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input output 

Image sequence (or video stream) 

from one or more cameras attached to a moving vehicle 

Camera trajectory (3D structure is a plus): 

VO is the process of incrementally estimating the pose of the vehicle by 
examining the changes that motion induces on the images of its onboard 
cameras 
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 1980: First known VO real-time implementation on a robot by Hans Moraveck PhD 

thesis (NASA/JPL) for Mars rovers using one sliding camera (sliding stereo). 

 

 1980 to 2000: The VO research was dominated by NASA/JPL in preparation of 

2004 Mars mission (see papers from Matthies, Olson, etc. from JPL) 

 

 2004: VO used on a robot on another planet: Mars rovers Spirit and Opportunity 

 

 2004. VO was revived in the academic environment  

by David Nister «Visual Odometry» paper.  

The term VO became popular (and Nister 

became head of MS Hololens before moving 

to TESLA in 2014) 
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 Sufficient illumination in the environment  

 Dominance of static scene over moving objects 

 Enough texture to allow apparent motion to be extracted 

 Sufficient scene overlap between consecutive frames 

Is any of these scenes good for VO? Why? 
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SFM VSLAM VO 
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SFM is more general than VO and tackles the problem of 3D 
reconstruction and 6DOF pose estimation from unordered image sets 

Reconstruction from 3 million images from Flickr.com 

Cluster of 250 computers, 24 hours of computation! 

Paper: “Building Rome in a Day”, ICCV’09 
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 VO is a particular case of SFM  

 

 VO focuses on estimating the 3D motion of the camera 
sequentially (as a new frame arrives) and in real time. 

 

 Terminology: sometimes SFM is used as a synonym of VO 
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 Visual Odometry 

 Focus on incremental estimation/local 
consistency 

 Visual SLAM: Simultaneous Localization And 
Mapping 

 Focus on globally consistent estimation 

 Visual SLAM = visual odometry + loop detection 
+ graph optimization 

 

 The choice between VO and V-SLAM depends on 
the tradeoff between performance and 
consistency, and simplicity in implementation.  

 VO trades off consistency for real-time 
performance, without the need to keep track of all 
the previous history of the camera. 

Visual odometry 

Visual SLAM 

Image courtesy from [Clemente et al., RSS’07] 
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1. Compute the relative motion 𝑇𝑘 from images 𝐼𝑘−1 to image 𝐼𝑘  

 

 

2. Concatenate them to recover the full trajectory 

 

 

3. An optimization over the last m  poses can be done to refine locally 
the trajectory (Pose-Graph or Bundle Adjustment) 

 

... 

𝑪𝟎 𝑪𝟏 𝑪𝟑 𝑪𝟒 𝑪𝒏−𝟏 𝑪𝒏 

𝑇𝑘 =
𝑅𝑘,𝑘−1 𝑡𝑘,𝑘−1
0 1

 

𝐶𝑛 = 𝐶𝑛−1𝑇𝑛 



How do we estimate the relative motion 𝑇𝑘 ? 

Image 𝐼𝑘−1 Image 𝐼𝑘 

𝑇𝑘 

       “An Invitation to 3D Vision”, Ma, Soatto, Kosecka, Sastry, Springer, 2003 

𝑇𝑘 



SVO [Forster et al. 2014, TRO’16] 
100-200 features   x   4x4 patch  
~ 2,000 pixels 
 

Direct Image Alignment 

DTAM [Newcombe et al. ‘11] 
300’000+ pixels 

LSD  [Engel et al. 2014] 
~10’000 pixels 

Dense  Semi-Dense  Sparse 

𝑇𝑘,𝑘−1 =  argmin
𝑇

 𝐼𝑘 𝒖′𝑖 − 𝐼𝑘−1(𝒖𝑖) 𝜎
2

𝑖

 

It minimizes the per-pixel intensity difference 

Irani & Anandan, “All About Direct Methods,” Vision Algorithms: Theory and Practice, Springer, 2000 



SVO [Forster et al. 2014] 
100-200 features   x   4x4 patch  
~ 2,000 pixels 

 

