Planning in Intelligent Systems: Model-based Approach to Autonomous Behavior

Master Intelligent Interactive Systems (MIIS)
Universitat Pompeu Fabra

Hector Geffner
ICREA \& Universitat Pompeu Fabra
Barcelona, Spain

Tentative plan for the course

- Intro to AI and Automated Problem Solving
- Classical Planning as Heuristic Search and SAT
- Beyond Classical Planning: Transformations
\triangleright Soft goals, Conformant Planning, Finite State Controllers, Plan Recognition, Extended temporal LTL goals,
- Planning with Uncertainty: Markov Decision Processes (MDPs)
- Planning with Incomplete Information: Partially Observable MDPs (POMDPs)
- Planning with Uncertainty and Incomplete Info: Logical Models
- Reference: A concise introduction to models and methods for automated planning, H. Geffner and B. Bonet, Morgan \& Claypool, 6/2013.
- Other references: Automated planning: theory and practice, M. Ghallab, D. Nau, P. Traverso. Morgan Kaufmann, 2004, and Artificial intelligence: A modern approach. 3rd Edition, S. Russell and P. Norvig, Prentice Hall, 2009.
- Initial set of slides: http://www.dtic.upf.edu/~hgeffner/bsas-2013-slides.pdf
- Evaluation, Homework, Projects:

First Lecture

- Some AI history
- The Problem of Generality in AI
- Models and Solvers
- Intro to Planning

Darmouth 1956

"The proposal (for the meeting) is to proceed on the basis of the conjecture that every aspect of ... intelligence can in principle be so precisely described that a machine can be made to simulate it"

Computers and Thought 1963

An early collection of Al papers and programs for playing chess and checkers, proving theorems in logic and geometry, planning, etc.

Importance of Programs in Early AI Work

In preface of 1963 edition of Computers and Thought

We have tried to focus on papers that report results. In this collection, the papers ...describe actual working computer programs ... Because of the limited space, we chose to avoid the more speculative . . . pieces.

In preface of 1995 AAAI edition

A critical selection criterion was that the paper had to describe . . . a running computer program . . All else was talk, philosophy not science . . (L)ittle has come out of the "talk".

AI, Programming, and AI Programming

Many of the key Al contributions in 60's, 70 's, and early 80 's had to to with programming and the representation of knowledge in programs:

- Lisp (Functional Programming)
- Prolog (Logic Programming)
- Rule-based Programming
- Interactive Programming Environments and Lisp Machines
- Frame, Scripts, Semantic Networks
- 'Expert Systems' Shells and Architectures

(Old) Al methodology: Theories as Programs

- For writing an AI dissertation in the 60 's, 70 's and 80 's, it was common to:
\triangleright pick up a task and domain X
\triangleright analyze/introspect/find out how task is solved
\triangleright capture this reasoning in a program
- The dissertation was then
\triangleright a theory about X (scientific discovery, circuit analysis, computational humor, story understanding, etc), and
\triangleright a program implementing the theory, tested over a few examples.

Many great ideas came out of this work . . . but there was a problem . . .

Methodological Problem: Generality

Theories expressed as programs cannot be proved wrong: when a program fails, it can always be blamed on 'missing knowledge'

Three approaches to this problem

- narrow the domain (expert systems)
\triangleright problem: lack of generality
- accept the program is just an illustration, a demo
\triangleright problem: limited scientific value
- fill up the missing knowledge (intuition, commonsense)
\triangleright problem: not successful so far

Al in the 80's

The knowledge-based approach reached an impasse in the 80's, a time also of debates and controversies:

- Good Old Fashioned AI is "rule application" but intelligence is not (Haugeland)
- Situated AI: representation not needed and gets in the way (Brooks)
- Neural Networks: inference needed is not logical but probabilistic (PDP Group)

Many of these criticisms of mainstream AI partially valid then; less valid now.
Research on models and solvers over last 20-30 years provide a handle on generality problem in Al and related issues ...

Al Research in 2013

Recent issues of AIJ, JAIR, AAAI or IJCAI shows papers on:

1. SAT and Constraints
2. Search and Planning
3. Probabilistic Reasoning
4. Probabilistic Planning
5. Inference in First-Order Logic
6. Machine Learning
7. Natural Language
8. Vision and Robotics
9. Multi-Agent Systems

I'll focus on 1-4: these areas often deemed about techniques, but more accurate to regard them as models and solvers.

Example: Solver for Linear Equations

$$
\text { Problem } \Longrightarrow \text { Solver } \Longrightarrow \text { Solution }
$$

- Problem: The age of John is 3 times the age of Peter. In 10 years, it will be only 2 times. How old are John and Peter?
- Expressed as: $J=3 P$; $J+10=2(P+10)$
- Solver: Gauss-Jordan (Variable Elimination)
- Solution: $P=10$; $J=30$

Solver is general as deals with any problem expressed as an instance of model
Linear Equations Model, however, is tractable, AI models are not

AI Models and Solvers

$$
\text { Problem } \Longrightarrow \text { Solver } \Longrightarrow \text { Solution }
$$

- Some basic models and solvers currently considered in AI:
\triangleright Constraint Satisfaction/SAT: find state that satisfies constraints
\triangleright Bayesian Networks: find probability over variable given observations
\triangleright Planning: find action sequence or policy that produces desired state
\triangleright Answer Set Programming: find answer set of logic program
\triangleright General Game Playing: find best strategy in presence of n-actors, ...
- Solvers for these models are general; not tailored to specific instances
- Models are all intractable, and some extremely powerful (POMDPs)
- Solvers all have a clear and crisp scope; they are not architectures
- Challenge is mainly computational: how to scale up
- Methodology is empirical: benchmarks and competitions
- Significant progress . . .

SAT and CSPs

- SAT is the problem of determining whether there is a truth assignment that satisfies a set of clauses

$$
x \vee \neg y \vee z \vee \neg w \vee \cdots
$$

- Problem is NP-Complete, which in practice means worst-case behavior of SAT algorithms is exponential in number of variables $\left(2^{100}=10^{30}\right)$
- Yet current SAT solvers manage to solve problems with thousands of variables and clauses, and used widely (circuit design, verification, planning, etc)
- Constraint Satisfaction Problems (CSPs) generalize SAT by accommodating non-boolean variables as well, and constraints that are not clauses

How SAT solvers manage to do it?

Two types of efficient (poly-time) inference in every node of the search tree:

- Unit Resolution:
\triangleright Derive clause C from $C \vee L$ and unit clause $\sim L$
- Conflict-based Learning and Backtracking:
\triangleright When empty clause \square derived, find 'causes' S of \square, add $\neg S$ to theory, and backtrack til S disabled

Other ideas are logically possible but do not work (do not scale up):

- Generate and test each one of the possible assignments (pure search)
- Apply resolution without the unit restriction (pure inference)

Related tasks: Enumeration and Optimization SAT Problems

- Weighted MAX-SAT: find assignment σ that minimizes total cost $w(C)$ of violated clauses

$$
\sum_{C: \sigma \not \models C} w(C)
$$

- Weighted Model Counting: Adds up 'weights' of satisfying assignments:

$$
\sum_{\sigma: \sigma \models T} \prod_{L \in \sigma} w(L)
$$

SAT methods extended to these other tasks, closely connected to probabilistic reasoning tasks over Bayesian Networks:

- Most Probable Explanation (MPE) easily cast as Weighted MAX-SAT
- Probability Assessment $P(X \mid O b s)$ easily cast as Weighted Model Counting

Some of the best BN solvers built over these formulations . . .

Basic (Classical) Planning Model and Task

- Planning is the model-based approach to autonomous behavior,
- A system can be in one of many states
- States assign values to a set of variables
- Actions change the values of certain variables
- Basic task: find action sequence to drive initial state into goal state

$$
\text { Model } \Longrightarrow \text { Box } \Longrightarrow \text { Action sequence }
$$

- Complexity: NP-hard; i.e., exponential in number of vars in worst case
- Box is generic; it should work on any domain no matter what variables are about

Concrete Example

- Given the actions that move a 'clear' block to the table or onto another 'clear' block, find a plan to achieve the goal
- How to find path in the graph whose size is exponential in number of blocks?

Problem Solved with Heuristics Derived Automatically

- Heuristic evaluations $h(s)$ provide 'sense-of-direction'
- Derived efficiently in a domain-independent fashion from relaxations where effects made monotonic (delete relaxation).

A bit of Cog Science: Models, solvers, and inference

- We have learned a lot about effective inference mechanisms in last 20-30 years from work on domain-independent solvers
- The problem of AI in the 80's (the 'knowledge-based' approach), was probably lack of mechanisms, not only knowledge.
- Commonsense based not only on massive amounts of knowledge, but also massive amounts of fast and effective but unconscious inference
- This is clearly true for Vision and NLP, but likely for Everyday Reasoning
- The unconscious, not necessarily Freudian, getting renewed attention:
\triangleright Strangers to Ourselves: the Adaptive Unconscious by T.Wilson (2004)
\triangleright The New Unconscious, by Ran R. Hassin et al. (Editors) (2004)
\triangleright Blink: The Power Of Thinking Without Thinking by M. Gladwell (2005)
\triangleright Gut Feelings: The Intelligence of the Unconscious by Gerd Gigerenzer (2007)
$\triangleright \ldots$
\triangleright Thinking, Fast and Slow. D. Kahneman (2011)

The appraisals/heuristics $h(s)$ from a cognitive point of view

- they are opaque and thus cannot be conscious
meaning of symbols in the relaxation is not the normal meaning; e.g., objects can be at many places at the same time as old locations not deleted
- they are fast and frugal (linear-time), but unlike the 'fast and frugal heuristics' of Gigerenzer et al. are general
they apply to all problems fitting the model (planning problems)
- they play the role of 'gut feelings' or 'emotions' according to De Sousa 87, Damasio 94, Evans 2002, Gigerenzer 2007 . . .
providing a guide to action while avoiding infinite regresses in the decision process

Old Debates, New Insights?

- Logic vs. Probabilistic Inference: don't look all that different now
- Intelligence can't be rules all the way down: not in planning
- Symbolic vs. Non-Symbolic: are (learned) BNets and MDPs 'symbolic'?
- GOFAI vs. Mainstream AI: is GOFAI just 'old' AI, no longer current?
- Solvers vs. Architectures: architectures don't "solve" anything; solvers do.
- Mind as Architecture or Solver? Adaptive, heuristic, multiagent POMDP solver?

Summary: AI and Automated Problem Solving

- A research agenda that has emerged in last 20 years: solvers for a range of intractable models
- Solvers unlike other programs are general as they do not target individual problems but families of problems (models)
- The challenge is computational: how to scale up
- Sheer size of problem shouldn't be impediment to meaningful solution
- Structure of given problem must be recognized and exploited
- Lots of room for ideas but methodology empirical
- While agenda is technical, resulting ideas likely to be relevant for understanding general intelligence and human cognition

Introduction to Planning: Motivation

How to develop systems or 'agents' that can make decisions on their own?

Wumpus World PEAS description

Performance measure
gold +1000 , death -1000
-1 per step, -10 for using the arrow
Environment
Squares adjacent to wumpus are smelly
Squares adjacent to pit are breezy
Glitter iff gold is in the same square
Shooting kills wumpus if you are facing it
Shooting uses up the only arrow
Grabbing picks up gold if in same square
Releasing drops the gold in same square

Actuators Left turn, Right turn,
Forward, Grab, Release, Shoot
Sensors Breeze, Glitter, Smell

Autonomous Behavior in AI: The Control Problem

The key problem is to select the action to do next. This is the so-called control problem. Three approaches to this problem:

- Programming-based: Specify control by hand
- Learning-based: Learn control from experience
- Model-based: Specify problem by hand, derive control automatically

Approaches not orthogonal though; and successes and limitations in each . .

Settings where greater autonomy required

- Robotics
- Video-Games
- Web Service Composition
- Aerospace

Solution 1: Programming-based Approach

Control specified by programmer; e.g.,

- don't move into a cell if not known to be safe (no Wumpus or Pit)
- sense presence of Wumpus or Pits nearby if this is not known
- pick up gold if presence of gold detected in cell

Advantage: domain-knowledge easy to express
Disadvantage: cannot deal with situations not anticipated by programmer

Solution 2: Learning-based Approach

- Unsupervised (Reinforcement Learning):
\triangleright penalize agent each time that it 'dies' from Wumpus or Pit
\triangleright reward agent each time it's able to pick up the gold, . . .
- Supervised (Classification)
\triangleright learn to classify actions into good or bad from info provided by teacher
- Evolutionary:
\triangleright from pool of possible controllers: try them out, select the ones that do best, and mutate and recombine for a number of iterations, keeping best

Advantage: does not require much knowledge in principle
Disadvantage: in practice though, right features needed, incomplete information is problematic, and unsupervised learning is slow . . .

Solution 3: Model-Based Approach

- specify model for problem: actions, initial situation, goals, and sensors
- let a solver compute controller automatically

Advantage: flexible, clear, and domain-independent
Disadvantage: need a model; computationally intractable

Model-based approach to intelligent behavior called Planning in AI

Basic State Model for Classical AI Planning

- finite and discrete state space S
- a known initial state $s_{0} \in S$
- a set $S_{G} \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each $s \in S$
- a deterministic transition function $s^{\prime}=f(a, s)$ for $a \in A(s)$
- positive action costs $c(a, s)$

A solution is a sequence of applicable actions that maps s_{0} into S_{G}, and it is optimal if it minimizes sum of action costs (e.g., \# of steps)

Different models obtained by relaxing assumptions in bold . . .

Uncertainty but No Feedback: Conformant Planning

- finite and discrete state space S
- a set of possible initial state $S_{0} \in S$
- a set $S_{G} \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each $s \in S$
- a non-deterministic transition function $F(a, s) \subseteq S$ for $a \in A(s)$
- uniform action costs $c(a, s)$

A solution is still an action sequence but must achieve the goal for any possible initial state and transition

More complex than classical planning, verifying that a plan is conformant intractable in the worst case; but special case of planning with partial observability

Planning with Markov Decision Processes

MDPs are fully observable, probabilistic state models:

- a state space S
- initial state $s_{0} \in S$
- a set $G \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each state $s \in S$
- transition probabilities $P_{a}\left(s^{\prime} \mid s\right)$ for $s \in S$ and $a \in A(s)$
- action costs $c(a, s)>0$
- Solutions are functions (policies) mapping states into actions
- Optimal solutions minimize expected cost to goal

Partially Observable MDPs (POMDPs)

POMDPs are partially observable, probabilistic state models:

- states $s \in S$
- actions $A(s) \subseteq A$
- transition probabilities $P_{a}\left(s^{\prime} \mid s\right)$ for $s \in S$ and $a \in A(s)$
- initial belief state b_{0}
- final belief states b_{F}
- sensor model given by probabilities $P_{a}(o \mid s), o \in O b s$
- Belief states are probability distributions over S
- Solutions are policies that map belief states into actions
- Optimal policies minimize expected cost to go from b_{0} to b_{F}

Models, Languages, and Solvers

- A planner is a solver over a class of models; it takes a model description, and computes the corresponding controller

$$
\text { Model Instance } \Longrightarrow \text { Planner } \Longrightarrow \text { Controller }
$$

- Many models, many solution forms: uncertainty, feedback, costs, . . .
- Models described in suitable planning languages (Strips, PDDL, PPDDL, . .) where states represent interpretations over the language.

Language for Classical Planning: Strips

- A problem in Strips is a tuple $P=\langle F, O, I, G\rangle$:
$\triangleright F$ stands for set of all atoms (boolean vars)
$\triangleright O$ stands for set of all operators (actions)
$\triangleright I \subseteq F$ stands for initial situation
$\triangleright G \subseteq F$ stands for goal situation
- Operators $o \in O$ represented by
\triangleright the Add list $\operatorname{Add}(o) \subseteq F$
\triangleright the Delete list $\operatorname{Del}(o) \subseteq F$
\triangleright the Precondition list $\operatorname{Pre}(o) \subseteq F$

From Language to Models

A Strips problem $P=\langle F, O, I, G\rangle$ determines state model $\mathcal{S}(P)$ where

- the states $s \in S$ are collections of atoms from F
- the initial state s_{0} is I
- the goal states s are such that $G \subseteq s$
- the actions a in $A(s)$ are ops in O s.t. $\operatorname{Prec}(a) \subseteq s$
- the next state is $s^{\prime}=s-\operatorname{Del}(a)+\operatorname{Add}(a)$
- action costs $c(a, s)$ are all 1
- (Optimal) Solution of P is (optimal) solution of $\mathcal{S}(P)$
- Slight language extensions often convenient (e.g., negation and conditional effects); some required for describing richer models (costs, probabilities, ...).

