 1.51 1.03 0.50 0.40, e quelli ricavati dai dati "artificiali" siano: 1.64 1.45 1.31 1.19 1.09.

Verranno mantenuti quei fattori reali che presentano un autovalore maggiore di quello del corrispondente fattore dei dati artificiali, quindi nel nostro caso verranno mantenuti 2 fattori perché solo per i primi due fattori gli autovalori nei dati reali sono maggiori degli autovalori associati ai corrispondenti fattori nei dati artificiali [5.72>1.64;1.51>1.45;1.03<1.31;0.50< 1.19; 0.40< 1.09]

Sintassi SPSS per l'analisi parallela:

https://people.ok.ubc.ca/brioconn/nfactors/nfactors.html

BARBARANELLI

Test statistico e indici di bontà dell'adattamento

SAPIENZA

Il test statistico associato ai metodi di estrazione ML e GLS (chi-quadrato) da un punto di vista puramente statistico, è il migliore. Da un punto di vista pratico, però, questo test tende ad essere fortemente dipendente dall'ampiezza del campione.

Gli indici alternativi di bontà dell'adattamento (che introdurremo quando affronteremo i modelli confermativi) possono spesso dare risultati più verosimili: tra questi indici l'SRMR e l'RMSEA sembrano i più affidabili.

Come regola pratica il ricercatore dovrebbe considerare più indici alternativi per ciascuna soluzione, e privilegiare le soluzioni nelle quali i diversi indici mostrano maggiore convergenza.

Percentuale di varianza spiegata

Contributo minimo di un fattore alla spiegazione della varianza, oppure proporzione di varianza spiegata dall'ultimo fattore. Metodo troppo soggettivo.

Replicabilità della soluzione

I fattori "validi" sono quelli che risultano più facilmente replicabili su campioni diversi da quelli nei quali sono stati individuati.

I fattori "spuri" risultano poco generalizzabili e sono determinati sostanzialmente dall'errore campionario.

Massima correlazione residua

Per ogni elemento di R fuori della diagonale principale si può definire un residuo che è uguale a (r- r^), ovvero correlazione osservata meno correlazione riprodotta. La matrice dei residui quindi si ottiene nel modo seguente: $E = (R-R^)$.

Se dopo aver effettuato l'estrazione di un certo numero di fattori tutti i residui sono minori di |.10|, non è necessario continuare il processo di estrazione: il nuovo fattore estratto avrebbe saturazioni molto basse.

Rotazione dei fattori

E' un'operazione che rende la soluzione fattoriale più interpretabile senza cambiarne le fondamentali proprietà matematiche (capacità di riprodurre R, % var. spiegata).

Esistono infinite matrici T che trasformano una matrice di saturazioni non ruotata A in modo che:

AT = **B**, **e R** = **BB**'

T è la matrice di <u>trasformazione</u> (gli elementi sono seni e coseni di un generico angolo di rotazione " ϕ "), B è la matrice ruotata

Rotazioni <u>ortogonali</u>: i fattori ruotati non sono correlati. Rotazioni <u>oblique</u>: i fattori ruotati possono essere correlati tra loro.

Rotazione dei fattori

T è la matrice di <u>trasformazione</u> (gli elementi sono seni e coseni di un generico angolo di rotazione " ϕ "). Nel caso di due fattori T è come la matrice seguente:

$$\mathbf{T} = \begin{bmatrix} \mathbf{cos}\phi & -\mathbf{sin}\phi \\ \mathbf{sin}\phi & \mathbf{cos}\phi \end{bmatrix}$$

Nella rotazione dei fattori, AT=B. R=BB', ma B=AT, quindi R=(AT)(AT)'=ATT'A' E' possibile dimostrare che TT'=T'T=I, quindi: R=BB'=AA'

Questo fenomeno viene definito indeterminatezza della soluzione fattoriale: esistono infinite matrici A tali che R=AA', cioè che riproducono una data matrice R altrettanto bene.

