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Tentative plan for the course

• Intro to AI and Automated Problem Solving

• Classical Planning as Heuristic Search and SAT

• Beyond Classical Planning: Transformations

. Soft goals, Conformant Planning, Finite State Controllers, Plan Recognition, Extended

temporal LTL goals, . . .

• Planning with Uncertainty: Markov Decision Processes (MDPs)

• Planning with Incomplete Information: Partially Observable MDPs (POMDPs)

• Planning with Uncertainty and Incomplete Info: Logical Models

– Reference: A concise introduction to models and methods for automated planning, H. Geffner

and B. Bonet, Morgan & Claypool, 6/2013.

– Other references: Automated planning: theory and practice, M. Ghallab, D. Nau, P. Traverso.

Morgan Kaufmann, 2004, and Artificial intelligence: A modern approach. 3rd Edition, S. Russell

and P. Norvig, Prentice Hall, 2009.

– Initial set of slides: http://www.dtic.upf.edu/∼hgeffner/bsas-2013-slides.pdf
– Evaluation, Homework, Projects: . . .
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First Lecture

• Some AI history

• The Problem of Generality in AI

• Models and Solvers

• Intro to Planning
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Darmouth 1956

“The proposal (for the meeting) is to proceed on the basis of the conjecture that
every aspect of . . . intelligence can in principle be so precisely described that a
machine can be made to simulate it”
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Computers and Thought 1963

An early collection of AI papers and programs for playing chess and checkers,
proving theorems in logic and geometry, planning, etc.
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Importance of Programs in Early AI Work

In preface of 1963 edition of Computers and Thought

We have tried to focus on papers that report results. In this collection, the
papers . . . describe actual working computer programs . . . Because of the
limited space, we chose to avoid the more speculative . . . pieces.

In preface of 1995 AAAI edition

A critical selection criterion was that the paper had to describe . . . a running
computer program . . . All else was talk, philosophy not science . . . (L)ittle
has come out of the “talk”.
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AI, Programming, and AI Programming

Many of the key AI contributions in 60’s, 70’s, and early 80’s had to to with
programming and the representation of knowledge in programs:

• Lisp (Functional Programming)

• Prolog (Logic Programming)

• Rule-based Programming

• Interactive Programming Environments and Lisp Machines

• Frame, Scripts, Semantic Networks

• ’Expert Systems’ Shells and Architectures
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(Old) AI methodology: Theories as Programs

• For writing an AI dissertation in the 60’s, 70’s and 80’s, it was common to:

. pick up a task and domain X

. analyze/introspect/find out how task is solved

. capture this reasoning in a program

• The dissertation was then

. a theory about X (scientific discovery, circuit analysis, computational
humor, story understanding, etc), and

. a program implementing the theory, tested over a few examples.

Many great ideas came out of this work . . . but there was a problem . . .
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Methodological Problem: Generality

Theories expressed as programs cannot be proved wrong: when a program
fails, it can always be blamed on ’missing knowledge’

Three approaches to this problem

• narrow the domain (expert systems)

. problem: lack of generality

• accept the program is just an illustration, a demo

. problem: limited scientific value

• fill up the missing knowledge (intuition, commonsense)

. problem: not successful so far
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AI in the 80’s

The knowledge-based approach reached an impasse in the 80’s, a time also of
debates and controversies:

• Good Old Fashioned AI is ”rule application” but intelligence is not (Haugeland)

• Situated AI: representation not needed and gets in the way (Brooks)

• Neural Networks: inference needed is not logical but probabilistic (PDP Group)

Many of these criticisms of mainstream AI partially valid then; less valid now.

Research on models and solvers over last 20-30 years provide a handle on generality
problem in AI and related issues . . .
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AI Research in 2013

Recent issues of AIJ, JAIR, AAAI or IJCAI shows papers on:

1. SAT and Constraints

2. Search and Planning

3. Probabilistic Reasoning

4. Probabilistic Planning

5. Inference in First-Order Logic

6. Machine Learning

7. Natural Language

8. Vision and Robotics

9. Multi-Agent Systems

I’ll focus on 1–4: these areas often deemed about techniques, but more accurate
to regard them as models and solvers.
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Example: Solver for Linear Equations

Problem =⇒ Solver =⇒ Solution

• Problem: The age of John is 3 times the age of Peter. In 10 years, it will be
only 2 times. How old are John and Peter?

• Expressed as: J = 3P ; J + 10 = 2(P + 10)

• Solver: Gauss-Jordan (Variable Elimination)

• Solution: P = 10 ; J = 30

Solver is general as deals with any problem expressed as an instance of model

Linear Equations Model, however, is tractable, AI models are not . . .

Hector Geffner, Planning Course, Master IIS, UPF, 10-12/2014 12



AI Models and Solvers

Problem =⇒ Solver =⇒ Solution

• Some basic models and solvers currently considered in AI:

. Constraint Satisfaction/SAT: find state that satisfies constraints

. Bayesian Networks: find probability over variable given observations

. Planning: find action sequence or policy that produces desired state

. Answer Set Programming: find answer set of logic program

. General Game Playing: find best strategy in presence of n-actors, ...

• Solvers for these models are general; not tailored to specific instances

• Models are all intractable, and some extremely powerful (POMDPs)

• Solvers all have a clear and crisp scope; they are not architectures

• Challenge is mainly computational: how to scale up

• Methodology is empirical: benchmarks and competitions

• Significant progress . . .
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SAT and CSPs

• SAT is the problem of determining whether there is a truth assignment that
satisfies a set of clauses

x ∨ ¬y ∨ z ∨ ¬w ∨ · · ·

• Problem is NP-Complete, which in practice means worst-case behavior of SAT
algorithms is exponential in number of variables (2100 = 1030)

• Yet current SAT solvers manage to solve problems with thousands of variables
and clauses, and used widely (circuit design, verification, planning, etc)

• Constraint Satisfaction Problems (CSPs) generalize SAT by accommodating
non-boolean variables as well, and constraints that are not clauses
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How SAT solvers manage to do it?

Two types of efficient (poly-time) inference in every node of the search tree:

• Unit Resolution:

. Derive clause C from C ∨ L and unit clause ∼L

• Conflict-based Learning and Backtracking:

. When empty clause 2 derived, find ’causes’ S of 2, add ¬S to theory, and
backtrack til S disabled

Other ideas are logically possible but do not work (do not scale up):

• Generate and test each one of the possible assignments (pure search)

• Apply resolution without the unit restriction (pure inference)
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Related tasks: Enumeration and Optimization SAT Problems

• Weighted MAX-SAT: find assignment σ that minimizes total cost w(C) of
violated clauses ∑

C:σ 6|=C

w(C)

• Weighted Model Counting: Adds up ’weights’ of satisfying assignments:∑
σ:σ|=T

∏
L∈σ

w(L)

SAT methods extended to these other tasks, closely connected to probabilistic
reasoning tasks over Bayesian Networks:

• Most Probable Explanation (MPE) easily cast as Weighted MAX-SAT

• Probability Assessment P (X|Obs) easily cast as Weighted Model Counting

Some of the best BN solvers built over these formulations . . .
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Basic (Classical) Planning Model and Task

• Planning is the model-based approach to autonomous behavior,

• A system can be in one of many states

• States assign values to a set of variables

• Actions change the values of certain variables

• Basic task: find action sequence to drive initial state into goal state

Model =⇒ Box =⇒ Action sequence

• Complexity: NP-hard; i.e., exponential in number of vars in worst case

• Box is generic; it should work on any domain no matter what variables are about

Hector Geffner, Planning Course, Master IIS, UPF, 10-12/2014 17



Concrete Example
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• Given the actions that move a ’clear’ block to the table or onto another ’clear’
block, find a plan to achieve the goal

• How to find path in the graph whose size is exponential in number of blocks?
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Problem Solved with Heuristics Derived Automatically
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• Heuristic evaluations h(s) provide ‘sense-of-direction’

• Derived efficiently in a domain-independent fashion from relaxations where
effects made monotonic (delete relaxation).
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A bit of Cog Science: Models, solvers, and inference

• We have learned a lot about effective inference mechanisms in last 20–30
years from work on domain-independent solvers

• The problem of AI in the 80’s (the ’knowledge-based’ approach), was probably
lack of mechanisms, not only knowledge.

• Commonsense based not only on massive amounts of knowledge, but also massive
amounts of fast and effective but unconscious inference

• This is clearly true for Vision and NLP, but likely for Everyday Reasoning

• The unconscious, not necessarily Freudian, getting renewed attention:

. Strangers to Ourselves: the Adaptive Unconscious by T.Wilson (2004)

. The New Unconscious, by Ran R. Hassin et al. (Editors) (2004)

. Blink: The Power Of Thinking Without Thinking by M. Gladwell (2005)

. Gut Feelings: The Intelligence of the Unconscious by Gerd Gigerenzer (2007)

. . . .

. Thinking, Fast and Slow. D. Kahneman (2011)
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The appraisals/heuristics h(s) from a cognitive point of view

• they are opaque and thus cannot be conscious

meaning of symbols in the relaxation is not the normal meaning; e.g.,
objects can be at many places at the same time as old locations not deleted

• they are fast and frugal (linear-time), but unlike the ’fast and frugal heuristics’
of Gigerenzer et al. are general

they apply to all problems fitting the model (planning problems)

• they play the role of ’gut feelings’ or ’emotions’ according to De Sousa 87,
Damasio 94, Evans 2002, Gigerenzer 2007 . . .

providing a guide to action while avoiding infinite regresses in the decision
process
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Old Debates, New Insights?

• Logic vs. Probabilistic Inference: don’t look all that different now

• Intelligence can’t be rules all the way down: not in planning

• Symbolic vs. Non-Symbolic: are (learned) BNets and MDPs ‘symbolic’?

• GOFAI vs. Mainstream AI: is GOFAI just ‘old’ AI, no longer current?

• Solvers vs. Architectures: architectures don’t “solve” anything; solvers do.

• Mind as Architecture or Solver? Adaptive, heuristic, multiagent POMDP
solver?

• . . .
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Summary: AI and Automated Problem Solving

• A research agenda that has emerged in last 20 years: solvers for a range of
intractable models

• Solvers unlike other programs are general as they do not target individual
problems but families of problems (models)

• The challenge is computational: how to scale up

• Sheer size of problem shouldn’t be impediment to meaningful solution

• Structure of given problem must be recognized and exploited

• Lots of room for ideas but methodology empirical

• While agenda is technical, resulting ideas likely to be relevant for understanding
general intelligence and human cognition
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Introduction to Planning: Motivation

How to develop systems or ’agents’

that can make decisions on their own?
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Wumpus World PEAS description

Performance measure
gold +1000, death -1000
-1 per step, -10 for using the arrow

Environment
Squares adjacent to wumpus are smelly
Squares adjacent to pit are breezy
Glitter iff gold is in the same square
Shooting kills wumpus if you are facing it
Shooting uses up the only arrow
Grabbing picks up gold if in same square
Releasing drops the gold in same square

Breeze Breeze

Breeze

Breeze
Breeze

Stench

Stench

Breeze
PIT

PIT

PIT

1 2 3 4

1

2

3

4

START

Gold

Stench

Actuators Left turn, Right turn,
Forward, Grab, Release, Shoot

Sensors Breeze, Glitter, Smell
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Autonomous Behavior in AI: The Control Problem

The key problem is to select the action to do next. This is the so-called control
problem. Three approaches to this problem:

• Programming-based: Specify control by hand

• Learning-based: Learn control from experience

• Model-based: Specify problem by hand, derive control automatically

Approaches not orthogonal though; and successes and limitations in each . . .
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Settings where greater autonomy required

• Robotics

• Video-Games

• Web Service Composition

• Aerospace

• ...
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Solution 1: Programming-based Approach

Control specified by programmer; e.g.,

• don’t move into a cell if not known to be safe (no Wumpus or Pit)

• sense presence of Wumpus or Pits nearby if this is not known

• pick up gold if presence of gold detected in cell

• . . .

Advantage: domain-knowledge easy to express

Disadvantage: cannot deal with situations not anticipated by programmer
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Solution 2: Learning-based Approach

• Unsupervised (Reinforcement Learning):

. penalize agent each time that it ’dies’ from Wumpus or Pit

. reward agent each time it’s able to pick up the gold, . . .

• Supervised (Classification)

. learn to classify actions into good or bad from info provided by teacher

• Evolutionary:

. from pool of possible controllers: try them out, select the ones that do
best, and mutate and recombine for a number of iterations, keeping best

Advantage: does not require much knowledge in principle

Disadvantage: in practice though, right features needed, incomplete information is
problematic, and unsupervised learning is slow . . .
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Solution 3: Model-Based Approach

• specify model for problem: actions, initial situation, goals, and sensors

• let a solver compute controller automatically

Actions

Sensors

Goals

−→ SOLVER −→ CONTROLLER
actions−→

observations←−
World

Advantage: flexible, clear, and domain-independent

Disadvantage: need a model; computationally intractable

Model-based approach to intelligent behavior called Planning in AI
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Basic State Model for Classical AI Planning

• finite and discrete state space S

• a known initial state s0 ∈ S

• a set SG ⊆ S of goal states

• actions A(s) ⊆ A applicable in each s ∈ S

• a deterministic transition function s′ = f(a, s) for a ∈ A(s)

• positive action costs c(a, s)

A solution is a sequence of applicable actions that maps s0 into SG, and it is
optimal if it minimizes sum of action costs (e.g., # of steps)

Different models obtained by relaxing assumptions in bold . . .
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Uncertainty but No Feedback: Conformant Planning

• finite and discrete state space S

• a set of possible initial state S0 ∈ S

• a set SG ⊆ S of goal states

• actions A(s) ⊆ A applicable in each s ∈ S

• a non-deterministic transition function F (a, s) ⊆ S for a ∈ A(s)

• uniform action costs c(a, s)

A solution is still an action sequence but must achieve the goal for any possible
initial state and transition

More complex than classical planning, verifying that a plan is conformant in-
tractable in the worst case; but special case of planning with partial observability
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Planning with Markov Decision Processes

MDPs are fully observable, probabilistic state models:

• a state space S

• initial state s0 ∈ S

• a set G ⊆ S of goal states

• actions A(s) ⊆ A applicable in each state s ∈ S

• transition probabilities Pa(s′|s) for s ∈ S and a ∈ A(s)

• action costs c(a, s) > 0

– Solutions are functions (policies) mapping states into actions

– Optimal solutions minimize expected cost to goal
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Partially Observable MDPs (POMDPs)

POMDPs are partially observable, probabilistic state models:

• states s ∈ S

• actions A(s) ⊆ A

• transition probabilities Pa(s
′|s) for s ∈ S and a ∈ A(s)

• initial belief state b0

• final belief states bF

• sensor model given by probabilities Pa(o|s), o ∈ Obs

– Belief states are probability distributions over S

– Solutions are policies that map belief states into actions

– Optimal policies minimize expected cost to go from b0 to bF
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Models, Languages, and Solvers

• A planner is a solver over a class of models; it takes a model description, and
computes the corresponding controller

Model Instance =⇒ Planner =⇒ Controller

• Many models, many solution forms: uncertainty, feedback, costs, . . .