Direct Image Alignment 

DTAM [Newcombe et al. ‘11] 
300,000+ pixels 

LSD-SLAM  [Engel et al. 2014] 
~10,000 pixels 

Dense  Semi-Dense  Sparse 

𝑇𝑘,𝑘−1 =  argmin
𝑇

 𝐼𝑘 𝒖′𝑖 − 𝐼𝑘−1(𝒖𝑖) 𝜎
2

𝑖

 

It minimizes the per-pixel intensity difference 

Irani & Anandan, “All About Direct Methods,” Vision Algorithms: Theory and Practice, Springer, 2000 
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Feature-based methods 

1. Extract & match features (+RANSAC) 

2. Minimize Reprojection error 
     minimization 

𝑇𝑘,𝑘−1 = argmin
𝑇

 𝒖′𝑖 − 𝜋 𝒑𝑖  Σ
2

𝑖

 

Direct methods 

1. Minimize photometric error 

𝑇𝑘,𝑘−1 = ? 

𝒑𝑖 

𝒖′𝑖 𝒖𝑖 

𝑇𝑘,𝑘−1 =  argmin
𝑇

 𝐼𝑘 𝒖′𝑖 − 𝐼𝑘−1(𝒖𝑖) 𝜎
2

𝑖

 

 

where   𝒖′𝑖 = 𝜋 𝑇 ∙ 𝜋−1 𝒖𝑖 ∙ 𝑑  

𝑇𝑘,𝑘−1 

𝐼𝑘 
𝒖′𝑖 

𝒑𝑖 

𝒖𝑖 
𝐼𝑘−1 

𝑑𝑖 

[Jin,Favaro,Soatto’03] [Silveira, Malis, Rives, TRO’08], [Newcombe et al., ICCV ‘11], 
[Engel et al., ECCV’14], [Forster et al., ICRA’14] 
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[Engel et al., ECCV’14], [Forster et al., ICRA’14] 

𝑇𝑘,𝑘−1 = argmin
𝑇

 𝒖′𝑖 − 𝜋 𝒑𝑖  Σ
2

𝑖

 

𝑇𝑘,𝑘−1 =  argmin
𝑇

 𝐼𝑘 𝒖′𝑖 − 𝐼𝑘−1(𝒖𝑖) 𝜎
2

𝑖

 

 

where   𝒖′𝑖 = 𝜋 𝑇 ∙ 𝜋−1 𝒖𝑖 ∙ 𝑑  

 Large frame-to-frame motions 

 Accuracy: Efficient optimization of 
structure and motion (Bundle Adjustment)  

 Slow due to costly feature extraction 
and matching 

 Matching Outliers (RANSAC) 

 All information in the image can be 
exploited (precision, robustness) 

 Increasing camera frame-rate 
reduces computational cost per 
frame 

 Limited frame-to-frame motion 

 Joint optimization of dense structure 
and motion too expensive 

Feature-based methods 

1. Extract & match features (+RANSAC) 

2. Minimize Reprojection error 
     minimization 

Direct methods 

1. Minimize photometric error 
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Image sequence 

Feature detection 

Feature matching (tracking) 

Motion estimation 

2D-2D 3D-3D 3D-2D 

Local optimization 

VO computes the camera path incrementally (pose after pose) 

Front-end 

Back-end 
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 The Front-end is responsible for 

 Feature extraction, matching, and outlier removal 

 Loop closure detection 

 The Back-end is responsible for the pose and structure 
optimization (e.g., iSAM, g2o, Google Ceres) 
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Image sequence 

Feature detection 

Feature matching (tracking) 

Motion estimation 

2D-2D 3D-3D 3D-2D 

Local optimization 

VO computes the camera path incrementally (pose after pose) 

Example features tracks 
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Feature Extraction 
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 A corner is defined as the intersection of one or more edges 
 A corner has  high localization accuracy 

 Corner detectors are good for VO 

 It’s less distinctive than a blob 

 E.g., Harris, Shi-Tomasi, SUSAN, FAST 

 

 A blob is any other image pattern, which is not a corner, that 
significantly differs from its neighbors in intensity and texture 
 Has less localization accuracy than a corner 

 Blob detectors are better for place recognition  

 It’s more distinctive than a corner 

 E.g., MSER, LOG, DOG (SIFT), SURF, CenSurE 

 

 Descriptor: Distinctive feature identifier 
 Standard descriptor: squared patch of pixel intensity values 

 Gradient or difference-based descriptors: SIFT, SURF, ORB, BRIEF, BRISK 
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Which of the patches below can be matched reliably? 
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 How do we identify corners? 