 \otimes

Soluzioni fattoriali

	Soluzione iniziale		Soluzione ortogonale		Soluzione obliqua		
	F1	F2	F1	F2	F1	F2	h²
Determinato	.68	.51	.17	.83	08	.88	.72
Dinamico	.74	.48	.24	.85	01	.89	.78
Energico	.78	.33	.36	.77	.16	.76	.72
Affidabile	.80	41	.87	.23	.91	02	.81
Responsabile	.84	43	.91	.24	.95	02	.89
Scrupoloso	.82	33	.83	.30	.85	.07	.78
Varianza Spiegata	61%	18%	42%	37%	42%	37%	

BARBARANELLI

SAPIENZA UNIVERSITÀ DI ROMA

La rotazione dei fattori – La struttura semplice (Thurstone, 1947)

Guida il processo di rotazione dei fattori. Si pone l'obiettivo di rendere più interpretabile la soluzione massimizzando il numero di zeri nelle righe e nelle colonne della matrice delle saturazioni.

Ogni fattore deve saturare una minoranza di variabili; ogni variabile deve essere spiegata da pochi fattori (possibilmente uno solo).

SAPIENZA

5

BARBARANELLI

La rotazione dei fattori – La struttura semplice (Thurstone, 1947)

Fa in modo che le variabili cadano il più vicino possibile agli assi fattoriali. Gli spazi "interstiziali" tendono ad essere più vuoti degli spazi vicini agli assi.

Numero di saturazioni prossime a 0 in un fattore: indice della semplicità del fattore.

La struttura fattoriale più semplice possibile è quella in cui le variabili hanno saturazioni uguali a 0 in tutti i fattori tranne che in un unico fattore comune.

Rotazioni ortogonali - Varimax

Aumenta la semplicità dei fattori.

Massimizza la varianza delle saturazioni delle variabili all'interno di ogni fattore (nelle <u>colonne</u> di A).

Per ogni fattore, tende a far diventare le saturazioni elevate più elevate e quelle più basse ancora più basse.

La variabilità delle saturazioni è massimizzata, e la varianza redistribuita.

Varimax tende a produrre fattori che presentano alcune saturazioni elevate, poche intermedie e molte basse. Risultati più chiari e più generalizzabili, e fattori diversi separati meglio.

Rotazioni ortogonali - Quartimax

Massimizza la semplicità delle <u>variabili</u> a scapito dei fattori.

Massimizza la varianza delle saturazioni di ogni variabile <u>per riga</u>.

Concentra più varianza possibile per ogni variabile su un solo fattore, creando fattori generale.

Rotazioni oblique

Oblimin: Fa in modo che le variabili abbiano saturazioni il più possibile vicine a 0 in tutti i fattori tranne uno. Massimizza una funzione che comprende anche le <u>covarianze</u> tra i fattori.

Promax: Parte da una rotazione ortogonale, e la modifica per renderla più semplice, consentendo che i fattori siano correlati.

Rotazioni di Procuste: La matrice originale viene ruotata verso una matrice "bersaglio" che ha certe caratteristiche ipotizzate dal ricercatore. La soluzione iniziale viene ruotata in modo da renderla più simile possibile alla matrice bersaglio.

Nelle soluzioni ortogonali: l'impatto del fattore sulla variabile è uguale alla correlazione tra variabile e fattore (saturazione fattoriale).

Nelle soluzioni oblique è possibile distinguere tra:

- correlazione tra variabile e fattore

- impatto del fattore sulla variabile (contributo unico del fattore al netto degli altri fattori)

5.2

Nelle soluzioni oblique

La variabile osservata può condividere una parte di varianza simultaneamente con più fattori.

La correlazione tra variabile e fattore comprende sia il contributo unico del fattore sia il contributo condiviso con gli altri fattori.

Per questo ci sono due diverse matrici che riassumono le relazioni tra variabili e fattori

Matrice Pattern (P)

Impatto diretto di ciascun fattore sulle variabili, al netto dell'impatto degli altri fattori.

Influenza *unica* di ciascun fattore sulle variabili (pesi beta, β).

Matrice Struttura (S)

Correlazioni tra le variabili e i fattori.

Risultano tanto più "gonfiate" quanto più è elevata la correlazione tra i fattori.