Example: Blocks in Strips (PDDL Syntax)

```
(define (domain BLOCKS)
    (:requirements :strips) ...
    (:action pick_up
            :parameters (?x)
                            :precondition (and (clear ?x) (ontable ?x) (handempty))
                            :effect (and (not (ontable ?x)) (not (clear ?x)) (not (handempty)) (hol
    (:action put_down
                            :parameters (?x)
                            :precondition (holding ?x)
                            :effect (and (not (holding ?x)) (clear ?x) (handempty) (ontable ?x)))
    (:action stack
            :parameters (?x ?y)
            :precondition (and (holding ?x) (clear ?y))
            :effect (and (not (holding ?x)) (not (clear ?y)) (clear ?x) (handempty)
                                    (on ?x ?y))) ...
(define (problem BLOCKS_6_1)
    (:domain BLOCKS)
    (:objects F D C E B A)
    (:init (CLEAR A) (CLEAR B) ... (ONTABLE B) ... (HANDEMPTY))
    (:goal (AND (ON E F) (ON F C) (ON C B) (ON B A) (ON A D))))
```


Example: Logistics in Strips PDDL

```
(define (domain logistics)
    (:requirements :strips :typing :equality)
    (:types airport - location truck airplane - vehicle vehicle packet - thing thir
    (:predicates (loc-at ?x - location ?y - city) (at ?x - thing ?y - location) (in ?x
    (:action load
        :parameters (?x - packet ?y - vehicle)
        :vars (?z - location)
        :precondition (and (at ?x ?z) (at ?y ?z))
        :effect (and (not (at ?x ?z)) (in ?x ?y)))
    (:action unload ..)
    (:action drive
        :parameters (?x - truck ?y - location)
        :vars (?z - location ?c - city)
        :precondition (and (loc-at ?z ?c) (loc-at ?y ?c) (not (= ?z ?y)) (at ?x ?z))
        :effect (and (not (at ?x ?z)) (at ?x ?y)))
(define (problem log3_2)
    (:domain logistics)
    (:objects packet1 packet2 - packet truck1 truck2 truck3 - truck airplane1 - airF
    (:init (at packet1 office1) (at packet2 office3) ...)
    (:goal (and (at packet1 office2) (at packet2 office2))))
```


Example: 15-Puzzle in PDDL

```
(define (domain tile)
    (:requirements :strips :typing :equality)
    (:types tile position)
    (:constants blank - tile)
    (:predicates (at ?t - tile ?x - position ?y - position)
            (inc ?p - position ?pp - position)
            (dec ?p - position ?pp - position))
    (:action move-up
        :parameters (?t - tile ?px - position ?py - position ?bx - position ?by - posit
        :precondition (and (= ?px ?bx) (dec ?by ?py) (not (= ?t blank)) ...)
        :effect (and (not (at blank ?bx ?by)) (not (at ?t ?px ?py)) (at blank ?px ?py)
(define (domain eight_tile) ..
    (:constants t1 t2 t3 t4 t5 t6 t7 t8 - tile p1 p2 p3 - position)
    (:timeless (inc p1 p2) (inc p2 p3) (dec p3 p2) (dec p2 p1)))
(define (situation eight_standard)
    (:domain eight_tile)
    (:init (at blank p1 p1) (at t1 p2 p1) (at t2 p3 p1) (at t3 p1 p2)..)
    (:goal (and (at t8 p1 p1) (at t7 p2 p1) (at t6 p3 p1) ..)
```


Computation: how to solve Strips planning problems?

- Key issue: exploit two roles of language:
- specification: concise model description
- computation: reveal useful heuristic info
- Two traditional approaches: search vs. decomposition
- explicit search of the state model $S(P)$ direct but not effective til recently
- near decomposition of the planning problem thought a better idea

Computational Approaches to Classical Planning

- Strips algorithm (70's): Total ordering planning backward from Goal; work always on top subgoal in stack, delay rest
- Partial Order (POCL) Planning (80's): work on any subgoal, resolve threats; UCPOP 1992
- Graphplan (1995 - . .) : build graph containing all possible parallel plans up to certain length; then extract plan by searching the graph backward from Goal
- SatPlan (1996 - . .) : map planning problem given horizon into SAT problem; use state-of-the-art SAT solver
- Heuristic Search Planning (1996- . .): search state space $\mathcal{S}(P)$ with heuristic function h extracted from problem P
- Model Checking Planning (1998 - ...): search state space $\mathcal{S}(P)$ with 'symbolic' BrFS where sets of states represented by formulas implemented by BDDs

State of the Art in Classical Planning

- significant progress since Graphplan (Blum \& Furst 95)
- empirical methodology
\triangleright standard PDDL language
\triangleright planners and benchmarks available; competitions
\triangleright focus on performance and scalability
- large problems solved (non-optimally)
- different formulations and ideas

We'll focus on two formulations:

- (Classical) Planning as Heuristic Search, and
- (Classical) Planning as SAT

Classical Planning and Heuristic Search

Models, Languages, and Solvers (Review)

- A planner is a solver over a class of models; it takes a model description, and computes the corresponding controller

$$
\text { Model Instance } \Longrightarrow \text { Planner } \Longrightarrow \text { Controller }
$$

- Many models, many solution forms: uncertainty, feedback, costs, . . .
- Models described in suitable planning languages (Strips, PDDL, PPDDL, . .) where states represent interpretations over the language.

State Model for Classical Planning

- finite and discrete state space S
- an initial state $s_{0} \in S$
- a set $G \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each state $s \in S$
- a transition function $f(s, a)$ for $s \in S$ and $a \in A(s)$
- action costs $c(a, s)>0$

A solution is a sequence of applicable actions $a_{i}, i=0, \ldots, n$, that maps the initial state s_{0} into a goal state $s \in S_{G}$; i.e., $s_{n+1} \in S_{G}$ and for $i=0, \ldots, n$

$$
s_{i+1}=f\left(a, s_{i}\right) \text { and } a_{i} \in A\left(s_{i}\right)
$$

Optimal solutions minimize total cost $\sum_{i=0}^{i=n} c\left(a_{i}, s_{i}\right)$

Language for Classical Planning: Strips

- A problem in Strips is a tuple $P=\langle F, O, I, G\rangle$:
$\triangleright F$ stands for set of all atoms (boolean vars)
$\triangleright O$ stands for set of all operators (actions)
$\triangleright I \subseteq F$ stands for initial situation
$\triangleright G \subseteq F$ stands for goal situation
- Operators $o \in O$ represented by
\triangleright the Add list $\operatorname{Add}(o) \subseteq F$
\triangleright the Delete list $\operatorname{Del}(o) \subseteq F$
\triangleright the Precondition list $\operatorname{Pre}(o) \subseteq F$

From Problem P to State Model $S(P)$

A Strips problem $P=\langle F, O, I, G\rangle$ determines state model $\mathcal{S}(P)$ where

- the states $s \in S$ are collections of atoms from F
- the initial state s_{0} is I
- the goal states s are such that $G \subseteq s$
- the actions a in $A(s)$ are ops in O s.t. $\operatorname{Prec}(a) \subseteq s$
- the next state is $s^{\prime}=s-\operatorname{Del}(a)+\operatorname{Add}(a)$
- action costs $c(a, s)$ are all 1
- (Optimal) Solution of P is (optimal) solution of $\mathcal{S}(P)$
- Thus P can be solved by solving $\mathcal{S}(P)$

Solving P by solving $\mathcal{S}(P)$: Path-finding in graphs

Search algorithms for planning exploit the correspondence between (classical) states model and directed graphs:

- The nodes of the graph represent the states s in the model
- The edges $\left(s, s^{\prime}\right)$ capture corresponding transition in the model with same cost

In the planning as heuristic search formulation, the problem P is solved by path-finding algorithms over the graph associated with model $\mathcal{S}(P)$

Search Algorithms for Path Finding in Directed Graphs

- Blind search/Brute force algorithms
\triangleright Goal plays passive role in the search
e.g., Depth First Search (DFS), Breadth-first search (BrFS), Uniform Cost (Dijkstra), Iterative Deepening (ID)
- Informed/Heuristic Search Algorithms
\triangleright Goals plays active role in the search through heuristic function $h(s)$ that estimates cost from s to the goal e.g., $A^{*}, I D A^{*}$, Hill Climbing, Best First, DFS B\&B, LRTA*, . .

General Search Scheme

```
Solve(Nodes)
    if Empty Nodes -> Fail
    else Let Node = Select-Node Nodes
        Let Rest = Nodes - Node
    if Node is Goal -> Return Solution
    else Let Children = Expand-Node Node
    Let New-Nodes = Add-Nodes Children Rest
    Solve(New-Nodes)
```

- Different algorithms obtained by suitable instantation of
- Select-Node Nodes
- Add-Nodes New-Nodes Old-Nodes
- Nodes are data structures that contain state and bookkeeping info; initially Nodes $=\{$ root $\}$
- Notation $g(n), h(n), f(n)$: accumulated cost, heuristic and evaluation function; e.g. in $\mathrm{A}^{*}, f(n) \stackrel{\text { def }}{=} g(n)+h(n)$

Some instances of general search scheme

- Depth-First Search expands 'deepest' nodes n first
\triangleright Select-Node Nodes: Select First Node in Nodes
\triangleright Add-Nodes New Old: Puts New before Old
\triangleright Implementation: Nodes is a Stack (LIFO)
- Breadth-First Search expands 'shallowest' nodes n first
\triangleright Select-Node Nodes: Selects First Node in Nodes
\triangleright Add-Nodes New Old: Puts New after Old
\triangleright Implementation: Nodes is a Queue (FIFO)

Additional instances of general search scheme

- Best First Search expands best nodes n first; $\min f(n)$
\triangleright Select-Node Nodes: Returns n in Nodes with min $f(n)$
\triangleright Add-Nodes New Old: Performs ordered merge
\triangleright Implementation: Nodes is a Heap
\triangleright Special cases
Uniform cost/Dijkstra: $f(n)=g(n)$
$\mathbf{A}^{*}: f(n)=g(n)+h(n)$
WA*: $f(n)=g(n)+W h(n), W \geq 1$
Greedy Best First: $f(n)=h(n)$
- Hill Climbing expands best node n first and discards others
\triangleright Select-Node Nodes: Returns n in Nodes with $\min h(n)$
\triangleright Add-Nodes New Old: Returns New; discards Old

Variations of general search scheme: DFS Bounding

Solve(Nodes,Bound)

```
if Empty Nodes -> Report-Best-Solution-or-Fail
else
    Let Node = Select-Node Nodes
    Let Rest = Nodes - Node
    if f(Node) > Bound
            Solve(Rest,Bound) ;;; PRUNE NODE n
    else if Node is Goal -> Process-Solution Node Rest
        else
            Let Children = Expand-Node Node
            Let New-Nodes = Add-Nodes Children Rest
            Solve(New-Nodes,Bound)
```

 Select-Node \& Add-Nodes as in DFS

Some instances of general bounded search scheme

- Iterative Deepening (ID)
\triangleright Uses $f(n)=g(n)$
\triangleright Calls Solve with bounds 0,1, .. til solution found
\triangleright Process-Solution returns Solution
Ilterative Deepening A^{*} (IDA*)
\triangleright Uses $f(n)=g(n)+h(n)$
\triangleright Calls Solve with bounds $f\left(n_{0}\right), f\left(n_{1}\right), \ldots$ where $n_{0}=$ root and n_{i} is cheapest node pruned in iteration $i-1$
\triangleright Process-Solution returns Solution
- Branch and Bound
\triangleright Uses $f(n)=g(n)+h(n)$
\triangleright Single call to Solve with high (Upper) Bound
\triangleright Process-Solution: updates Bound to Solution Cost minus $1 \&$ calls Solve(Rest, New-Bound)

Properties of Algorithms

- Completeness: whether guaranteed to find solution
- Optimality: whether solution guaranteed optimal
- Time Complexity: how time increases with size
- Space Complexity: how space increases with size

	DFS	BrFS	ID	A* *	HC	IDA*	B\&B
Complete	No	Yes	Yes	Yes	No	Yes	Yes
Optimal	No	Yes *	Yes	Yes	No	Yes	Yes
Time	∞	b^{d}	b^{d}	b^{d}	∞	b^{d}	b^{D}
Space	$b \cdot d$	b^{d}	$b \cdot d$	b^{d}	b	$b \cdot d$	$b \cdot d$

- Parameters: d is solution depth; b is branching factor
- BrFS optimal when costs are uniform
- A*/IDA* optimal when h is admissible; $h \leq h^{*}$

A*: Details, Properties

- A* stores in memory all nodes visited
- Nodes either in Open (search frontier) or Closed
- When nodes expanded, children looked up in Open and Closed lists
- Duplicates prevented, only best (equivalent) node kept
- A* is optimal in another sense: no other algorithm expands less nodes than A^{*} with same heuristic function (this doesn't mean that A^{*} is always fastest)
- A* expands 'less' nodes with more informed heuristic, h_{2} more informed that h_{1} if $0<h_{1}<h_{2} \leq h^{*}$
- A* won't re-open nodes if heuristic is consistent (monotonic); i.e., $h(n) \leq$ $c\left(n, n^{\prime}\right)+h\left(n^{\prime}\right)$ for children n^{\prime} of n.

Practical Issues: Search in Large Spaces

- Exponential-memory algorithms like A* not feasible for large problems
- Time and memory requirements can be lowered significantly by multiplying heuristic term $h(n)$ by a constant $W>1$ (WA*)
- Solutions no longer optimal but at most W times from optimal
- For large problems, only feasible optimal algorithms are linear-Memory algorithms such as IDA* and B\&B
- Linear-memory algorithms often use too little memory and may visit fragments of search space many times
- It's common to extend IDA* in practice with so-called transposition tables
- Optimal solutions have been reported to problems with huge state spaces such 24-puzzle, Rubik's cube, and Sokoban (Korf, Schaeffer); e.g. $|S|>10^{20}$

Learning Real Time A* (LRTA*)

- LRTA* is a very interesting real-time search algorithm (Korf 90)
- It's like a hill-climb or greedy search that updates the heuristic V as it moves, starting with $V=h$.

1. Evaluate each action a in s as: $Q(a, s)=c(a, s)+V\left(s^{\prime}\right)$
2. Apply action a that minimizes $Q(\mathbf{a}, s)$
3. Update $V(s)$ to $Q(\mathbf{a}, s)$
4. Exit if s^{\prime} is goal, else go to 1 with $s:=s^{\prime}$

- Two remarkable properties
\triangleright Each trial of LRTA gets eventually to the goal if space connected
\triangleright Repeated trials eventually get to the goal optimally, if h admissible!
- Generalizes well to stochastic actions (MDPs)

Heuristics: where they come from?

- General idea: heuristic functions obtained as optimal cost functions of relaxed problems
- Examples:
- Manhattan distance in N-puzzle
- Euclidean Distance in Routing Finding
- Spanning Tree in Traveling Salesman Problem
- Shortest Path in Job Shop Scheduling
- Yet
- how to get and solve suitable relaxations?
- how to get heuristics automatically?

We'll get more into this as we get back to planning . . .

Classical Planning as Heuristic Search

From Strips Problem P to State Model $S(P)$ (Review)

A Strips problem $P=\langle F, O, I, G\rangle$ determines state model $S(P)$ where

- the states $s \in S$ are collections of atoms from F
- the initial state s_{0} is I
- the goal states s are such that $G \subseteq s$
- the actions a in $A(s)$ are ops in O s.t. $\operatorname{Pre}(a) \subseteq s$
- the next state is $s^{\prime}=s-\operatorname{Del}(a)+\operatorname{Add}(a)$
- action costs $c(a, s)$ are all 1

How to solve $S(P)$?

Heuristic Search Planning

- Explicitly searches graph associated with model $S(P)$ with heuristic $h(s)$ that estimates cost from s to goal
- Key idea: Heuristic h extracted automatically from problem P

This is the mainstream approach in classical planning (and other forms of planning as well), enabling the solution of problems over huge spaces

Heuristics for Classical Planning

- Key development in planning in the 90 's, is automatic extraction of heuristic functions to guide search for plans
- The general idea was known: heuristics often explained as optimal cost functions of relaxed (simplified) problems (Minsky 61; Pearl 83)
- Most common relaxation in planning, P^{+}, obtained by dropping delete-lists from ops in P. If $c^{*}(P)$ is optimal cost of P, then

$$
h^{+}(P) \stackrel{\text { def }}{=} c^{*}\left(P^{+}\right)
$$

- Heuristic h^{+}intractable but easy to approximate; i.e.
\triangleright computing optimal plan for P^{+}is intractable, but
\triangleright computing a non-optimal plan for P^{+}(relaxed plan) easy
- State-of-the-art heuristics as in FF or LAMA still rely on P^{+}...

Additive Heuristic

- For all atoms p :

$$
h(p ; s) \stackrel{\text { def }}{=}\left\{\begin{array}{l}
0 \quad \text { if } p \in s, \text { else } \\
\min _{a \in O(p)}[\operatorname{cost}(a)+h(\operatorname{Pre}(a) ; s)]
\end{array}\right.
$$

- For sets of atoms C, assume independence:

$$
h(C ; s) \stackrel{\text { def }}{=} \sum_{r \in C} h(r ; s)
$$

- Resulting heuristic function $h_{a d d}(s)$:

$$
h_{\text {add }}(s) \stackrel{\text { def }}{=} h(\text { Goals } ; s)
$$

Heuristic not admissible but informative and fast

Max Heuristic

- For all atoms p :

$$
h(p ; s) \stackrel{\text { def }}{=}\left\{\begin{array}{l}
0 \quad \text { if } p \in s, \text { else } \\
\min _{a \in O(p)}[\operatorname{cost}(a)+h(\operatorname{Pre}(a) ; s)]
\end{array}\right.
$$

- For sets of atoms C, replace sum by max

$$
h(C ; s) \stackrel{\text { def }}{=} \max _{r \in C} h(r ; s)
$$

- Resulting heuristic function $h_{\max }(s)$:

$$
h_{\max }(s) \stackrel{\text { def }}{=} h(\text { Goal } s ; s)
$$

Heuristic admissible but not very informative . . .

Max Heuristic and (Relaxed) Planning Graph

- Build reachability graph $P_{0}, A_{0}, P_{1}, A_{1}, \ldots$

$$
\begin{aligned}
P_{0} & =\{p \in s\} \\
A_{i} & =\left\{a \in O \mid \operatorname{Pre}(a) \subseteq P_{i}\right\} \\
P_{i+1} & =P_{i} \cup\left\{p \in \operatorname{Add}(a) \mid a \in A_{i}\right\}
\end{aligned}
$$

- Graph implicitly represents max heuristic:

$$
h_{\max }(s)=\min i \text { such that } G \subseteq P_{i}
$$

Heuristics, Relaxed Plans, and FF

- (Relaxed) Plans for P^{+}can be obtained from additive or max heuristics by recursively collecting best supports backwards from goal, where a_{p} is best support for p in s if

$$
a_{p}=\operatorname{argmin}_{a \in O(p)} h(a)=\operatorname{argmin}_{a \in O(p)}[\operatorname{cost}(a)+h(\operatorname{Pre}(a))]
$$

- A plan $\pi(p ; s)$ for p in delete-relaxation can then be computed backwards as

$$
\pi(p ; s)= \begin{cases}\emptyset & \text { if } p \in s \\ \left\{a_{p}\right\} \cup \cup_{q \in \operatorname{Pre}\left(a_{p}\right)} \pi(q ; s) & \text { otherwise }\end{cases}
$$

- The relaxed plan $\pi(s)$ for the goals obtained by planner FF using $h=h_{\max }$
- More accurate h obtained then from relaxed plan π as

$$
h(s)=\sum_{a \in \pi(s)} \operatorname{cost}(a)
$$

State-of-the-art Planners: EHC Search, Helpful Actions, Landmarks

- In original formulation of planning as heuristic search, the states s and the heuristics $h(s)$ are black boxes used in standard search algorithms
- More recent planners like FF and LAMA go beyond this in two ways
- They exploit the structure of the heuristic and/or problem further:
\triangleright Helpful Actions
\triangleright Landmarks
- They use novel search algorithms
\triangleright Enforced Hill Climbing (EHC)
\triangleright Multi-Queue Best First Search
- The result is that they can often solve huge problems, very fast. Not always though; try them!