• Models described in suitable planning languages (Strips, PDDL, PPDDL, . . . )
where states represent interpretations over the language.
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Language for Classical Planning: Strips

• A problem in Strips is a tuple P = 〈F,O, I,G〉:

. F stands for set of all atoms (boolean vars)

. O stands for set of all operators (actions)

. I ⊆ F stands for initial situation

. G ⊆ F stands for goal situation

• Operators o ∈ O represented by

. the Add list Add(o) ⊆ F

. the Delete list Del(o) ⊆ F

. the Precondition list Pre(o) ⊆ F
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From Language to Models

A Strips problem P = 〈F,O, I,G〉 determines state model S(P ) where

• the states s ∈ S are collections of atoms from F

• the initial state s0 is I

• the goal states s are such that G ⊆ s

• the actions a in A(s) are ops in O s.t. Prec(a) ⊆ s

• the next state is s′ = s−Del(a) +Add(a)

• action costs c(a, s) are all 1

– (Optimal) Solution of P is (optimal) solution of S(P )

– Slight language extensions often convenient (e.g., negation and conditional
effects); some required for describing richer models (costs, probabilities, ...).
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Example: Blocks in Strips (PDDL Syntax)

(define (domain BLOCKS)

(:requirements :strips) ...

(:action pick_up

:parameters (?x)

:precondition (and (clear ?x) (ontable ?x) (handempty))

:effect (and (not (ontable ?x)) (not (clear ?x)) (not (handempty)) (holding ?x)))

(:action put_down

:parameters (?x)

:precondition (holding ?x)

:effect (and (not (holding ?x)) (clear ?x) (handempty) (ontable ?x)))

(:action stack

:parameters (?x ?y)

:precondition (and (holding ?x) (clear ?y))

:effect (and (not (holding ?x)) (not (clear ?y)) (clear ?x)(handempty)

(on ?x ?y))) ...

(define (problem BLOCKS_6_1)

(:domain BLOCKS)

(:objects F D C E B A)

(:init (CLEAR A) (CLEAR B) ... (ONTABLE B) ... (HANDEMPTY))

(:goal (AND (ON E F) (ON F C) (ON C B) (ON B A) (ON A D))))
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Example: Logistics in Strips PDDL

(define (domain logistics)

(:requirements :strips :typing :equality)

(:types airport - location truck airplane - vehicle vehicle packet - thing thing location city)

(:predicates (loc-at ?x - location ?y - city) (at ?x - thing ?y - location) (in ?x - packet ?y - vehicle))

(:action load

:parameters (?x - packet ?y - vehicle)

:vars (?z - location)

:precondition (and (at ?x ?z) (at ?y ?z))

:effect (and (not (at ?x ?z)) (in ?x ?y)))

(:action unload ..)

(:action drive

:parameters (?x - truck ?y - location)

:vars (?z - location ?c - city)

:precondition (and (loc-at ?z ?c) (loc-at ?y ?c) (not (= ?z ?y)) (at ?x ?z))

:effect (and (not (at ?x ?z)) (at ?x ?y)))

...

(define (problem log3_2)

(:domain logistics)

(:objects packet1 packet2 - packet truck1 truck2 truck3 - truck airplane1 - airplane)

(:init (at packet1 office1) (at packet2 office3) ...)

(:goal (and (at packet1 office2) (at packet2 office2))))
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Example: 15-Puzzle in PDDL

(define (domain tile)

(:requirements :strips :typing :equality)

(:types tile position)

(:constants blank - tile)

(:predicates (at ?t - tile ?x - position ?y - position)

(inc ?p - position ?pp - position)

(dec ?p - position ?pp - position))

(:action move-up

:parameters (?t - tile ?px - position ?py - position ?bx - position ?by - position)

:precondition (and (= ?px ?bx) (dec ?by ?py) (not (= ?t blank)) ...)

:effect (and (not (at blank ?bx ?by)) (not (at ?t ?px ?py)) (at blank ?px ?py) (at ?t ?bx ?by)))

...

(define (domain eight_tile) ..

(:constants t1 t2 t3 t4 t5 t6 t7 t8 - tile p1 p2 p3 - position)

(:timeless (inc p1 p2) (inc p2 p3) (dec p3 p2) (dec p2 p1)))

(define (situation eight_standard)

(:domain eight_tile)

(:init (at blank p1 p1) (at t1 p2 p1) (at t2 p3 p1) (at t3 p1 p2) ..)

(:goal (and (at t8 p1 p1) (at t7 p2 p1) (at t6 p3 p1) ..)
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Computation: how to solve Strips planning problems?

• Key issue: exploit two roles of language:

– specification: concise model description
– computation: reveal useful heuristic info

• Two traditional approaches: search vs. decomposition

• explicit search of the state model S(P ) direct but not effective til recently
• near decomposition of the planning problem thought a better idea
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Computational Approaches to Classical Planning

• Strips algorithm (70’s): Total ordering planning backward from Goal; work
always on top subgoal in stack, delay rest

• Partial Order (POCL) Planning (80’s): work on any subgoal, resolve threats;
UCPOP 1992

• Graphplan (1995 – . . . ): build graph containing all possible parallel plans up
to certain length; then extract plan by searching the graph backward from Goal

• SatPlan (1996 – . . . ): map planning problem given horizon into SAT problem;
use state-of-the-art SAT solver

• Heuristic Search Planning (1996 – . . . ): search state space S(P ) with heuristic
function h extracted from problem P

• Model Checking Planning (1998 – . . . ): search state space S(P ) with
‘symbolic’ BrFS where sets of states represented by formulas implemented by
BDDs
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State of the Art in Classical Planning

• significant progress since Graphplan (Blum & Furst 95)

• empirical methodology

. standard PDDL language

. planners and benchmarks available; competitions

. focus on performance and scalability

• large problems solved (non-optimally)

• different formulations and ideas

We’ll focus on two formulations:

• (Classical) Planning as Heuristic Search, and

• (Classical) Planning as SAT
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Classical Planning and Heuristic Search
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Models, Languages, and Solvers (Review)

• A planner is a solver over a class of models; it takes a model description, and
computes the corresponding controller

Model Instance =⇒ Planner =⇒ Controller

• Many models, many solution forms: uncertainty, feedback, costs, . . .

• Models described in suitable planning languages (Strips, PDDL, PPDDL, . . . )
where states represent interpretations over the language.
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State Model for Classical Planning

• finite and discrete state space S

• an initial state s0 ∈ S

• a set G ⊆ S of goal states

• actions A(s) ⊆ A applicable in each state s ∈ S

• a transition function f(s, a) for s ∈ S and a ∈ A(s)

• action costs c(a, s) > 0

A solution is a sequence of applicable actions ai, i = 0, . . . , n, that maps the initial
state s0 into a goal state s ∈ SG; i.e., sn+1 ∈ SG and for i = 0, . . . , n

si+1 = f(a, si) and ai ∈ A(si)

Optimal solutions minimize total cost
∑i=n
i=0 c(ai, si)
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Language for Classical Planning: Strips

• A problem in Strips is a tuple P = 〈F,O, I,G〉:

. F stands for set of all atoms (boolean vars)

. O stands for set of all operators (actions)

. I ⊆ F stands for initial situation

. G ⊆ F stands for goal situation

• Operators o ∈ O represented by

. the Add list Add(o) ⊆ F

. the Delete list Del(o) ⊆ F

. the Precondition list Pre(o) ⊆ F

Hector Geffner, Planning Course, Master IIS, UPF, 10-12/2014 47



From Problem P to State Model S(P )

A Strips problem P = 〈F,O, I,G〉 determines state model S(P ) where

• the states s ∈ S are collections of atoms from F

• the initial state s0 is I

• the goal states s are such that G ⊆ s

• the actions a in A(s) are ops in O s.t. Prec(a) ⊆ s

• the next state is s′ = s−Del(a) +Add(a)

• action costs c(a, s) are all 1

– (Optimal) Solution of P is (optimal) solution of S(P )

– Thus P can be solved by solving S(P )
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Solving P by solving S(P ): Path-finding in graphs

Search algorithms for planning exploit the correspondence between (classical)
states model and directed graphs:

• The nodes of the graph represent the states s in the model

• The edges (s, s′) capture corresponding transition in the model with same cost

In the planning as heuristic search formulation, the problem P is solved by
path-finding algorithms over the graph associated with model S(P )
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Search Algorithms for Path Finding in Directed Graphs

• Blind search/Brute force algorithms

. Goal plays passive role in the search
e.g., Depth First Search (DFS), Breadth-first search (BrFS), Uniform Cost

(Dijkstra), Iterative Deepening (ID)

• Informed/Heuristic Search Algorithms

. Goals plays active role in the search through heuristic function h(s) that
estimates cost from s to the goal

e.g., A*, IDA*, Hill Climbing, Best First, DFS B&B, LRTA*, . . .
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General Search Scheme

Solve(Nodes)

if Empty Nodes -> Fail

else Let Node = Select-Node Nodes

Let Rest = Nodes - Node

if Node is Goal -> Return Solution

else Let Children = Expand-Node Node

Let New-Nodes = Add-Nodes Children Rest

Solve(New-Nodes)

• Different algorithms obtained by suitable instantation of

• Select-Node Nodes
• Add-Nodes New-Nodes Old-Nodes

• Nodes are data structures that contain state and bookkeeping info; initially
Nodes = {root}

• Notation g(n), h(n), f(n): accumulated cost, heuristic and evaluation function;

e.g. in A*, f(n)
def
= g(n) + h(n)
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Some instances of general search scheme

• Depth-First Search expands ‘deepest’ nodes n first

. Select-Node Nodes: Select First Node in Nodes

. Add-Nodes New Old: Puts New before Old

. Implementation: Nodes is a Stack (LIFO)

• Breadth-First Search expands ‘shallowest’ nodes n first

. Select-Node Nodes: Selects First Node in Nodes

. Add-Nodes New Old: Puts New after Old

. Implementation: Nodes is a Queue (FIFO)
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Additional instances of general search scheme

• Best First Search expands best nodes n first; min f(n)

. Select-Node Nodes: Returns n in Nodes with min f(n)

. Add-Nodes New Old: Performs ordered merge

. Implementation: Nodes is a Heap

. Special cases
Uniform cost/Dijkstra: f(n) = g(n)
A*: f(n) = g(n) + h(n)
WA*: f(n) = g(n) +Wh(n), W ≥ 1
Greedy Best First: f(n) = h(n)

• Hill Climbing expands best node n first and discards others

. Select-Node Nodes: Returns n in Nodes with min h(n)

. Add-Nodes New Old: Returns New; discards Old
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Variations of general search scheme: DFS Bounding

Solve(Nodes,Bound)

if Empty Nodes -> Report-Best-Solution-or-Fail

else

Let Node = Select-Node Nodes

Let Rest = Nodes - Node

if f(Node) > Bound

Solve(Rest,Bound) ;;; PRUNE NODE n

else if Node is Goal -> Process-Solution Node Rest

else

Let Children = Expand-Node Node

Let New-Nodes = Add-Nodes Children Rest

Solve(New-Nodes,Bound)

Select-Node & Add-Nodes as in DFS
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Some instances of general bounded search scheme

• Iterative Deepening (ID)

. Uses f(n) = g(n)

. Calls Solve with bounds 0, 1, .. til solution found

. Process-Solution returns Solution

ıIterative Deepening A* (IDA*)

. Uses f(n) = g(n) + h(n)

. Calls Solve with bounds f(n0), f(n1), . . . where n0 = root and ni is
cheapest node pruned in iteration i− 1

. Process-Solution returns Solution

• Branch and Bound

. Uses f(n) = g(n) + h(n)

. Single call to Solve with high (Upper) Bound

. Process-Solution: updates Bound to Solution Cost minus 1 & calls
Solve(Rest,New-Bound)

Hector Geffner, Planning Course, Master IIS, UPF, 10-12/2014 55



Properties of Algorithms

• Completeness: whether guaranteed to find solution

• Optimality: whether solution guaranteed optimal

• Time Complexity: how time increases with size

• Space Complexity: how space increases with size

DFS BrFS ID A* HC IDA* B&B
Complete No Yes Yes Yes No Yes Yes
Optimal No Yes∗ Yes Yes No Yes Yes
Time ∞ bd bd bd ∞ bd bD

Space b · d bd b · d bd b b · d b · d

– Parameters: d is solution depth; b is branching factor

– BrFS optimal when costs are uniform

– A*/IDA* optimal when h is admissible; h ≤ h∗
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A*: Details, Properties

• A* stores in memory all nodes visited

• Nodes either in Open (search frontier) or Closed

• When nodes expanded, children looked up in Open and Closed lists

• Duplicates prevented, only best (equivalent) node kept

– A* is optimal in another sense: no other algorithm expands less nodes than A*
with same heuristic function (this doesn’t mean that A* is always fastest)

– A* expands ‘less’ nodes with more informed heuristic, h2 more informed that
h1 if 0 < h1 < h2 ≤ h∗

– A* won’t re-open nodes if heuristic is consistent (monotonic); i.e., h(n) ≤
c(n, n′) + h(n′) for children n′ of n.
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Practical Issues: Search in Large Spaces

• Exponential-memory algorithms like A* not feasible for large problems

• Time and memory requirements can be lowered significantly by multiplying
heuristic term h(n) by a constant W > 1 (WA*)

• Solutions no longer optimal but at most W times from optimal

• For large problems, only feasible optimal algorithms are linear-Memory algo-
rithms such as IDA* and B&B

• Linear-memory algorithms often use too little memory and may visit fragments
of search space many times

• It’s common to extend IDA* in practice with so-called transposition tables

• Optimal solutions have been reported to problems with huge state spaces such
24-puzzle, Rubik’s cube, and Sokoban (Korf, Schaeffer); e.g. |S| > 1020
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Learning Real Time A* (LRTA*)

• LRTA* is a very interesting real-time search algorithm (Korf 90)

• It’s like a hill-climb or greedy search that updates the heuristic V as it moves,
starting with V = h.

1. Evaluate each action a in s as: Q(a, s) = c(a, s) + V (s′)

2. Apply action a that minimizes Q(a, s)

3. Update V (s) to Q(a, s)

4. Exit if s′ is goal, else go to 1 with s := s′

• Two remarkable properties

. Each trial of LRTA gets eventually to the goal if space connected

. Repeated trials eventually get to the goal optimally, if h admissible!

• Generalizes well to stochastic actions (MDPs)

Hector Geffner, Planning Course, Master IIS, UPF, 10-12/2014 59



Heuristics: where they come from?

• General idea: heuristic functions obtained as optimal cost functions of relaxed
problems

• Examples:

– Manhattan distance in N-puzzle
– Euclidean Distance in Routing Finding
– Spanning Tree in Traveling Salesman Problem
– Shortest Path in Job Shop Scheduling

• Yet

– how to get and solve suitable relaxations?
– how to get heuristics automatically?

We’ll get more into this as we get back to planning . . .
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Classical Planning as Heuristic Search
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From Strips Problem P to State Model S(P ) (Review)

A Strips problem P = 〈F,O, I,G〉 determines state model S(P ) where

• the states s ∈ S are collections of atoms from F

• the initial state s0 is I

• the goal states s are such that G ⊆ s

• the actions a in A(s) are ops in O s.t. Pre(a) ⊆ s

• the next state is s′ = s−Del(a) +Add(a)

• action costs c(a, s) are all 1

How to solve S(P )?
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Heuristic Search Planning

• Explicitly searches graph associated with model S(P ) with heuristic h(s) that
estimates cost from s to goal

• Key idea: Heuristic h extracted automatically from problem P

This is the mainstream approach in classical planning (and other forms of planning
as well), enabling the solution of problems over huge spaces

Hector Geffner, Planning Course, Master IIS, UPF, 10-12/2014 63



Heuristics for Classical Planning

• Key development in planning in the 90’s, is automatic extraction of heuristic
functions to guide search for plans

• The general idea was known: heuristics often explained as optimal cost functions
of relaxed (simplified) problems (Minsky 61; Pearl 83)

• Most common relaxation in planning, P+, obtained by dropping delete-lists
from ops in P . If c∗(P ) is optimal cost of P , then

h+(P )
def
= c∗(P+)

• Heuristic h+ intractable but easy to approximate; i.e.