Per interpretare i fattori nelle rotazioni oblique si esamina la matrice pattern.

BARBARANELLI

66

Effetto diretto di F1 su X1 = .7 (P) Effetto di F1 su X1 dovuto alla correlazione tra F1 e F2= .4*.1=.04 Effetto totale di F1 su X1 = .7 + .04 = .74 (S)

A

52

Riprodurre R dopo una rotazione obliqua:

Matrici Struttura (S) e Pattern (P)

$S = P\Phi.$

Φ = Matrice delle correlazioni tra i fattori

$R^*=SP'$ e $R=SP'+U^2$

$R^* = P\Phi P' e R = P\Phi P' + U^2$

Nelle rotazioni ortogonali invece: $S = P = A, \Phi = I, quindi$ $R^* = P\Phi P' = AA'$

Varianza spiegata dopo la rotazione obliqua

- Moltiplicare P e S elemento per elemento
- Sommare i prodotti per colonna
- Dividere i totali di colonna per il numero di variabili e moltiplicare per 100.

Variabili	PATTERN (P)		STRUCTURE (S)		PRODOTTO (P * S)		
	F1	F2	F1	F2	F1	F2	h²
X1	0,70	0,10	0,74	0,38	0,52	0,04	0,56
X2	0,70	0,10	0,74	0,38	0,52	0,04	0,56
X3	0,20	0,70	0,48	0,78	0,10	0,55	0,65
X4	0,10	0,70	0,38	0,74	0,04	0,52	0,56
% Var.					29	29	

Somma per riga dei prodotti: comunalità.

Interpretazione dei fattori e grandezza delle saturazioni

- I fattori si interpretano in base alle variabili con le quali presentano correlazioni (saturazioni) più elevate.
- Regola pratica: livello soglia di circa |.30| (circa 9% di varianza in comune tra fattore e variabile).
- a) |.71 | (50% varianza comune): <u>eccellente</u>;
- b) |.63 | (40% varianza comune): molto buona;
- c) |.55 | (30% varianza comune): <u>buona</u>;

SAPIENZA

BARBARANELLI

- d) |.45 | (20% varianza comune): <u>sufficiente</u>;
- e) |.32| (10% varianza comune): <u>scarsa</u>.

Saturazioni sotto |.30 | <u>inadeguate</u>.

Assunzioni e prerequisiti - Fattorializzabilità di R

- Test di sfericità di Bartlett:
 H₀: R = I (I = matrice identità).
 Se significativo, e il campione è sufficientemente ampio, la matrice è fattorializzabile.
- Indice di adeguatezza campionaria KMO:

 $\mathsf{KMO} = \Sigma \Sigma \mathbf{r}^2 / (\Sigma \Sigma \mathbf{r}^2 + \Sigma \Sigma \mathbf{p}^2)$

r = correlazioni tra ogni coppia di variabili p = correlazioni tra ogni coppia di variabili, parzializzate rispetto a tutte le altre variabili

Assunzioni e prerequisiti - Fattorializzabilità di R

- Test di adeguatezza campionaria di Kaiser (KMO):

Interpretazione dei valori del KMO:

>0.90: eccellenti; 0.80-0.90: buoni; 0.70-0.80: accettabili; 0.60-0.70: mediocri; <0.60: scarsi/non accettabili (l'analisi è sconsigliata)
BARBARANELLI

5

Assunzioni e prerequisiti

Livelli di misura e distribuzione delle variabili: Almeno intervalli equivalenti. Anche ordinali se il numero di categorie ordinabili di una variabile è sufficiente (es., da 5 in su), e se la distribuzione delle variabili è normale.

Coefficienti di correlazione: Coefficiente di correlazione di Pearson (dà stime più stabili). Variabili dicotomiche o ordinali: coefficienti di correlazione "speciali" (tetracorici e policorici: sono ottenibili in Prelis, non in SPSS).

Assunzioni e prerequisiti

Normalità multivariata: Se le distribuzioni sono normali la soluzione è migliore. Richiesta Con il metodo di estrazione della Maximum Likelihood.

