Università di Roma La Sapienza

Neutron Detection Techniques and their applications

Antonino Pietropaolo

ENEA Dipartimento di Fusione e Tecnologie per la Sicurezza Nucleare

antonino.pietropaolo@enea.it

1935

Discovery of the neutron 1932

James Chadwick

Clifford G. Shull

"for the development of the neutron diffraction technique"

Bertram N. Brokhouse

"for the development of neutron spectroscopy"

Nomenclature

Category	Energy [meV]	Temperature [K]	λ [Å]
Ultra-cold	< 0.1	< 1	< 30
Cold	0.1 – 10	1 – 120	30 - 3
Thermal	10 – 100	120 – 1000	3 – 1
Hot	100 – 500	1000 - 6000	1-0.4
Epithermal	> 500	> 6000	> 0.4

Neutron detectors

- What does it mean detecting a neutron ?
 - A measurable elctric signal has to be produced
 - It is not possible to detect directly slow neutrons
- Nuclear reactions needed to convert neutrons in charged secondary particles.
- Then typical charged particle detectors can be used:
 - Gaseous proportional counters & ionization chambers
 - Scintillation detectors
 - Semiconductors detectors

Nuclear reactions for neutron detection

- $n + {}^{3}He \rightarrow {}^{3}H + {}^{1}H + 0.764 \text{ MeV}$
- $n + {}^{6}Li \rightarrow {}^{4}He + {}^{3}H + 4.79 \text{ MeV}$
- $n + {}^{10}B \rightarrow {}^{7}Li^* + {}^{4}He \rightarrow {}^{7}Li + {}^{4}He + 0.48 \text{ MeV } \gamma + 2.3 \text{ MeV } (93\%)$ $\rightarrow {}^{7}Li + {}^{4}He + 2.8 \text{ MeV } (7\%)$
- n + ¹⁵⁵Gd → Gd* → γ-ray spectrum → conversion electron spectrum
- n + ¹⁵⁷Gd → Gd* → γ-ray spectrum → conversion electron spectrum
- $n + {}^{235}U \rightarrow fission fragments + ~160 MeV$
- $n + {}^{239}Pu \rightarrow fission fragments + ~160 MeV$

Gaseous detectors

~25,000 ions + electrons produces per absorbed neutron ($\sim 4 \times 10^{-15}$ coulomb)

Operational principle

- Ionization
 - E- drift towards the anode producing a chrage pulse
- Proportional regime
 - If DV is sufficiently high the e- gas collisions produce local ionization and thus e- cascade:
 - Amplification with Gauin up to 10³

BF₃ detector

- For large BF₃ detectors the secondaries are completely absorbed (*full energy peaks*)
- In small BF₃ si ha la presenza di discontinuità *("wall effect")*

Fission Counters

With large thickness of fissile material deposition the fission fragments may lose a significant fraction of their energy in the material itself thus releasing less energy into the detector

The fission reaction

Fission cross sections

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.	Thermal neutron region
	Fast neutron region

MAPS Detector Bank

Scintillation detectors

A few types of scintillation detectors

Material	⁶ Li density of atoms (cm ⁻³)	Scintillation efficiency	Scintillation photon λ (nm)	Yield photons/ neutron
Li glass (Ce)	1.75×10 ²²	0.45 %	395 nm	~7,000
Lil (Eu)	1.83×10 ²²	2.8 %	470	~51,000
ZnS (Ag) - LiF	1.18×10 ²²	9.2 %	450	~160,000

GEM Detector Module

Semiconductors detectors

Operational principle

- ~1,500,000 e h produced per neutron
 - (~2.4×10⁻¹³ coulomb)
 - This signal may be read directly without further amplification

But

- Semiconductor detectors do not contain a sufficient number of ansorbing nuclei so to provide a good efficiency
- An absorbing layer can be used onto the semiconductor surface

An example

- The layer has to be thin (a few microns) in order to allow the secodaries to escape:
 - Low efficiency
- Some of the energy is not released into the detector
 - Pulse height discrimination is not good

Detection efficiency

• Complete expression:
$$\mathcal{E} = 1 - e^{-N\sigma(E)t}$$

• Approximate expression for low efficiencies:

 $\mathcal{E} \approx N \sigma t$

• where:

 σ = absorption cross section

- N = density of absorbing centers
- t = thickness
- $N = 2.7 \times 10^{19} \text{ cm}^{-3} \cdot \text{atm}^{-1}$ for a gas