. computing optimal plan for P+ is intractable, but

. computing a non-optimal plan for P+ (relaxed plan) easy

• State-of-the-art heuristics as in FF or LAMA still rely on P+ . . .
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Additive Heuristic

• For all atoms p:

h(p; s)
def
=

{
0 if p ∈ s, else
mina∈O(p)[cost(a) + h(Pre(a); s)]

• For sets of atoms C, assume independence:

h(C; s)
def
=
∑
r∈C

h(r; s)

• Resulting heuristic function hadd(s):

hadd(s)
def
= h(Goals; s)

Heuristic not admissible but informative and fast

Hector Geffner, Planning Course, Master IIS, UPF, 10-12/2014 65



Max Heuristic

• For all atoms p:

h(p; s)
def
=

{
0 if p ∈ s, else
mina∈O(p)[cost(a) + h(Pre(a); s)]

• For sets of atoms C, replace sum by max

h(C; s)
def
= maxr∈Ch(r; s)

• Resulting heuristic function hmax(s):

hmax(s)
def
= h(Goals; s)

Heuristic admissible but not very informative . . .
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Max Heuristic and (Relaxed) Planning Graph

• Build reachability graph P0, A0, P1, A1, . . .

P0 A0 P1 A1

...

...

...

P0 = {p ∈ s}
Ai = {a ∈ O | Pre(a) ⊆ Pi}

Pi+1 = Pi ∪ {p ∈ Add(a) | a ∈ Ai}

– Graph implicitly represents max heuristic:

hmax(s) = min i such that G ⊆ Pi
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Heuristics, Relaxed Plans, and FF

• (Relaxed) Plans for P+ can be obtained from additive or max heuristics by
recursively collecting best supports backwards from goal, where ap is best
support for p in s if

ap = argmina∈O(p)h(a) = argmina∈O(p)[cost(a) + h(Pre(a))]

• A plan π(p; s) for p in delete-relaxation can then be computed backwards as

π(p; s) =

{
∅ if p ∈ s
{ap} ∪ ∪q∈Pre(ap)π(q; s) otherwise

• The relaxed plan π(s) for the goals obtained by planner FF using h = hmax

• More accurate h obtained then from relaxed plan π as

h(s) =
∑
a∈π(s)

cost(a)
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State-of-the-art Planners: EHC Search, Helpful Actions,
Landmarks

• In original formulation of planning as heuristic search, the states s and the
heuristics h(s) are black boxes used in standard search algorithms

• More recent planners like FF and LAMA go beyond this in two ways

• They exploit the structure of the heuristic and/or problem further:

. Helpful Actions

. Landmarks

• They use novel search algorithms

. Enforced Hill Climbing (EHC)

. Multi-Queue Best First Search

• The result is that they can often solve huge problems, very fast. Not always
though; try them!
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Experiments with state-of-the-art classical planners
FF FD PROBE LAMA’11 BFS(f)

Domain I S Q T S Q T S Q T S Q T S Q T

8puzzle 50 49 52.61 0.03 50 52.30 0.18 50 60.94 0.09 49 92.54 0.18 50 45.30 0.20
Barman 20 0 – – 20 197.90 84.00 20 169.30 12.93 20 192.15 8.39 20 174.45 281.28
BlocksW 50 44 39.36 66.67 50 104.24 0.46 50 43.88 0.25 50 89.96 0.41 50 54.24 2.25
Cybersec 30 4 29.50 0.73 28 36.58 859.24 24 50.73 48.29 30 35.27 880.06 28 36.92 63.79
Depots 22 22 51.82 32.72 17 110.25 91.86 22 88.88 1.45 21 43.56 3.58 22 39.56 69.11
Driver 20 16 25.00 14.52 20 50.67 1.26 20 60.17 1.49 20 46.22 1.51 18 48.06 140.93
Elevators 30 30 85.73 1.00 30 92.57 3.20 30 107.97 26.66 30 97.07 4.69 30 129.13 93.88
Ferry 50 50 27.68 0.02 50 30.08 0.09 50 44.80 0.02 50 26.86 0.08 50 31.28 0.03
Floortile 20 5 44.20 134.29 3 39.00 6.91 5 40.50 106.97 5 40.00 8.94 7 36.50 4.15
Freecell 20 20 64.00 22.95 20 61.06 26.55 20 62.44 41.26 19 67.78 27.35 20 64.39 13.00
Grid 5 5 61.00 0.27 5 61.60 4.95 5 58.00 9.64 5 70.60 4.84 5 70.60 7.70
Gripper 50 50 76.00 0.03 50 152.62 0.17 50 152.66 0.06 50 92.76 0.15 50 152.66 0.38
Logistics 28 28 41.43 0.03 28 77.11 0.18 28 55.36 0.09 28 73.64 0.17 28 87.04 0.12
Miconic 50 50 30.38 0.03 50 39.80 0.07 50 44.80 0.01 50 31.02 0.06 50 34.46 0.01
Mprime 35 34 9.53 14.82 35 8.37 9.50 35 12.97 26.67 35 8.60 10.30 35 10.17 19.30
Mystery 30 18 6.61 0.24 19 6.86 1.87 25 7.71 1.08 22 7.29 1.70 27 7.07 0.93
NoMyst 20 4 19.75 0.23 6 22.40 1.96 5 23.20 2.73 11 23.00 1.77 19 22.60 0.78
OpenSt 30 30 155.67 6.86 30 130.11 5.97 30 134.14 64.55 30 130.18 3.49 29 125.89 129.06
OpenSt6 30 30 136.17 0.38 30 222.67 5.39 30 224.00 48.89 30 140.60 4.89 30 139.13 40.19
ParcPr 30 30 42.73 0.06 27 35.79 1.97 28 70.92 0.26 30 70.54 0.28 27 70.42 6.72
Parking 20 3 88.33 945.86 20 74.86 330.76 17 143.36 685.47 19 129.57 361.19 17 83.43 562.39
Pegsol 30 30 25.50 7.61 30 25.97 0.80 30 25.17 8.60 30 26.07 2.76 30 24.20 1.17
Pipes-N 50 35 34.34 12.77 44 75.50 7.94 45 46.73 3.18 44 54.41 11.11 47 58.39 35.97
Pipes-T 50 20 31.45 87.96 40 73.33 99.06 43 54.19 88.47 41 69.83 35.28 40 39.14 216.25
PSR-s 50 42 16.92 63.05 50 14.61 0.27 50 17.20 0.07 50 14.65 0.31 48 18.14 2.57
Rovers 40 40 100.47 31.78 40 153.18 13.69 40 131.20 24.19 40 108.53 17.90 40 126.30 44.20
Satellite 20 20 37.75 0.10 20 40.90 0.78 20 37.05 0.84 20 42.05 0.78 20 36.05 1.26
Scan 30 30 31.87 70.74 28 30.04 7.30 28 25.15 5.59 28 28.04 8.14 27 29.37 7.40
Sokoban 30 26 213.38 26.61 28 204.14 12.44 25 231.52 39.63 28 231.81 184.38 23 218.52 125.12
Storage 30 18 16.28 39.17 20 17.72 3.20 21 14.56 0.07 18 24.56 8.15 20 20.94 4.34
Tidybot 20 15 63.20 9.78 15 66.00 338.14 19 52.67 33.50 16 62.60 102.52 18 63.27 207.85
Tpp 30 28 122.29 53.23 30 127.93 16.95 30 152.53 60.95 30 205.37 18.72 30 110.13 126.03
Transport 30 29 117.41 167.10 30 97.57 12.75 30 125.63 38.87 30 215.90 76.18 30 97.57 46.64
Trucks 30 11 27.09 3.84 17 26.00 0.65 8 26.75 113.54 16 24.75 0.53 15 26.50 8.59
Visitall 20 6 450.67 38.22 7 3583.86 166.35 19 411.71 9.02 20 468.00 4.68 20 339.00 4.58
WoodW 30 17 32.35 0.22 30 57.13 18.40 30 41.13 15.93 30 79.20 12.45 30 41.13 19.12
Zeno 20 20 30.60 0.17 20 37.45 2.68 20 44.90 6.18 20 35.80 4.28 20 37.70 77.56

Summary 1150 909 67.75 51.50 1037 168.60 57.78 1052 83.64 41.28 1065 86.51 48.98 1070 74.32 63.91
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Heuristic Search Planners (1997–2012)

• HSP, 1998: GBFS guided by heuristic hadd; solves 729 out of 1150 problems

• FF, 2000: Incomplete EHC search followed by GBFS with hFF; solves 909

• FD, 2004: GBFS with two queues: helpful and unhelpful, ordered by hFF; 1037

• LAMA, 2008: GBFS with four queues: helpful and unhelpful for landmark h
too; 1065

• PROBE, 2011: Plain GBFS that throws poly-time probe from every expanded
node; solves 1072

• BFS(f), 2012: Plain GBFS with h(s) ∈ [1, 6] based on helpful and width info,
and tie-breaker based on landmark h and hadd
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EHC, Helpful Actions, Landmark Heuristic

• EHC: On-line, incomplete planning algorithm: from current state s uses breadth-
first search and helpful actions only to find state s′ such that h(s′) < h(s)

. Helpful action: applicable action a in s is helpful when a adds goal or
precondition of an action in relaxed plan from s that is not true in s

• Landmark: is atom p that is made true by all plans (e.g., clear(B) landmark is
block beneath B not well placed)

. Computing landmarks 1: sufficient criterion for p being a landmark is
that relaxed problem not solvable without the actions that add p.

. Computing landmarks 2: complete set of landmarks for delete-relaxation
can be computed in poly-time once, as preprocessing

. Landmark heuristic: just count the number of unachieved landmarks.
It extends classical number of unachieved goals heuristics, and achieves
a complete form of problem decomposition

• Multi-Queue Best First Search: it maintains and alternates between multiple
open lists, and doesn’t leave any open list waiting for ever (fairness)
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Sructure of classical planning benchmarks: why are they easy?

• Most planning benchmarks are easy although planning is NP-hard.

• Problem considered in area called tractable planning, but gap with existing
benchmarks closed only recently

• Graphical models such as CSPs and Bayesian Network are also NP-hard, yet
some easy problems can be identify with a treewidth measured associated with
underlying graph

• CSP and BNet algorithms are exponential in treewidth

• Question: can suitable width notion be formulated to bound the complexity of
planning so that easy problems turn out to have low width?
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Width: Definition

Consider a chain t0 → t1 → . . .→ tn where each ti is a set of atoms from P

• A chain is valid if t0 is true in Init and all optimal plans for ti can be extended into optimal
plans for ti+1 by adding a single action

• A valid chain t0 → t1 → . . . → tn implies G if all optimal plans for tn are also optimal
plans for G

• The size of the chain is the size of largest ti in the chain

• Width of P is size of smallest chain that implies goal G of P

Theorem 1: A problem P can be solved in time exponential in its width.

Theorem 2: Most planning domains (Blocks, Logistics, Gripper, . . . ) have a
bounded and small width, independent of problem size, provided that goals are
single atoms
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Width: Basic Algorithm

The novelty of a newly generated state s during a search is the size of the smallest
tuple of atoms t that is true in s and false in all previously generated states s′. If
no such tuple, the novelty of s is n+ 1 where n is number of problem vars.

• IW(i) is breadth-first search that prunes newly generated states s when
novelty(s) > i.

• IW is sequence of calls IW(i) for i = 0, 1, 2, . . . over problem P until problem
solved or i exceeds number of vars in problem

IW solves P in time exponential in the width of P
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Iterative Width: Experiments for Single Atomic Goals

• IW, while simple and blind, is a pretty good algorithm over benchmarks when
goals restricted to single atoms

• This is no accident, width of benchmarks domains is small for such goals

• Tests over domains from previous IPCs. For each instance with N goal atoms,
N instances created with a single goal

• Results quite remarkable: IW is much better than blind-search, and as good as
Greedy Best-First Search with heuristic hadd

# Instances IW ID BrFS GBFS + hadd

37921 91% 24% 23% 91%
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Sequential IW: Using IW Sequentially to Solve Joint Goals

SIW runs IW iteratively, until one more goal achieved (hill climbing)

Serialized IW (SIW) GBFS + hadd

Domain I S Q T M/Awe S Q T

8puzzle 50 50 42.34 0.64 4/1.75 50 55.94 0.07
Blocks World 50 50 48.32 5.05 3/1.22 50 122.96 3.50
Depots 22 21 34.55 22.32 3/1.74 11 104.55 121.24
Driver 20 16 28.21 2.76 3/1.31 14 26.86 0.30
Elevators 30 27 55.00 13.90 2/2.00 16 101.50 210.50
Freecell 20 19 47.50 7.53 2/1.62 17 62.88 68.25
Grid 5 5 36.00 22.66 3/2.12 3 195.67 320.65
OpenStacksIPC6 30 26 29.43 108.27 4/1.48 30 32.14 23.86
ParcPrinter 30 9 16.00 0.06 3/1.28 30 15.67 0.01
Parking 20 17 39.50 38.84 2/1.14 2 68.00 686.72
Pegsol 30 6 16.00 1.71 4/1.09 30 16.17 0.06
Pipes-NonTan 50 45 26.36 3.23 3/1.62 25 113.84 68.42
Rovers 40 27 38.47 108.59 2/1.39 20 67.63 148.34
Sokoban 30 3 80.67 7.83 3/2.58 23 166.67 14.30
Storage 30 25 12.62 0.06 2/1.48 16 29.56 8.52
Tidybot 20 7 42.00 532.27 3/1.81 16 70.29 184.77
Transport 30 21 54.53 94.61 2/2.00 17 70.82 70.05
Visitall 20 19 199.00 0.91 1/1.00 3 2485.00 174.87
Woodworking 30 30 21.50 6.26 2/1.07 12 42.50 81.02
...

Summary 1150 819 44.4 55.01 2.5/1.6 789 137.0 91.05
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Width and Structure in Planning

Notion of width doesn’t explain why planners do well in most benchmarks, but it
suggests that most benchmarks are ‘easy’ because:

• The domains have a low width when the goals are single atoms, and

• Conjunctive goals are easy to serialize in these domains

If you want ‘hard’ problems, then look for

• Domains that have high width for single atomic goals, or

• Domains with conjunctive goals are that are not easy to serialize

Few benchmarks appear to have high width (Hanoi), although some are not easy to
serialize (e.g., Sokoban)
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Classical Planning as SAT and Variations
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SAT and SAT Solvers

• SAT is the problem of determining whether a set of clauses or CNF formula is
satisfiable

• A clause is disjunction of literals where a literal is a propositional symbol or its
negation

x ∨ ¬y ∨ z ∨ ¬w

• Many problems can be mapped into SAT such as Planning, Scheduling, CSPs,
Verification problems etc.

• SAT is an intractable problem (exponential in the worst case unless P=NP) yet
very large SAT problems can be solved in practice

• Best SAT algorithms not based on either pure case analysis (model theory) or
resolution (proof theory), but combination of both
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Davis and Putnam Procedure for SAT

• DP (DPLL) is a sound and complete proof procedure for SAT that uses resolution
in a restricted form called unit resolution, in which one parent clause must be
unit clause

• Unit resolution is very efficient (poly-time) but not complete (Example: q ∨ p,
¬q ∨ p, q ∨ ¬p, ¬q ∨ ¬p)

• When unit resolution gets stuck, DP picks undetermined Var, and splits the
problem in two: one where Var is true, the other where it is false (case analysis)

DP(clauses)

Unit-resolution(clauses)

if Contradiction, Return False

else if all VARS determined, Return True

* else pick non-determined VAR, and

Return DP(clauses + VAR) OR DP(clauses + NEG VAR)

Currently very large SAT problems can be solved. Criterion for var selection is
critical, as learning from conflicts (not shown).
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Planning as SAT

• Maps planning problem P = 〈F,O, I,G〉 with horizon n into a set of clauses
C(P, n), solved by SAT solver (satz,chaff,. . . ).