SAPIENZA

Linearità: Necessaria perché l'analisi si basa sui coefficienti di Pearson. Metodi di AF non lineari: basati su coefficienti speciali (utili per dati non normali).

Outliers tra i casi e tra le variabili:

Casi estremi univariati e multivariati possono distorcere i risultati. Variabili "outlier": non correlano con le altre variabili in analisi, e vanno a definire fattori "residuali" e poco attendibili (saturati soltanto da quella variabile).

Assunzioni e prerequisiti

Numero di variabili:

- Numero di variabili 3 o 4 volte superiore al numero dei fattori
- Non meno di 3 variabili "marker" per ogni fattore che si vuole identificare (fattori "sovradeterminati").

Ampiezza e qualità del campione:

- Campioni piccoli producono stime poco stabili di r
- Consigliabile non scendere mai sotto i <u>100</u> soggetti e non avere mai meno di cinque casi per ogni variabile.

- Variabilità delle variabili e/o dei fattori: sufficientemente ampia. Campione molto selezionato ed omogeneo: riduzione della variabilità e quindi delle correlazioni; mancata individuazione di fattori, minore percentuale di var. spiegata, saturazioni più basse.

Ambiti di applicazione dell'Analisi Fattoriale

- Costruzione di test psicologici
- Costruzione di scale e questionari

Esame della qualità di strumenti di misura per:

 identificare indicatori adeguati e non adeguati
 identificare fattori misurati in maniera non adeguata (es., da una sola variabile)

Esplorazione di dati 🔅

Problemi

Applicazione poco attenta delle opzioni di *default* Fiducia in una *erronea* tradizione consolidata Scarsa conoscenza del modello statistico di base

Decisioni da prendere

Adeguatezza delle variabili Fattorializzabilità di R Tecnica per l'estrazione Numero di fattori Tecnica per la rotazione Interpretazione dei fattori Adeguatezza della soluzione

Come ottenere buone soluzioni

- Numero di indicatori per ogni fattore (> 3)
- Almeno 100 soggetti
- Campione *non* selezionato
- Non utilizzare l'analisi delle componenti principali ma un metodo fattoriale vero
- Rotazione obliqua (ortogonale solo se i fattori non correlano)
- Più metodi per scegliere il numero di fattori: non utilizzare il criterio dell'autovalore >1

6

ANALISI FATTORIALE ESPLORATIVA (EFA) CON SPSS

MODELLO CONCETTUALE

efa_dati.sav

EFA IN SPSS – analisi preliminari

	N	Minimo	Massimo	Media	Deviazione std.	Asimmetria		Curtosi	
	Statistica	Statistica	Statistica	Statistica	Statistica	Statistica	Errore std.	Statistica	Errore std.
fp10	819	1	6	2,66	1,582	,481	,085	-,942	,171
fp15	819	1	6	3,17	1,492	,066	,085	-,945	,171
fp26	819	1	6	3,68	1,393	-,310	,085	-,599	,171
fp30	819	1	6	3,15	1,553	,059	,085	-1,103	,171
nr6	819	1	6	4,37	1,379	-,852	,085	,186	,171
nr16	819	1	6	4,67	1,261	-1,097	,085	1,061	,171
nr17	819	1	6	4,70	1,272	-1,100	,085	,951	,171
nr20	819	1	6	5,04	1,163	-1,496	,085	2,321	,171
Numero di casi validi (listwise)	819								

Statistiche descrittive

EFA IN SPSS – analisi preliminari

Calcola variabile	M						
Variabile di des <u>t</u> inazione: nr16_lg10 Tipo ed etichetta fp10 fp15	=	Espressione numerica: Ig10(8-nr16)*(-1) Gruppo di funzioni:					
 ♣ fp26 ♣ fp30 ♣ nr6 ♣ nr16 ♣ nr17 ♣ nr20 ✔ nr16_lg10 		+ < > 7 8 9 - <= >= 4 5 6 ★ = ~= 1 2 3 / & 1 0 . ★★ ~ () Elimina Elimina Eurzioni e variabili speciali:					
Se (condizione di selezione dei casi facoltativa) OK Incolla Reimposta Annulla Guida							