Experiments with state-of-the-art classical planners

		FF			FD			PROBE			LAMA'11			BFS (f)		
Domain	I	S	Q	T	S	Q	T	S	Q	T	S	Q	T	S	Q	T
8puzzle	50	49	52.61	0.03	50	52.30	0.18	50	60.94	0.09	49	92.54	0.18	50	45.30	0.20
Barman	20	0	-	-	20	197.90	84.00	20	169.30	12.93	20	192.15	8.39	20	174.45	281.28
BlocksW	50	44	39.36	66.67	50	104.24	0.46	50	43.88	0.25	50	89.96	0.41	50	54.24	2.25
Cybersec	30	4	29.50	0.73	28	36.58	859.24	24	50.73	48.29	30	35.27	880.06	28	36.92	63.79
Depots	22	22	51.82	32.72	17	110.25	91.86	22	88.88	1.45	21	43.56	3.58	22	39.56	69.11
Driver	20	16	25.00	14.52	20	50.67	1.26	20	60.17	1.49	20	46.22	1.51	18	48.06	140.93
Elevators	30	30	85.73	1.00	30	92.57	3.20	30	107.97	26.66	30	97.07	4.69	30	129.13	93.88
Ferry	50	50	27.68	0.02	50	30.08	0.09	50	44.80	0.02	50	26.86	0.08	50	31.28	0.03
Floortile	20	5	44.20	134.29	3	39.00	6.91	5	40.50	106.97	5	40.00	8.94	7	36.50	4.15
Freecell	20	20	64.00	22.95	20	61.06	26.55	20	62.44	41.26	19	67.78	27.35	20	64.39	13.00
Grid	5	5	61.00	0.27	5	61.60	4.95	5	58.00	9.64	5	70.60	4.84	5	70.60	7.70
Gripper	50	50	76.00	0.03	50	152.62	0.17	50	152.66	0.06	50	92.76	0.15	50	152.66	0.38
Logistics	28	28	41.43	0.03	28	77.11	0.18	28	55.36	0.09	28	73.64	0.17	28	87.04	0.12
Miconic	50	50	30.38	0.03	50	39.80	0.07	50	44.80	0.01	50	31.02	0.06	50	34.46	0.01
Mprime	35	34	9.53	14.82	35	8.37	9.50	35	12.97	26.67	35	8.60	10.30	35	10.17	19.30
Mystery	30	18	6.61	0.24	19	6.86	1.87	25	7.71	1.08	22	7.29	1.70	27	7.07	0.93
NoMyst	20	4	19.75	0.23	6	22.40	1.96	5	23.20	2.73	11	23.00	1.77	19	22.60	0.78
OpenSt	30	30	155.67	6.86	30	130.11	5.97	30	134.14	64.55	30	130.18	3.49	29	125.89	129.06
OpenSt6	30	30	136.17	0.38	30	222.67	5.39	30	224.00	48.89	30	140.60	4.89	30	139.13	40.19
ParcPr	30	30	42.73	0.06	27	35.79	1.97	28	70.92	0.26	30	70.54	0.28	27	70.42	6.72
Parking	20	3	88.33	945.86	20	74.86	330.76	17	143.36	685.47	19	129.57	361.19	17	83.43	562.39
Pegsol	30	30	25.50	7.61	30	25.97	0.80	30	25.17	8.60	30	26.07	2.76	30	24.20	1.17
Pipes-N	50	35	34.34	12.77	44	75.50	7.94	45	46.73	3.18	44	54.41	11.11	47	58.39	35.97
Pipes-T	50	20	31.45	87.96	40	73.33	99.06	43	54.19	88.47	41	69.83	35.28	40	39.14	216.25
PSR-s	50	42	16.92	63.05	50	14.61	0.27	50	17.20	0.07	50	14.65	0.31	48	18.14	2.57
Rovers	40	40	100.47	31.78	40	153.18	13.69	40	131.20	24.19	40	108.53	17.90	40	126.30	44.20
Satellite	20	20	37.75	0.10	20	40.90	0.78	20	37.05	0.84	20	42.05	0.78	20	36.05	1.26
Scan	30	30	31.87	70.74	28	30.04	7.30	28	25.15	5.59	28	28.04	8.14	27	29.37	7.40
Sokoban	30	26	213.38	26.61	28	204.14	12.44	25	231.52	39.63	28	231.81	184.38	23	218.52	125.12
Storage	30	18	16.28	39.17	20	17.72	3.20	21	14.56	0.07	18	24.56	8.15	20	20.94	4.34
Tidybot	20	15	63.20	9.78	15	66.00	338.14	19	52.67	33.50	16	62.60	102.52	18	63.27	207.85
Tpp	30	28	122.29	53.23	30	127.93	16.95	30	152.53	60.95	30	205.37	18.72	30	110.13	126.03
Transport	30	29	117.41	167.10	30	97.57	12.75	30	125.63	38.87	30	215.90	76.18	30	97.57	46.64
Trucks	30	11	27.09	3.84	17	26.00	0.65	8	26.75	113.54	16	24.75	0.53	15	26.50	8.59
Visitall	20	6	450.67	38.22	7	3583.86	166.35	19	411.71	9.02	20	468.00	4.68	20	339.00	4.58
WoodW	30	17	32.35	0.22	30	57.13	18.40	30	41.13	15.93	30	79.20	12.45	30	41.13	19.12
Zeno	20	20	30.60	0.17	20	37.45	2.68	20	44.90	6.18	20	35.80	4.28	20	37.70	77.56
Summary	1150	909	67.75	51.50	1037	168.60	57.78	1052	83.64	41.28	1065	86.51	48.98	1070	74.32	63.91

Heuristic Search Planners (1997-2012)

- HSP, 1998: GBFS guided by heuristic $h_{a d d}$; solves 729 out of 1150 problems
- FF, 2000: Incomplete EHC search followed by GBFS with $h_{\text {FF }}$; solves 909
- FD, 2004: GBFS with two queues: helpful and unhelpful, ordered by $h_{\mathrm{FF}} ; \mathbf{1 0 3 7}$
- LAMA, 2008: GBFS with four queues: helpful and unhelpful for landmark h too; 1065
- PROBE, 2011: Plain GBFS that throws poly-time probe from every expanded node; solves 1072
- BFS(f), 2012: Plain GBFS with $h(s) \in[1,6]$ based on helpful and width info, and tie-breaker based on landmark h and $h_{\text {add }}$

EHC, Helpful Actions, Landmark Heuristic

- EHC: On-line, incomplete planning algorithm: from current state s uses breadthfirst search and helpful actions only to find state s^{\prime} such that $h\left(s^{\prime}\right)<h(s)$
\triangleright Helpful action: applicable action a in s is helpful when a adds goal or precondition of an action in relaxed plan from s that is not true in s
- Landmark: is atom p that is made true by all plans (e.g., clear (B) landmark is block beneath B not well placed)
\triangleright Computing landmarks 1: sufficient criterion for p being a landmark is that relaxed problem not solvable without the actions that add p.
\triangleright Computing landmarks 2: complete set of landmarks for delete-relaxation can be computed in poly-time once, as preprocessing
\triangleright Landmark heuristic: just count the number of unachieved landmarks. It extends classical number of unachieved goals heuristics, and achieves a complete form of problem decomposition
- Multi-Queue Best First Search: it maintains and alternates between multiple open lists, and doesn't leave any open list waiting for ever (fairness)

Sructure of classical planning benchmarks: why are they easy?

- Most planning benchmarks are easy although planning is NP-hard.
- Problem considered in area called tractable planning, but gap with existing benchmarks closed only recently
- Graphical models such as CSPs and Bayesian Network are also NP-hard, yet some easy problems can be identify with a treewidth measured associated with underlying graph
- CSP and BNet algorithms are exponential in treewidth
- Question: can suitable width notion be formulated to bound the complexity of planning so that easy problems turn out to have low width?

Width: Definition

Consider a chain $t_{0} \rightarrow t_{1} \rightarrow \ldots \rightarrow t_{n}$ where each t_{i} is a set of atoms from P

- A chain is valid if t_{0} is true in Init and all optimal plans for t_{i} can be extended into optimal plans for t_{i+1} by adding a single action
- A valid chain $t_{0} \rightarrow t_{1} \rightarrow \ldots \rightarrow t_{n}$ implies G if all optimal plans for t_{n} are also optimal plans for G
- The size of the chain is the size of largest t_{i} in the chain
- Width of P is size of smallest chain that implies goal G of P

Theorem 1: A problem P can be solved in time exponential in its width.
Theorem 2: Most planning domains (Blocks, Logistics, Gripper, ...) have a bounded and small width, independent of problem size, provided that goals are single atoms

Width: Basic Algorithm

The novelty of a newly generated state s during a search is the size of the smallest tuple of atoms t that is true in s and false in all previously generated states s^{\prime}. If no such tuple, the novelty of s is $n+1$ where n is number of problem vars.

- IW(i) is breadth-first search that prunes newly generated states s when novelty $(s)>i$.
- IW is sequence of calls $I W(i)$ for $i=0,1,2, \ldots$ over problem P until problem solved or i exceeds number of vars in problem

IW solves P in time exponential in the width of P

Iterative Width: Experiments for Single Atomic Goals

- IW, while simple and blind, is a pretty good algorithm over benchmarks when goals restricted to single atoms
- This is no accident, width of benchmarks domains is small for such goals
- Tests over domains from previous IPCs. For each instance with N goal atoms, N instances created with a single goal
- Results quite remarkable: IW is much better than blind-search, and as good as Greedy Best-First Search with heuristic $h_{a d d}$

\# Instances	IW	ID	BrFS	GBFS $+h_{\text {add }}$
37921	91%	24%	23%	91%

Sequential IW: Using IW Sequentially to Solve Joint Goals

SIW runs IW iteratively, until one more goal achieved (hill climbing)

		Serialized $I W(S I W)$					$\mathrm{GBFS}+h_{a d d}$		
Domain	I	S	Q	T	$\mathrm{M} / \mathrm{A} w e$	S	Q	T	
8puzzle	50	50	42.34	0.64	$4 / 1.75$	50	55.94	0.07	
Blocks World	50	50	48.32	5.05	$3 / 1.22$	50	122.96	3.50	
Depots	22	21	34.55	22.32	$3 / 1.74$	11	104.55	121.24	
Driver	20	16	28.21	2.76	$3 / 1.31$	14	26.86	0.30	
Elevators	30	27	55.00	13.90	$2 / 2.00$	16	101.50	210.50	
Freecell	20	19	47.50	7.53	$2 / 1.62$	17	62.88	68.25	
Grid	5	5	36.00	22.66	$3 / 2.12$	3	195.67	320.65	
OpenStacksIPC6	30	26	29.43	108.27	$4 / 1.48$	30	32.14	23.86	
ParcPrinter	30	9	16.00	0.06	$3 / 1.28$	30	15.67	0.01	
Parking	20	17	39.50	38.84	$2 / 1.14$	2	68.00	686.72	
Pegsol	30	6	16.00	1.71	$4 / 1.09$	30	16.17	0.06	
Pipes-NonTan	50	45	26.36	3.23	$3 / 1.62$	25	113.84	68.42	
Rovers	40	27	38.47	108.59	$2 / 1.39$	20	67.63	148.34	
Sokoban	30	3	80.67	7.83	$3 / 2.58$	23	166.67	14.30	
Storage	30	25	12.62	0.06	$2 / 1.48$	16	29.56	8.52	
Tidybot	20	7	42.00	532.27	$3 / 1.81$	16	70.29	184.77	
Transport	30	21	54.53	94.61	$2 / 2.00$	17	70.82	70.05	
Visitall	20	19	199.00	0.91	$1 / 1.00$	3	2485.00	174.87	
Woodworking	30	30	21.50	6.26	$2 / 1.07$	12	42.50	81.02	
\ldots									
Summary	1150	819	44.4	55.01	$2.5 / 1.6$	789	137.0	91.05	

Width and Structure in Planning

Notion of width doesn't explain why planners do well in most benchmarks, but it suggests that most benchmarks are 'easy' because:

- The domains have a low width when the goals are single atoms, and
- Conjunctive goals are easy to serialize in these domains

If you want 'hard' problems, then look for

- Domains that have high width for single atomic goals, or
- Domains with conjunctive goals are that are not easy to serialize

Few benchmarks appear to have high width (Hanoi), although some are not easy to serialize (e.g., Sokoban)

Classical Planning as SAT and Variations

SAT and SAT Solvers

- SAT is the problem of determining whether a set of clauses or CNF formula is satisfiable
- A clause is disjunction of literals where a literal is a propositional symbol or its negation

$$
x \vee \neg y \vee z \vee \neg w
$$

- Many problems can be mapped into SAT such as Planning, Scheduling, CSPs, Verification problems etc.
- SAT is an intractable problem (exponential in the worst case unless $P=N P$) yet very large SAT problems can be solved in practice
- Best SAT algorithms not based on either pure case analysis (model theory) or resolution (proof theory), but combination of both

Davis and Putnam Procedure for SAT

- DP (DPLL) is a sound and complete proof procedure for SAT that uses resolution in a restricted form called unit resolution, in which one parent clause must be unit clause
- Unit resolution is very efficient (poly-time) but not complete (Example: $q \vee p$, $\neg q \vee p, q \vee \neg p, \neg q \vee \neg p)$
- When unit resolution gets stuck, DP picks undetermined Var, and splits the problem in two: one where Var is true, the other where it is false (case analysis)

```
    DP(clauses)
        Unit-resolution(clauses)
        if Contradiction, Return False
        else if all VARS determined, Return True
        else pick non-determined VAR, and
        Return DP(clauses + VAR) OR DP(clauses + NEG VAR)
```

Currently very large SAT problems can be solved. Criterion for var selection is critical, as learning from conflicts (not shown).

Planning as SAT

- Maps planning problem $P=\langle F, O, I, G\rangle$ with horizon n into a set of clauses $C(P, n)$, solved by SAT solver (satz,chaff,. . .).
- Theory $C(P, n)$ includes vars $p_{0}, p_{1}, \ldots, p_{n}$ and $a_{0}, a_{1}, \ldots, a_{n-1}$ for each $p \in F$ and $a \in O$
- $C(P, n)$ satisfiable iff there is a plan with length bounded by n
- Such a plan can be read from truth valuation that satisfies $C(P, n)$.

Theory $C(P, n)$ for Problem $P=\langle F, O, I, G\rangle$

- Init: p_{0} for $p \in I, \neg q_{0}$ for $q \in F$ and $q \notin I$
- Goal: p_{n} for $p \in G$
- Actions: For $i=0,1, \ldots, n-1$, and each action $a \in O$
$a_{i} \supset p_{i}$ for $p \in \operatorname{Prec}(a)$
$a_{i} \supset p_{i+1}$ for each $p \in \operatorname{Add}(a)$
$a_{i} \supset \neg p_{i+1}$ for each $p \in \operatorname{Del}(a)$
- Persistence: For $i=0, \ldots, n-1$, and each atom $p \in F$, where where $O\left(p^{+}\right)$and $O\left(p^{-}\right)$ stand for the actions that add and delete p resp.

$$
\begin{aligned}
& p_{i} \wedge \wedge_{a \in O\left(p^{-}\right)} \neg a_{i} \supset p_{i+1} \\
& \neg p_{i} \wedge \wedge_{a \in O\left(p^{+}\right)} \neg a_{i} \supset \neg p_{i+1}
\end{aligned}
$$

- Seriality: For each $i=0, \ldots, n-1$, if $a \neq a^{\prime}, \neg\left(a_{i} \wedge a_{i}^{\prime}\right)$
- This encoding is pretty simple doesn't work too well
- Alternative encodings used: parallelism (no seriality), NO-OPs, lower bounds, . . .
- Best current SAT planners are very good

Other methods in classical planning

- Regression Planning
- Graphplan
- Partial Order Causal Link (POCL) Planning

Regression Planning

Search backward from goal rather than forward from initial state:

- initial state σ_{0} is G
- a applicable in σ if $\operatorname{Add}(a) \cap \sigma \neq \emptyset$ and $\operatorname{Del}(a) \cap \sigma=\emptyset$
- resulting state is $\sigma_{a}=\sigma-\operatorname{Add}(a)+\operatorname{Prec}(a)$
- terminal states σ if $\sigma \subseteq I$

Advantages/Problems:

+ Heuristic $h(\sigma)$ for any σ can be computed by simple aggregation (max,sum, . .) of estimates $g\left(p, s_{0}\right)$ for $p \in \sigma$ computed only once from s_{0}
- Spurious states σ not reachable from s_{0} often generated (e.g., where a block is on two blocks at the same time). A good h should make $h(\sigma)=\infty \ldots$

Variation: Parallel Regression Search

Search backward from goal assuming that non-mutex actions can be done in parallel

- The regression search is similar, except that sets of non-mutex actions A allowed: $\operatorname{Add}(A)=\cup_{a \in A} \operatorname{Add}(a), \operatorname{Del}(A)=\cup_{a \in A} \operatorname{Del}(a), \operatorname{Prec}(A)=\cup_{a \in A} \operatorname{Prec}(a)$.
- Resulting state from regression is $\sigma_{A}=\sigma-\operatorname{Add}(A)+\operatorname{Prec}(a)$

Advantages/Problems:

+ Sometimes easier to compute optimal parallel plans than optimal serial plans
+ Some heuristics provide tighter estimates of parallel cost than serial cost (e.g., $h=h 1$)
- Branching factor in parallel search (either forward or backward) can be very large (2^{n} if n applicable actions).

Parallel Regression Search with NO-OPs

- Assumes 'dummy' operator NO-OP(p) for each p with $\operatorname{Prec}=A d d=\{p\}$ and Del $=\emptyset$
- A set of non-mutex actions A (possibly including NO-OPs) applicable in σ if $\sigma \subseteq \operatorname{Add}(A)$ and $\operatorname{Del}(A) \cap \sigma=\emptyset$
- Resulting state is $\sigma=\operatorname{Prec}(A)$
- Starting state $\sigma_{0}=G$ and terminal states $\sigma \subseteq I$

Advantages/Problems:

- More actions to deal with
+ Enables certain compilation techniques as in Graphplan .. .