 We can easily recognize the point by looking through a small window 

 Shifting a window in any direction should give a large change in intensity in at 
least 2 directions 

“flat” region: 

no intensity 

change 

“corner”: 

significant change in 

at least 2 directions 

“edge”: 

no change along the 

edge direction 
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[Rosten et al., PAMI 2010]  

 FAST: Features from Accelerated Segment Test  
 Studies intensity of pixels on circle around candidate pixel C  
 C is a FAST corner if a set of N contiguous pixels on circle are:  

 all brighter than intensity_of(C)+theshold, or  
 all darker than intensity_of(C)+theshold  

• Typical FAST mask: test for 9 contiguous pixels in a 16-pixel circle  
• Very fast detector -  in the order of 100 Mega-pixel/second  
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SIFT responds to local regions that look like Difference of Gaussian (~Laplacian of 
Gaussian) 

s 

s2 

s3 

s4 

Scale 

),(),( yxGyxGDoGLOG k ss 



SIFT detector (location + scale) 
 SIFT keypoints: local extrema in both location and scale of the 

DoG 

 

 
• Detect maxima and minima 

of difference-of-Gaussian in 
scale space 

 

• Each point is compared to 
its 8 neighbors in the 
current image and 9 
neighbors each in the scales 
above and below 

For each max or min found, output 

is the location and the scale. 



• Scale Invariant Feature Transform 

• Invented by David Lowe [IJCV, 2004] 

• Descriptor computation: 

– Divide patch into 4x4 sub-patches: 16 cells 

– Compute histogram of gradient orientations (8 reference angles) for all pixels 
inside each sub-patch 

– Resulting SIFT descriptor: 4x4x8 = 128 values 

– Descriptor Matching: Euclidean-distance between these descriptor vectors 
(i.e., SSD) 

SIFT descriptor 

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV , 2004.  

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
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[Calonder et. al, ECCV 2010]  

Pattern for intensity pair samples – 
generated randomly  

• Binary Robust Independent Elementary 
Features  

• Goal: high speed (in description and matching)  
 

• Binary descriptor formation:  
• Smooth image  
• for each detected keypoint (e.g. FAST),  
• sample 256 intensity pairs p=(𝑝1, 𝑝2) within 

a squared patch around the keypoint  
• for each pair p  

• if 𝑝1 < 𝑝2 then set bit p of descriptor 
to 1  

• else set bit p of descriptor to 0  
 

• The pattern is generated randomly only once; 
then, the same pattern is used for all patches 
 

• Not scale/rotation invariant  
• Allows very fast Hamming Distance matching: 

count the number of bits that are different in 
the descriptors matched  

Calonder, Lepetit, Strecha, Fua, BRIEF: Binary Robust Independent Elementary Features, ECCV’10] 



Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch 

 Oriented FAST and Rotated 
BRIEF 

 Alterative to SIFT or SURF, 
designed for fast computation 

 Keypoint detector based on 
FAST 

 BRIEF descriptors are steered 
according to keypoint 
orientation (to provide 
rotation invariance) 

 Good Binary features are 
learned by minimizing the 
correlation on a set of training 
patches.   

ORB descriptor [Rublee et al., ICCV 2011] 



Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch 

[Leutenegger, Chli, Siegwart, ICCV 2011] 

• Binary Robust Invariant Scalable Keypoints  
• Detect corners in scale-space using FAST  
• Rotation and scale invariant  

• Binary, formed by pairwise intensity 
comparisons (like BRIEF)  

• Pattern defines intensity comparisons in 
the keypoint neighborhood  

• Red circles: size of the smoothing kernel 
applied  

• Blue circles: smoothed pixel value used  
• Compare short- and long-distance pairs 

for orientation assignment & descriptor 
formation  

• Detection and descriptor speed:  ~10 
times faster than SURF 

• Slower than BRIEF, but scale- and 
rotation- invariant  
 



ORB & BRISK: 

• 128-to-256-bit binary descriptors 

• Fast to extract and match (Hamming distance) 