 \otimes

EFA IN SPSS – analisi preliminari

	N	Minimo	Massimo	Media	Deviazione std.	Asimmetria		Curtosi	
	Statistica	Statistica	Statistica	Statistica	Statistica	Statistica	Errore std.	Statistica	Errore std.
nr16	819	1	6	4,67	1,261	-1,097	,085	1,061	,171
nr17	819	1	6	4,70	1,272	-1,100	,085	,951	,171
nr20	819	1	6	5,04	1,163	-1,496	,085	2,321	,171
nr16_lg10	819	-,85	-,30	-,4936	,15479	-,306	,085	-,641	,171
nr17_lg10	819	-,85	-,30	-,4891	,15665	-,350	,085	-,686	,171
nr20_lg10	819	-,85	-,30	-,4435	,14996	-,721	,085	-,294	,171
Numero di casi validi (listwise)	819								

Statistiche descrittive

(

ta efa	_dati.sav	[Dataset1] ·	IBM S	PSS Statis	stics Editor d	ei dati							
<u>F</u> ile	Mo <u>d</u> ific	a <u>V</u> isua	lizza	<u>D</u> ati	<u>T</u> rasforma	<u>A</u> nalizza	Direct <u>M</u> arketing	<u>G</u> rafici	Progra	mmi di <u>u</u> tilità	<u>F</u> inestra	<u>G</u> uida	
				5	2	Re <u>p</u> or Statist	rt tich <u>e</u> descrittive		۲ ۲		1	((0
						Ta <u>b</u> ell	le personalizzate		•				
		fp10		fp15	fp2	6 Confre	onta <u>m</u> edie		•	nr17	nr20	var	V
	1		3		4	Model	llo lineare <u>q</u> enerale		•	4	1	4	
	2		1		4	<u>M</u> odel	lli lineari generalizzat	i	•	1	1	5	
	3		2		6	Model	lli mi <u>s</u> ti		•	6	6	5	
· ·	4		1		1	<u>C</u> orre	lazione		•	4	L .	6	
	5		4		6	<u>R</u> egre	essione		•	4	L .	5	
	6		1		1	L <u>o</u> glin	neare		•		6	6	
	7		3		5	Reti n	eurali		•	2	2	6	
	8		2		4	Class	sifica		•		6	5	
	9		3		3	Riduzi	- ione delle dimensior	ıi	•	© Eattore		4	
1	0		1		6	Scala			•				
1	1		4		3	Test	non narametrici		•	Analisi de	elle <u>c</u> orrispon	denze	
1	2		5		3	Provie	zioni			🔘 Scaling <u>o</u>	ttimale		
1	3		4		4	Previa				4	l .	4	
1	4		2		1	Sopra					5	5	
1	5		1		1	Rispo	osta m <u>u</u> itipia		P	1		6	
1	6		6		3	🏭 <u>A</u> nalis	i valori mancanti				5	5	
1	7		1		1	Asseg	gnazione mul <u>t</u> ipla		•		6	6	

 \otimes

Analisi fattoriale: Estrazione	
Metodo: Fattorizzazione dell'asse principale ▼ Analizza Visualizza Image: Matrice di correlazione Image: Soluzione fattoriale non ruotata Image: Matrice di covarianza Image: Soluzione fattoriale non ruotata Image: Matrice di covarianza Image: Soluzione fattoriale non ruotata Image: Soluzione fattoriale non ruotata Image: Soluzione fattoriale non ruotata Image: Soluzione fattoriale non ruotata Image: Soluzione fattoriale non ruotata Image: Soluzione fattoriale non ruotata Image: Soluzione fattoriale non ruotata Image: Soluzione fattoriale non ruotata Image: Soluzione fattoriale non ruotata Image: Soluzione fattoriale non ruotata Image: Soluzione fattoriale non ruotata Image: Soluzione fattoriale non ruotata Image: Soluzione fattoriale non ruotata Image: Soluzione fattoriale non ruotata Image: Soluzione fattoriale non ruotata Image: Soluzione fattoriale non ruotata Image: Soluzione fattoriale non ruotata Image: Soluzione fattoriale non ruotata Image: Soluzione fattoriale non ruotata Image: Soluzione fattoriale non ruotata Image: Soluzione fattoriale non ruotata Image: Soluzione fattoriale non ruotata Image: Soluzione fattoriale non ruotata Image: Soluzione fattoriale non ruotata Image: Soluzione fa	Analisi fattoriale: Rotazione
Numero ma <u>s</u> simo di iterazioni per la convergenza: 25 Continua Annulla Guida	Visualizza ✓ Soluzione ruotata Grafici di caricamento Numero massimo di iterazioni per la convergenza: 25 Continua Annulla Guida