Graphplan (Blum \& Furst): First Version

- Graphplan does an IDA* parallel regression search with NO-OPs over planning graph containing propositional and action layers P_{i} and $A_{i}, i=0, \ldots, n$
- P_{0} contains the atoms true in I
- A_{i} contains the actions whose precs are true in P_{i}
- P_{i+1} contains the positive effects of the actions in A_{i}
- planning graph built til layer P_{n} where G appears, then search for plans with horizon $n-1$ invoked with $\operatorname{Solve}(G, n)$ where
- Solve $(G, 0)$ succeds if $G \subseteq I$ and fails otherwise, and
- $\operatorname{Solve}(G, n)$ mapped into $\operatorname{Solve}(\operatorname{Prec}(A), n-1)$, where A is a set of non-mutex actions in layer in A_{n-1} that covers G, i.e., $G \subseteq \operatorname{Add}(A)$.
- If search fails, n increased by 1 , and process is repeated

Graphplan: Real version

- The IDA* search is implicit; heuristic $h(\sigma)$ encoded in planning graph as index of first layer P_{i} that contains σ
- This heuristic, as defined above, corresponds to the $\mathbf{h m a x}=\mathbf{h 1}$ heuristic; Graphplan actually uses a more powerful admissible heuristic akin to h_{2}. .
- Basic idea: extend mutex relations to pairs of actions and propositions in each layer $i>0$ as follows:
- p and q mutex in P_{i} if p and q are in P_{i} and the actions in A_{i-1} that support p and q are mutex in A_{i-1};
- a and a^{\prime} mutex in A_{i} if a and a^{\prime} are in A_{i}, and they are mutex or $\operatorname{Prec}(a) \cup \operatorname{Prec}\left(a^{\prime}\right)$ contains a mutex in P_{i}
- The index of first layer in planning graph that contains a set of atoms P or actions A without a mutex, is a lower bound
- Thus, search can be started at level in which G appears without a mutex, and $\operatorname{Solve}(P, i)$ needs to consider only sets of actions A in A_{i-1} that do not contain a mutex.

Partial Order Planning: Regression + Decomposition. Intuition

1. recursively decompose regression with goal p_{1}, \ldots, p_{n} into n regressions with goals $p_{i}, i=1, \ldots, n$;
2. combine resulting plans so that they do not interfere with each other
E.g.: let $G=\{p, q\}, I=\{r\}$, and two actions

$$
\begin{aligned}
a 1: \operatorname{Prec}(a 1) & =\{r\}, \operatorname{Add}(a 1)=\{p\}, \operatorname{Del}(a 1)=\{r\} \\
a 2: \operatorname{Prec}(a 2) & =\{r\}, \operatorname{Add}(a 2)=\{q\}, \operatorname{Del}(a 2)=\{ \}
\end{aligned}
$$

- $P 1=\{a 1\}$ is a plan for p, and $P 2=\{a 2\}$ a plan for q
- Yet $a 1$ in $P 1$ deletes a precondition of $a 2$
- This 'threat' can be solved by forcing $a 1$ after $a 2$, i.e., $a 2 \prec a 1$.

Partial Order Causal Link planning is a formulation of POP that pursues 1 and 2 concurrently

Partial Plans and Causal Links

A partial plan P in POCL is a triple (Steps, $\mathcal{O}, C L s$) where

- Steps is a set of actions a_{i}
- \mathcal{O} is a set of precedence constraints $a_{i} \prec a_{j}$
- CLs is a set of causal links $(a 1, p, a 2)$ meaning that that precondition p of $a 2$ is achieved by action $a 1$
- POCL extends partial plans til they become complete (to be defined)
- States σ in the search are partial plans
- Initial state (partial plan) is $P_{0}=(\{$ Start, End $\},\{$ Start \prec End $\},\{ \})$, where Start and End are actions that summarize I and $G: \operatorname{Add}($ Start $)=I$, $\operatorname{Prec}(E n d)=G$

POCL Planning Algorithm

- A partial plan $P=(S t e p s, \mathcal{O}, C L s)$ is complete when ordering \mathcal{O} is consistent and there is no flaw of the form:
\triangleright unsupported precondition: a precond $p \in \operatorname{Prec}(a)$ for $a \in S t e p s$ s.t. no $\mathrm{CL}\left(a^{\prime}, p, a\right)$ in $C L s$
\triangleright threatened causal link: a $\mathrm{CL}\left(a^{\prime}, p, a\right)$ for $b \in$ Steps s.t. $p \in \operatorname{Del}(b)$ and $a^{\prime} \prec b \prec a$ is consistent with \mathcal{O}
- POCL search starts with the plan $P=P_{0}$ above, selecting a flaw in P, and trying each one of the repairs:
\triangleright Flaw \#1: fixed by selecting an action $a^{\prime}, p \in \operatorname{Add}(a)$, and adding a^{\prime} to Steps, $a^{\prime} \prec a$ to \mathcal{O}, and $\left(a^{\prime}, p, a\right)$ to $C L s$
\triangleright Flaw \#2: fixed by adding $b \prec a^{\prime}$ or $a \prec b$ to \mathcal{O}
- The terminal states in search are the complete plans (solutions) or the inconsistent ones (dead ends)

Status of POCL Planning

- POP/POCL dominated planning research for 10-15 years, until Graphplan
- Unlike other approaches, can work with action schemas
- In recent years lost favor to Graphplan/SAT/CSP/HSP
- Recent comeback combined with heuristics in RePOP and CPT
- Holds promise as branching scheme for temporal planning

Beyond Classical Planning: Transformations

Al Planning: Status

- The good news: classical planning works!
\triangleright Large problems solved very fast (non-optimally)
- Model simple but useful
\triangleright Operators not primitive; can be policies themselves
\triangleright Fast closed-loop replanning able to cope with uncertainty sometimes
- Not so good; limitations:
\triangleright Does not model Uncertainty (no probabilities)
\triangleright Does not deal with Incomplete Information (no sensing)
\triangleright Does not accommodate Preferences (simple cost structure)

Beyond Classical Planning: Two Strategies

- Top-down: Develop solver for more general class of models; e.g., Markov Decision Processes (MDPs), Partial Observable MDPs (POMDPs), . . .
+ : generality
-: complexity
- Bottom-up: Extend the scope of current 'classical' solvers
+ : efficiency
- : generality
- We'll do both, starting with transformations for
\triangleright compiling soft goals away (planning with preferences)
\triangleright compiling uncertainty away (conformant planning)
\triangleright deriving finite state controllers
\triangleright doing plan recognition (as opposed to plan generation)
\triangleright dealing with temporally extended LTL goals

Compilation of Soft Goals

- Planning with soft goals aimed at plans π that maximize utility

$$
u(\pi)=\sum_{p \in \operatorname{do}\left(\pi, s_{0}\right)} u(p) \quad-\quad \sum_{a \in \pi} c(a)
$$

- Actions have cost $c(a)$, and soft goals utility $u(p)$
- Best plans achieve best tradeoff between action costs and utilities
- Model used in recent planning competitions; net-benefit track 2008 IPC
- Yet it turns that soft goals do not add expressive power, and can be compiled away

Compilation of Soft Goals (cont'd)

- For each soft goal p, create new hard goal p^{\prime} initially false, and two new actions:
$\triangleright \operatorname{collect}(p)$ with precondition p, effect p^{\prime} and cost 0 , and
$\triangleright \operatorname{forgo}(p)$ with an empty precondition, effect p^{\prime} and cost $u(p)$
- Plans π maximize $u(\pi)$ iff minimize $c(\pi)=\sum_{a \in \pi} c(a)$ in resulting problem
- Compilation yields better results that native soft goal planners in recent IPC

	IPC6 Net-Benefit Track			Compiled Problems			
Domain	Gamer	HSP ${ }_{\mathrm{P}}^{*}$	Mips-XXL	Gamer	HSP $_{\mathrm{F}}^{*}$	HSP $_{0}^{*}$	Mips-XXL
crewplanning(30)	4	16	8	-	8	$\mathbf{2 1}$	8
elevators (30)	11	5	4	$\mathbf{1 8}$	8	8	3
openstacks (30)	$\mathbf{7}$	5	2	6	4	6	1
pegsol (30)	24	0	23	22	$\mathbf{2 6}$	14	22
transport (30)	12	12	9	-	$\mathbf{1 5}$	$\mathbf{1 5}$	9
woodworking (30)	13	11	9	-	$\mathbf{2 3}$	22	7
total	71	49	55		84	$\mathbf{8 6}$	50

Incomplete Information: Conformant Planning

Problem: A robot must move from an uncertain I into G with certainty, one cell at a time, in a grid $n \times n$

- Problem very much like a classical planning problem except for uncertain I
- Plans, however, quite different: best conformant plan must move the robot to a corner first (localization)

Conformant Planning: Belief State Formulation

- call a set of possible states, a belief state
- actions then map a belief state b into a bel state $b_{a}=\left\{s^{\prime} \mid s^{\prime} \in F(a, s) \& s \in b\right\}$
- conformant problem becomes a path-finding problem in belief space

Problem: number of belief state is doubly exponential in number of variables.

- effective representation of belief states b
- effective heuristic $h(b)$ for estimating cost in belief space

Recent alternative: translate into classical planning . . .

Basic Translation: Move to the 'Knowledge Level'

Given conformant problem $P=\langle F, O, I, G\rangle$

- F stands for the fluents in P
- O for the operators with effects $C \rightarrow L$
- I for the initial situation (clauses over F-literals)
- G for the goal situation (set of F-literals)

Define classical problem $K_{0}(P)=\left\langle F^{\prime}, O^{\prime}, I^{\prime}, G^{\prime}\right\rangle$ as

- $F^{\prime}=\{K L, K \neg L \mid L \in F\}$
- $I^{\prime}=\{K L \mid$ clause $L \in I\}$
- $G^{\prime}=\{K L \mid L \in G\}$
- $O^{\prime}=O$ but preconds L replaced by $K L$, and effects $C \rightarrow L$ replaced by $K C \rightarrow K L$ (supports) and $\neg K \neg C \rightarrow \neg K \neg L$ (cancellation)
$K_{0}(P)$ is sound but incomplete: every classical plan that solves $K_{0}(P)$ is a conformant plan for P, but not vice versa.

Key elements in Complete Translation $K_{T, M}(P)$

- A set T of tags t : consistent sets of assumptions (literals) about the initial situation I

$$
I \not \models \neg t
$$

- A set M of merges m : valid subsets of tags (= DNF)

$$
I \models \bigvee_{t \in m} t
$$

- New (tagged) literals $K L / t$ meaning that L is true if t true initially

A More General Translation $K_{T, M}(P)$

Given conformant problem $P=\langle F, O, I, G\rangle$

- F stands for the fluents in P
- O for the operators with effects $C \rightarrow L$
- I for the initial situation (clauses over F-literals)
- G for the goal situation (set of F-literals)
define classical problem $K_{T, M}(P)=\left\langle F^{\prime}, O^{\prime}, I^{\prime}, G^{\prime}\right\rangle$ as
- $F^{\prime}=\{K L / t, K \neg L / t \mid L \in F$ and $t \in T\}$
- $I^{\prime}=\{K L / t \mid$ if $I \models t \supset L\}$
- $G^{\prime}=\{K L \mid L \in G\}$
- $O^{\prime}=O$ but preconds L replaced by $K L$, and effects $C \rightarrow L$ replaced by $K C / t \rightarrow K L / t$ (supports) and $\neg K \neg C / t \rightarrow \neg K \neg L / t$ (cancellation), and new merge actions

$$
\bigwedge_{t \in m, m \in M} K L / t \rightarrow K L
$$

The two parameters T and M are the set of tags (assumptions) and the set of merges (valid sets of assumptions) . . .

Compiling Uncertainty Away: Properties

- General translation scheme $K_{T, M}(P)$ is always sound, and for suitable choice of the sets of tags and merges, it is complete.
- $K_{S 0}(P)$ is complete instance of $K_{T, M}(P)$ obtained by setting T to the set of possible initial states of P
- $K_{i}(P)$ is a polynomial instance of $K_{T, M}(P)$ that is complete for problems with conformant width bounded by i.
\triangleright Merges for each L in $K_{i}(P)$ chosen to satisfy i clauses in I relevant to L
- The conformant width of most benchmarks bounded and equal 1!
- This means that such problems can be solved with a classical planner after a polynomial translation

Planning with Sensing: Models and Solutions

Problem: Starting in one of two leftmost cells, get to $B ; A \& B$ observable

A			B

- Contingent Planning
$\triangleright A$ contingent plan is a tree of possible executions, all leading to the goal
$\triangleright A$ contingent plan for the problem: $\underline{R(i g h t), R, R \text {, if } \neg B \text { then } R}$
- POMDP planning
\triangleright A POMDP policy is mapping of belief states to actions, leading to goal
\triangleright A POMDP policy for problem: If Bel $\neq B$, then $R \quad\left(2^{5}-1\right.$ Bel's)

I'll focus on different solution form: finite state controllers

Finite State Controllers: Example 1

- Starting in A, move to B and back to A; marks A and B observable.

A			B

- This finite-state controller solves the problem

- FSC is compact and general: can add noise, vary distance, etc.
- Heavily used in practice, e.g. video-games and robotics, but written by hand
- The Challenge: How to get these controllers automatically

Finite State Controllers: Example 2

- Problem P : find green block using visual-marker (circle) that can move around one cell at a time
- Observables: Whether cell marked contains a green block (G), non-green block (B), or neither (C); and whether on table (T) or not (-)

- Controller on the right solves the problem, and not only that, it's compact and general: it applies to any number of blocks and any configuration!
- Controller obtained by running a classical planner over transformed problem

Deriving finite state controller from a conformant/classical plan

- Finite state controller \mathcal{C} is a set of tuples $t=\left\langle q, o, a, q^{\prime}\right\rangle$
tuple $t=\left\langle q, o, a, q^{\prime}\right\rangle$, depicted $q \xrightarrow{o / a} q^{\prime}$, tells to do action a when o is observed in controller state q and then to switch to q^{\prime}
- FSC \mathcal{C} solves P if all state trajectories compatible with P and \mathcal{C} reach the goal
- Transformation maps partially observable P into conformant P_{N} for deriving controller with up to N states
- Conformant problem P_{N} contains action a_{t} for each possible tuple $t=\left\langle q, o, a, q^{\prime}\right\rangle$
- Action a_{t} in P_{N} behaves like action a in P but conditional on q and o being true, and then setting q^{\prime} true. Also, a_{t} excludes action $a_{t^{\prime}}$ from plans if $t=\left\langle q, o, a, q^{\prime}\right\rangle \neq t^{\prime}=\left\langle q, o, a^{\prime}, q^{\prime \prime}\right\rangle$
- The actions a_{t} in the plan for P_{N} encode a controller that solves P

Plan Recognition

\mathbf{A}				\mathbf{B}				\mathbf{C}
				1				
\mathbf{J}				\mathbf{S}				\mathbf{D}
\mathbf{H}				F				\mathbf{E}

- Agent can move one unit in the four directions
- Possible targets are A, B, C, .. .
- Starting in S, he is observed to move up twice
- Where is he going? Why?

Example (cont'd)

- From Bayes, goal posterior is $P(G \mid O)=\alpha P(O \mid G) P(G), G \in \mathcal{G}$
- If priors $P(G)$ given for each goal in \mathcal{G}, the question is what is $P(O \mid G)$?
- $P(O \mid G)$ measures how well goal G predicts observed actions O
- In classical setting,
$\triangleright G$ predicts O best when need to get off the way not to comply with O
$\triangleright G$ predicts O worst when need to get off the way to comply with O

Posterior Probabilities from Plan Costs

- From Bayes, goal posterior is $P(G \mid O)=\alpha P(O \mid G) P(G)$,
- If priors $P(G)$ given, set $P(O \mid G)$ to

$$
\text { function }(c(G+\bar{O})-c(G+O))
$$

$\triangleright c(G+O)$: cost of achieving G while complying with O
$\triangleright c(G+\bar{O})$: cost of achieving G while not complying with O

- Costs $c(G+O)$ and $c(G+\bar{O})$ computed by classical planner on transformed problem where complying and not complying with O translated into normal goals
- Function of cost difference set to sigmoid; follows from assuming $P(O \mid G)$ and $P(\bar{O} \mid G)$ are Boltzmann distributions $P(O \mid G)=\alpha^{\prime} \exp \{-\beta c(G, O)\}$
- Result is that posterior probabilities $P(G \mid O)$ computed in $2|\mathcal{G}|$ classical planner calls, where \mathcal{G} is the set of possible goals

Illustration: Noisy Walk

Graph on left shows 'noisy walk' and possible targets; curves on right show resulting posterior probabilities $P(G \mid O)$ of each possible target G as a function of time

Approach to plan recognition can be generalized to other models (MDPs, POMDPs); the idea is that if you have a planner for a model, then you also have a plan recognizer for that model given a pool of possible goals.

Extended Temporal LTL Goals

- Classical planning concerned with synthesis of finite plans to achieve reachability goals
- Temporally extended goals expressed in linear temporal logic (LTL) used to encode restrictions over whole state trajectories that may require infinite plans
\triangleright e.g., monitor room A and room B forever: $\square(\diamond A t(A) \wedge \diamond A t(B))$
- LTL extends propositional logic with unary temporal operators \bigcirc, \diamond, and \square, and binary temporal operator \mathcal{U}.
$\triangleright \mathrm{O} \varphi$ says that φ holds at the next instant,
$\triangleright \diamond \varphi$ says that φ will eventually hold,
$\triangleright \square \varphi$ says that from current instant on φ will always hold, and
$\triangleright \varphi \mathcal{U} \psi$ says that at some future instant ψ will hold and until then φ holds
- Question: How to plan to achieve/satisfy LTL goals (formulas)?

Settings for Planning with Temporal Extended LTL Goals

- 1. Classical planning for reachability goals with finite plan that satisfies subclass of LTL requirements
\triangleright most basic case; e.g., plans that don't visit states where $p \wedge q$ is true
- 2. Planning with deterministic actions and known initial situation for achieving arbitrary LTL goals
\triangleright may require infinite 'lasso plans
- 3. Planning with non-deterministic actions, fully observable states and arbitrary LTL goals
\triangleright this is a more interesting case; e.g., controller for 'artificial clerk' in store
- 4. Planning with non-deterministic actions, partially observable states and arbitrary LTL goals
\triangleright this is the most general case; it subsumes LTL controller synthesis which is 2-EXPTIME Complete.