• Good for relocalization and Loop detection 

• Multi-scale detection  same point appears on several scales 

Detector Descriptor Accuracy Relocalization & 

Loop closing 

Efficiency 

Harris Patch ++++ - +++ 

Shi-Tomasi Patch ++++ - +++ 

SIFT SIFT ++ ++++ + 

SURF SURF ++ ++++ ++ 

FAST BRIEF ++++ +++ ++++ 

ORB ORB ++++ +++ ++++ 

FAST BRISK ++++ +++ ++++ 
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Image sequence 

Feature detection 

Feature matching (tracking) 

Motion estimation 

2D-2D 3D-3D 3D-2D 

Local optimization 

VO computes the camera path incrementally (pose after pose) 

Tk,k-1 

Tk+1,k 

Ck-1 

Ck 

Ck+1 
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Motion from Image Feature Correspondences  

 Both feature points 𝑓𝑘−1 and 𝑓𝑘 are specified in 2D 

 The minimal-case solution involves 5-point correspondences 

 The solution is found by minimizing the reprojection error: 

 

 

 

 Popular algorithms: 8- and 5-point algorithms [Hartley’97, Nister’06] 

Motion estimation 

2D-2D 3D-2D 3D-3D 

𝝅 
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Motion from 3D Structure and Image Correspondences 

 𝑓𝑘−1 is specified in 3D and 𝑓𝑘 in 2D 

 This problem is known as camera resection or PnP (perspective from n points) 

 The minimal-case solution involves 3 correspondences (+1 for disambiguating the 4 
solutions) 

 The solution is found by minimizing the reprojection error: 

 

 

 

 Popular algorithms: P3P [Gao’03, Kneip’11] 

Motion estimation 

2D-2D 3D-2D 3D-3D 
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Motion from 3D-3D Point Correspondences (point cloud registration) 

 Both 𝑓𝑘−1 and 𝑓𝑘 are specified in 3D. To do this, it is necessary to triangulate 3D points 
(e.g. use a stereo camera) 

 The minimal-case solution involves 3 non-collinear correspondences 

 The solution is found by minimizing the 3D-3D Euclidean distance: 

 

 

 

 Popular algorithm: [Arun’87] for global registration, ICP for local refinement or Bundle 
Adjustment (BA) 

Motion estimation 

2D-2D 3D-2D 3D-3D 

𝝅 
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Type of 
correspondences 

Monocular Stereo 

2D-2D X X 

3D-3D X 

3D-2D X X 
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Typical visual odometry pipeline used in many algorithms  
[Nister’04, PTAM’07, LIBVISO’08, LSD-SLAM’14, SVO’14, ORB-SLAM’15] 

Keyframe 1 Keyframe 2 

Initial pointcloud 
(bootstrapping) 

New triangulated points 

Current frame 
New keyframe 
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 When frames are taken at nearby positions compared to the scene distance, 3D 
points will exibit large uncertainty 

 

Small baseline → large depth uncertainty Large baseline → small depth uncertainty 



Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch 

 When frames are taken at nearby positions compared to the scene distance, 3D 
points will exibit large uncertainty 

 One way to avoid this consists of skipping frames until the average uncertainty of 
the 3D points decreases below a certain threshold. The selected frames are 
called keyframes 

 Rule of the thumb: add a keyframe when  

. . .  

average-depth 

keyframe distance 
> threshold (~10-20 %) 
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 Matched points are usually contaminated by outliers 

 Causes of outliers are: 

 image noise 

 occlusions 

 blur 

 changes in view point and illumination  

 For the camera motion to be estimated accurately, outliers must be removed  

 This is the task of Robust Estimation 
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 Error at the loop closure: 6.5 m 
 Error in orientation:         5 deg 
 Trajectory length:            400 m 

Before removing the outliers 

After removing the outliers 

Outliers can be removed using RANSAC [Fishler & Bolles, 1981] 
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Image sequence 

Feature detection 

Feature matching (tracking) 

Motion estimation 

2D-2D 3D-3D 3D-2D 

Local optimization (back-end) 

VO computes the camera path incrementally (pose after pose) 