t	Analisi fattoriale: Punteggi fattoriali
	Salva come variabili
	Metodo
	Regressione
	© <u>B</u> artlett
	O Anderson-Rubin
	Visualizza matrice <u>d</u> ei coefficienti di punteggio fattoriale

Analisi fattoriale: Opzioni	
Valori mancanti Escludi casi listwise Escludi casi <u>p</u> airwise Sostituisci con la media	
Formato visualizzazione coefficienti Ordinato per dimen <u>s</u> ione Elimina coefficienti <u>p</u> iccoli V <u>a</u> lore assoluto sotto: ,10	
Continua Annulla Guida	

EFA IN SPSS

Statistiche descrittive

	Media	Deviazione std.	N analisi
fp10	2,66	1,582	819
fp15	3,17	1,492	819
fp26	3,68	1,393	819
fp30	3,15	1,553	819
nr6	4,37	1,379	819
nr16_lg10	-,4936	,15479	819
nr17_lg10	-,4891	,15665	819
nr20_lg10	-,4435	,14996	819

Matrice di correlazione^a

		fp10	fp15	fp26	fp30	nr6	nr16_lg10	nr17_lg10	nr20_lg10
Correlazione	fp10	1,000	,368	,256	,344	,050	,039	,080,	-,010
	fp15	,368	1,000	,390	,444	,155	,060	,074	,074
	fp26	,256	,390	1,000	,418	,122	,163	,130	,141
	fp30	,344	,444	,418	1,000	,120	,068	,154	,036
	nr6	,050	,155	,122	,120	1,000	,301	,310	,307
	nr16_lg10	,039	,060	,163	,068	,301	1,000	,256	,354
	nr17_lg10	,080,	,074	,130	,154	,310	,256	1,000	,302
	nr20_lg10	-,010	,074	,141	,036	,307	,354	,302	1,000

a. Determinante = ,299

 \odot

EFA IN SPSS

Comunalità

	Iniziale	Estrazione
fp10	,184	,261
fp15	,299	,456
fp26	,253	,341
fp30	,304	,473
nr6	,189	,296
nr16_lg10	,188	,311
nr17_lg10	,172	,256
nr20_lg10	,208	,375

Metodo di estrazione: Fattorizzazione dell'asse principale.

Test	di	кмо	e	Bartlett	

Misura di Kaiser-Meyer-C campionamento.	,737	
Test della sfericità di	Appross. Chi-quadrato	982,770
Bartlett	gl	28
	Sign.	,000

Varianza totale spiegata

		Autovalori inizia	ali	Caricamenti so	omme dei quadra	ti di estrazione	Caricamenti somme dei quadrati di rotazione ^a
Fattore	Totale	% di varianza	% cumulativa	Totale	% di varianza	% cumulativa	Totale
1	2,402	30,021	30,021	1,769	22,118	22,118	1,605
2	1,655	20,688	50,709	1,001	12,508	34,625	1,354
3	,792	9,895	60,603				
4	,724	9,049	69,652				
5	,714	8,920	78,572				
6	,647	8,086	86,658				
7	,549	6,858	93,516				
8	,519	6,484	100,000				

Metodo di estrazione: Fattorizzazione dell'asse principale.

 a. Quando i fattori sono correlati, i caricamenti delle somme dei quadrati non possono essere aggiunti per ottenere una varianza totale.