• Theory C(P, n) includes vars p0, p1, . . . , pn and a0, a1, . . . , an−1 for each p ∈ F
and a ∈ O

• C(P, n) satisfiable iff there is a plan with length bounded by n

• Such a plan can be read from truth valuation that satisfies C(P, n).
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Theory C(P, n) for Problem P = 〈F,O, I,G〉

• Init: p0 for p ∈ I, ¬q0 for q ∈ F and q 6∈ I
• Goal: pn for p ∈ G
• Actions: For i = 0, 1, . . . , n− 1, and each action a ∈ O

ai ⊃ pi for p ∈ Prec(a)

ai ⊃ pi+1 for each p ∈ Add(a)

ai ⊃ ¬pi+1 for each p ∈ Del(a)

• Persistence: For i = 0, . . . , n − 1, and each atom p ∈ F , where where O(p+) and O(p−)

stand for the actions that add and delete p resp.
pi ∧ ∧a∈O(p−)¬ai ⊃ pi+1

¬pi ∧ ∧a∈O(p+)¬ai ⊃ ¬pi+1

• Seriality: For each i = 0, . . . , n− 1, if a 6= a′, ¬(ai ∧ a′i)

– This encoding is pretty simple doesn’t work too well

– Alternative encodings used: parallelism (no seriality), NO-OPs, lower bounds, . . .

– Best current SAT planners are very good
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Other methods in classical planning

• Regression Planning

• Graphplan

• Partial Order Causal Link (POCL) Planning

Hector Geffner, Planning Course, Master IIS, UPF, 10-12/2014 84



Regression Planning

Search backward from goal rather than forward from initial state:

• initial state σ0 is G

• a applicable in σ if Add(a) ∩ σ 6= ∅ and Del(a) ∩ σ = ∅
• resulting state is σa = σ − Add(a) + Prec(a)

• terminal states σ if σ ⊆ I

Advantages/Problems:

+ Heuristic h(σ) for any σ can be computed by simple aggregation (max,sum, . . . )
of estimates g(p, s0) for p ∈ σ computed only once from s0

- Spurious states σ not reachable from s0 often generated (e.g., where a block is
on two blocks at the same time). A good h should make h(σ) =∞ . . .
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Variation: Parallel Regression Search

Search backward from goal assuming that non-mutex actions can be done in
parallel

• The regression search is similar, except that sets of non-mutex actions A allowed:
Add(A) = ∪a∈AAdd(a), Del(A) = ∪a∈ADel(a), Prec(A) = ∪a∈APrec(a).

• Resulting state from regression is σA = σ −Add(A) + Prec(a)

Advantages/Problems:

+ Sometimes easier to compute optimal parallel plans than optimal serial plans

+ Some heuristics provide tighter estimates of parallel cost than serial cost (e.g.,
h = h1)

- Branching factor in parallel search (either forward or backward) can be very
large (2n if n applicable actions).
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Parallel Regression Search with NO-OPs

• Assumes ‘dummy’ operator NO-OP(p) for each p with Prec = Add = {p} and
Del = ∅

• A set of non-mutex actions A (possibly including NO-OPs) applicable in σ if
σ ⊆ Add(A) and Del(A) ∩ σ = ∅

• Resulting state is σ = Prec(A)

• Starting state σ0 = G and terminal states σ ⊆ I

Advantages/Problems:

- More actions to deal with

+ Enables certain compilation techniques as in Graphplan . . .
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Graphplan (Blum & Furst): First Version

• Graphplan does an IDA* parallel regression search with NO-OPs over planning
graph containing propositional and action layers Pi and Ai, i = 0, . . . , n

• P0 contains the atoms true in I

• Ai contains the actions whose precs are true in Pi
• Pi+1 contains the positive effects of the actions in Ai

• planning graph built til layer Pn where G appears, then search for plans with
horizon n− 1 invoked with Solve(G,n) where

• Solve(G, 0) succeds if G ⊆ I and fails otherwise, and

• Solve(G,n) mapped into Solve(Prec(A), n − 1), where A is a set of non-mutex
actions in layer in An−1 that covers G, i.e., G ⊆ Add(A).

• If search fails, n increased by 1, and process is repeated
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Graphplan: Real version

• The IDA* search is implicit; heuristic h(σ) encoded in planning graph as index
of first layer Pi that contains σ

• This heuristic, as defined above, corresponds to the hmax = h1 heuristic;
Graphplan actually uses a more powerful admissible heuristic akin to h2 . . .

• Basic idea: extend mutex relations to pairs of actions and propositions in each
layer i > 0 as follows:

• p and q mutex in Pi if p and q are in Pi and the actions in Ai−1 that support p and q are

mutex in Ai−1;

• a and a′ mutex in Ai if a and a′ are in Ai, and they are mutex or Prec(a) ∪ Prec(a′)
contains a mutex in Pi

• The index of first layer in planning graph that contains a set of atoms P or
actions A without a mutex, is a lower bound

• Thus, search can be started at level in which G appears without a mutex, and
Solve(P, i) needs to consider only sets of actions A in Ai−1 that do not contain
a mutex.
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Partial Order Planning: Regression + Decomposition. Intuition

1. recursively decompose regression with goal p1, . . . , pn into n regressions with
goals pi, i = 1, . . . , n;

2. combine resulting plans so that they do not interfere with each other

E.g.: let G = {p, q}, I = {r}, and two actions

a1: Prec(a1) = {r}, Add(a1) = {p}, Del(a1) = {r}

a2: Prec(a2) = {r}, Add(a2) = {q}, Del(a2) = {}

– P1 = {a1} is a plan for p, and P2 = {a2} a plan for q

– Yet a1 in P1 deletes a precondition of a2

– This ‘threat’ can be solved by forcing a1 after a2, i.e., a2 ≺ a1.

Partial Order Causal Link planning is a formulation of POP that pursues 1 and 2
concurrently
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Partial Plans and Causal Links

A partial plan P in POCL is a triple (Steps,O, CLs) where

– Steps is a set of actions ai

– O is a set of precedence constraints ai ≺ aj

– CLs is a set of causal links (a1, p, a2) meaning that that precondition p of a2
is achieved by action a1

• POCL extends partial plans til they become complete (to be defined)

• States σ in the search are partial plans

• Initial state (partial plan) is P0 = ({Start, End}, {Start ≺ End}, {}), where
Start and End are actions that summarize I and G: Add(Start) = I,
Prec(End) = G
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POCL Planning Algorithm

• A partial plan P = (Steps,O, CLs) is complete when ordering O is consistent
and there is no flaw of the form:

. unsupported precondition: a precond p ∈ Prec(a) for a ∈ Steps s.t. no
CL (a′, p, a) in CLs

. threatened causal link: a CL (a′, p, a) for b ∈ Steps s.t. p ∈ Del(b) and
a′ ≺ b ≺ a is consistent with O

• POCL search starts with the plan P = P0 above, selecting a flaw in P , and
trying each one of the repairs:

. Flaw #1: fixed by selecting an action a′, p ∈ Add(a), and adding a′ to
Steps, a′ ≺ a to O, and (a′, p, a) to CLs

. Flaw #2: fixed by adding b ≺ a′ or a ≺ b to O

• The terminal states in search are the complete plans (solutions) or the incon-
sistent ones (dead ends)
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Status of POCL Planning

• POP/POCL dominated planning research for 10-15 years, until Graphplan

• Unlike other approaches, can work with action schemas

• In recent years lost favor to Graphplan/SAT/CSP/HSP

• Recent comeback combined with heuristics in RePOP and CPT

• Holds promise as branching scheme for temporal planning
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Beyond Classical Planning: Transformations
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AI Planning: Status

• The good news: classical planning works!

. Large problems solved very fast (non-optimally)

• Model simple but useful

. Operators not primitive; can be policies themselves

. Fast closed-loop replanning able to cope with uncertainty sometimes

• Not so good; limitations:

. Does not model Uncertainty (no probabilities)

. Does not deal with Incomplete Information (no sensing)

. Does not accommodate Preferences (simple cost structure)

. . . .
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Beyond Classical Planning: Two Strategies

• Top-down: Develop solver for more general class of models; e.g., Markov
Decision Processes (MDPs), Partial Observable MDPs (POMDPs), . . .

+: generality
−: complexity

• Bottom-up: Extend the scope of current ’classical’ solvers

+: efficiency
−: generality

• We’ll do both, starting with transformations for

. compiling soft goals away (planning with preferences)

. compiling uncertainty away (conformant planning)

. deriving finite state controllers

. doing plan recognition (as opposed to plan generation)

. dealing with temporally extended LTL goals
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Compilation of Soft Goals

• Planning with soft goals aimed at plans π that maximize utility

u(π) =
∑

p∈do(π,s0)

u(p) −
∑
a∈π

c(a)

• Actions have cost c(a), and soft goals utility u(p)

• Best plans achieve best tradeoff between action costs and utilities

• Model used in recent planning competitions; net-benefit track 2008 IPC

• Yet it turns that soft goals do not add expressive power, and can be compiled
away
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Compilation of Soft Goals (cont’d)

• For each soft goal p, create new hard goal p′ initially false, and two new
actions:

. collect(p) with precondition p, effect p′ and cost 0, and

. forgo(p) with an empty precondition, effect p′ and cost u(p)

• Plans π maximize u(π) iff minimize c(π) =
∑
a∈π c(a) in resulting problem

• Compilation yields better results that native soft goal planners in recent IPC

IPC6 Net-Benefit Track Compiled Problems

Domain Gamer HSP*
P Mips-XXL Gamer HSP*

F HSP*
0 Mips-XXL

crewplanning(30) 4 16 8 - 8 21 8
elevators (30) 11 5 4 18 8 8 3

openstacks (30) 7 5 2 6 4 6 1
pegsol (30) 24 0 23 22 26 14 22

transport (30) 12 12 9 - 15 15 9
woodworking (30) 13 11 9 - 23 22 7

total 71 49 55 84 86 50
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Incomplete Information: Conformant Planning

G
I

Problem: A robot must move from an uncertain I into G with certainty, one cell
at a time, in a grid nxn

• Problem very much like a classical planning problem except for uncertain I

• Plans, however, quite different: best conformant plan must move the robot
to a corner first (localization)
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Conformant Planning: Belief State Formulation

G
I

• call a set of possible states, a belief state

• actions then map a belief state b into a bel state ba = {s′ |s′ ∈ F (a, s) & s ∈ b}

• conformant problem becomes a path-finding problem in belief space

Problem: number of belief state is doubly exponential in number of variables.

– effective representation of belief states b

– effective heuristic h(b) for estimating cost in belief space

Recent alternative: translate into classical planning . . .
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Basic Translation: Move to the ’Knowledge Level’

Given conformant problem P = 〈F,O, I,G〉

• F stands for the fluents in P

• O for the operators with effects C → L

• I for the initial situation (clauses over F -literals)

• G for the goal situation (set of F -literals)

Define classical problem K0(P ) = 〈F ′, O′, I ′, G′〉 as

• F ′ = {KL,K¬L | L ∈ F}
• I ′ = {KL | clause L ∈ I}
• G′ = {KL | L ∈ G}
• O′ = O but preconds L replaced by KL, and effects C → L replaced by KC → KL

(supports) and ¬K¬C → ¬K¬L (cancellation)

K0(P ) is sound but incomplete: every classical plan that solves K0(P ) is a
conformant plan for P , but not vice versa.
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Key elements in Complete Translation KT,M(P )

• A set T of tags t: consistent sets of assumptions (literals) about the initial
situation I

I 6|= ¬t

• A set M of merges m: valid subsets of tags (= DNF)

I |=
∨
t∈m

t

• New (tagged) literals KL/t meaning that L is true if t true initially
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A More General Translation KT,M(P )

Given conformant problem P = 〈F,O, I,G〉

• F stands for the fluents in P

• O for the operators with effects C → L

• I for the initial situation (clauses over F -literals)

• G for the goal situation (set of F -literals)

define classical problem KT,M(P ) = 〈F ′, O′, I ′, G′〉 as

• F ′ = {KL/t , K¬L/t | L ∈ F and t ∈ T}
• I ′ = {KL/t | if I |= t ⊃ L}
• G′ = {KL | L ∈ G}
• O′ = O but preconds L replaced by KL, and effects C → L replaced by KC/t → KL/t

(supports) and ¬K¬C/t→ ¬K¬L/t (cancellation), and new merge actions∧
t∈m,m∈M

KL/t → KL

The two parameters T and M are the set of tags (assumptions) and the set of merges (valid sets

of assumptions) . . .
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Compiling Uncertainty Away: Properties

• General translation scheme KT,M(P ) is always sound, and for suitable choice of
the sets of tags and merges, it is complete.

• KS0(P ) is complete instance of KT,M(P ) obtained by setting T to the set of
possible initial states of P

• Ki(P ) is a polynomial instance of KT,M(P ) that is complete for problems
with conformant width bounded by i.

. Merges for each L in Ki(P ) chosen to satisfy i clauses in I relevant to L

• The conformant width of most benchmarks bounded and equal 1!

• This means that such problems can be solved with a classical planner after a
polynomial translation
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Planning with Sensing: Models and Solutions

Problem: Starting in one of two leftmost cells, get to B; A & B observable

A B

• Contingent Planning

. A contingent plan is a tree of possible executions, all leading to the goal

. A contingent plan for the problem: R(ight), R,R, if ¬B then R

• POMDP planning

. A POMDP policy is mapping of belief states to actions, leading to goal

. A POMDP policy for problem: If Bel 6= B, then R (25 − 1 Bel’s)

I’ll focus on different solution form: finite state controllers
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Finite State Controllers: Example 1

• Starting in A, move to B and back to A; marks A and B observable.

A B

• This finite-state controller solves the problem

q0

A/Right
-/Right

q1
B/Left

-/Left

• FSC is compact and general: can add noise, vary distance, etc.

• Heavily used in practice, e.g. video-games and robotics, but written by hand

• The Challenge: How to get these controllers automatically
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Finite State Controllers: Example 2

• Problem P : find green block using visual-marker (circle) that can move around
one cell at a time

• Observables: Whether cell marked contains a green block (G), non-green block
(B), or neither (C); and whether on table (T) or not (–)

q0

TB/Up
-B/Up

TC/Right

q1
-C/Down

TB/Right

-B/Down

• Controller on the right solves the problem, and not only that, it’s compact and
general: it applies to any number of blocks and any configuration!

• Controller obtained by running a classical planner over transformed problem
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Deriving finite state controller from a conformant/classical plan

• Finite state controller C is a set of tuples t = 〈q, o, a, q′〉

tuple t = 〈q, o, a, q′〉, depicted q
o/a→ q′, tells to do action a

when o is observed in controller state q and then to switch to q′

• FSC C solves P if all state trajectories compatible with P and C reach the goal

• Transformation maps partially observable P into conformant PN for deriving
controller with up to N states

• Conformant problem PN contains action at for each possible tuple t = 〈q, o, a, q′〉

• Action at in PN behaves like action a in P but conditional on q and o being
true, and then setting q′ true. Also, at excludes action at′ from plans if
t = 〈q, o, a, q′〉 6= t′ = 〈q, o, a′, q′′〉

• The actions at in the plan for PN encode a controller that solves P
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Plan Recognition

S

A B C

D

F EH

J

• Agent can move one unit in the four directions

• Possible targets are A, B, C, . . .