... 
𝑪𝟎 𝑪𝟏 𝑪𝟑 𝑪𝟒 𝑪𝒏−𝟏 𝑪𝒏 

Front-end 

Back-end 



 So far we assumed that the transformations are between consecutive frames 

 

 

 

 

 

 

 Transformations can be computed also between non-adjacent frames 𝑇𝑖𝑗 (e.g., when 

features from previous keyframes are still observed). They can be used as additional 
constraints to improve cameras poses by minimizing the following: 

 

 

 

 For efficiency, only the last 𝑚 keyframes are used 

 Gauss-Newton or Levenberg-Marquadt are typically used to minimize it. For large graphs, 
efficient open-source tools: g2o, GTSAM, Google Ceres 

 

Pose-Graph Optimization 

... 

𝑪𝟎  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝒏−𝟏 𝑪𝒏 

𝑻𝟏,𝟎 𝑻𝟐,𝟏 𝑻𝟑,𝟐 𝑻𝒏,𝒏−𝟏 

𝑻𝟐,𝟎 
𝑻𝟑,𝟎 𝑻𝒏−𝟏,𝟐 

  𝐶𝑖 − 𝑇𝑖𝑗𝐶𝑗
2

𝑗𝑖

 



 Similar to pose-graph optimization but it also optimizes 3D points 

 

 

 

 𝜌𝐻() is a robust cost function (e.g., Huber cost) to downweight wrong matches 

 In order to not get stuck in local minima, the initialization should be close to the minimum 

 Gauss-Newton or Levenberg-Marquadt can be used 

 Very costly: example: 1k images and 100k points, 1s per LM iteration. For large graphs, 
efficient open-source software exists: GTSAM, g2o, Google Ceres can be used 

Bundle Adjustment (BA) 

... 

𝑪𝟎  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝒏−𝟏 𝑪𝒏 

𝑻𝟏,𝟎 𝑻𝟐,𝟏 𝑻𝟑,𝟐 𝑻𝒏,𝒏−𝟏 

𝑻𝟐,𝟎 
𝑻𝟑,𝟎 𝑻𝒏−𝟏,𝟐 

𝑋𝑖 , 𝐶𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑋𝑖,𝐶𝑘, 𝜌𝐻 𝑝𝑘
𝑖 − 𝜋 𝑋𝑖 , 𝐶𝑘

𝑖,𝑘
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 BA is more precise than pose-graph optimization because it adds additional 
constraints (landmark constraints) 

 But more costly: 𝑂 𝑞𝑀 + 𝑙𝑁 3  with 𝑀 and 𝑁 being the number of points 

and cameras poses and 𝑞 and 𝑙 the number of parameters for points and 
camera poses. Workarounds:  

 A small window size limits the number of parameters for the optimization and thus 
makes real-time bundle adjustment possible.  

 It is possible to reduce the computational complexity by just optimizing over the 
camera parameters and keeping the 3D landmarks fixed, e.g., (motion-only BA) 
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  Relocalization problem:  

 During VO, tracking can be lost (due to occlusions, low 
texture, quick motion, illumination change) 

 

 Solution: Re-localize camera pose and continue 

 

 Loop closing problem 

 When you go back to a previously mapped area: 

 Loop detection: to avoid map duplication 

 Loop correction: to compensate the accumulated drift 

 In both cases you need a place recognition technique 
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Visual Place Recognition 

 Goal: find the most similar images of a query image in a database of 𝑵 images 

 Complexity: 
𝑁2∙𝑀2

2
  feature comparisons (worst-case scenario) 

 Each image must be compared with all other images! 

 𝑁 is the number of all images collected by a robot 

- Example: 1 image per meter of travelled distance over a 100𝑚2 house with one 

robot and 100 feature per image →  M = 100, 𝑁 = 100 → 𝑁2𝑀2/2= 

~ 50 𝑀𝑖𝑙𝑙𝑖𝑜𝑛 feature comparisons! 