Basic Case: Classical Planning with LTL constraints

- Problem: compute finite plan $\pi=a_{0}, \ldots, a_{n-1}$ for classical problem $P=$ $\langle F, I, O, G\rangle$ s.t. resulting state sequence s_{0}, \ldots, s_{n} satisfies LTL restriction φ.
- Approach: sequence π can be obtained as plan for a transformed classical planning problem P_{φ} obtained from P and LTL formula φ
- Intuition:
\triangleright The state trajectories that satisfy φ can be characterized as the inputs accepted by an automata A^{φ}
\triangleright The classical problem P_{φ} is the compact representation of the product of two automata: the automata implicitly encoded by P and the automata A^{φ} implicitly encoded by φ
- Extensions: Similar ideas have been used to address problems 2 and 3 in previous slide. Positive empirical results of planning approach in relation to symbolic methods used in formal verification and synthesis.

Summary: Transformations

- Classical Planning solved as path-finding in state state
\triangleright Most used techniques are heuristic search and SAT
- Beyond classical planning: two approaches
\triangleright Top-down: solvers for richer models like MDPs and POMDPs
\triangleright Bottom-up: compile non-classical features away
- We have follow second approach with transformations to eliminate
\triangleright soft goals when planning with preferences
\triangleright uncertainty in conformant planning)
\triangleright sensing for deriving finite-state controllers
\triangleright observations for plan recognition
\triangleright extended temporal LTL goals
- Other transformations used for dealing with control knowledge, plan libraries, fault tolerant planning, etc.

MDP \& POMDP Planning

Models, Languages, and Solvers (Review)

- A planner is a solver over a class of models; it takes a model description, and computes the corresponding controller

$$
\text { Model Instance } \Longrightarrow \text { Planner } \Longrightarrow \text { Controller }
$$

- Many models, many solution forms: uncertainty, feedback, costs, . . .
- Models described in suitable planning languages (Strips, PDDL, PPDDL, . .) where states represent interpretations over the language.

Planning with Markov Decision Processes: Goal MDPs

MDPs are fully observable, probabilistic state models:

- a state space S
- initial state $s_{0} \in S$
- a set $G \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each state $s \in S$
- transition probabilities $P_{a}\left(s^{\prime} \mid s\right)$ for $s \in S$ and $a \in A(s)$
- action costs $c(a, s)>0$
- Solutions are functions (policies) mapping states into actions
- Optimal solutions minimize expected cost from s_{0} to goal

Discounted Reward Markov Decision Processes

Another common formulation of MDPs . . .

- a state space S
- initial state $s_{0} \in S$
- actions $A(s) \subseteq A$ applicable in each state $s \in S$
- transition probabilities $P_{a}\left(s^{\prime} \mid s\right)$ for $s \in S$ and $a \in A(s)$
- rewards $r(a, s)$ positive or negative
- a discount factor $0<\gamma<1$; there is no goal
- Solutions are functions (policies) mapping states into actions
- Optimal solutions max expected discounted accumulated reward from s_{0}

Expected Cost/Reward of Policy (MDPs)

- In Goal MDPs, expected cost of policy π starting in s, denoted as $V^{\pi}(s)$, is

$$
V^{\pi}(s)=E_{\pi}\left[\sum_{s_{i}} c\left(a_{i}, s_{i}\right) \mid s_{0}=s, a_{i}=\pi\left(s_{i}\right)\right]
$$

where expectation is weighted sum of cost of possible state trajectories times their probability given π

- In Discounted Reward MDPs, expected discounted reward from s is

$$
V^{\pi}(s)=E_{\pi}\left[\sum_{s_{i}} \gamma^{i} r\left(a_{i}, s_{i}\right) \mid s_{0}=s, a_{i}=\pi\left(s_{i}\right)\right]
$$

- In both cases, optimal value function V^{*} expresses V^{π} for best π

Solving MDPs: Assumptions, Generality

Conditions that ensure existence of optimal policies and correctness (convergence) of some of the methods we'll see:

- For discounted MDPs, $0<\gamma<1$, none needed as everything is bounded; e.g. discounted cumulative reward no greater than $C / 1-\gamma$, if $r(a, s) \leq C$ for all a, s
- For goal MDPs, absence of dead-ends assumed so that $V^{*}(s) \neq \infty$ for all s

Discounted MDPs easy to convert into Goal MDPs; no similar transformation known in the opposite direction

Basic Dynamic Programming Methods: Value Iteration (1)

- Greedy policy π_{V} for $V=V^{*}$ is optimal:

$$
\pi_{V}(s)=\arg \min _{a \in A(s)}\left[c(s, a)+\sum_{s^{\prime} \in S} P_{a}\left(s^{\prime} \mid s\right) V\left(s^{\prime}\right)\right]
$$

- Optimal V^{*} is unique solution to Bellman's optimality equation for MDPs

$$
V(s)=\min _{a \in A(s)}\left[c(s, a)+\sum_{s^{\prime} \in S} P_{a}\left(s^{\prime} \mid s\right) V\left(s^{\prime}\right)\right]
$$

where $V(s)=0$ for goal states s

- For discounted reward MDPs, Bellman equation is

$$
V(s)=\max _{a \in A(s)}\left[r(s, a)+\gamma \sum_{s^{\prime} \in S} P_{a}\left(s^{\prime} \mid s\right) V\left(s^{\prime}\right)\right]
$$

Basic DP Methods: Value Iteration (2)

- Value Iteration finds V^{*} solving Bellman eq. by iterative procedure:
\triangleright Set V_{0} to arbitrary value function; e.g., $V_{0}(s)=0$ for all s
\triangleright Set V_{i+1} to result of Bellman's right hand side using V_{i} in place of V :

$$
V_{i+1}(s):=\min _{a \in A(s)}\left[c(s, a)+\sum_{s^{\prime} \in S} P_{a}\left(s^{\prime} \mid s\right) V_{i}\left(s^{\prime}\right)\right]
$$

- $V_{i} \mapsto V^{*}$ as $i \mapsto \infty$
- $V_{0}(s)$ must be initialized to 0 for all goal states s

(Parallel) Value Iteration and Asynchronous Value Iteration

- Value Iteration (VI) converges to optimal value function V^{*} asympotically
- Bellman eq. for discounted reward MDPs similar, but with max instead of min, and sum multiplied by γ
- In practice, VI stopped when residual $R=\max _{s}\left|V_{i+1}(s)-V_{i}(s)\right|$ is small enough
- Resulting greedy policy π_{V} has loss bounded by $2 \gamma R / 1-\gamma$
- Asynchronous Value Iteration is asynchronous version of VI, where states updated in any order
- Asynchronous VI also converges to V^{*} when all states updated infinitely often; it can be implemented with single V vector

Method 2: Policy Iteration

- Expected cost of policy π from s to goal, $V^{\pi}(s)$, is weighted avg of cost of state trajectories $\tau: s_{0}, s_{1}, \ldots$, times their probability given π
- Trajectory cost is $\sum_{i=0, \infty} \operatorname{cost}\left(\pi\left(s_{i}\right), s_{i}\right)$ and probability $\prod_{i=0, \infty} P_{\pi\left(s_{i}\right)}\left(s_{i+1} \mid s_{i}\right)$
- Expected costs $V^{\pi}(s)$ can also be characterized as solution to Bellman equation

$$
V^{\pi}(s)=c(a, s)+\sum_{s^{\prime} \in S} P_{a}\left(s^{\prime} \mid s\right) V^{\pi}\left(s^{\prime}\right)
$$

where $a=\pi(s)$, and $V^{\pi}(s)=0$ for goal states

- This set of linear equations can be solved analytically, or by VI-like procedure
- Optimal expected cost $V^{*}(s)$ is $\min _{\pi} V^{\pi}(s)$ and optimal policy is the arg min
- For discounted reward MDPs, all similar but with $r(s, a)$ instead of $c(a, s)$, max instead of min , and sum discounted by γ

Policy Iteration (cont'd)

- Let $Q^{\pi}(a, s)$ be expected cost from s when doing a first and then π

$$
Q^{\pi}(a, s)=c(a, s)+\sum_{s^{\prime} \in S} P_{a}\left(s^{\prime} \mid s\right) V^{\pi}\left(s^{\prime}\right)
$$

- When $Q^{\pi}(a, s)<Q^{\pi}(\pi(s), s), \pi$ strictly improved by changing $\pi(s)$ to a
- Policy Iteration (PI) computes π^{*} by seq. of evaluations and improvements

1. Starting with arbitrary (proper) policy π
2. Compute $V^{\pi}(s)$ for all s (evaluation)
3. Improve π by setting $\pi(s)$ to a if $Q^{\pi}(a, s)<Q(\pi(s), s)$ for $a=\arg \min _{a \in A(s)} Q^{\pi}(a, s)$ (improvement)
4. If π changed in 3 , go back to 2 , else finish

- PI finishes with π^{*} after finite number of iterations, as $\#$ of policies is finite

Dynamic Programming: The Curse of Dimensionality

- VI and PI are exhaustive methods that need value vectors V of size $|S|$
- Linear programming can also be used to get V^{*} but $O(|A||S|)$ constraints:

$$
\max _{V} \sum_{s} V(s) \text { subject to } V(s) \leq c(a, s)+\sum_{s^{\prime}} P_{a}\left(s^{\prime} \mid s\right) V\left(s^{\prime}\right) \text { for all } a, s
$$

with $V(s)=0$ for goal states

- MDP problem is thus polynomial in S but exponential in $\#$ vars
- Moreover, this is not worst case; vectors of size $|S|$ needed to get started!

Question: Can we do better?

Dynamic Programming and Heuristic Search

- Heuristic search algorithms like A* * and IDA* manage to solve optimally problems with more than 10^{20} states, like Rubik's Cube and the 15 -puzzle
- For this, admissible heuristics (lower bounds) used to focus/prune search
- Can admissible heuristics be used for focusing updates in DP methods?
- Often states reachable with optimal policy from s_{0} much smaller than S
- Then convergence to V^{*} over all s not needed for optimality from s_{0}

Theorem 1. If V is an admissible value function s.t. the residuals over the states reachable with π_{V} from s_{0} are all zero, then π_{V} is an optimal policy from s_{0} (i.e. it minimizes $V^{\pi}\left(s_{0}\right)$)

Learning Real Time A* (LRTA*) Revisited

1. Evaluate each action a in s as: $Q(a, s)=c(a, s)+V\left(s^{\prime}\right)$
2. Apply action a that minimizes $Q(\mathbf{a}, s)$
3. Update $V(s)$ to $Q(\mathbf{a}, s)$
4. Exit if s^{\prime} is goal, else go to 1 with $s:=s^{\prime}$

- LRTA* can be seen as asynchronous value iteration algorithm for deterministic actions that takes advantage of theorem above (i.e. updates $=$ DP updates)
- Convergence of LRTA* to V implies residuals along π_{V} reachable states from s_{0} are all zero
- Then 1) $V=V^{*}$ along such states, 2) $\pi_{V}=\pi^{*}$ from s_{0}, but 3) $V \neq V^{*}$ and $\pi_{V} \neq \pi^{*}$ over other states; yet this is irrelevant given s_{0}

Real Time Dynamic Programming (RTDP) for MDPs

RTDP is a generalization of LRTA* to MDPs due to (Barto et al 95); just adapt Bellman equation used in the Eval step

1. Evaluate each action a applicable in s as

$$
Q(a, s)=c(a, s)+\sum_{s^{\prime} \in S} P_{a}\left(s^{\prime} \mid s\right) V\left(s^{\prime}\right)
$$

2. Apply action a that minimizes $Q(\mathbf{a}, s)$
3. Update $V(s)$ to $Q(\mathbf{a}, s)$
4. Observe resulting state s^{\prime}
5. Exit if s^{\prime} is goal, else go to 1 with $s:=s^{\prime}$

Same properties as LRTA* but over MDPs: after repeated trials, greedy policy eventually becomes optimal if $V(s)$ initialized to admissible $h(s)$

Find-and-Revise: A General DP + HS Scheme

- Let $\operatorname{Res}_{V}(s)$ be residual for s given admissible value function V
- Optimal π for MDPs from s_{0} can be obtained for sufficiently small $\epsilon>0$:

1. Start with admissible V; i.e. $V \leq V^{*}$
2. Repeat: find s reachable from $\pi_{V} \& s_{0}$ with $R e s_{V}(s)>\epsilon$, and Update it
3. Until no such states left

- V remains admissible (lower bound) after updates
- Number of iterations until convergence bounded by $\sum_{s \in S}\left[V^{*}(s)-V(s)\right] / \epsilon$
- Like in heuristic search, convergence achieved without visiting or updating many of the states in S; LRTDP, LAO*, ILAO*, HDP, LDFS, etc. are algorithms of this type

Variations on RTDP : Reinforcement Learning

Q-learning is a model-free version of RTDP; Q-values initialized arbitrarily and learned by experience

1. Apply action a that minimizes $Q(\mathbf{a}, s)$ with probability $1-\epsilon$, with probability ϵ, choose a randomly
2. Observe resulting state s^{\prime} and collect cost c
3. Update $Q(\mathbf{a}, s)$ to

$$
(1-\alpha) Q(\mathbf{a}, s)+\alpha\left[c+\min _{a} Q\left(a, s^{\prime}\right)\right]
$$

4. Exit if s^{\prime} is goal, else with $s:=s^{\prime}$ go to 1

- Q-learning converges asympotically to optimal Q-values, when all actions and states visited infinitely often
- Q-learning solves MDPs optimally without model parameters (probabilities, costs)

Variations on RTDP : Reinforcement Learning (2)

More familiar Q-learning algorithm formulated for discounted reward MDPs:

1. Apply action a that maximizes $Q(\mathbf{a}, s)$ with probability $1-\epsilon$, with probability ϵ, choose a randomly
2. Observe resulting state s^{\prime} and collect reward r
3. Update $Q(\mathbf{a}, s)$ to

$$
(1-\alpha) Q(\mathbf{a}, s)+\alpha\left[r+\gamma \max _{a} Q\left(a, s^{\prime}\right)\right]
$$

4. Exit if s^{\prime} is goal, else with $s:=s^{\prime}$ go to 1

- Q-values initialized arbitrarily
- This version solves discounted reward MDPs

Model-based Reinforcement Learning (RMAX)

- Planning is model-based: it computes behavior from model
- Reinforcement learning (RL) is model-free: behavior from trial-and-error
- Model-based RL maps learning into a planning over optimistic model:
\triangleright final nirvana state s_{N} that yields max reward R is added
\triangleright unknown transitions $P_{a}\left(s^{\prime} \mid s\right)$ replaced by transition $P_{a}\left(s_{N} \mid s\right)=1$
\triangleright planning over optimistic model leads agent to unknown parts s, a of true model
\triangleright statistics on rewards and transitions from s and a make these parts eventually known (with enough confidence)
\triangleright optimistic model becomes less optimistic and more accurate, incrementally, converging eventually to true model

Limitations of exact MDP planning and learning algorithms

- inference is at the level of states, not variables: can't scale too well
- inference in the form of value updates: learning is slow

Can we do better?

We'll look at approximate algorithms that exploit connections to classical planning in both on-line and off-line settings

On-line MDP Planning by Classical Replanning

- Make deterministic relaxation (D-Relax); mapping diff outcomes into diff actions

$$
a: C \rightarrow E_{1} p_{1}\left|E_{2} p_{2}\right| \cdots \mid E_{n} p_{n} \quad \mapsto \quad a_{i}: C \rightarrow E_{i}, i=1, \ldots, n
$$

- Solve D-Relax from current state with classical planner
- Follow classical plan until state observed that is not predicted by D-Relax
- Replan from that state using D-Relax, and repeat until goal found

This is simple and often effective but no formal guarantees (FF-Replan)

Proper Policies for MDPs vs. Strong Cyclic Policies for FOND

- Policy π is proper from s_{0} in an MDP iff it leads to goal with probability 1
\triangleright e.g., hit nail until it gets into the wall
- Non-deterministic relaxation of MDP is a Fully Observable NonDeterministic (FOND) problem (probabilities dropped)

$$
a: C \rightarrow E_{1} p_{1}\left|E_{2} p_{2}\right| \cdots\left|E_{n} p_{n} \quad \mapsto \quad a: C \rightarrow E_{1}\right| E_{2}|\cdots| E_{n}
$$

- Theorem: π is proper for MDP iff π is strong cyclic for its FOND relaxation
- π is strong cyclic for FOND iff it leads to the goal assuming that dynamics is fair, or more formally, iff for all s reachable from s_{0} and π, the goal is reachable from s and π

Strong, Weak, and Strong Cyclic Policies for FOND Problems

- Pesimistic and optimistic values $V_{\max }^{\pi}$ and $V_{\min }^{\pi}$ can be obtained for $a=\pi(s)$ from $V_{\max }^{\pi}(s)=V_{\min }^{\pi}(s)=0$ for goal states s, and Bellman equations:

$$
\begin{aligned}
& V_{\max }^{\pi}(s)=c(a, s)+M A X_{s^{\prime} \in F(a, s)} V_{\max }^{\pi}\left(s^{\prime}\right) \\
& V_{\min }^{\pi}(s)=c(a, s)+M I N_{s^{\prime} \in F(a, s)} V_{\min }^{\pi}\left(s^{\prime}\right)
\end{aligned}
$$

- π is a strong policy iff $V_{\max }^{\pi}\left(s_{0}\right) \neq \infty$
- π is a weak policy iff $V_{\text {min }}^{\pi}\left(s_{0}\right) \neq \infty$
- Optimal strong and weak policies can be computed from $V_{\max }^{*}$ and $V_{\min }^{*}$ obtained from Bellman eqs:

$$
\begin{aligned}
& V_{\max }(s)=\min _{a \in A(s)}\left[c(a, s)+M A X_{s^{\prime} \in F(a, s)} V_{\max }\left(s^{\prime}\right)\right] \\
& V_{\min }(s)=\min _{a \in A(s)}\left[c(a, s)+M I N_{s^{\prime} \in F(a, s)} V_{\min }\left(s^{\prime}\right)\right]
\end{aligned}
$$