• Starting in S, he is observed to move up twice

• Where is he going? Why?
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Example (cont’d)

S

A B C

D

F EH

J

• From Bayes, goal posterior is P (G|O) = αP (O|G)P (G), G ∈ G

• If priors P (G) given for each goal in G, the question is what is P (O|G)?

• P (O|G) measures how well goal G predicts observed actions O

• In classical setting,

. G predicts O best when need to get off the way not to comply with O

. G predicts O worst when need to get off the way to comply with O
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Posterior Probabilities from Plan Costs

• From Bayes, goal posterior is P (G|O) = αP (O|G)P (G),

• If priors P (G) given, set P (O|G) to

function(c(G+O) − c(G+O))

. c(G+O): cost of achieving G while complying with O

. c(G+O): cost of achieving G while not complying with O

– Costs c(G + O) and c(G + O) computed by classical planner on transformed
problem where complying and not complying with O translated into normal
goals

– Function of cost difference set to sigmoid; follows from assuming P (O|G) and
P (O|G) are Boltzmann distributions P (O|G) = α′ exp{−β c(G,O)}

– Result is that posterior probabilities P (G|O) computed in 2|G| classical planner
calls, where G is the set of possible goals
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Illustration: Noisy Walk
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Graph on left shows ‘noisy walk’ and possible targets; curves on right show resulting
posterior probabilities P (G|O) of each possible target G as a function of time

Approach to plan recognition can be generalized to other models (MDPs, POMDPs);
the idea is that if you have a planner for a model, then you also have a plan
recognizer for that model given a pool of possible goals.
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Extended Temporal LTL Goals

• Classical planning concerned with synthesis of finite plans to achieve reachability
goals

• Temporally extended goals expressed in linear temporal logic (LTL) used to
encode restrictions over whole state trajectories that may require infinite plans

. e.g., monitor room A and room B forever: 2(3At(A) ∧3At(B))

• LTL extends propositional logic with unary temporal operators ◦, 3, and 2,
and binary temporal operator U .

. ◦ϕ says that ϕ holds at the next instant,

. 3ϕ says that ϕ will eventually hold,

. 2ϕ says that from current instant on ϕ will always hold, and

. ϕU ψ says that at some future instant ψ will hold and until then ϕ holds

• Question: How to plan to achieve/satisfy LTL goals (formulas)?
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Settings for Planning with Temporal Extended LTL Goals

• 1. Classical planning for reachability goals with finite plan that satisfies subclass
of LTL requirements

. most basic case; e.g., plans that don’t visit states where p ∧ q is true

• 2. Planning with deterministic actions and known initial situation for achieving
arbitrary LTL goals

. may require infinite ‘lasso plans

• 3. Planning with non-deterministic actions, fully observable states and
arbitrary LTL goals

. this is a more interesting case; e.g., controller for ‘artificial clerk’ in store

• 4. Planning with non-deterministic actions, partially observable states and
arbitrary LTL goals

. this is the most general case; it subsumes LTL controller synthesis which
is 2-EXPTIME Complete.
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Basic Case: Classical Planning with LTL constraints

• Problem: compute finite plan π = a0, . . . , an−1 for classical problem P =
〈F, I,O,G〉 s.t. resulting state sequence s0, . . . , sn satisfies LTL restriction ϕ.

• Approach: sequence π can be obtained as plan for a transformed classical
planning problem Pϕ obtained from P and LTL formula ϕ

• Intuition:

. The state trajectories that satisfy ϕ can be characterized as the inputs
accepted by an automata Aϕ

. The classical problem Pϕ is the compact representation of the product of
two automata: the automata implicitly encoded by P and the automata
Aϕ implicitly encoded by ϕ

• Extensions: Similar ideas have been used to address problems 2 and 3 in
previous slide. Positive empirical results of planning approach in relation to
symbolic methods used in formal verification and synthesis.

Hector Geffner, Planning Course, Master IIS, UPF, 10-12/2014 115



Summary: Transformations

• Classical Planning solved as path-finding in state state

. Most used techniques are heuristic search and SAT

• Beyond classical planning: two approaches

. Top-down: solvers for richer models like MDPs and POMDPs

. Bottom-up: compile non-classical features away

• We have follow second approach with transformations to eliminate

. soft goals when planning with preferences

. uncertainty in conformant planning)

. sensing for deriving finite-state controllers

. observations for plan recognition

. extended temporal LTL goals

• Other transformations used for dealing with control knowledge, plan libraries,
fault tolerant planning, etc.
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MDP & POMDP Planning
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Models, Languages, and Solvers (Review)

• A planner is a solver over a class of models; it takes a model description, and
computes the corresponding controller

Model Instance =⇒ Planner =⇒ Controller

• Many models, many solution forms: uncertainty, feedback, costs, . . .

• Models described in suitable planning languages (Strips, PDDL, PPDDL, . . . )
where states represent interpretations over the language.
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Planning with Markov Decision Processes: Goal MDPs

MDPs are fully observable, probabilistic state models:

• a state space S

• initial state s0 ∈ S

• a set G ⊆ S of goal states

• actions A(s) ⊆ A applicable in each state s ∈ S

• transition probabilities Pa(s′|s) for s ∈ S and a ∈ A(s)

• action costs c(a, s) > 0

– Solutions are functions (policies) mapping states into actions

– Optimal solutions minimize expected cost from s0 to goal

Hector Geffner, Planning Course, Master IIS, UPF, 10-12/2014 119



Discounted Reward Markov Decision Processes

Another common formulation of MDPs . . .

• a state space S

• initial state s0 ∈ S

• actions A(s) ⊆ A applicable in each state s ∈ S

• transition probabilities Pa(s
′|s) for s ∈ S and a ∈ A(s)

• rewards r(a, s) positive or negative

• a discount factor 0 < γ < 1 ; there is no goal

– Solutions are functions (policies) mapping states into actions

– Optimal solutions max expected discounted accumulated reward from s0
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Expected Cost/Reward of Policy (MDPs)

• In Goal MDPs, expected cost of policy π starting in s, denoted as V π(s), is

V π(s) = Eπ[
∑
si

c(ai, si) | s0 = s, ai = π(si) ]

where expectation is weighted sum of cost of possible state trajectories times
their probability given π

• In Discounted Reward MDPs, expected discounted reward from s is

V π(s) = Eπ[
∑
si

γi r(ai, si) | s0 = s, ai = π(si)]

• In both cases, optimal value function V ∗ expresses V π for best π
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Solving MDPs: Assumptions, Generality

Conditions that ensure existence of optimal policies and correctness (convergence)
of some of the methods we’ll see:

• For discounted MDPs, 0 < γ < 1, none needed as everything is bounded; e.g.
discounted cumulative reward no greater than C/1− γ, if r(a, s) ≤ C for all a, s

• For goal MDPs, absence of dead-ends assumed so that V ∗(s) 6=∞ for all s

Discounted MDPs easy to convert into Goal MDPs; no similar transformation
known in the opposite direction
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Basic Dynamic Programming Methods: Value Iteration (1)

• Greedy policy πV for V = V ∗ is optimal:

πV (s) = arg mina∈A(s)[c(s, a) +
∑
s′∈S

Pa(s
′|s)V (s′)]

• Optimal V ∗ is unique solution to Bellman’s optimality equation for MDPs

V (s) = min
a∈A(s)

[c(s, a) +
∑
s′∈S

Pa(s
′|s)V (s′)]

where V (s) = 0 for goal states s

• For discounted reward MDPs, Bellman equation is

V (s) = max
a∈A(s)

[r(s, a) + γ
∑
s′∈S

Pa(s
′|s)V (s′)]
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Basic DP Methods: Value Iteration (2)

• Value Iteration finds V ∗ solving Bellman eq. by iterative procedure:

. Set V0 to arbitrary value function; e.g., V0(s) = 0 for all s

. Set Vi+1 to result of Bellman’s right hand side using Vi in place of V :

Vi+1(s) := min
a∈A(s)

[c(s, a) +
∑
s′∈S

Pa(s
′|s)Vi(s′)]

• Vi 7→ V ∗ as i 7→ ∞

• V0(s) must be initialized to 0 for all goal states s
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(Parallel) Value Iteration and Asynchronous Value Iteration

• Value Iteration (VI) converges to optimal value function V ∗ asympotically

• Bellman eq. for discounted reward MDPs similar, but with max instead of min,
and sum multiplied by γ

• In practice, VI stopped when residual R = maxs |Vi+1(s)−Vi(s)| is small enough

• Resulting greedy policy πV has loss bounded by 2γR/1− γ

• Asynchronous Value Iteration is asynchronous version of VI, where states
updated in any order

• Asynchronous VI also converges to V ∗ when all states updated infinitely often;
it can be implemented with single V vector
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Method 2: Policy Iteration

• Expected cost of policy π from s to goal, V π(s), is weighted avg of cost of
state trajectories τ : s0, s1, . . . , times their probability given π

• Trajectory cost is
∑
i=0,∞ cost(π(si), si) and probability

∏
i=0,∞Pπ(si)(si+1|si)

• Expected costs V π(s) can also be characterized as solution to Bellman equation

V π(s) = c(a, s) +
∑
s′∈S

Pa(s
′|s)V π(s′)

where a = π(s), and V π(s) = 0 for goal states

• This set of linear equations can be solved analytically, or by VI-like procedure

• Optimal expected cost V ∗(s) is minπ V
π(s) and optimal policy is the arg min

• For discounted reward MDPs, all similar but with r(s, a) instead of c(a, s), max
instead of min, and sum discounted by γ
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Policy Iteration (cont’d)

• Let Qπ(a, s) be expected cost from s when doing a first and then π

Qπ(a, s) = c(a, s) +
∑
s′∈S

Pa(s
′|s)V π(s′)

• When Qπ(a, s) < Qπ(π(s), s), π strictly improved by changing π(s) to a

• Policy Iteration (PI) computes π∗ by seq. of evaluations and improvements

1. Starting with arbitrary (proper) policy π

2. Compute V π(s) for all s (evaluation)

3. Improve π by setting π(s) to a if Qπ(a, s) < Q(π(s), s) for a = arg mina∈A(s)Q
π(a, s)

(improvement)

4. If π changed in 3, go back to 2, else finish

• PI finishes with π∗ after finite number of iterations, as # of policies is finite
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Dynamic Programming: The Curse of Dimensionality

• VI and PI are exhaustive methods that need value vectors V of size |S|

• Linear programming can also be used to get V ∗ but O(|A||S|) constraints:

max
V

∑
s

V (s) subject to V (s) ≤ c(a, s) +
∑
s′
Pa(s

′|s)V (s
′
) for all a, s

with V (s) = 0 for goal states

• MDP problem is thus polynomial in S but exponential in # vars

• Moreover, this is not worst case; vectors of size |S| needed to get started!

Question: Can we do better?
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Dynamic Programming and Heuristic Search

• Heuristic search algorithms like A* and IDA* manage to solve optimally
problems with more than 1020 states, like Rubik’s Cube and the 15-puzzle

• For this, admissible heuristics (lower bounds) used to focus/prune search

• Can admissible heuristics be used for focusing updates in DP methods?

• Often states reachable with optimal policy from s0 much smaller than S

• Then convergence to V ∗ over all s not needed for optimality from s0

Theorem 1. If V is an admissible value function s.t. the residuals over the
states reachable with πV from s0 are all zero, then πV is an optimal policy from
s0 (i.e. it minimizes V π(s0))
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Learning Real Time A* (LRTA*) Revisited

1. Evaluate each action a in s as: Q(a, s) = c(a, s) + V (s′)

2. Apply action a that minimizes Q(a, s)

3. Update V (s) to Q(a, s)

4. Exit if s′ is goal, else go to 1 with s := s′

• LRTA* can be seen as asynchronous value iteration algorithm for deterministic
actions that takes advantage of theorem above (i.e. updates = DP updates)

• Convergence of LRTA* to V implies residuals along πV reachable states from
s0 are all zero

• Then 1) V = V ∗ along such states, 2) πV = π∗ from s0, but 3) V 6= V ∗ and
πV 6= π∗ over other states; yet this is irrelevant given s0
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Real Time Dynamic Programming (RTDP) for MDPs

RTDP is a generalization of LRTA* to MDPs due to (Barto et al 95); just adapt
Bellman equation used in the Eval step

1. Evaluate each action a applicable in s as

Q(a, s) = c(a, s) +
∑
s′∈S

Pa(s
′|s)V (s

′
)

2. Apply action a that minimizes Q(a, s)

3. Update V (s) to Q(a, s)

4. Observe resulting state s′

5. Exit if s′ is goal, else go to 1 with s := s′

Same properties as LRTA* but over MDPs: after repeated trials, greedy policy
eventually becomes optimal if V (s) initialized to admissible h(s)
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Find-and-Revise: A General DP + HS Scheme

• Let ResV (s) be residual for s given admissible value function V

• Optimal π for MDPs from s0 can be obtained for sufficiently small ε > 0:

1. Start with admissible V ; i.e. V ≤ V ∗
2. Repeat: find s reachable from πV & s0 with ResV (s) > ε, and Update it

3. Until no such states left

• V remains admissible (lower bound) after updates

• Number of iterations until convergence bounded by
∑
s∈S[V ∗(s)− V (s)]/ε

• Like in heuristic search, convergence achieved without visiting or updating
many of the states in S; LRTDP, LAO*, ILAO*, HDP, LDFS, etc. are algorithms
of this type
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Variations on RTDP : Reinforcement Learning

Q-learning is a model-free version of RTDP; Q-values initialized arbitrarily and
learned by experience

1. Apply action a that minimizes Q(a, s) with probability 1 − ε,
with probability ε, choose a randomly

2. Observe resulting state s′ and collect cost c

3. Update Q(a, s) to

(1− α)Q(a, s) + α[c+ minaQ(a, s′)]

4. Exit if s′ is goal, else with s := s′ go to 1

• Q-learning converges asympotically to optimal Q-values, when all actions and
states visited infinitely often

• Q-learning solves MDPs optimally without model parameters (probabilities, costs)
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Variations on RTDP : Reinforcement Learning (2)

More familiar Q-learning algorithm formulated for discounted reward MDPs:

1. Apply action a that maximizes Q(a, s) with probability 1 − ε,
with probability ε, choose a randomly

2. Observe resulting state s′ and collect reward r

3. Update Q(a, s) to

(1− α)Q(a, s) + α[r + γmaxaQ(a, s′)]

4. Exit if s′ is goal, else with s := s′ go to 1

• Q-values initialized arbitrarily

• This version solves discounted reward MDPs
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Model-based Reinforcement Learning (RMAX)

• Planning is model-based: it computes behavior from model

• Reinforcement learning (RL) is model-free: behavior from trial-and-error

• Model-based RL maps learning into a planning over optimistic model:

. final nirvana state sN that yields max reward R is added

. unknown transitions Pa(s
′|s) replaced by transition Pa(sN |s) = 1

. planning over optimistic model leads agent to unknown parts s, a of true
model

. statistics on rewards and transitions from s and a make these parts even-
tually known (with enough confidence)

. optimistic model becomes less optimistic and more accurate, incrementally,
converging eventually to true model
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Limitations of exact MDP planning and learning algorithms

• inference is at the level of states, not variables: can’t scale too well

• inference in the form of value updates: learning is slow

Can we do better?