For a 1 cm thickness of ³He at 1 atm and for λ =1.8 Å $\epsilon = 0.13$

Pulse height discrimination

Operation principle

- A discrimination threshold may be used to reject the unwanted events (fast neutrons, gamma, electronic noise)
- Pulse Height discrimination is useful to enhance the signal-tobackground ratio.
- Discrimination capability is an important characteristic in choosing a detector (³He gaseous detectors are good to this aim)

Multi Wire Proportional Counters

Detectors array

MWPC operation principle

 By segmenting the cathode a 2D readout is achieved and thus the (x,y) position determination

Resistive encoding of a MWPC

- Instead of a single ctahode strip readout, the strips can be resistively coupled (cheap but slow)
- The event position is determined by the fraction of the charge that reach each side of the resistive chain (charge-division encoding).

 The event position can be also determined from the time of arrival of the pulse at the two edge of the resistive net (rise-time encoding)

Micro-Strip gas counters

- The electrodes are made by means of lithographic techniques
 - Small structures high spatial resolution charge localization and fast recovery time

Crossed-Fiber scintillator

- dimensions: 25 cm x 25 cm
- thickness: 2 mm
- Number of fibers: 48 per ogni asse
- Spatial resolution: < 5 mm
- Shaping time: 300 nsec
- Count rate capability: ~ 1 MHz
- Time resolution: 1 μsec

16 elements prototype

Operation principle of a Crossed-Fiber Position-Sensitive scintillator

Neutron scattering off a Ge crystal neasured by a Crossed-Fiber detector

- Normalized diffusion forma Ge crystal (1 cm height)
- E_n~0.056 eV
- Detector at 50 cm from the sample

A close view to a Crossed-Fiber

Where atoms are

Magnetic neutron scattering μ_n - σ_n interaction

Solid state physics

Crystal and magnetic structures of NdFeO₃

Fast neutron detection

- •Lethargy
- •Spherical dosimeters
- •The "Long Counter"
- •"*Li-glass*" scintillators
- ³He proportional counters
- "Proton Recoil Telescope"
- •Activation threshold targets

Lethargy

By moderating, the energy distribution function shifts towards lower energies
Spherical dosimeters

Figure 15.5 A spherical neutron dosimeter based on a ³He neutron detector. (From Leake.¹⁴)

Figure 15.2 The energy dependence of the relative detection efficiencies of Bonner sphere neutron detectors of various diameters up to 12 inches. (From Johnson et al.²)

The "Long Counter"

0.2

0.04 0.06 0.1

0.4

0.6 0.8 1.0

4 MeV 6

0.4

0.02

This detector is characterized by a response function that, in a wide interval, is independent of neutron energy ("*flat response detector*")

⁶Li-glass scintillators

The use of coincidence produces a lowering in the efficiency with increasing neutron energy $(E_n \ge Q$ -value of the reaction)

Some characteristics

	NE902 NE905 NE908		NE912		
D (gr/cm ³)	2.6	2.48	2.674	2.55	
п	1.58	1.55	1.57	1.55	
T _{fusione} (°C)	1200	1200	1200	1200	
λ_{max} (nm)	395	395	395	397	
Light emission (rel.antracene)	22-34%	20-30%	20%	25%	
Decay time (ns)	75	100	75	75	
Arr. ⁶ Li	95%	95%	95%	95%	
Activity α (/min)	100-200	100-200	100-200	10	
ΔE/E	13-22 %	15-28 %	20-30 %	20-30 %	

³He proportional counters

Figure 15.11 Differential energy spectrum of charged particles expected from fast neutrons incident on a ³He detector.

Proton Recoil Telescope

Thin Foil Magnetic Proton Recoil Neutron Spectrometer MPRu at JET

ENE

Illustration of the semi-tangential Line Of Sight (LOS) of the MPRu.

Overview of detector mechanics, with the PMTs mounted inside their magnetic shield boxes (A). The plastic roof (B) and the fibre guides pieces (C) are also visible

Activation threshold technique

10 E (MeV)

 σ_A

A target of a proper material is irradiated with a neutron beam and after an irradiation time Δt is removed from the beam and the induced activity is measured