3

EFA IN SPSS

			cone	azioni ripi o	uotte				
		fp10	fp15	fp26	fp30	nr6	nr16_lg10	nr17_lg10	nr20_lg10
Correlazione riprodotta	fp10	,261 ^a	,343	,283	,349	,059	,027	,057	,006
	fp15	,343	,456 ^a	,386	,464	,118	,078	,113	,055
	fp26	,283	,386	,341 ^a	,394	,162	,131	,153	,119
	fp30	,349	,464	,394	,473 ^a	,122	,081	,117	,057
	nr6	,059	,118	,162	,122	,296 ^a	,301	,276	,327
	nr16_lg10	,027	,078	,131	,081	,301	,311ª	,280	,340
	nr17_lg10	,057	,113	,153	,117	,276	,280	,256 ^a	,303
	nr20_lg10	,006	,055	,119	,057	,327	,340	,303	,375 ^a
Residuo ^b	fp10		,025	-,027	-,006	-,009	,012	,023	-,016
	fp15	,025		,004	-,020	,036	-,018	-,040	,019
	fp26	-,027	,004		,025	-,040	,031	-,023	,022
	fp30	-,006	-,020	,025		-,002	-,013	,037	-,022
	nr6	-,009	,036	-,040	-,002		,000	,034	-,020
	nr16_lg10	,012	-,018	,031	-,013	,000		-,023	,014
	nr17_lg10	,023	-,040	-,023	,037	,034	-,023		-,001
	nr20_lg10	-,016	,019	,022	-,022	-,020	,014	-,001	

Correlazioni riprodotte

Metodo di estrazione: Fattorizzazione dell'asse principale.

a. Comunalità riprodotte

 b. I residui vengono calcolati tra le correlazioni osservate e riprodotte. Ci sono 0 (0,0%) residui non ridondanti con valori assoluti maggiori di 0,05.

EFA IN SPSS

Matrice dei fattori^a

	Fattore			
	1	2		
fp10	,418	-,295		
fp15	,593	-,323		
fp26	,559	-,169		
fp30	,605	-,328		
nr6	,401	,368		
nr16_lg10	,363	,423		
nr17_lg10	,376	,339		
nr20_lg10	,362	,493		

Metodo di estrazione: Fattorizzazione dell'asse principale.

 a. 2 fattori estratti. 8 iterazioni richieste.

Matrice del modello^a

	Fattore			
	1	2		
fp10	,525	-,070		
fp15	,678	-,013		
fp26	,544	,113		
fp30	,691	-,011		
nr6	,046	,531		
nr16_lg10	-,022	,563		
nr17_lg10	,048	,492		
nr20_lg10	-,071	,627		

Metodo di estrazione:

Fattorizzazione dell'asse principale. Metodo di rotazione: Promax con normalizzazione Kaiser.

a. Convergenza per la rotazione eseguita in 3 iterazioni.

Matrice di struttura

	Fattore			
	1	2		
fp10	,507	,067		
fp15	,675	,164		
fp26	,574	,256		
fp30	,688	,170		
nr6	,185	,543		
nr16_lg10	,126	,557		
nr17_lg10	,177	,504		
nr20_lg10	,093	,608		

Metodo di estrazione:

Fattorizzazione dell'asse principale. Metodo di rotazione: Promax con normalizzazione Kaiser.

Matrice di correlazione dei fattori

Fattore	1	2
1	1,000	,261
2	,261	1,000

Metodo di estrazione: Fattorizzazione dell'asse principale. Metodo di rotazione: Promax con normalizzazione Kaiser.

AA 2017-2018

ESERCIZIO 5: REALIZZAZIONE DI UN MODELLO DI ANALISI FATTORIALE ESPLORATIVA

Effettuare un modello di analisi fattoriale esplorativa.

I dati sono nel file spss ESE_EFA.SAV

items: Workload: QWI_1 QWI_2 QWI_3 QWI_4 QWI_5 Organizational Constraints: OCS_1 OCS_2 OCS_3 OCS_4 OCS_5 OCS_6 OCS_7 OCS_8 OCS_9 OCS_10 OCS_11

Effettuare l'analisi con SPSS scegliendo il metodo più adeguato per l'estrazione e la rotazione dei fattori, dopo aver esaminato le proprietà distributive degli item