We’ll look at approximate algorithms that exploit connections to classical plan-
ning in both on-line and off-line settings
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On-line MDP Planning by Classical Replanning

• Make deterministic relaxation (D-Relax); mapping diff outcomes into diff
actions

a : C → E1 p1 |E2 p2 | · · · |En pn 7→ ai : C → Ei , i = 1, . . . , n

• Solve D-Relax from current state with classical planner

• Follow classical plan until state observed that is not predicted by D-Relax

• Replan from that state using D-Relax, and repeat until goal found

This is simple and often effective but no formal guarantees (FF-Replan)
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Proper Policies for MDPs vs. Strong Cyclic Policies for FOND

• Policy π is proper from s0 in an MDP iff it leads to goal with probability 1

. e.g., hit nail until it gets into the wall

• Non-deterministic relaxation of MDP is a Fully Observable Non-
Deterministic (FOND) problem (probabilities dropped)

a : C → E1 p1 |E2 p2 | · · · |En pn 7→ a : C → E1 |E2 | · · · |En

• Theorem: π is proper for MDP iff π is strong cyclic for its FOND relaxation

• π is strong cyclic for FOND iff it leads to the goal assuming that dynamics is
fair, or more formally, iff for all s reachable from s0 and π, the goal is reachable
from s and π
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Strong, Weak, and Strong Cyclic Policies for FOND Problems

• Pesimistic and optimistic values V πmax and V πmin can be obtained for a = π(s)
from V πmax(s) = V πmin(s) = 0 for goal states s, and Bellman equations:

V πmax(s) = c(a, s) +MAXs′∈F (a,s)V
π
max(s

′)
V πmin(s) = c(a, s) +MINs′∈F (a,s)V

π
min(s′)

• π is a strong policy iff V πmax(s0) 6=∞

• π is a weak policy iff V πmin(s0) 6=∞

• Optimal strong and weak policies can be computed from V ∗max and V ∗min
obtained from Bellman eqs:

Vmax(s) = mina∈A(s)[c(a, s) +MAXs′∈F (a,s)Vmax(s
′)]

Vmin(s) = mina∈A(s)[c(a, s) +MINs′∈F (a,s)Vmin(s′)]
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Computing Strong Cyclic Policies – Exhaustive Method

• Thm: π is strong cyclic iff V πmin(s) 6=∞ for all s reachable from s0 and π

• Strong cyclic π can thus be computed by following loop:

. Compute V ∗min(s) for all s

. Prune: s′ and actions a ∈ A(s) such that s′ ∈ F (a, s) if V ∗min(s′) =∞

. Repeat 1 and 2 til no more pruning

. Terminate: Policy greedy in resulting V ∗min is strong cyclic from s0

. Caveat: If s0 is pruned, no strong cyclic policy from s0 exists
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Strong Cyclic Policies using Classical Planners

• Idea: V ∗min(s) 6= ∞ in FOND problem P amounts to existence of classical
plan from s in deterministic relaxation of FOND. This suggests computing
strong cyclic policies for FOND using classical planners

• Consider state-plan (SP) pairs 〈S,Σ〉 where S is subset of states S and members
σ(s) of Σ are plans mapping a state s ∈ S into goal in DET-relaxation. Pair
〈S,Σ〉 is

. complete if Σ contains one plan σ(s) for each s ∈ S

. consistent if all plans σ(s) in Σ that pass through a state s′ apply same action in s′,

denoted π(s′)

. closed if s0 ∈ S and all states s generated by plans in Σ are in S

• Theorem: Policy π defined by complete state-plan pairs that are consistent and
closed is strong cyclic for FOND problem.

• Corollary: compute π incrementally with classical planner, starting with
〈S0 = {s0},Σ0 = {}〉, by making pair complete and closed, while keeping it
consistent. 1) Procedure may have to backtrack; 2) Classical planner extended
to avoid nogood actions and states
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Relaxations of MDPs for Action Selection

• FOND relaxation for

. computing proper policies as strong cyclic policies

• DET relaxation for

. computing strong cyclic policies using classical planners

. goal-driven action selection in MDPs by classical replanning

We move to new relaxation/model, finite horizon MDPs/FOND/Game Trees,
for on-line action selection
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Finite horizon relaxation of MDPs, FOND, Game Trees

• states s become pairs (s, d) where d is number of steps to go, d ∈ [0, . . . ,H]

• initial state becomes (s,H) where s is current state and H is given horizon

• terminal states (s, d) such that s is goal state or d = 0

• value of terminal states s, d, VT (s, d) available (as in Chess)

• state transitions as in original problem but decrement steps-to-go d

• action costs or rewards can be arbitrary (including zero in Game Trees)

Idea: Select action a in current state s such that a is best in s relative to finite-
horizon relaxation. Solution to finite-horizon problem yields form of lookahead
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Solving Finite-Horizon Problem Exhaustively

• Optimal value function V ∗(s, d) can be computed backward from terminal
states where V ∗(s, d) = VT (s, d)

MDPs: V ∗(s, d) = mina∈A(s)[c(a, s) +
∑

s′∈S Pa(s
′|s)V ∗(s′, d− 1)]

FONDs: V ∗(s, d) = mina∈A(s)[c(a, s) +MAXs′∈F (a,s)V
∗(s′, d− 1)]

Game Trees: V ∗(s, d) = mina∈A(s)[MAXs′∈F (a,s)V
∗(s′, d− 1)]

• Procedure called backward induction (minimax search for GTs); implemented
by depth-first search of AND/OR graph (Game Tree) associated with finite-
horizon MDP, FOND or Game

• This is single iteration of Value Iteration; sufficient when MDP/FOND is
acyclic and updates ordered back from leaves

• Still exponential in horizon H . . .
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Heuristic and Monte Carlo Tree Search for Solving
Finite-Horizon Problem

Acyclic AND/OR graph can be solved in other ways:

• Heuristic Search

. AO* is generalization of A* for AND/OR graphs

• Game Tree Search

. Alpha-Beta pruning improves minimax with lower and upper bounds

• Monte Carlo Tree Search (MCTS)

. UCT (Upper Bound Confidence for Trees) generalizes algorithm UCB for
multi-arm bandits to trees
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Two Player Games: Game Tree Search

• Heuristic search and planning concerned with action selection in problems where
initial state is given and changes follow from actions of single agent

• How to plan for a goal in the presence of other agents?

• It depends on what the other agents want

. The other agents may be there to help (cooperative agents)

. The other agents may be there to hinder (adversarial agents)

. The other agents may be there for their own goals (not necessarily
cooperative or adversarial)

• Game Trees provide model for 2-player, adversarial, sequential games

• Yet, most interactions in life are not adversarial. We will come back to them
later.
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Game Trees

Games trees suitable for adversarial (zero-sum) games like tic-tac-toe, checkers,
chess, etc. They are made up of three components:

• Three types of nodes

. Max Nodes: represent options for Max-Player

. Min Nodes: represent options for the other player, called Min

. Terminal Nodes: represent final outcomes, no options

• Structure

. Root node is either MAX or MIN (we assume MAX, and values from MAX’s perspective)

. Children of MAX nodes are MIN nodes or Terminal nodes

. Children of MIN nodes are MAX nodes or Terminal nodes

. Terminal nodes, and only them, have no children

• Evaluation function

. Values or payoffs associated with terminal nodes
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Game Tree – Example

What should MAX player do in this game?

• MAX player has three options: left, middle, right

• What’s the Minimum payoff that MAX player can ensure for each move?

• What should MIN player do if games reaches b, c, or d?
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Game Trees – Another Example

• What should MAX player do initially in this game?

• What’s the minimum payoff that he can ensure for each of the possible initial moves?

• What’s the minimum payoff that he can ensure at the root of the game?
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Game Trees – Fragment of Tic-Tac-Toe

Max Player

Min Player

Max Player

Terminal

• What should MAX player (crosses) do in given situation (root)?

• Terminal nodes represent final situations (wins, losses, ties for MAX)

• Value for win, loss, and tie set to +1, 0, −1.
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Minimax (and Maximin) Algorithm for Game Trees

• Game tree evaluated bottom up:

. Value of Terminal Nodes is given value of terminal

. Value of Min Node is Minimum value of its childrenn

. Value of Max Node is Maximum value of its children

• Value of Root node is value that MAX can guarantee

• Best initial action is the one that leads to child with that value

– This can be all computed by means of a Depth-first Search

– Algorithm called then Maximin, if root is MAX, or Minimax if MIN

– Time complexity is O(bd) where d is number of levels (depth) and b is branching
factor (avg number of moves per node)

– Space complexity of these algorithms is O(b · d)
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Using and Improving Minimax over Huge Game Trees

• Minimax algorithms explore complete game tree

• This is possible in Tic-tac-toe but not in Chess or Checkers

• In those cases, a depth d is set, and nodes at such depth treated as terminal

• Best first move in resulting tree executed, and process is repeated after
opponent move

• Evaluation function that sets values of such (non-final) terminals designed by
hand or learned

• E.g., Value of chess board can reflect aspects such as piece advantage, control
of center, etc.

• Quality of play depends on depth d used and evaluation function for terminals

• Good checkers and chess playing programs incoporate extensions for using non-
uniform depths and searching tree non-exhaustively
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Minimax with Alpha-Beta Pruning

• Depth-first search for evaluating game tree can be improved substantially in
performance

• Two observations:

. When some of the children of a MAX node have been evaluated, there is
a lower bound α on how much MAX can get, even if the other children
have not been evaluated yet

. When some of the children of a MIN node have been evaluated, there is in
turn an upper bound β on how much MAX can get, if the other children
have not been evaluated yet

• Two optimizations that return same value and same moves:

. Skip rest of MIN children in depth-first search when β ≤ α (β cut-off)

. Skip rest of MAX children in depth-first search when β ≤ α (α cut-off)

• In practice, Alpha-Beta pruning makes O(bd) search in O(bd/2) time, meaning
quality given by depth d but time as if depth was d/2.
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Pseudo-Code Maximin with Alpha-Beta Pruning

function alphabeta(node, depth, alpha, beta, maximizingPlayer)

if depth = 0 or node is a terminal node

return value of node

if maximizingPlayer

for each child of node

alpha := max(alpha, alphabeta(child, depth - 1, alpha, beta, FALSE))

if beta <= alpha

break (* beta cut-off *)

return alpha

else

for each child of node

beta := min(beta, alphabeta(child, depth - 1, alpha, beta, TRUE))

if beta <= alpha

break (* alpha cut-off *)

return beta

(* Initial call *)

alphabeta(origin, depth, -infinity, +infinity, TRUE)
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Example Alpha-Beta Pruning

• Game tree with alpha cut-offs shown

• Depth-first search assumed from left to right (leftmost child evaluated always first, etc)

• Pruned parts of the tree can be skipped without affecting value or best action at root
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AO* for Acyclic AND/OR Graphs

• Acyclic AND/OR graph M to be solved is implicit

• AO* makes part of M explicit incrementally

• For this, AO* maintains explicit graph G that initially contains root node only

• G is expanded incrementally by selecting tip node in best solution graph of
G that is not terminal in M , and expanding it in G

• The value of such tip nodes given by heuristic function, until they are expanded
when their value is function of their children

• AO* terminates when best solution graph of G contains no such tips

• Upon termination, best solution graph of G is optimal if heuristic is admissible
(lower bound of V ∗)
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AO* Code for Finite-Horizon MDPs

AO*: G is explicit graph, initially empty; h is heuristic function.

Initialization

• Insert node (s,H) in G where s is the initial state

• Initialize V (s,H) := h(s,H)

• Initialize best partial graph to G

Loop

• Select non-terminal tip (s, d) in best partial graph. If no such node, Exit.

• Expand node (s, d): for each a ∈ A(s), add node (a, s, d) as child of (s, d), and for each s′

with Pa(s
′|s) > 0, add node (s′, d − 1) as child of (a, s, d). Initialize values V (s′, d − 1)

for new nodes (s′, d− 1) to VT (s′, d− 1) if terminal, else to h(s′, d− 1)

• Update ancestor AND and OR nodes of (s, d) in G, bottom-up as:

Q(a, s, d) := c(a, s) +
∑

s′ Pa(s
′|s)V (s′, d− 1),

V (s, d) := mina∈A(s)Q(a, s, d).

• Revise best partial graph by updating best actions in ancestor OR-nodes (s, d) to any action

a such that V (s, d) = Q(a, s, d), maintaining marked action if still best.
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AO* Limitations and Variations

• AO* is not optimal if graph is not acyclic or heuristic not admissible

• For general MDPs and FONDs, backward induction step in AO* needs to be
replaced by full value iteration. This is expensive (LAO*)

• A* is anytime optimal even without an admissible heuristic, if A* not stopped
after first solution found

• Same trick does not work for AO*

• For AO* being anytime optimal, AO* needs to select nodes that are not part
of best solution graph (exploitation/exploration tradeoff; AOT)

• Common source of non-admissible heuristics from use of base policies π0 to
initialize values by means of rollouts: simulation of the base policy
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UCT for Finite-Horizon Problems and Relaxations

• UCT is instance of Monte-Carlo Tree Search (MCTS) algorithms where best
action selected from Q(a, s) values computed by

. running simulations (actual model not required)

. averaging resulting values

. using these values for action selection in simulations (adaptive Monte-
Carlo)

• In practice, UCT not used with heuristic functions but base policies

• UCT made big splash in game of Go and many other games and tasks

• Like AO*, UCT builds explicit graph G incrementally starting with root node
only, but in a different way . . .
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UCT from the perspective of AO*: Four differences

• Selection of tip node to expand in G follows simulation from root: first state
generated that is not in G, is added

• Value of new nodes obtained from rollout: simulation of base policy from node

• Propagation of values up the graph G following Monte Carlo updates as
opposed to Bellman updates

• Choice of action in simulations inside graph G not greedy in Q(a, s) but greedy
in Q(a, s) extended with exploration bonus as:

Q(a, s) + C
√

2 logN(s, d)/N(a, s, d)

where C is exploration constant, and N(s, d) and N(a, s, d) track number of
simulations that pass through (s, d) and (s, d, a)

• Exploration bonus ensures that all actions tried in all states infinitely often at
rates that optimize regret in multi-arm setting.
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UCT Code for Finite-Horizon Discounted Reward MDPs

UCT(s, d): G is explicit graph, initially empty; π is base policy; C is exploration constant.

• If d = 0 or s is terminal, Return VT (s, d)

• If node (s, d) is not in explicit graph G, then

. Add node (s, d) to explicit graph G

. Initialize N(s, d) := 0 and N(a, s, d) := 0 for all a ∈ A(s)

. Initialize Q(a, s, d) := 0 for all a ∈ A(s)

. Obtain sampled accumulated discounted reward r(π, s, d)

by simulating base policy π for d steps starting at s

. Return r(π, s, d)

• If node (s, d) is in explicit graph G,

. Select action a = argmaxa∈A(s)[Q(a, s, d) + C
√

2 logN(s, d)/N(a, s, d)]

. Sample state s′ with probability Pa(s
′|s)

. Let nv = r(s, a) + γUCT(s′, d− 1)

. Increment N(s, d) and N(a, s, d)

. Set Q(a, s, d) := Q(a, s, d) + [nv −Q(a, s, d)]/N(a, s, d)

. Return nv
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Summary MDPs and Related Fully Observable Models

• DP methods like VI and PI are optimal but exhaustive

• Heuristic search methods like RTDP, LAO*, and Find-and-Revise can be
optimal without being exhaustive

• Relaxations:

. FOND relax for computing proper policies

. DET relax for computing strong cyclic policies and greedy actions

. Finite-Horizon relaxation for on-line action selection

• Solutions to finite-horizon problems:

. Exhaustive backward induction, minimax search, ...

. Heuristic search AO* and variations

. Monte-Carlo methods: UCT, RTDP, ..