Some examples

Material	Reaction	Ab.ls.(%) H.L		Eγ	Treshold (MeV)	
F	¹⁹ F(n,2n) ¹⁸ F	100	109.7min	0.511	11.6	
Mg	²⁴ Mg(n,p) ²⁴ Na	78.7	15.0 h	1.368	6.0	
AI	²⁷ Al(n,α) ²⁴ Na	100	15.0 h	1.368	4.9	
Fe	⁵⁶ Fe(n,p) ⁵⁶ Mn	91.7	2.56 h	0.84	4.9	
Со	$^{59}Co(n,lpha)^{56}Mn$	100	2.56 h	0.84	5.2	
Ni	⁵⁸ Ni(n,2n) ⁵⁷ Ni	67.9	36.0 h	1.37	13.0	
Cu	⁶⁵ Cu(n,2n) ⁶⁴ Cu	69.1	9.8 min	0.511	11.9	
Zn	⁶⁴ Zn(n,p) ⁶⁴ Cu	48.8	12.7 h	0.511	2.0	
In	¹¹⁵ ln(n,n') ¹²⁶ ln	95.7	4.5 h	0.335	0.5	
I	¹²⁷ I(n,2n) ¹²⁶ I	100	13.0 d	0.667	9.3	

Neutron spectra of different sources

Metodo delle targhette a soglia di attivazione

Epithermal neutrons

- Pulsed sources
- Condensed matter applications
- Spectrometers
- Detection methods

The ISIS pulsed neutron source

Caratterisitche principali della sorgente ISIS

All beam in synchrotron extracted in one turn

 \boxed{M} = v/c = 0.84, 163 m circumference → revolution time = 0.65 µs 4 µC ÷ 0.65 µs → 6 A circulating current Extracted pulse ~0.3 µs long (double peak proton pulse)

The Time of flight technique

Background sources

Fig. 2. Schematic of the target station: the flux of neutrons produced in the spallation reactions impinging on the moderator is enhanced by the use of the Be reflector. The pulsed neutron beams from the moderator travel together with γ -ray beams produced in the decoupler and into the moderator.

Fig. 6. Plot of $B_{2}(t)$ and $B'_{2}(t)$ in Eq. (3). The amplitude of the moderator component is normalized to 1, while the amplitude of the decoupler component is chosen as a fraction of the first one.

Direct geometry spectrometers

Il Scuola Nazionale: Rivelatori ed Elettronica per Fisica delle Alte Energie, Astrofisica ed Applicazioni Spaziali, Legnaro, 26-30 Marzo 2007

Inverse geometry spectrometers

Spettrometri a geometria inversa

The Resonance Filter Spectrometer configuration

The Resonance Detector Spectrometer configuration

Suitable isotopes for eV neutron energy selection

	% isot.	Z	A	densita'	Ν	Eris	σ0	σeff a 295K	λn	d*5*5* ^λ n	^σ eff a 75K
				g/cm^3	atom/cm^3	eV	barn	barn	μm	g	barn
In	4,3	49	113	7,3	3,9E+22	14,6	9965	3837	66,9	1,223	5791
La	99,9	57	139	6,1	2,7E+22	72,2	5969	1762	213,2	3,275	2769
Sm	7,4	62	150	7,4	3,0E+22	20,7	56207	29108	11,6	0,214	39486
Gd	20,6	64	156	7,9	3,0E+22	33,2	11078	4854	67,5	1,334	6811
Dy	2,3	66	160	8,5	3,2E+22	10,5	19229	12179	25,5	0,545	15214
	2,3	66	160	8,5	3,2E+22	20,5	16165	9188	33,9	0,723	11923
Er	27,1	68	168	8,5	3,1E+22	79,7	11203	4096	79,8	1,703	5993
	14,9	68	170	8,5	3,0E+22	95,0	26393	23711	13,9	0,298	25396
Hf	0,2	72	174	13,3	4,6E+22	70,0					
	5,2	72	176	13,3	4,5E+22	48,0	36842	21132	10,4	0,346	26852
	5,2	72	176	13,3	4,5E+22	68,0					
	27,1	72	178	13,3	4,5E+22	7,8	153848	107369	2,1	0,069	127948
	35,2	72	180	13,3	4,4E+22	72,6	16838	6136	36,7	1,218	8657
W	26,3	74	182	19,3	6,4E+22	4,2	18828	10209	15,3	0,740	12354
	26,3	74	182	19,3	6,4E+22	21,1	46877	24395	6,4	0,310	29749
	26,3	74	182	19,3	6,4E+22	115,0					
Os	1,6	76	187	22,6	7,3E+22	12,7	16672	9563	14,4	0,812	11063
	26,4	76	190	22,6	7,2E+22	91,6	6777	2121	65,9	3,719	2625
U	100,0	92	238	18,9	4,8E+22	6,7	23564	7570	27,6	1,305	11250
U	100,0	92	238	18,9	4,8E+22	20,9	37966	9864	21,2	1,002	15119
U	100,0	92	238	18,9	4,8E+22	36,7	42228	13363	15,6	0,739	19913
U	100,0	92	238	18,9	4,8E+22	66,0	20134	4357	48,0	2,268	6813