Solution: Use an inverted file index!  
Complexity reduces to 𝑵 ∙ 𝑴 

 
[“Video Google”, Sivic & Zisserman, ICCV’03] 

[“Scalable Recognition with a Vocabulary Tree”, Nister & Stewenius, CVPR’06] 
See also FABMAP and Galvez-Lopez’12’s (DBoW2)] 
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Indexing local features: inverted file text 

 For text documents, an efficient way 

to find all pages on which a word 

occurs is to use an index 

 

 We want to find all images in which a 

feature occurs 

 

 To use this idea, we’ll need to map 

our features to “visual words” 



Building the Visual Vocabulary 

Image Collection Extract Features Cluster Descriptors 

Descriptors space 

Examples 
of  

Visual 
Words: 



Limitations of VO-SLAM systems 

 Limitations 

 Monocular (i.e., absolute scale is unknown) 

 Requires a reasonably illuminated area 

 Motion blur 

 Needs texture: will fail with large plain walls 

 Map is too sparse for interaction with the environment 

 

 Extensions 
 IMU for robustness and absolute scale estimation 

 Stereo: real scale and more robust to quick motions 

 Semi-dense or dense mapping for environment interaction 

 Event-based cameras for high-speed motions and HDR environments 

 Learning for improved reliability 
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Visual-Inertial Fusion 
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Absolute Scale Determination 
 The absolute pose 𝑥 is known up to a scale 𝑠, thus  

𝑥 = 𝑠𝑥  

 IMU provides accelerations, thus 

𝑣 = 𝑣0 + 𝑎 𝑡 𝑑𝑡 

 By derivating the first one and equating them 

𝑠𝑥  =  𝑣0 + 𝑎 𝑡 𝑑𝑡 

 As shown in [Martinelli, TRO’12], for 6DOF, both 𝑠 and 𝑣0 can be determined in closed form 

from a single feature observation and 3 views 

 This is used to initialize the asbolute scale [Kaiser, ICRA’16] 

 The scale can then be tracked with  

 EKF [Mourikis & Roumeliotis, IJRR’10], [Weiss, JFR’13]  

 Non-linear optimization methods [Leutenegger, RSS’13] [Forster, RSS’15] 



 Fusion solved as a non-linear optimization problem 

 Increased accuracy over filtering methods 

 

IMU residuals Reprojection residuals 

Forster, Carlone, Dellaert, Scaramuzza, IMU Preintegration on Manifold for efficient Visual-Inertial 

Maximum-a-Posteriori Estimation, Robotics Science and Systens’15, Best Paper Award Finalist 

Visual-Inertial Fusion [RSS’15] 



Google Tango     Proposed   OKVIS   

Accuracy: 0.1% of the travel distance 

Forster, Carlone, Dellaert, Scaramuzza, IMU Preintegration on Manifold for efficient Visual-Inertial 

Maximum-a-Posteriori Estimation, Robotics Science and Systens’15, Best Paper Award Finalist 

YouTube: https://youtu.be/CsJkci5lfco  

 

 

 

SVO + GTSAM  (Forster et al. RSS’15) 

(optimization based, pre-integrated 

IMU): https://bitbucket.org/gtborg/gtsam  

Instructions here: 

http://arxiv.org/pdf/1512.02363  

Open Source 

Comparison with Previous Works 

https://youtu.be/CsJkci5lfco
https://youtu.be/CsJkci5lfco
https://youtu.be/CsJkci5lfco
https://bitbucket.org/gtborg/gtsam
http://arxiv.org/pdf/1512.02363
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Open-source  

VO & VSLAM algorithms 
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Intro: visual odometry algorithms 

 Popular visual odometry and SLAM algorithms 

 ORB-SLAM (University of Zaragoza, 2015) 

- ORB-SLAM2 (2016) supports stereo and RGBD camera 

 LSD-SLAM (Technical University of Munich, 2014) 

 DSO (Technical University of Munich, 2016) 

 SVO (University of Zurich, 2014/2016) 

- SVO 2.0 (2016) supports wide angle, stereo and multiple cameras 
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ORB-SLAM 