Computing Strong Cyclic Policies - Exhaustive Method

- Thm: π is strong cyclic iff $V_{m i n}^{\pi}(s) \neq \infty$ for all s reachable from s_{0} and π
- Strong cyclic π can thus be computed by following loop:
\triangleright Compute $V_{\text {min }}^{*}(s)$ for all s
\triangleright Prune: s^{\prime} and actions $a \in A(s)$ such that $s^{\prime} \in F(a, s)$ if $V_{\text {min }}^{*}\left(s^{\prime}\right)=\infty$
\triangleright Repeat 1 and 2 til no more pruning
\triangleright Terminate: Policy greedy in resulting $V_{\min }^{*}$ is strong cyclic from s_{0}
\triangleright Caveat: If s_{0} is pruned, no strong cyclic policy from s_{0} exists

Strong Cyclic Policies using Classical Planners

- Idea: $V^{*}{ }_{\min }(s) \neq \infty$ in FOND problem P amounts to existence of classical plan from s in deterministic relaxation of FOND. This suggests computing strong cyclic policies for FOND using classical planners
- Consider state-plan (SP) pairs $\langle S, \Sigma\rangle$ where S is subset of states S and members $\sigma(s)$ of Σ are plans mapping a state $s \in S$ into goal in DET-relaxation. Pair $\langle S, \Sigma\rangle$ is
\triangleright complete if Σ contains one plan $\sigma(s)$ for each $s \in S$
\triangleright consistent if all plans $\sigma(s)$ in Σ that pass through a state s^{\prime} apply same action in s^{\prime}, denoted $\pi\left(s^{\prime}\right)$
\triangleright closed if $s_{0} \in S$ and all states s generated by plans in Σ are in S
- Theorem: Policy π defined by complete state-plan pairs that are consistent and closed is strong cyclic for FOND problem.
- Corollary: compute π incrementally with classical planner, starting with $\left\langle S_{0}=\left\{s_{0}\right\}, \Sigma_{0}=\{ \}\right\rangle$, by making pair complete and closed, while keeping it consistent. 1) Procedure may have to backtrack; 2) Classical planner extended to avoid nogood actions and states

Relaxations of MDPs for Action Selection

- FOND relaxation for
\triangleright computing proper policies as strong cyclic policies
- DET relaxation for
\triangleright computing strong cyclic policies using classical planners
\triangleright goal-driven action selection in MDPs by classical replanning

We move to new relaxation/model, finite horizon MDPs/FOND/Game Trees, for on-line action selection

Finite horizon relaxation of MDPs, FOND, Game Trees

- states s become pairs (s, d) where d is number of steps to go, $d \in[0, \ldots, H]$
- initial state becomes (s, H) where s is current state and H is given horizon
- terminal states (s, d) such that s is goal state or $d=0$
- value of terminal states $s, d, V_{T}(s, d)$ available (as in Chess)
- state transitions as in original problem but decrement steps-to-go d
- action costs or rewards can be arbitrary (including zero in Game Trees)

Idea: Select action a in current state s such that a is best in s relative to finitehorizon relaxation. Solution to finite-horizon problem yields form of lookahead

Solving Finite-Horizon Problem Exhaustively

- Optimal value function $V^{*}(s, d)$ can be computed backward from terminal states where $V^{*}(s, d)=V_{T}(s, d)$

$$
\begin{array}{ll}
\text { MDPs: } & V^{*}(s, d)=\min _{a \in A(s)}\left[c(a, s)+\sum_{s^{\prime} \in S} P_{a}\left(s^{\prime} \mid s\right) V^{*}\left(s^{\prime}, d-1\right)\right] \\
\text { FONDs: } & V^{*}(s, d)=\min _{a \in A(s)}\left[c(a, s)+M A X_{s^{\prime} \in F(a, s)} V^{*}\left(s^{\prime}, d-1\right)\right] \\
\text { Game Trees: } & V^{*}(s, d)=\min _{a \in A(s)}\left[M A X_{s^{\prime} \in F(a, s)} V^{*}\left(s^{\prime}, d-1\right)\right]
\end{array}
$$

- Procedure called backward induction (minimax search for GTs); implemented by depth-first search of AND/OR graph (Game Tree) associated with finitehorizon MDP, FOND or Game
- This is single iteration of Value Iteration; sufficient when MDP/FOND is acyclic and updates ordered back from leaves
- Still exponential in horizon H. .

Heuristic and Monte Carlo Tree Search for Solving Finite-Horizon Problem

Acyclic AND/OR graph can be solved in other ways:

- Heuristic Search
$\triangleright \mathbf{A O}^{*}$ is generalization of A^{*} for AND/OR graphs
- Game Tree Search
\triangleright Alpha-Beta pruning improves minimax with lower and upper bounds
- Monte Carlo Tree Search (MCTS)
\triangleright UCT (Upper Bound Confidence for Trees) generalizes algorithm UCB for multi-arm bandits to trees

Two Player Games: Game Tree Search

- Heuristic search and planning concerned with action selection in problems where initial state is given and changes follow from actions of single agent
- How to plan for a goal in the presence of other agents?
- It depends on what the other agents want
\triangleright The other agents may be there to help (cooperative agents)
\triangleright The other agents may be there to hinder (adversarial agents)
\triangleright The other agents may be there for their own goals (not necessarily cooperative or adversarial)
- Game Trees provide model for 2-player, adversarial, sequential games
- Yet, most interactions in life are not adversarial. We will come back to them later.

Game Trees

Games trees suitable for adversarial (zero-sum) games like tic-tac-toe, checkers, chess, etc. They are made up of three components:

- Three types of nodes
\triangleright Max Nodes: represent options for Max-Player
\triangleright Min Nodes: represent options for the other player, called Min
\triangleright Terminal Nodes: represent final outcomes, no options
- Structure
\triangleright Root node is either MAX or MIN (we assume MAX, and values from MAX's perspective)
\triangleright Children of MAX nodes are MIN nodes or Terminal nodes
\triangleright Children of MIN nodes are MAX nodes or Terminal nodes
\triangleright Terminal nodes, and only them, have no children
- Evaluation function
\triangleright Values or payoffs associated with terminal nodes

Game Tree - Example

What should MAX player do in this game?

- MAX player has three options: left, middle, right
- What's the Minimum payoff that MAX player can ensure for each move?
- What should MIN player do if games reaches \mathbf{b}, \mathbf{c}, or \mathbf{d} ?

Game Trees - Another Example

- What should MAX player do initially in this game?
- What's the minimum payoff that he can ensure for each of the possible initial moves?
- What's the minimum payoff that he can ensure at the root of the game?

Game Trees - Fragment of Tic-Tac-Toe

- What should MAX player (crosses) do in given situation (root)?
- Terminal nodes represent final situations (wins, losses, ties for MAX)
- Value for win, loss, and tie set to $+1,0,-1$.

Minimax (and Maximin) Algorithm for Game Trees

- Game tree evaluated bottom up:
\triangleright Value of Terminal Nodes is given value of terminal
\triangleright Value of Min Node is Minimum value of its childrenn
\triangleright Value of Max Node is Maximum value of its children
- Value of Root node is value that MAX can guarantee
- Best initial action is the one that leads to child with that value
- This can be all computed by means of a Depth-first Search
- Algorithm called then Maximin, if root is MAX, or Minimax if MIN
- Time complexity is $O\left(b^{d}\right)$ where d is number of levels (depth) and b is branching factor (avg number of moves per node)
- Space complexity of these algorithms is $O(b \cdot d)$

Using and Improving Minimax over Huge Game Trees

- Minimax algorithms explore complete game tree
- This is possible in Tic-tac-toe but not in Chess or Checkers
- In those cases, a depth d is set, and nodes at such depth treated as terminal
- Best first move in resulting tree executed, and process is repeated after opponent move
- Evaluation function that sets values of such (non-final) terminals designed by hand or learned
- E.g., Value of chess board can reflect aspects such as piece advantage, control of center, etc.
- Quality of play depends on depth d used and evaluation function for terminals
- Good checkers and chess playing programs incoporate extensions for using nonuniform depths and searching tree non-exhaustively

Minimax with Alpha-Beta Pruning

- Depth-first search for evaluating game tree can be improved substantially in performance
- Two observations:
\triangleright When some of the children of a MAX node have been evaluated, there is a lower bound α on how much MAX can get, even if the other children have not been evaluated yet
\triangleright When some of the children of a MIN node have been evaluated, there is in turn an upper bound β on how much MAX can get, if the other children have not been evaluated yet
- Two optimizations that return same value and same moves:
\triangleright Skip rest of MIN children in depth-first search when $\beta \leq \alpha$ (β cut-off)
\triangleright Skip rest of MAX children in depth-first search when $\beta \leq \alpha$ (α cut-off)
- In practice, Alpha-Beta pruning makes $O\left(b^{d}\right)$ search in $O\left(b^{d / 2}\right)$ time, meaning quality given by depth d but time as if depth was $d / 2$.

Pseudo-Code Maximin with Alpha-Beta Pruning

```
function alphabeta(node, depth, alpha, beta, maximizingPlayer)
    if depth = O or node is a terminal node
        return value of node
    if maximizingPlayer
        for each child of node
            alpha := max(alpha, alphabeta(child, depth - 1, alpha, beta, FALSE))
            if beta <= alpha
                break (* beta cut-off *)
        return alpha
    else
        for each child of node
        beta := min(beta, alphabeta(child, depth - 1, alpha, beta, TRUE))
        if beta <= alpha
            break (* alpha cut-off *)
    return beta
(* Initial call *)
alphabeta(origin, depth, -infinity, +infinity, TRUE)
```


Example Alpha-Beta Pruning

- Game tree with alpha cut-offs shown
- Depth-first search assumed from left to right (leftmost child evaluated always first, etc)
- Pruned parts of the tree can be skipped without affecting value or best action at root

AO* for Acyclic AND/OR Graphs

- Acyclic AND/OR graph M to be solved is implicit
- AO* makes part of M explicit incrementally
- For this, AO^{*} maintains explicit graph G that initially contains root node only
- G is expanded incrementally by selecting tip node in best solution graph of G that is not terminal in M, and expanding it in G
- The value of such tip nodes given by heuristic function, until they are expanded when their value is function of their children
- AO^{*} terminates when best solution graph of G contains no such tips
- Upon termination, best solution graph of G is optimal if heuristic is admissible (lower bound of V^{*})

AO* Code for Finite-Horizon MDPs

AO*: G is explicit graph, initially empty; h is heuristic function.

Initialization

- Insert node (s, H) in G where s is the initial state
- Initialize $V(s, H):=h(s, H)$
- Initialize best partial graph to G

Loop

- Select non-terminal tip (s, d) in best partial graph. If no such node, Exit.
- Expand node (s, d) : for each $a \in A(s)$, add node (a, s, d) as child of (s, d), and for each s^{\prime} with $P_{a}\left(s^{\prime} \mid s\right)>0$, add node $\left(s^{\prime}, d-1\right)$ as child of (a, s, d). Initialize values $V\left(s^{\prime}, d-1\right)$ for new nodes $\left(s^{\prime}, d-1\right)$ to $V_{T}\left(s^{\prime}, d-1\right)$ if terminal, else to $h\left(s^{\prime}, d-1\right)$
- Update ancestor AND and OR nodes of (s, d) in G, bottom-up as:

$$
\begin{aligned}
Q(a, s, d) & :=c(a, s)+\sum_{s^{\prime}} P_{a}\left(s^{\prime} \mid s\right) V\left(s^{\prime}, d-1\right), \\
V(s, d) & :=\min _{a \in A(s)} Q(a, s, d)
\end{aligned}
$$

- Revise best partial graph by updating best actions in ancestor OR-nodes (s, d) to any action a such that $V(s, d)=Q(a, s, d)$, maintaining marked action if still best.

AO* Limitations and Variations

- AO* is not optimal if graph is not acyclic or heuristic not admissible
- For general MDPs and FONDs, backward induction step in AO* needs to be replaced by full value iteration. This is expensive (LAO*)
- A* is anytime optimal even without an admissible heuristic, if A^{*} not stopped after first solution found
- Same trick does not work for AO*
- For AO* being anytime optimal, AO* needs to select nodes that are not part of best solution graph (exploitation/exploration tradeoff; AOT)
- Common source of non-admissible heuristics from use of base policies π_{0} to initialize values by means of rollouts: simulation of the base policy

UCT for Finite-Horizon Problems and Relaxations

- UCT is instance of Monte-Carlo Tree Search (MCTS) algorithms where best action selected from $Q(a, s)$ values computed by
\triangleright running simulations (actual model not required)
\triangleright averaging resulting values
\triangleright using these values for action selection in simulations (adaptive MonteCarlo)
- In practice, UCT not used with heuristic functions but base policies
- UCT made big splash in game of Go and many other games and tasks
- Like AO*, UCT builds explicit graph G incrementally starting with root node only, but in a different way . .

UCT from the perspective of AO*: Four differences

- Selection of tip node to expand in G follows simulation from root: first state generated that is not in G, is added
- Value of new nodes obtained from rollout: simulation of base policy from node
- Propagation of values up the graph G following Monte Carlo updates as opposed to Bellman updates
- Choice of action in simulations inside graph G not greedy in $Q(a, s)$ but greedy in $Q(a, s)$ extended with exploration bonus as:

$$
Q(a, s)+C \sqrt{2 \log N(s, d) / N(a, s, d)}
$$

where C is exploration constant, and $N(s, d)$ and $N(a, s, d)$ track number of simulations that pass through (s, d) and (s, d, a)

- Exploration bonus ensures that all actions tried in all states infinitely often at rates that optimize regret in multi-arm setting.

UCT Code for Finite-Horizon Discounted Reward MDPs

$\operatorname{UCT}(s, d)$: G is explicit graph, initially empty; π is base policy; C is exploration constant.

- If $d=0$ or s is terminal, Return $V_{T}(s, d)$
- If node (s, d) is not in explicit graph G, then
\triangleright Add node (s, d) to explicit graph G
\triangleright Initialize $N(s, d):=0$ and $N(a, s, d):=0$ for all $a \in A(s)$
\triangleright Initialize $Q(a, s, d):=0$ for all $a \in A(s)$
\triangleright Obtain sampled accumulated discounted reward $r(\pi, s, d)$ by simulating base policy π for d steps starting at s
\triangleright Return $r(\pi, s, d)$
- If node (s, d) is in explicit graph G,
\triangleright Select action $a=\operatorname{argmax}_{a \in A(s)}[Q(a, s, d)+C \sqrt{2 \log N(s, d) / N(a, s, d)}]$
\triangleright Sample state s^{\prime} with probability $P_{a}\left(s^{\prime} \mid s\right)$
\triangleright Let $n v=r(s, a)+\gamma \operatorname{UCT}\left(s^{\prime}, d-1\right)$
$\triangleright \operatorname{Increment} N(s, d)$ and $N(a, s, d)$
$\triangleright \operatorname{Set} Q(a, s, d):=Q(a, s, d)+[n v-Q(a, s, d)] / N(a, s, d)$
\triangleright Return $n v$

Summary MDPs and Related Fully Observable Models

- DP methods like VI and PI are optimal but exhaustive
- Heuristic search methods like RTDP, LAO*, and Find-and-Revise can be optimal without being exhaustive
- Relaxations:
\triangleright FOND relax for computing proper policies
\triangleright DET relax for computing strong cyclic policies and greedy actions
\triangleright Finite-Horizon relaxation for on-line action selection
- Solutions to finite-horizon problems:
\triangleright Exhaustive backward induction, minimax search, ...
\triangleright Heuristic search AO* and variations
\triangleright Monte-Carlo methods: UCT, RTDP, ..

Partially Observable MDPs: Goal POMDPs

POMDPs are partially observable, probabilistic state models:

- states $s \in S$
- actions $A(s) \subseteq A$
- transition probabilities $P_{a}\left(s^{\prime} \mid s\right)$ for $s \in S$ and $a \in A(s)$
- initial belief state b_{0}
- set of observable target states S_{G}
- action costs $c(a, s)>0$
- sensor model given by probabilities $P_{a}(o \mid s), o \in O b s$
- Belief states are probability distributions over S
- Solutions are policies that map belief states into actions
- Optimal policies minimize expected cost to go from b_{0} to target bel state.

Discounted Reward POMDPs

A common alternative formulation of POMDPs:

- states $s \in S$
- actions $A(s) \subseteq A$
- transition probabilities $P_{a}\left(s^{\prime} \mid s\right)$ for $s \in S$ and $a \in A(s)$
- initial belief state b_{0}
- sensor model given by probabilities $P_{a}(o \mid s)$, $o \in O b s$
- rewards $r(a, s)$ positive or negative
- discount factor $0<\gamma<1$; there is no goal
- Solutions are policies mapping states into actions
- Optimal solutions max expected discounted accumulated reward from b_{0}

Example: Omelette

- Representation in GPT (incomplete):

```
Action: grab - egg()
Precond: \negholding
Effects: holding:= true
    good?:= (true 0.5; false 0.5)
Action: clean(bowl:BOWL)
Precond: नholding
Effects: ngood(bowl):=0 , nbad(bowl):=0
Action: inspect(bowl:BOWL)
Effect: obs(nbad(bowl) > 0)
```

- Performance of resulting controller (2000 trials in 192 sec)

Example: Hell or Paradise; Info Gathering

- initial position is 6
- goal and penalty at either 0 or 4 ; which one not known
- noisy map at position 9

Action:	go $-\operatorname{up}() ;$ same for down,left, right
Precond:	FREE $(\mathrm{UP}($ pos $))$
Effects:	pos $:=\mathrm{UP}($ pos $)$
Action:	$*$
Effects:	pos $=$ pos $9 \rightarrow$ obs $($ ptr $)$ pos $=$ goal \rightarrow obs $($ goal $)$
Costs:	pos $=$ penalty $\rightarrow 50.0$
Ramif:	true \rightarrow ptr $=($ goal $p ;$ penalty $1-p)$
Init:	pos $=$ pos $6 ;$ goal $=$ pos $0 \vee$ goal $=$ pos 4 penalty $=$ pos $0 \vee$ penalty $=$ pos $4 ;$ goal \neq penalty pos $=$ goal
Goal:	po

Examples: Robot Navigation as a POMDP

- states: $[x, y ; \theta]$
- actions rotate +90 and -90 , move
- costs: uniform except when hitting walls
- transitions: e.g, $P_{\text {move }}([2,3 ; 90] \mid[2,2 ; 90])=.7$, if $[2,3]$ is empty, . . .