Energy and relative intensities of γ**-rays**

61

The VESUVIO spectrometer at ISIS

Molecular Physics

Neutron Resonance Capture Analysis

Material analysis

An experiment layout

Suitable elements for NRCA

Experimental NRCA tests at ISIS

Tests on INES @ ISIS

Some results on INES

Fast neutrons

Aviation

motive

What has to be measured ?

• SEE cross sections

$$\sigma = \frac{\#SEE}{\varphi}$$

#SEE: number of errors of different type observed under different conditions:

Single Bit Upsets Multiple Bit Upsets, Single Event Latchup, Single Event Transient

 \mathcal{O} : neutron fluence (above 1 MeV)

beam line requirements:

- "atmospheric" neutron spectrum
- High acceleration factor: 10⁶-10⁸
- Beam uniformity (intensity and spectrum)
- Possibility to measure locally the fluence close to the irradiated chip
Neutron production in the atmosphere

Neutron Radiation from primary cosmic rays

Worldwide irradiation facilities

• The Bonner Spheres

Geometry - Energy

1

Principle of operation

From the measured activity on the sensor after a period of irradiation the neutron flux at the selected energy range is found

Extending measurements above 20 MeV

Modified Bonner Spheres by including metal inserts to allow for *n(x,n)* reactions to occur

Response Functions of Bonner Spheres

Neutron energy (MeV)

A different geometry

"Bonner Cylinders"

More suitable for collimated beams

Measurements on Rotax in December 2009

Simulation of the response functions and data analysis ongoing

• Thin Film Breakdown Counters TFBC

A. Smirnov and A. Prokofiev

Micro-photographs of electrical breakdowns in MOS-capacitor made in reflect light

Schematic of a TFBC and the principle of its operation: an incident fission fragment produces an electrical breakdown in the SiO_2 layer.

Real time counter suitable for Time of Flight measurements

Neutron Energy [MeV]

Channel number [8 ns per channel]

Neutron ToF spectra

Results are going to be presented at the RADECS conference

• Localized flux monitoring: Single Crystal Diamonds

SCD by Chemical Vapor Deposition

cross section [b]

• Test results: TOF spectra on ROTAX beam line at ISIS-TS1

SET UP

SET UP

TOF SPECTRA FROM DIAMOND

Diamond detectors at JET

Detector configuration

A typical JET Pulse No: (72331) showing the matching between the FC and the three SCD detectors (normalized counts). Pulse duration 6.2s; neutron yield = 1.109 E16.

Correlation between the three diamond detectors and the FC for 900 JET shots examined.

efficiency (SCD242/ FC135) for all the 900 JET shots.

Correlation between the three diamond detectors and the FC for the shots with low total neutron yields (< 1. E15).

PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

Sum of more than 800 JET spectra (total neutrons) as measured by SCD 234.

14 MeV neutrons for medical application: a scientific case ⁹⁹Mo/^{99m}Tc

30 milion SPECTs every year

85% of whole nuclear medicine diagnostics

⁹⁹Tc^m tracer radiopharamceutical

Tc-99m Thyroid Imaging

CARDIAC TOMOGRAPHY

N

S

N

-- <mark>N</mark>--

 \mathbf{O}

4D Cardiac Images

14 MeV neutrons for medical application: a scientific case ⁹⁹Mo/^{99m}Tc

Finding alternative solutions to reactors ¹⁰⁰Mo(n,2n)⁹⁹Mo using 14 MeV neutrons

Detector development

Hybrid Superconducting Neutron Detectors

In beam cold neutron imaging

The basic idea Hot-spot

Superconducting thin films detect energetic charged particles

AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

Bolometric model $V = 2 r_c \rho J_B$

 r_{c} : hot spot radius ρ : electrical resistivity J_{B} : biased transport current density

D. H. Andrews et al. Phys. Rev. 76, 154 (1949)	CbN-α
D. E. Spiel et al. App. Phys. Lett. 7, 292 (1965)	Sn-α
E. C. Crittenden and D. E. Spiel. J. App. Phys. 42, 3182 (1971)	In-a
A. Gabutti et al. Nucl. Instrum. Methods Phys. Res. Sect. A 289, 274 (1990)	Al-x/γ
R. Wedenig et al. Nucl. Instrum. Methods Phys. Res. Sect. A 433, 646 (1999)	NbN-α