Hector Geffner, Planning Course, Master IIS, UPF, 10-12/2014 162



Partially Observable MDPs: Goal POMDPs

POMDPs are partially observable, probabilistic state models:

• states s ∈ S

• actions A(s) ⊆ A

• transition probabilities Pa(s
′|s) for s ∈ S and a ∈ A(s)

• initial belief state b0

• set of observable target states SG

• action costs c(a, s) > 0

• sensor model given by probabilities Pa(o|s), o ∈ Obs

– Belief states are probability distributions over S

– Solutions are policies that map belief states into actions

– Optimal policies minimize expected cost to go from b0 to target bel state.
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Discounted Reward POMDPs

A common alternative formulation of POMDPs:

• states s ∈ S

• actions A(s) ⊆ A

• transition probabilities Pa(s
′|s) for s ∈ S and a ∈ A(s)

• initial belief state b0

• sensor model given by probabilities Pa(o|s), o ∈ Obs

• rewards r(a, s) positive or negative

• discount factor 0 < γ < 1 ; there is no goal

– Solutions are policies mapping states into actions

– Optimal solutions max expected discounted accumulated reward from b0
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Example: Omelette

• Representation in GPT (incomplete):

Action: grab− egg()
Precond: ¬holding
Effects: holding := true

good? := (true 0.5 ; false 0.5)

Action: clean(bowl:BOWL)
Precond: ¬holding
Effects: ngood(bowl) := 0 , nbad(bowl) := 0

Action: inspect(bowl : BOWL)
Effect: obs(nbad(bowl) > 0)

• Performance of resulting controller (2000 trials in 192 sec)
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Example: Hell or Paradise; Info Gathering

• initial position is 6

• goal and penalty at either 0 or 4; which one not known

• noisy map at position 9

0 1 2 43

5

6

7 8 9

Action: go− up() ; same for down,left,right
Precond: free(up(pos))
Effects: pos := up(pos)

Action: ∗
Effects: pos = pos9 → obs(ptr)

pos = goal → obs(goal)
Costs: pos = penalty → 50.0

Ramif: true → ptr = (goal p ; penalty 1− p)
Init: pos = pos6 ; goal = pos0 ∨ goal = pos4

penalty = pos0 ∨ penalty = pos4 ; goal 6= penalty
Goal: pos = goal
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Examples: Robot Navigation as a POMDP

• states: [x, y; θ]

• actions rotate +90 and −90, move

• costs: uniform except when hitting walls

• transitions: e.g, Pmove([2, 3; 90] | [2, 2; 90]) = .7, if [2, 3] is empty, . . .

G

• initial b0: e.g,, uniform over set of states

• goal G: cell marked G

• observations: presence or absence of wall with probs that depend on position of
robot, walls, etc
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Equivalence of (PO)MDPs

• Let the sign of a pomdp be positive if cost-based and negative if reward-based

• Let V πM(b) be expected cost (reward) from b in positive (negative) pomdp M

• Define equivalence of any two pomdps as follows; assuming goal states are
absorbing, cost-free, and observable:

Definition 1. pomdps R and M equivalent if have same set of non-goal states, and there are

constants α and β s.t. for every π and non-target bel b,

V
π
R (b) = αV

π
M(b) + β

with α > 0 if R and M have same sign, and α < 0 otherwise.

Intuition: If R and M are equivalent, they have same optimal policies and same
‘preferences’ over policies

Hector Geffner, Planning Course, Master IIS, UPF, 10-12/2014 168



Equivalence Preserving Transformations

• A transformation that maps a pomdp M into M ′ is equivalence-preserving if
M and M ′ are equivalent.

• Three equivalence-preserving transformation among pomdp’s

1. R 7→ R+ C: addition of C (+ or −) to all rewards/costs
2. R 7→ kR: multiplication by k 6= 0 (+ or −) of rewards/costs
3. R 7→ R: elimination of discount factor by adding goal state t s.t.

Pa(t|s) = 1− γ , Pa(s′|s) = γPRa (s′|s) ; Oa(t|t) = 1 , Oa(s|t) = 0

Theorem 2. Let R be a discounted reward-based pomdp, and C a constant that
bounds all rewards in R from above; i.e. C > maxa,s r(a, s). Then, M = −R+ C
is a goal pomdp equivalent to R.
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POMDPs are MDPs over Belief Space

• Beliefs b are probability distributions over S

• An action a ∈ A(b) maps b into ba

ba(s) =
∑
s′∈S

Pa(s|s′)b(s′)

• The probability of observing o then is:

ba(o) =
∑
s∈S

Pa(o|s)ba(s)

• . . . and the new belief is

boa(s) = Pa(o|s)ba(s)/ba(o)
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Computational Methods for POMDPs

• Exact Methods

. Value Iteration over Piece-wise linear functions

• Approximate and On-Line Methods:

. Point-based Value Iteration Methods: VI over few belief points

. RTDP-Bel: RTDP applied to discretized beliefs

. PO-UCT: UCT applied to action observation histories

• Logical Methods: beliefs represented by sets of states

. Compilations and relaxations for action selection

. Belief tracking: for determining truth of action preconditions and goals
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Value Iteration for POMDPs (1)

• Value V π of a policy π given by solution to Bellman equation with V π(b) = 0
when b is a goal belief:

V π(b) = c(a, b) +
∑
o∈O

ba(o)V
π(boa)

• Optimal value function V ∗ given by solution to Bellman optimality equations
with V (b) = 0 for goal beliefs b

V (b) = min
a∈A(b)

[c(a, b) +
∑
o∈O

ba(o)V (boa)]

• In both cases, c(a, b) =
∑
s∈S c(a, s)b(s)

• The computational problem for VI is that there is infinite and dense space of
beliefs to update
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VI over Piecewise Linear Value Functions

• Sondik’s observation (1973): if VI starts from a piecewise linear and concave
(pwlc) function V0, then all Vk resulting from updates remain pwlc.

• A pwlc function f on the continuous belief space over S is a finite combination
of linear functions:

f(b) = minα∈Γ

∑
s∈S b(s)α(s)

• Resulting implementation of VI: start with set Γ0 of vectors encoding V0 and
compute new set of vectors Γi+1 encoding Vi+1 that corresponds to full update
of Vi

Γi+1 = Function(Γi, POMDP pars)

• Problem: Size |Γi+1| grows exponentially with |A| |Γi||O|
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Computing New Vectors Γk+1 from Old Γk (abbreviated)

Use ‘choice functions’ ν(o) that pick vector ν(o) from Γk; |Γk|O such functions.
Expression ν(o)(s) stands for α(s):

Vk+1(b) = mina∈A [c(a, b) + γ
∑

o∈O ba(o)Vk(b
o
a)]

= mina∈A [c(a, b) + γ
∑

o∈O ba(o)
[
minα∈Γk

∑
s∈S b

o
a(s)α(s)

]
]

= mina∈A [c(a, b) + minν∈Vk γ
∑

o∈O ba(o)
∑

s∈S b
o
a(s)ν(o)(s)]

= mina∈A [c(a, b) + minν∈Vk γ
∑

s∈S
∑

o∈O ν(o)(s)ba(o)b
o
a(s)]

= mina∈A [c(a, b) + minν∈Vk γ
∑

s,o ν(o)(s)
∑

s′ b(s
′)Pa(s|s′)Pa(o|s)]

= mina∈A minν∈Vk [c(a, b) + γ
∑

s,o ν(o)(s)
∑

s′ b(s
′)Pa(s|s′)Pa(o|s)]

= mina∈A,ν∈Vk
∑

s′ b(s
′)
[
c(a, s′) + γ

∑
s,o ν(o)(s)Pa(s|s′)Pa(o|s)

]
= minα∈Γk+1

∑
s∈S b(s)α(s)

where Γk+1
def
= {αa,ν | a ∈ A, ν ∈ Vk} is the collection of vectors αa,ν

αa,ν(s)
def
= c(a, s) + γ

∑
s′,o ν(o)(s′)Pa(s

′|s)Pa(o|s′) .
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Approximate Methods: Pointed-based Value Iteration

• Point-based algorithms compute smaller set of vector Γk+1(F ) from Γk, one for
each belief b in a given set F

• Vector backup(V, b) ∈ Γk+1(F ) is the one in Γk+1 that represents value of b:

backup(V, b) = argmin
α∈Γk+1

∑
s∈S

b(s)α(s)

• Key point is that computation of backup(V, b) does not require Γk+1, and is
polynomial in |A|, |O| and |S|

• Point-based POMDP algorithms differ in choice of points F , initial value vectors,
and termination

• Some methods make use of known initial belief state b0 and lower/upper bounds
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Computation of backup(V, b) (sketch)

backup(V, b) =
∑

o∈O ba(o)V (boa)

=
∑

o∈O ba(o)
[
minα∈Γ

∑
s∈S b

o
a(s)α(s)

]
=

∑
o∈O
[
minα∈Γ

∑
s,s′,s′′∈S Pa(o|s

′′)Pa(s
′′|s′)b(s′)α(s)

]
=

∑
o∈O
[
minα∈Γ

∑
s′∈S g

α
a,o(s

′)b(s′)
]

where gαa,o(s) =
∑

s′∈S α(s′)Pa(o|s′)Pa(s′|s).

Using minα∈Γ g
α
a,o · b = [argmin{gαa,o · b|g

α
a,o, α ∈ Γ}] · b∑

o∈O ba(o)V (boa) =
∑

o∈O
[
minα∈Γ g

α
a,o · b

]
=

∑
o∈O
{[

argmin{gαa,o · b | g
α
a,o, α ∈ Γ}

]
· b
}

=
[∑

o∈O argmin{gαa,o · b | g
α
a,o, α ∈ Γ}

]
· b

If ga,b(s)
def
= c(a, s) + γ

∑
o∈O g

b
a,o(s) where gba,o = argmingαa,o(g

α
a,o · b),

backup(V, b) = mina∈A c(a, b) + γ
[∑

o∈O argmin{gαa,o · b | g
α
a,o, α ∈ Γ}

]
· b

= mina∈A
[
ga,b · b

]
= argminga,b

[
ga,b · b

]
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Approximate POMDP Methods: RTDP-Bel

Since POMDPs are MDPs over belief space, RTDP algorithm for POMDPs becomes

RTDP-Bel

% Initial value function V given by heuristic h
% Changes to V stored in a hash table using discretization function d(·)
Let b := b0 the initial belief
Sample state s with probability b(s)
While b is not a goal belief do

Evaluate each action a ∈ A(b) as: Q(a, b) := c(a, b) +
∑
o∈O ba(o)V (boa)

Select best action a := argmina∈A(b)Q(a, b)

Update value V (b) := Q(a, b)
Sample next state s′ with probability Pa(s

′|s) and set s := s′

Sample observation o with probability Pa(o|s)
Update current belief b := boa

end while

RTDP-Bel discretizes beliefs b for writing to and reading from hash table
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UCT for POMDPs: PO-UCT

• PO-UCT is on-line POMDP algorithm based on UCT

• Like UCT, PO-UCT uses simulations for choosing action to do next in finite-
horizon relaxation

• Nodes in the tree (explicit graph G) constructed by PO-UCT, however, are not
belief states but histories

• The histories stand for the possible sequences of actions and observations
a1, o1, a2, o2, . . .

• Still, approximation b′ of current belief b needed to construct the simulations

• Approximation of belief b associated with history h obtained from the simula-
tions compatible with h

• This is a type of particle filter belief tracking scheme; more about this below ...
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Search(h) Code for PO-UCT

repeat
Sample s according to b0 if h = 〈〉 or B(h) otherwise
Simulate(s, h, 0)

until time is up
return argmina V (〈ha〉)

Simulate(s, h, depth)

if γdepth < ε then return 0
if h does not appear in tree T then

for all action a ∈ A do
Insert 〈ha〉 in tree as T (〈ha〉) := 〈0, 0, ∅〉

end for
return Rollout(s, h, depth)

end if

a∗ := argmina V (〈ha〉)− C
√

logN(h)/N(〈ha〉)
Sample (s′, o, c) using simulator with state s and action a∗

Cost := c+ γ · Simulate(s′, 〈hao〉, 1 + depth)
B(h) := B(h) ∪ {s}
Increment N(h) and N(〈ha〉)
V (〈ha〉) := V (〈ha〉) + [Cost− V (〈ha〉)]/N(〈ha〉)
return Cost

Rollout(s, h, depth)

if γdepth < ε then return 0
Let a := π(h)

Sample (s′, o, c) using simulator with state s and action a

return c+ γ · Rollout(s′, 〈hao〉, 1 + depth)
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Logical Approaches for Planning with Sensing

• Uncertainty in dynamics and sensing represented by sets of states

• Belief space is thus finite; methods that apply to fully observable non-
deterministic models (FOND), apply thus to partially observable ones (POND)

• This includes dynamic programming, heuristic search, and on-line methods,
with states replaced by belief states

• For deterministic partially observable models, transformations have been
developed for converting them into:

. fully observable non-deterministic (FOND) models: exponential in
problem width parameter

. classical (deterministic) problems: doubly exponential in number of
variables (used for heuristic action selection)

• Transformations build on transformations for mapping deterministic conformant
problems into classical ones

Hector Geffner, Planning Course, Master IIS, UPF, 10-12/2014 180



Focus: On-line Planning for Planning with Sensing

• Two problems in on-line planning

. action selection: what action to do next

. belief tracking: needed to determine applicable actions and if goal
achieved

• Both problems intractable in worst case

• We will look for solutions, including approximate solutions to each one of them
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Action Selection for On-line Planning: Main Approaches

• Heuristics h(b) for estimating cost in belief space

. Reachability h: from h(s) that estimate cost in state space, approx. h(b) in various

ways (e.g., h(b) = maxs∈b h(s), h(b) =
∑

s∈b h(s), etc. Problem: no too informed,

don’t point to need to get info
. Cardinality h: In translations, if K(X = x) is goal (know what X = x is true), then

K(X 6= x′), where x′ is another value of X, is an implicit goal. Can be used like

landmark heuristics. Also, cardinality measure |b| can be informative too.

• Transformations: deterministic problems of planning with sensing P can be
mapped into equivalent classical planning problem P ′

. Action sequences that solve P ′ encode the action trees that solve P

. While translation is exponential in number of initial states of P , it can be used to suggest
actions; e.g., sample a few initial states from P and discard others

• Relaxations: deterministic problems of planning with sensing P can be mapped
into (non-equivalent) classical planning problem P ′ by letting agent control
sensing outcomes

. This is a form of planning under optimism; in robotics, known as free-space assumptions

. Related to FF-replan approach to MDPs where optimism is about action outcomes
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Examples (Bonet & G., IJCAI-2011)

R
B

G
R

B

G
R

R

G
G

B

W

colored-balls kill-wumpus trail

• freespace: agent needs to reach a final position by moving through unknown terrain. Each cell is blocked or clear.
As agent moves, it senses status of adjacent cells.

• doors: agent moves in grid to reach final position, crossing doors whose positions can be sensed.

• wumpus: the agent moves in a grid to reach a final position that contains a number of deadly wumpuses that must
be avoided.

• kill-wumpus: a variation of the above in which the agent must locate and kill the single wumpus in the grid.

• colored-balls: the agent navigates a grid to pick up and deliver balls of different colors to destinations that depend
on the color of the ball. Initially, the positions and colors are unknown.