- initial b_{0} : e.g,, uniform over set of states
- goal G : cell marked G
- observations: presence or absence of wall with probs that depend on position of robot, walls, etc

Equivalence of (PO)MDPs

- Let the sign of a POMDP be positive if cost-based and negative if reward-based
- Let $V_{M}^{\pi}(b)$ be expected cost (reward) from b in positive (negative) POMDP M
- Define equivalence of any two POMDPs as follows; assuming goal states are absorbing, cost-free, and observable:

Definition 1. pompps R and M equivalent if have same set of non-goal states, and there are constants α and β s.t. for every π and non-target bel b,

$$
V_{R}^{\pi}(b)=\alpha V_{M}^{\pi}(b)+\beta
$$

with $\alpha>0$ if R and M have same sign, and $\alpha<0$ otherwise.

Intuition: If R and M are equivalent, they have same optimal policies and same 'preferences' over policies

Equivalence Preserving Transformations

- A transformation that maps a POMDP M into M^{\prime} is equivalence-preserving if M and M^{\prime} are equivalent.
- Three equivalence-preserving transformation among POMDP's

1. $R \mapsto R+C$: addition of C (+ or -) to all rewards/costs
2. $R \mapsto k R$: multiplication by $k \neq 0(+$ or -$)$ of rewards/costs
3. $R \mapsto \bar{R}$: elimination of discount factor by adding goal state t s.t.

$$
P_{a}(t \mid s)=1-\gamma, P_{a}\left(s^{\prime} \mid s\right)=\gamma P_{a}^{R}\left(s^{\prime} \mid s\right) ; O_{a}(t \mid t)=1, O_{a}(s \mid t)=0
$$

Theorem 2. Let R be a discounted reward-based POMDP, and C a constant that bounds all rewards in R from above; i.e. $C>\max _{a, s} r(a, s)$. Then, $M=\overline{-R+C}$ is a goal POMDP equivalent to R.

POMDPs are MDPs over Belief Space

- Beliefs b are probability distributions over S
- An action $a \in A(b)$ maps b into b_{a}

$$
b_{a}(s)=\sum_{s^{\prime} \in S} P_{a}\left(s \mid s^{\prime}\right) b\left(s^{\prime}\right)
$$

- The probability of observing o then is:

$$
b_{a}(o)=\sum_{s \in S} P_{a}(o \mid s) b_{a}(s)
$$

- ... and the new belief is

$$
b_{a}^{o}(s)=P_{a}(o \mid s) b_{a}(s) / b_{a}(o)
$$

Computational Methods for POMDPs

- Exact Methods
\triangleright Value Iteration over Piece-wise linear functions
- Approximate and On-Line Methods:
\triangleright Point-based Value Iteration Methods: VI over few belief points
\triangleright RTDP-Bel: RTDP applied to discretized beliefs
\triangleright PO-UCT: UCT applied to action observation histories
- Logical Methods: beliefs represented by sets of states
\triangleright Compilations and relaxations for action selection
\triangleright Belief tracking: for determining truth of action preconditions and goals

Value Iteration for POMDPs (1)

- Value V^{π} of a policy π given by solution to Bellman equation with $V^{\pi}(b)=0$ when b is a goal belief:

$$
V^{\pi}(b)=c(a, b)+\sum_{o \in O} b_{a}(o) V^{\pi}\left(b_{a}^{o}\right)
$$

- Optimal value function V^{*} given by solution to Bellman optimality equations with $V(b)=0$ for goal beliefs b

$$
V(b)=\min _{a \in A(b)}\left[c(a, b)+\sum_{o \in O} b_{a}(o) V\left(b_{a}^{o}\right)\right]
$$

- In both cases, $c(a, b)=\sum_{s \in S} c(a, s) b(s)$
- The computational problem for VI is that there is infinite and dense space of beliefs to update

VI over Piecewise Linear Value Functions

- Sondik's observation (1973): if VI starts from a piecewise linear and concave (pwlc) function V_{0}, then all V_{k} resulting from updates remain pw/c.
- A pwlc function f on the continuous belief space over S is a finite combination of linear functions:

$$
f(b)=\min _{\alpha \in \Gamma} \sum_{s \in S} b(s) \alpha(s)
$$

- Resulting implementation of VI: start with set Γ_{0} of vectors encoding V_{0} and compute new set of vectors Γ_{i+1} encoding V_{i+1} that corresponds to full update of V_{i}

$$
\Gamma_{i+1}=\operatorname{Function}\left(\Gamma_{i}, \text { POMDP pars }\right)
$$

- Problem: Size $\left|\Gamma_{i+1}\right|$ grows exponentially with $|A|\left|\Gamma_{i}\right|^{|O|}$

Computing New Vectors Γ_{k+1} from Old Γ_{k} (abbreviated)

Use 'choice functions' $\nu(o)$ that pick vector $\nu(o)$ from $\Gamma_{k} ;\left|\Gamma_{k}\right|^{O}$ such functions. Expression $\nu(o)(s)$ stands for $\alpha(s)$:

$$
\begin{aligned}
V_{k+1}(b) & =\min _{a \in A}\left[c(a, b)+\gamma \sum_{o \in O} b_{a}(o) V_{k}\left(b_{a}^{o}\right)\right] \\
& =\min _{a \in A}\left[c(a, b)+\gamma \sum_{o \in O} b_{a}(o)\left[\min _{\alpha \in \Gamma_{k}} \sum_{s \in S} b_{a}^{o}(s) \alpha(s)\right]\right] \\
& =\min _{a \in A}\left[c(a, b)+\min _{\nu \in \mathcal{V}_{k}} \gamma \sum_{o \in O} b_{a}(o) \sum_{s \in S} b_{a}^{o}(s) \nu(o)(s)\right] \\
& =\min _{a \in A}\left[c(a, b)+\min _{\nu \in \mathcal{V}_{k}} \gamma \sum_{s \in S} \sum_{o \in O} \nu(o)(s) b_{a}(o) b_{a}^{o}(s)\right] \\
& =\min _{a \in A}\left[c(a, b)+\min _{\nu \in \mathcal{V}_{k}} \gamma \sum_{s, o} \nu(o)(s) \sum_{s^{\prime}} b\left(s^{\prime}\right) P_{a}\left(s \mid s^{\prime}\right) P_{a}(o \mid s)\right] \\
& =\min _{a \in A} \min _{\nu \in \mathcal{V}_{k}}\left[c(a, b)+\gamma \sum_{s, o} \nu(o)(s) \sum_{s^{\prime}} b\left(s^{\prime}\right) P_{a}\left(s \mid s^{\prime}\right) P_{a}(o \mid s)\right] \\
& =\min _{a \in A, \nu \in \mathcal{V}_{k}} \sum_{s^{\prime}} b\left(s^{\prime}\right)\left[c\left(a, s^{\prime}\right)+\gamma \sum_{s, o} \nu(o)(s) P_{a}\left(s \mid s^{\prime}\right) P_{a}(o \mid s)\right] \\
& =\min _{\alpha \in \Gamma_{k+1}} \sum_{s \in S} b(s) \alpha(s)
\end{aligned}
$$

where $\Gamma_{k+1} \stackrel{\text { def }}{=}\left\{\alpha_{a, \nu} \mid a \in A, \nu \in \mathcal{V}_{k}\right\}$ is the collection of vectors $\alpha_{a, \nu}$

$$
\alpha_{a, \nu}(s) \stackrel{\text { def }}{=} c(a, s)+\gamma \sum_{s^{\prime}, o} \nu(o)\left(s^{\prime}\right) P_{a}\left(s^{\prime} \mid s\right) P_{a}\left(o \mid s^{\prime}\right) .
$$

Approximate Methods: Pointed-based Value Iteration

- Point-based algorithms compute smaller set of vector $\Gamma_{k+1}(F)$ from Γ_{k}, one for each belief b in a given set F
- Vector $\operatorname{backup}(V, b) \in \Gamma_{k+1}(F)$ is the one in Γ_{k+1} that represents value of b :

$$
\operatorname{backup}(V, b)=\underset{\alpha \in \Gamma_{k+1}}{\operatorname{argmin}} \sum_{s \in S} b(s) \alpha(s)
$$

- Key point is that computation of $\operatorname{backup}(V, b)$ does not require Γ_{k+1}, and is polynomial in $|A|,|O|$ and $|S|$
- Point-based POMDP algorithms differ in choice of points F, initial value vectors, and termination
- Some methods make use of known initial belief state b_{0} and lower/upper bounds

Computation of $\operatorname{backup}(V, b)$ (sketch)

$$
\begin{aligned}
\operatorname{backup}(V, b) & =\sum_{o \in O} b_{a}(o) V\left(b_{a}^{o}\right) \\
& =\sum_{o \in O} b_{a}(o)\left[\min _{\alpha \in \Gamma} \sum_{s \in S} b_{a}^{o}(s) \alpha(s)\right] \\
& =\sum_{o \in O}\left[\min _{\alpha \in \Gamma} \sum_{s, s^{\prime}, s^{\prime \prime} \in S} P_{a}\left(o \mid s^{\prime \prime}\right) P_{a}\left(s^{\prime \prime} \mid s^{\prime}\right) b\left(s^{\prime}\right) \alpha(s)\right] \\
& =\sum_{o \in O}\left[\min _{\alpha \in \Gamma} \sum_{s^{\prime} \in S} g_{a, o}^{\alpha}\left(s^{\prime}\right) b\left(s^{\prime}\right)\right]
\end{aligned}
$$

where $g_{a, o}^{\alpha}(s)=\sum_{s^{\prime} \in S} \alpha\left(s^{\prime}\right) P_{a}\left(o \mid s^{\prime}\right) P_{a}\left(s^{\prime} \mid s\right)$.
Using $\min _{\alpha \in \Gamma} g_{a, o}^{\alpha} \cdot b=\left[\operatorname{argmin}\left\{g_{a, o}^{\alpha} \cdot b \mid g_{a, o}^{\alpha}, \alpha \in \Gamma\right\}\right] \cdot b$

$$
\begin{aligned}
\sum_{o \in O} b_{a}(o) V\left(b_{a}^{o}\right) & =\sum_{o \in O}\left[\min _{\alpha \in \Gamma} g_{a, o}^{\alpha} \cdot b\right] \\
& =\sum_{o \in O}\left\{\left[\operatorname{argmin}\left\{g_{a, o}^{\alpha} \cdot b \mid g_{a, o}^{\alpha}, \alpha \in \Gamma\right\}\right] \cdot b\right\} \\
& =\left[\sum_{o \in O} \operatorname{argmin}\left\{g_{a, o}^{\alpha} \cdot b \mid g_{a, o}^{\alpha}, \alpha \in \Gamma\right\}\right] \cdot b
\end{aligned}
$$

If $g_{a, b}(s) \stackrel{\text { def }}{=} c(a, s)+\gamma \sum_{o \in O} g_{a, o}^{b}(s)$ where $g_{a, o}^{b}=\operatorname{argmin}_{g_{a, o}^{\alpha}}\left(g_{a, o}^{\alpha} \cdot b\right)$,

$$
\begin{aligned}
\operatorname{backup}(V, b) & =\min _{a \in A} c(a, b)+\gamma\left[\sum_{o \in O} \operatorname{argmin}\left\{g_{a, o}^{\alpha} \cdot b \mid g_{a, o}^{\alpha}, \alpha \in \Gamma\right\}\right] \cdot b \\
& =\min _{a \in A}\left[g_{a, b} \cdot b\right]=\operatorname{argmin}_{g_{a, b}}\left[g_{a, b} \cdot b\right]
\end{aligned}
$$

Approximate POMDP Methods: RTDP-Bel

Since POMDPs are MDPs over belief space, RTDP algorithm for POMDPs becomes

RTDP-BEL
\% Initial value function V given by heuristic h
\% Changes to V stored in a hash table using discretization function $d(\cdot)$
Let $b:=b_{0}$ the initial belief
Sample state s with probability $b(s)$
While b is not a goal belief do
Evaluate each action $a \in A(b)$ as: $Q(a, b):=c(a, b)+\sum_{o \in O} b_{a}(o) V\left(b_{a}^{o}\right)$ Select best action a $:=\operatorname{argmin}_{a \in A(b)} Q(a, b)$
Update value $V(b):=Q(\mathbf{a}, b)$
Sample next state s^{\prime} with probability $P_{\mathbf{a}}\left(s^{\prime} \mid s\right)$ and set $s:=s^{\prime}$
Sample observation o with probability $P_{\mathbf{a}}(o \mid s)$
Update current belief $b:=b_{a}^{o}$
end while
RTDP-Bel discretizes beliefs b for writing to and reading from hash table

UCT for POMDPs: PO-UCT

- PO-UCT is on-line POMDP algorithm based on UCT
- Like UCT, PO-UCT uses simulations for choosing action to do next in finitehorizon relaxation
- Nodes in the tree (explicit graph G) constructed by PO-UCT, however, are not belief states but histories
- The histories stand for the possible sequences of actions and observations $a_{1}, o_{1}, a_{2}, o_{2}, \ldots$
- Still, approximation b^{\prime} of current belief b needed to construct the simulations
- Approximation of belief b associated with history h obtained from the simulations compatible with h
- This is a type of particle filter belief tracking scheme; more about this below ..

```
Search ( \(h\) ) Code for PO-UCT
    repeat
        Sample \(s\) according to \(b_{0}\) if \(h=\langle \rangle\) or \(B(h)\) otherwise
        \(\operatorname{Simulate}(s, h, 0)\)
    until time is up
    return \(\operatorname{argmin}_{a} V(\langle h a\rangle)\)
Simulate ( \(s, h\), depth)
    if \(\gamma^{\text {depth }}<\epsilon\) then return 0
    if \(h\) does not appear in tree \(T\) then
        for all action \(a \in A\) do
            Insert \(\langle h a\rangle\) in tree as \(T(\langle h a\rangle):=\langle 0,0, \emptyset\rangle\)
        end for
        return \(\operatorname{Rollout}(s, h\), depth)
    end if
    \(a^{*}:=\operatorname{argmin}_{a} V(\langle h a\rangle)-C \sqrt{\log N(h) / N(\langle h a\rangle)}\)
    Sample ( \(s^{\prime}, o, c\) ) using simulator with state \(s\) and action \(a^{*}\)
    Cost \(:=c+\gamma \cdot \operatorname{Simulate}\left(s^{\prime},\langle h a o\rangle, 1+\right.\) depth)
    \(B(h):=B(h) \cup\{s\}\)
    Increment \(N(h)\) and \(N(\langle h a\rangle)\)
    \(V(\langle h a\rangle):=V(\langle h a\rangle)+[C o s t-V(\langle h a\rangle)] / N(\langle h a\rangle)\)
    return Cost
\(\operatorname{Rollout}(s, h, d e p t h)\)
    if \(\gamma^{\text {depth }}<\epsilon\) then return 0
    Let \(a:=\pi(h)\)
    Sample ( \(s^{\prime}, o, c\) ) using simulator with state \(s\) and action \(a\)
    return \(c+\gamma \cdot \operatorname{Rollout}\left(s^{\prime},\langle h a o\rangle, 1+\right.\) depth)
```


Logical Approaches for Planning with Sensing

- Uncertainty in dynamics and sensing represented by sets of states
- Belief space is thus finite; methods that apply to fully observable nondeterministic models (FOND), apply thus to partially observable ones (POND)
- This includes dynamic programming, heuristic search, and on-line methods, with states replaced by belief states
- For deterministic partially observable models, transformations have been developed for converting them into:
\triangleright fully observable non-deterministic (FOND) models: exponential in problem width parameter
\triangleright classical (deterministic) problems: doubly exponential in number of variables (used for heuristic action selection)
- Transformations build on transformations for mapping deterministic conformant problems into classical ones

Focus: On-line Planning for Planning with Sensing

- Two problems in on-line planning
\triangleright action selection: what action to do next
\triangleright belief tracking: needed to determine applicable actions and if goal achieved
- Both problems intractable in worst case
- We will look for solutions, including approximate solutions to each one of them

Action Selection for On-line Planning: Main Approaches

- Heuristics $h(b)$ for estimating cost in belief space
\triangleright Reachability h : from $h(s)$ that estimate cost in state space, approx. $h(b)$ in various ways (e.g., $h(b)=\max _{s \in b} h(s), h(b)=\sum_{s \in b} h(s)$, etc. Problem: no too informed, don't point to need to get info
\triangleright Cardinality h : In translations, if $K(X=x)$ is goal (know what $X=x$ is true), then $K\left(X \neq x^{\prime}\right)$, where x^{\prime} is another value of X, is an implicit goal. Can be used like landmark heuristics. Also, cardinality measure $|b|$ can be informative too.
- Transformations: deterministic problems of planning with sensing P can be mapped into equivalent classical planning problem P^{\prime}
\triangleright Action sequences that solve P^{\prime} encode the action trees that solve P
\triangleright While translation is exponential in number of initial states of P, it can be used to suggest actions; e.g., sample a few initial states from P and discard others
- Relaxations: deterministic problems of planning with sensing P can be mapped into (non-equivalent) classical planning problem P^{\prime} by letting agent control sensing outcomes
\triangleright This is a form of planning under optimism; in robotics, known as free-space assumptions
\triangleright Related to FF-replan approach to MDPs where optimism is about action outcomes

Examples (Bonet \& G., IJCAI-2011)

colored-balls

kill-wumpus

trail

- freespace: agent needs to reach a final position by moving through unknown terrain. Each cell is blocked or clear. As agent moves, it senses status of adjacent cells.
- doors: agent moves in grid to reach final position, crossing doors whose positions can be sensed.
- wumpus: the agent moves in a grid to reach a final position that contains a number of deadly wumpuses that must be avoided.
- kill-wumpus: a variation of the above in which the agent must locate and kill the single wumpus in the grid.
- colored-balls: the agent navigates a grid to pick up and deliver balls of different colors to destinations that depend on the color of the ball. Initially, the positions and colors are unknown.
- trail: the agent must follow a trail of stones. The positions and quantity of stones are unknown and the agent cannot get off trail but observes the presence of stones in the nearby cells.