HYBRID SUPERCONDUCTING NEUTRON DETECTORS
HSND working principle

PER LE NUOVE TECNOLOGIE, L'ENERGI E LO SVILUPPO ECONOMICO SOSTENIBILI

The detector

Silver contacts or Si/Al wire bonding

Experimental set-up

Flow cryostat used 1.8-10 K with nominal uncertainty in temperature 0.01 K

Silver contact strip

Bonded contact strip

Experimental set-up

Experimental data

Experimental data

Experimental data

Detection of events takes place at different times after each I_B switch-on (jaws opening) Confirmirmation of the statistical nature of the phenomenon

Analysis

On going Sviluppo di un calcolo analitico e calcolo agli elementi finiti per studiare le caratteristiche temporali del rivelatore

Sviluppo di rivelatori ad alta TC YBCO

GEM-based Gaseous detectors

³He replacement

Gas Electron Multipliers Detectors

Applying a potential difference (typically between 300 and 500 volts) between the two copper cladding, an high intensity electric field is produced inside the holes (80-100 kV/cm).

GEM is used as a proportional amplifier of the ionization charge released in a gas detector.

Triple-GEM detectors

The anode has 128 pads. Each PAD can have a different geometry depending on detector applications.

Gas Gain Curves

A GEM for thermal neutrons

Laboratori Nazionali di Frascati

The idea was to insert a sequence of borated strips attached to the aluminum cathode. The drift region was extended and the detector was equipped with a side window.

Boron Reaction: ¹⁰B + n $\longrightarrow \alpha + {}^{7}\text{Li} + 2.79 \text{ MeV}$ (6%) $\longrightarrow \alpha + {}^{7}\text{Li}^{*} + 2.31 \text{ MeV} + \gamma (478 \text{ keV})$ (94%)

Neutron Facilities used

ENEN

AGENZIA NAZIONALE

Knowing the incident flow and the detector active area of we estimated an **absolute efficiency** of $4.3 \pm 0.5\%$, over the whole range of reactor thermal energies.

11.8773

11.8772

20

11.8765

11.8766

11.8767

11.8768

11,8769

11.877

11.8771

40

20

500

x2 / ndf 3.188e+04 / 358

1000 1500 2000 2500 3000 3500

0.0428 ± 8.137e-06

 1969 ± 15.34

neutrons/sec

Test @ ISIS: ToF measurements

ISIS facility is a pulsed neutron source. Energy spectrum ranges from thermal to fast neutrons. We used our detector to make Time of Flight (ToF) measurements of thermal neutrons.

An external trigger starts the detector acquisition of the detector which records data in a time window of 1 ms.

The typical ISIS double-peak profile was obtained applying an increasing delay in step of 1 ms.

Results are in agreement with those obtained from the beam monitor of ROTAX.

Our FEE electronics is very fast and allows ToF measurements, widely used in neutron spectroscopy. It is possible to scan using time windows that can reach a temporal amplitude a few tens of μ s.

The second prototype

We developed a new prototype increasing the number of borated strip up to 16, in order to obtain an higher efficiency.

We used ceramic strips (Al₂O₃) 400 µm thick.

Detector window is placed on the side of the anode with 32 PADs. In this way detector is able to measure also position of small spot beams impinging on the side-on window.

Tests @ HFIR Oak Ridge National Laboratory (ORNL, US)

well suited for resolution, uniformity, distortion and performance measurements with a high neutron flux.

We obtain a beam position resolution of about 0.8 mm.

the GEM detector.

Low γ -rays sensitivity!

	S-GEM	³ He Tube
Overall mean counts [s ⁻¹]	1863	6011
Background mean counts [s-1]	21	1586
Signal/Background	87.7	2.8
Efficiency [%]	31	99

Comparison with He gas tube at pressure

Last results

Useful references

- **F.G. Knoll**, Radiation Detection and measurements.
- E.M. Schooneveld, A. Pietropaolo, et al. Rep. Prog. Phys. 79 (2016) 094301
- **A. Pietropaolo and R. Senesi**, Physics Reports **508** (2011) 45.
- **N. Watanabe**, Rep. Prog. Phys. **66** (2003) 339.
- J.M. carpenter and C.-K. Loong, "Elements of slow-neutron scattering"
- L. Squires, Introduction to the theory of thermal neutron scattering