• trail: the agent must follow a trail of stones. The positions and quantity of stones are unknown and the agent
cannot get off trail but observes the presence of stones in the nearby cells.
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Second Problem in On-Line Planning: Belief Tracking

• Exact, Explicit Flat Methods

. Computing next belief boa from belief b, action a, and observation o is exponential in

number of states, in both probabilistic and logical settings

• Exact, Lazy Approaches

. Beliefs b not strictly required; what is required is to know whether preconditions and

goals hold in b

. In logical setting, this problem can be cast as SAT problem in theory obtained from initial

belief, actions done, and obs gathered

. In probabilistic setting, problem can be cast similarly a Dynamic Bayesian Network
inference problem

. Both approaches still exponential in worst case, but can be sufficiently practical

• Approximations: to be considered next

. Particle filtering: when uncertainty in dynamics and sensing represented by probabilities

. Structured methods: when uncertainty in dynamics and sensing represented by sets
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Probabilistic Belief Tracking with Particles: Basic Approach

• Computing next belief boa is exponential in |S|

boa(s) = Pa(o|s)ba(s)/ba(o)
ba(s) =

∑
s′∈S Pa(s|s′)b(s′)

ba(o) =
∑
s∈S Pa(o|s)ba(s)

• Particle filtering algorithms approximate b by (multi)set of unweighted samples

. probability of X = x approximated by ratio of samples in b where X = x is true

• Approx. belief Bk+1 obtained from (multi)set of samples Bk, action a, and obs
o in two steps:

. Sample sk+1 from S with probability Pa(sk+1|sk) for each sk in Sk

. (Re)Sample new set of samples by sampling each sk+1 with weight P (o|ss+1)

• Potential problem is that particles may die out if many probabilities are zero
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Structural Belief Tracking: Exploiting Relevance

• In worst case, belief tracking is exponential in number of variables

• Yet, often it’s possible to do much better by exploiting structure of given
problem

• Earlier translation that maps deterministic conformant planning into classical
planning is exponential in width parameter

• This implies that belief tracking over such problems is also exponential in
problem width

• We now deal with non-deterministic problems with sensing where similar
bound established

• We don’t do translations, just belief tracking ...
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Model for Non-Deterministic Contingent Planning

Contingent model S = 〈S, S0, SG, A, F,O〉 given by

• finite state space S

• non-empty subset of initial states S0 ⊆ S

• non-empty subset of goal states SG ⊆ S

• actions A where A(s) ⊆ A are the actions applicable at state s

• non-deterministic transitions F (s, a) ⊆ S for s ∈ S, a ∈ A(s)

• non-determinisitc sensor model O(s′, a) ⊆ O for s′ ∈ S, a ∈ A
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Language

Model expressed in compact form as tuple P = 〈V,A, I,G, V ′,W 〉:

• V is set of multi-valued variables, each X has finite domain DX

• A is set of actions; each action a ∈ A has precondition Pre(a)
and conditional non-deterministic effects C → E1| · · · |En

• Sets of V -literals I and G defining the initial and goal states

• V ′ is set of observable variables (not necessarily disjoint from V ). Observations
o are valuations over V ′

• Sensing model is formula Wa(`) for each a ∈ A and observable literal ` that is
true in states that follow a where ` may be observed

A literal is an atom of the form ‘X = x’ or ‘X 6= x’

Hector Geffner, Planning Course, Master IIS, UPF, 10-12/2014 188



Example: Wumpus

rotate-left : heading = 0→ heading := 1

heading = 1→ heading := 2

. . .

rotate-right : . . .

move-forward : heading = 0 ∧ pos = (x, y)→ pos := (x, y + 1)

. . .

grab-gold : gold-pos = (x, y) ∧ pos = (x, y)→ gold-pos := hand

Wa(stenchx,y = true) = wumpx−1,y ∨ wumpx,y+1 ∨ wumpx,y−1 ∨ wumpx+1,y

Wa(breezex,y = true) = pitx−1,y ∨ pitx,y+1 ∨ pitx,y−1 ∨ pitx+1,y

Wa(glitterx,y = true) =
[
gold-pos = (x, y) ∧ pos = (x, y)

]
Wa(deadx,y = true) =

[
pos = (x, y) ∧ (pitx,y ∨ wumpx,y)

]
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Key Ideas: Belief Tracking for Planning

• Don’t need to keep track of global beliefs b; beliefs bX about precondition and
goal variables X suffice

• Beliefs bX obtained by applying plain belief tracking to smaller projected
subproblems PX

• Subproblem PX only involves state variables that are relevant to X

• Resulting algorithm, Factored Belief Tracking, is sound and complete for
planning, and exponential in width of P :

. maximum number of state variables that are all relevant to a given precondition or goal

variable X

• Furthermore, variant of this idea can be used to yield practical belief tracking
that is sound, efficient, and powerful, but not complete
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Decompositions for Belief Tracking

• A decomposition of problem P is pair D = 〈T,B〉 where

. T is subset of target variables, and

. B(X) for X in T is a subset of state variables

• Decomposition D = 〈T,B〉 decomposes P in subproblems PX:

. one subproblem PX for each variable X in T

. subproblem PX involves only the state variables in B(X)

• Factored Decomposition:

. F = 〈TF , BF〉 where TF are state variables appearing in preconditions or goals, and

BF (X) are all variables that are relevant to X

• Causal Decomposition:

. C = 〈TC, BC〉 where TC are variables in preconditions or goals, or observables, and

BC(X) are all variables causally relevant to X
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Complete Tracking over Causal Decomposition

• Belief tracking over causal decomposition is incomplete because two beliefs bX
and bY associated with target vars X and Y may interact and are not independent

• Algorithm can be made complete by enforcing consistency of beliefs:

bX := ΠBC(X)1{(bY )oa : Y ∈ TC and relevant to X}

• Resulting algorithm is complete for causally decomposable problems, space
exponential in causal width, but time exponential in width

• Beam tracking replaces global by local consistency until fix point:

bX := ΠBC(X)( b
i+1
X 1 bi+1

Y )

• Beam tracking is time and space exponential in causal width; sound but not
complete

• See our IJCAI-2013 for experiments in Wumpus, Minesweeper, Battleship
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Example: Wumpus and Minesweeper

PIT

PIT

PIT

Breeze

Breeze

Breeze

Breeze

Breeze

Breeze

Stench

Stench

Stench

1
13

3
2

21
2
4

Wumpus Minesweeper
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Two issues in Multiagent Planning: Introduction

• What’s optimal or best agent behavior in presence of other actors?

. Game Theory

• How to deal with beliefs about the beliefs of the other agents

. (Multiagent) Epistemic Logics

Reference: Multiagent systems: Algorithmic, game-theoretic, and logical founda-
tions, Yoav Shoham, Kevin Leyton-Brown, Cambridge University Press, 2008.
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Essentials of Game Theory

• We have looked at 2-player, 0-sum games like Chess, Checkers, etc

• In such games, what’s good/best for one player, it’s bad/worst for the other

• Best strategies maximize reward in “worst case” (adversarial); maximim

• Best action obtained then by single iteration of value iteration (backward
induction), alpha-beta pruning, etc

• Yet, not all games or interactions are 0-sum . . .
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A more general “game” in extended (tree) form

• The game:

. A plays first: A can choose (1,1) and terminate, or pass “ball” to B

. B can then choose (2,2) and terminate, or pass “ball” back to A

. A can finally choose (4,1) or (3,3), in both cases terminating the game

• This game can be depicted by binary tree . . .

• If game terminates with (n,m), player A gets reward n, and B gets m.

• In 0-sum games, n+m = 0; in constant-sum (equivalent), n+m = constant

Question: What should player A do?
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Games in Normal Form

• Game: Agents, Actions, Payoffs (Utilities)

• Example: Agents “Row” and “Column”; Actions C and D; Entry n,m means n
for Row, m for Column

Action C Action D
Action C 10,10 6,4
Action D 7,5 5,7

How should agents play?. Key notions:

• Dominance: C is better for Row no matter what Column does

• Best-response: D is best response for Column if Row plays D

• Pareto optimal outcome: if no entry makes both players better off

• Strategies: Pure strategy selects action; mixed strategy prob distribution

• Equilibrium: Two strategies in (Nash) eq. if each one best-response to other

“Solution concept” usually given by Nash Equilibrium; but NE is wrong; sometimes
too weak, sometimes too strong.
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Problems of Nash Equilibrium: Examples

Hi-Low game: two equilibria (C,C) and (D,D)

Action C Action D
Action C 10,10 0,0
Action D 0,0 5,5

Prisoner’s Dilemma: deeper problems

Action C Action D
Action C 10,10 0,20
Action D 20,0 5,5

• Only equilibrium is (D,D) which results into only non-opt pareto 5,5

• Actually, problem is deeper: D dominates C for each player

• Yet, lots of people plays C (C understood as Cooperation; D as Defection)

• Prisoner’s dilemma is very pervasive; it’s everywhere.

• What lessons to draw from this dilemma?

• At least that selfish behavior can lead to poor collective outcomes
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Lessons from and variations of Prisoner’s Dilemma

Ultimatum is a sequential game: 100e to be split. First “offers” second X. If
second accepts; he gets X and first gets 100−X. What much should First “offer”?
What does Nash Eq. predict? What people do?

Homo vs. Homo-Economicus: Fortunately, people don’t behave according to
“economic/Nash rationality”

Evolution to the rescue?

• We are born social beings

• The invention of the individual is very recent according to our evolutionary history

• Cooperation is key but needs defense from free-riders that unravel benefits of cooperation

• How to defend from cheaters? Punishments of various sorts (like ostracism)

• Evolution can favor this form of strong reciprocity if competition among groups (us vs. them)

• Strategies like tit-for-tat performed well in Iterated Prisioner’s Dilemma competitions
(Axelrod)

Hector Geffner, Planning Course, Master IIS, UPF, 10-12/2014 199



Evolutionary Game Theory

• Assumes initial population given by numbers ni(0) of players of different
strategies σi

• Uses (replicator) dynamic model where population ni(t + 1) of σ − i players
at time t + 1 is a function of how well they do on average at time t relative to
the other players, given the population of players at time t

. how do the populations evolve in time?

. which populations are stable to mutants in population?

Example:

- Cake-splitting; demand-X players, X = 10, 20, . . . , 100, percent demanded by cake.

- Pick two elements randomly from population: X and Y , iff X + Y ≤ 100 then they get X

and Y , else zero.

- Assume initial population: 1/3 of 40’s, 50’s, and 70’s resp.

- Population of demand-Xi at t+ 1: Et(Xi)/
∑

iEt(Xi)

Reference: Evolution and the Social Contract, Brian Skyrms, Cambridge University Press, 2006
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Beliefs in Multiagent Systems: Example

• n-children n > 1

• k of these children have mud in their forehead

• they can see whether others are muddy but not themselves

• Father comes and announces: “(at least) one of you is muddy”

• “If you know you are muddy, say it, else say don’t know”

• Result: After expressing ignorance (saying “don’t know”) k − 1 times, the
children that are muddy will know that they are muddy

• Many puzzles like this; what’s sort of reasoning is involved?
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Reasoning about Multiagent (Nested) Beliefs: Language

• In propositional logic, formulas like (¬p ∨ (¬q ∧ p)) made up of symbols like p
and q, the the propositional connectives “¬, ∧, ∨, . . .

• A formula A is valid iff it is true in every interpretation w; i.e., |=w A where

. |=w p if p is true in w for symbols p

. |=w (¬A) if 6|=w A

. |=w (A ∨B) if |=w A or |=w B

. . . .

• In multiagent epistemic logics,

. symbols like p, q, . . . are formulas,

. KiA is a formula if A is a formula and i is an agent (i knows A is true)

. propositional combination of formulas are formulas

Example: If mi represents child i is muddy; formula K1m1 ∨ K1¬m1 represents
that child 1 knows whether he is muddy or not.
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Reasoning about Multiagent (Nested) Beliefs: Semantics (1)

• In muddy children, each child can see whether each other children is muddy but
whether he himself is muddy

• If the actual world w is m1,¬m2,¬m3, then agent 1 will not know initially
whether the actual world is w or w′ that is like w but with m1 false

• After father announces m1∨m2∨m3, however, assuming n = 3, if actual world
is w, then agent 1 will know it

• As a result, initially 6|=w K1m1, but after announcement |=w K1m1
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Reasoning about Multiagent (Nested) Beliefs: Semantics (2)

• Formally, a Kripke structure is a tuple 〈W,R, V 〉, where:

. W is the set of worlds w

. Ri(w): is the set of world deemed possible by agent i in world w

. V (w) is the truth valuation associated with world w.

• Formula A is true in world w of structure K = 〈W,R, V 〉, K, w |= A, iff

. if A is true in V (w) when A is a propositional symbol

. K, w 6|= B when A is ¬B

. K, w |= B or K, w |= C when A is B ∨ C

. K, w |= B and K, w |= C when A is B ∧ C

. K, w′ |= B for all w′ ∈ Ri(w) when A is KiB

• Formula A is valid in structure K, K |= A, if K, w |= A for all w in W

• Formula A is valid, |= A, if K |= A for K
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Example: Muddy Children

. . .
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Wrapping Up: The Map

• Intro to AI and Automated Problem Solving

• Classical Planning as Heuristic Search and SAT

• Beyond Classical Planning: Transformations

. Soft goals, Conformant Planning, Finite State Controllers, Plan Recognition, Extended

temporal LTL goals, . . .

• Planning with Uncertainty: Markov Decision Processes (MDPs)

• Planning with Incomplete Information: Partially Observable MDPs (POMDPs)

• Planning with Uncertainty and Incomplete Info: Logical Models

– Reference: A concise introduction to models and methods for automated planning, H. Geffner

and B. Bonet, Morgan & Claypool, 6/2013.

– Other references: Automated planning: theory and practice, M. Ghallab, D. Nau, P. Traverso.

Morgan Kaufmann, 2004, and Artificial intelligence: A modern approach. 3rd Edition, S. Russell

and P. Norvig, Prentice Hall, 2009.

– Slides: http://www.dc.uba.ar/materias/planning/slides.pdf,

http://www.dtic.upf.edu/∼hgeffner/bsas-2013-slides.pdf
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Summary

• Planning is the model-based approach to autonomous behavior

• Many models and dimensions; all intractable in worst case

• Challenge is mainly computational, how to scale up

• Lots of room for ideas whose value must be shown empirically

• Key technique in classical planning is automatic derivation and use of heuristics

• Power of classical planners used for other tasks via transformations

• Structure and relaxations also crucial for planning with sensing

• Promise: a solid methodology for autonomous agent design
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Some Challenges

• Classical Planning

. states & heuristics h(s) not black boxes; how to exploit structure further?

. on-line planners to compete with state-of-the-art classical planners

• Probabilistic MDP & POMDP Planning

. inference can’t be at level of states or belief states but at level of variables

• Multi-agent Planning

. should go long way with single-agent planning and plan recognition;
game theory seldom needed

• Hierarchical Planning

. how to infer and use hierarchies; what can be abstracted away and when?
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Best first search can be pretty blind

Small DoorLarge Door

• Problem involves agent that has to get large package through one of two doors

• The package doesn’t fit through the closest door

Hector Geffner, Planning Course, Master IIS, UPF, 10-12/2014 209



• Numbers in cells show number of states expanded where agent at that cell

• Algorithm is greedy best first search with additive heuristic

• Number of state expansions is close to 998; FF expands 1143 states, LAMA more!

• 34 different states expanded with agent at target, only last with pkg!

Best first search can be pretty blind: Doors Problem
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Problem is not only computational: Multi-agent Planning

• Single-agent planning is computationally hard but target behavior is clearly
defined

• What about planning in the presence of other agents that plan?

• Number of subtleties arise, even when possible plans involve one action

• E.g., Prisioners’ Dilemma where utility matrix for 2 players is

Action A Action B
Action A 10,10 0,20
Action B 20,0 5,5

How should each of the players act? Why is a dilemma? Social agents?

Hector Geffner, Planning Course, Master IIS, UPF, 10-12/2014 211