Second Problem in On-Line Planning: Belief Tracking

- Exact, Explicit Flat Methods
\triangleright Computing next belief b_{a}^{o} from belief b, action a, and observation o is exponential in number of states, in both probabilistic and logical settings
- Exact, Lazy Approaches
\triangleright Beliefs b not strictly required; what is required is to know whether preconditions and goals hold in b
\triangleright In logical setting, this problem can be cast as SAT problem in theory obtained from initial belief, actions done, and obs gathered
\triangleright In probabilistic setting, problem can be cast similarly a Dynamic Bayesian Network inference problem
\triangleright Both approaches still exponential in worst case, but can be sufficiently practical
- Approximations: to be considered next
\triangleright Particle filtering: when uncertainty in dynamics and sensing represented by probabilities
\triangleright Structured methods: when uncertainty in dynamics and sensing represented by sets

Probabilistic Belief Tracking with Particles: Basic Approach

- Computing next belief b_{a}^{o} is exponential in $|S|$

$$
\begin{aligned}
b_{a}^{o}(s) & =P_{a}(o \mid s) b_{a}(s) / b_{a}(o) \\
b_{a}(s) & =\sum_{s^{\prime} \in S} P_{a}\left(s \mid s^{\prime}\right) b\left(s^{\prime}\right) \\
b_{a}(o) & =\sum_{s \in S} P_{a}(o \mid s) b_{a}(s)
\end{aligned}
$$

- Particle filtering algorithms approximate b by (multi)set of unweighted samples
\triangleright probability of $X=x$ approximated by ratio of samples in b where $X=x$ is true
- Approx. belief B_{k+1} obtained from (multi)set of samples B_{k}, action a, and obs o in two steps:
\triangleright Sample s_{k+1} from S with probability $P_{a}\left(s_{k+1} \mid s_{k}\right)$ for each s_{k} in S_{k}
$\triangleright(\mathrm{Re})$ Sample new set of samples by sampling each s_{k+1} with weight $P\left(o \mid s_{s+1}\right)$
- Potential problem is that particles may die out if many probabilities are zero

Structural Belief Tracking: Exploiting Relevance

- In worst case, belief tracking is exponential in number of variables
- Yet, often it's possible to do much better by exploiting structure of given problem
- Earlier translation that maps deterministic conformant planning into classical planning is exponential in width parameter
- This implies that belief tracking over such problems is also exponential in problem width
- We now deal with non-deterministic problems with sensing where similar bound established
- We don't do translations, just belief tracking ...

Model for Non-Deterministic Contingent Planning

Contingent model $\mathcal{S}=\left\langle S, S_{0}, S_{G}, A, F, O\right\rangle$ given by

- finite state space S
- non-empty subset of initial states $S_{0} \subseteq S$
- non-empty subset of goal states $S_{G} \subseteq S$
- actions A where $A(s) \subseteq A$ are the actions applicable at state s
- non-deterministic transitions $F(s, a) \subseteq S$ for $s \in S, a \in A(s)$
- non-determinisitc sensor model $O\left(s^{\prime}, a\right) \subseteq O$ for $s^{\prime} \in S, a \in A$

Language

Model expressed in compact form as tuple $P=\left\langle V, A, I, G, V^{\prime}, W\right\rangle$:

- V is set of multi-valued variables, each X has finite domain D_{X}
- A is set of actions; each action $a \in A$ has precondition $\operatorname{Pre}(a)$ and conditional non-deterministic effects $C \rightarrow E^{1}|\cdots| E^{n}$
- Sets of V-literals I and G defining the initial and goal states
- V^{\prime} is set of observable variables (not necessarily disjoint from V). Observations o are valuations over V^{\prime}
- Sensing model is formula $W_{a}(\ell)$ for each $a \in A$ and observable literal ℓ that is true in states that follow a where ℓ may be observed

A literal is an atom of the form ' $X=x^{\prime}$ or ' $X \neq x$ '

Example: Wumpus

$$
\begin{aligned}
\text { rotate-left: } & \text { heading }=0 \rightarrow \text { heading }:=1 \\
& \text { heading }=1 \rightarrow \text { heading }:=2 \\
& \ldots \\
\text { rotate-right }: & \ldots \\
\text { move-forward }: & \text { heading }=0 \wedge \text { pos }=(x, y) \rightarrow \text { pos }:=(x, y+1) \\
& \ldots \\
\text { grab-gold }: & \text { gold-pos }=(x, y) \wedge \text { pos }=(x, y) \rightarrow \text { gold-pos }:=\text { hand } \\
W_{a}\left(\text { stench }_{x, y}=\text { true }\right)=\quad & \text { wump }_{x-1, y} \vee \text { wump }_{x, y+1} \vee \text { wump }_{x, y-1} \vee \text { wump }_{x+1, y} \\
W_{a}\left(\text { breeze }_{x, y}=\text { true }\right)=\quad & \text { pit }_{x-1, y} \vee \text { pit }_{x, y+1} \vee \text { pit }_{x, y-1} \vee \text { pit }_{x+1, y} \\
W_{a}\left(\text { glitter }_{x, y}=\text { true }\right)=\quad & {[\text { gold-pos }=(x, y) \wedge \text { pos }=(x, y)] } \\
W_{a}\left(\text { dead }_{x, y}=\text { true }\right)=\quad & {\left[\text { pos }=(x, y) \wedge\left(\text { pit }_{x, y} \vee \text { wump }_{x, y}\right)\right] }
\end{aligned}
$$

Key Ideas: Belief Tracking for Planning

- Don't need to keep track of global beliefs b; beliefs b_{X} about precondition and goal variables X suffice
- Beliefs b_{X} obtained by applying plain belief tracking to smaller projected subproblems P_{X}
- Subproblem P_{X} only involves state variables that are relevant to X
- Resulting algorithm, Factored Belief Tracking, is sound and complete for planning, and exponential in width of P :
\triangleright maximum number of state variables that are all relevant to a given precondition or goal variable X
- Furthermore, variant of this idea can be used to yield practical belief tracking that is sound, efficient, and powerful, but not complete

Decompositions for Belief Tracking

- A decomposition of problem P is pair $D=\langle T, B\rangle$ where
$\triangleright T$ is subset of target variables, and
$\triangleright B(X)$ for X in T is a subset of state variables
- Decomposition $D=\langle T, B\rangle$ decomposes P in subproblems P_{X} :
\triangleright one subproblem P_{X} for each variable X in T
\triangleright subproblem P_{X} involves only the state variables in $B(X)$
- Factored Decomposition:
$\triangleright F=\left\langle T_{F}, B_{F}\right\rangle$ where T_{F} are state variables appearing in preconditions or goals, and $B_{F}(X)$ are all variables that are relevant to X
- Causal Decomposition:
$\triangleright C=\left\langle T_{C}, B_{C}\right\rangle$ where T_{C} are variables in preconditions or goals, or observables, and $B_{C}(X)$ are all variables causally relevant to X

Complete Tracking over Causal Decomposition

- Belief tracking over causal decomposition is incomplete because two beliefs b_{X} and b_{Y} associated with target vars X and Y may interact and are not independent
- Algorithm can be made complete by enforcing consistency of beliefs:

$$
b_{X}:=\Pi_{B_{C}(X)} \bowtie\left\{\left(b_{Y}\right)_{a}^{o}: Y \in T_{C} \text { and relevant to } X\right\}
$$

- Resulting algorithm is complete for causally decomposable problems, space exponential in causal width, but time exponential in width
- Beam tracking replaces global by local consistency until fix point:

$$
b_{X}:=\Pi_{B_{C}(X)}\left(b_{X}^{i+1} \bowtie b_{Y}^{i+1}\right)
$$

- Beam tracking is time and space exponential in causal width; sound but not complete
- See our IJCAI-2013 for experiments in Wumpus, Minesweeper, Battleship

Example: Wumpus and Minesweeper

Minesweeper

Two issues in Multiagent Planning: Introduction

- What's optimal or best agent behavior in presence of other actors?
\triangleright Game Theory
- How to deal with beliefs about the beliefs of the other agents
\triangleright (Multiagent) Epistemic Logics

Reference: Multiagent systems: Algorithmic, game-theoretic, and logical foundations, Yoav Shoham, Kevin Leyton-Brown, Cambridge University Press, 2008.

Essentials of Game Theory

- We have looked at 2-player, 0-sum games like Chess, Checkers, etc
- In such games, what's good/best for one player, it's bad/worst for the other
- Best strategies maximize reward in "worst case" (adversarial); maximim
- Best action obtained then by single iteration of value iteration (backward induction), alpha-beta pruning, etc
- Yet, not all games or interactions are $\mathbf{0}$-sum . .

A more general "game" in extended (tree) form

- The game:
\triangleright A plays first: A can choose $(1,1)$ and terminate, or pass "ball" to B
\triangleright B can then choose $(2,2)$ and terminate, or pass "ball" back to A
\triangleright A can finally choose $(4,1)$ or $(3,3)$, in both cases terminating the game
- This game can be depicted by binary tree . . .
- If game terminates with (n, m), player A gets reward n, and B gets m.
- In 0-sum games, $n+m=0$; in constant-sum (equivalent), $n+m=$ constant

Question: What should player A do?

Games in Normal Form

- Game: Agents, Actions, Payoffs (Utilities)
- Example: Agents "Row" and "Column"; Actions C and D; Entry n, means n for Row, m for Column

	Action C	Action D
Action C	10,10	6,4
Action D	7,5	5,7

How should agents play?. Key notions:

- Dominance: C is better for Row no matter what Column does
- Best-response: D is best response for Column if Row plays D
- Pareto optimal outcome: if no entry makes both players better off
- Strategies: Pure strategy selects action; mixed strategy prob distribution
- Equilibrium: Two strategies in (Nash) eq. if each one best-response to other
"Solution concept" usually given by Nash Equilibrium; but NE is wrong; sometimes too weak, sometimes too strong.

Problems of Nash Equilibrium: Examples

Hi-Low game: two equilibria (C,C) and (D,D)

	Action C	Action D
Action C	10,10	0,0
Action D	0,0	5,5

Prisoner's Dilemma: deeper problems

	Action C	Action D
Action C	10,10	0,20
Action D	20,0	5,5

- Only equilibrium is (D,D) which results into only non-opt pareto 5,5
- Actually, problem is deeper: D dominates C for each player
- Yet, lots of people plays C (C understood as Cooperation; D as Defection)
- Prisoner's dilemma is very pervasive; it's everywhere.
- What lessons to draw from this dilemma?
- At least that selfish behavior can lead to poor collective outcomes

Lessons from and variations of Prisoner's Dilemma

Ultimatum is a sequential game: 100 e to be split. First "offers" second X. If second accepts; he gets X and first gets $100-X$. What much should First "offer"? What does Nash Eq. predict? What people do?

Homo vs. Homo-Economicus: Fortunately, people don't behave according to "economic/Nash rationality"

Evolution to the rescue?

- We are born social beings
- The invention of the individual is very recent according to our evolutionary history
- Cooperation is key but needs defense from free-riders that unravel benefits of cooperation
- How to defend from cheaters? Punishments of various sorts (like ostracism)
- Evolution can favor this form of strong reciprocity if competition among groups (us vs. them)
- Strategies like tit-for-tat performed well in Iterated Prisioner's Dilemma competitions (Axelrod)

Evolutionary Game Theory

- Assumes initial population given by numbers $n_{i}(0)$ of players of different strategies σ_{i}
- Uses (replicator) dynamic model where population $n_{i}(t+1)$ of $\sigma-i$ players at time $t+1$ is a function of how well they do on average at time t relative to the other players, given the population of players at time t
\triangleright how do the populations evolve in time?
\triangleright which populations are stable to mutants in population?

Example:

- Cake-splitting; demand- X players, $X=10,20, \ldots, 100$, percent demanded by cake.
- Pick two elements randomly from population: X and Y, iff $X+Y \leq 100$ then they get X and Y, else zero.
- Assume initial population: $1 / 3$ of 40 's, 50 's, and 70 's resp.
- Population of demand- X_{i} at $t+1: E_{t}\left(X_{i}\right) / \sum_{i} E_{t}\left(X_{i}\right)$

Reference: Evolution and the Social Contract, Brian Skyrms, Cambridge University Press, 2006

Beliefs in Multiagent Systems: Example

- n-children $n>1$
- k of these children have mud in their forehead
- they can see whether others are muddy but not themselves
- Father comes and announces: "(at least) one of you is muddy"
- "If you know you are muddy, say it, else say don't know"
- Result: After expressing ignorance (saying "don't know") $k-1$ times, the children that are muddy will know that they are muddy
- Many puzzles like this; what's sort of reasoning is involved?

Reasoning about Multiagent (Nested) Beliefs: Language

- In propositional logic, formulas like $(\neg p \vee(\neg q \wedge p))$ made up of symbols like p and q, the the propositional connectives " $\neg, \wedge, \vee, \ldots$
- A formula A is valid iff it is true in every interpretation w; i.e., $\models_{w} A$ where

```
\triangleright \models}\mp@subsup{w}{}{p}\mathrm{ if p is true in w for symbols p
\triangleright \models}w(\negA) if 林
\vDash}\mp@subsup{\models}{w}{}(A\veeB)\mathrm{ if }\mp@subsup{\models}{w}{}A\mathrm{ or }\mp@subsup{\models}{w}{}
\triangleright ...
```

- In multiagent epistemic logics,
\triangleright symbols like p, q, \ldots are formulas,
$\triangleright K_{i} A$ is a formula if A is a formula and i is an agent (i knows A is true)
\triangleright propositional combination of formulas are formulas

Example: If m_{i} represents child i is muddy; formula $K_{1} m_{1} \vee K_{1} \neg m_{1}$ represents that child 1 knows whether he is muddy or not.

Reasoning about Multiagent (Nested) Beliefs: Semantics (1)

- In muddy children, each child can see whether each other children is muddy but whether he himself is muddy
- If the actual world w is $m_{1}, \neg m_{2}, \neg m_{3}$, then agent 1 will not know initially whether the actual world is w or w^{\prime} that is like w but with m_{1} false
- After father announces $m_{1} \vee m_{2} \vee m_{3}$, however, assuming $n=3$, if actual world is w, then agent 1 will know it
- As a result, initially $\not \models_{w} K_{1} m_{1}$, but after announcement $\models_{w} K_{1} m_{1}$

Reasoning about Multiagent (Nested) Beliefs: Semantics (2)

- Formally, a Kripke structure is a tuple $\langle W, R, V\rangle$, where:
$\triangleright W$ is the set of worlds w
$\triangleright R_{i}(w)$: is the set of world deemed possible by agent i in world w
$\triangleright V(w)$ is the truth valuation associated with world w.
- Formula A is true in world w of structure $\mathcal{K}=\langle W, R, V\rangle, \mathcal{K}, w \models A$, iff
\triangleright if A is true in $V(w)$ when A is a propositional symbol
$\triangleright \mathcal{K}, w \notin B$ when A is $\neg B$
$\triangleright \mathcal{K}, w \models B$ or $\mathcal{K}, w \models C$ when A is $B \vee C$
$\triangleright \mathcal{K}, w \models B$ and $\mathcal{K}, w \models C$ when A is $B \wedge C$
$\triangleright \mathcal{K}, w^{\prime} \models B$ for all $w^{\prime} \in R_{i}(w)$ when A is $K_{i} B$
- Formula A is valid in structure $\mathcal{K}, \mathcal{K} \models A$, if $\mathcal{K}, w \models A$ for all w in W
- Formula A is valid, $\models A$, if $\mathcal{K} \models A$ for \mathcal{K}

Example: Muddy Children

Wrapping Up: The Map

- Intro to AI and Automated Problem Solving
- Classical Planning as Heuristic Search and SAT
- Beyond Classical Planning: Transformations
\triangleright Soft goals, Conformant Planning, Finite State Controllers, Plan Recognition, Extended temporal LTL goals,
- Planning with Uncertainty: Markov Decision Processes (MDPs)
- Planning with Incomplete Information: Partially Observable MDPs (POMDPs)
- Planning with Uncertainty and Incomplete Info: Logical Models
- Reference: A concise introduction to models and methods for automated planning, H. Geffner and B. Bonet, Morgan \& Claypool, 6/2013.
- Other references: Automated planning: theory and practice, M. Ghallab, D. Nau, P. Traverso. Morgan Kaufmann, 2004, and Artificial intelligence: A modern approach. 3rd Edition, S. Russell and P. Norvig, Prentice Hall, 2009.
- Slides: http://www.dc.uba.ar/materias/planning/slides.pdf, http://www.dtic.upf.edu/~hgeffner/bsas-2013-slides.pdf

Summary

- Planning is the model-based approach to autonomous behavior
- Many models and dimensions; all intractable in worst case
- Challenge is mainly computational, how to scale up
- Lots of room for ideas whose value must be shown empirically
- Key technique in classical planning is automatic derivation and use of heuristics
- Power of classical planners used for other tasks via transformations
- Structure and relaxations also crucial for planning with sensing
- Promise: a solid methodology for autonomous agent design

Some Challenges

- Classical Planning
\triangleright states \& heuristics $h(s)$ not black boxes; how to exploit structure further?
\triangleright on-line planners to compete with state-of-the-art classical planners
- Probabilistic MDP \& POMDP Planning
\triangleright inference can't be at level of states or belief states but at level of variables
- Multi-agent Planning
\triangleright should go long way with single-agent planning and plan recognition; game theory seldom needed
- Hierarchical Planning
\triangleright how to infer and use hierarchies; what can be abstracted away and when?

Best first search can be pretty blind

Large Door Small Door

- Problem involves agent that has to get large package through one of two doors
- The package doesn't fit through the closest door

Best first search can be pretty blind: Doors Problem

					2	7	16	25	G
				1	2	6	15	24	34
			1	1	1	6	15	24	34
1	1	1	1		1	6	15	24	34
1			2	6	12	21	31	34	34
1	1	4	9	14	24	34	35	35	35
1	1	2	5	12	24	30	30	30	
				2	5	13	21	24	24
					2	5	10	14	1

- Numbers in cells show number of states expanded where agent at that cell
- Algorithm is greedy best first search with additive heuristic
- Number of state expansions is close to 998; FF expands 1143 states, LAMA more!
- 34 different states expanded with agent at target, only last with pkg!

Problem is not only computational: Multi-agent Planning

- Single-agent planning is computationally hard but target behavior is clearly defined
- What about planning in the presence of other agents that plan?
- Number of subtleties arise, even when possible plans involve one action
- E.g., Prisioners' Dilemma where utility matrix for 2 players is

	Action A	Action B
Action A	10,10	0,20
Action B	20,0	5,5

How should each of the players act? Why is a dilemma? Social agents?