Large-scale Feature-based SLAM 
[Mur-Artal, Montiel, Tardos, TRO’15] 

https://arxiv.org/pdf/1610.06475v1
https://arxiv.org/pdf/1610.06475v1
https://arxiv.org/pdf/1610.06475v1
https://arxiv.org/pdf/1610.06475v1
https://arxiv.org/pdf/1610.06475v1
https://arxiv.org/pdf/1610.06475v1
https://arxiv.org/pdf/1610.06475v1
https://arxiv.org/pdf/1610.06475v1
https://arxiv.org/pdf/1610.06475v1
https://arxiv.org/pdf/1610.06475v1
https://arxiv.org/pdf/1610.06475v1
https://arxiv.org/pdf/1610.06475v1
https://arxiv.org/pdf/1610.06475v1
https://arxiv.org/pdf/1610.06475v1
https://arxiv.org/pdf/1610.06475v1
https://arxiv.org/pdf/1610.06475v1
https://arxiv.org/pdf/1610.06475v1
https://arxiv.org/pdf/1610.06475v1
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 It combines all together:  

 Tracking 

 Mapping 

 Loop closing 

 Relocalization (DBoW) 

 Final optimization 

 

 ORB: FAST corner + Oriented Rotated Brief descriptor 

 Binary descriptor 

 Very fast to compute and compare 

 

 Real-time (30Hz) 
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ORB-SLAM: overview 



61 

ORB-SLAM: ORB feature 

 ORB: Oriented FAST and Rotated Brief 

 256-bit binary descriptor 

 Fast to extract and match (Hamming distance) 

 Good for tracking, relocation and Loop detection 

 Multi-scale detection: same point appears on several scales 
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ORB-SLAM: tracking 

 

 

 

 For every new frame: 

 First track w.r.t. last frame 

 Find matches from last frame in the new frame -> PnP 

 Then track w.r.t. local map 

 Find matches from local keyframes in the new frame -> PnP 
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ORB-SLAM: mapping 

 Map representation 

 Keyframe poses 

 Points 

- 3D positions 

- Descriptor 

- Observations in frames 

 Functions of the mapping part 

 Triangulate new points 

 Remove redundant keyframes/points 

 Optimize poses and points 

 

 
Q:  why do we need keyframes instead of just using points?  
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ORB-SLAM: video 
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LSD-SLAM 

Large-scale Semi-Dense SLAM 
[Engel, Schoeps, Cremers, ECCV’14] 

http://vision.in.tum.de/_media/spezial/bib/engel14eccv.pdf
http://vision.in.tum.de/_media/spezial/bib/engel14eccv.pdf
http://vision.in.tum.de/_media/spezial/bib/engel14eccv.pdf
http://vision.in.tum.de/_media/spezial/bib/engel14eccv.pdf
http://vision.in.tum.de/_media/spezial/bib/engel14eccv.pdf
http://vision.in.tum.de/_media/spezial/bib/engel14eccv.pdf
http://vision.in.tum.de/_media/spezial/bib/engel14eccv.pdf
http://vision.in.tum.de/_media/spezial/bib/engel14eccv.pdf
http://vision.in.tum.de/_media/spezial/bib/engel14eccv.pdf
http://vision.in.tum.de/_media/spezial/bib/engel14eccv.pdf
http://vision.in.tum.de/_media/spezial/bib/engel14eccv.pdf
http://vision.in.tum.de/_media/spezial/bib/engel14eccv.pdf
http://vision.in.tum.de/_media/spezial/bib/engel14eccv.pdf
http://vision.in.tum.de/_media/spezial/bib/engel14eccv.pdf
http://vision.in.tum.de/_media/spezial/bib/engel14eccv.pdf
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 Direct (photometric error) + Semi-Dense formulation 

 3D geometry represented as semi-dense depth maps. 

 Optimizes a photometric error 

 Separateley optimizes poses (direct image alignment) & 
geometry (pixel-wise filtering) 

 

 Includes: 

 Loop closing 

 Relocalization 

 Final optimization 

 

 Real-time (30Hz) 
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LSD-SLAM: overview 

 Direct image alignment 

 Depth refinement and regularization 

Instead of using features, LSD-SLAM uses pixels with large gradients. 
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LSD-SLAM: Direct Image Alignment 
 
 New frame w.r.t. last keyframe 

 

 

 

 

 

 Keyframe w.r.t. global map 

 

• Finding pose that Minimizes photometric error rp over all selected pixels   
• Weighted by the photometric covariance  

• Also minimizing geometric error: distance between the points in the 
current keyframe and the points in the global map. 
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LSD-SLAM: Depth Refinement/Regularization 
 
 Depth estimation: per pixel stereo: 

 Using the estimated pose from image alignment, we can perform stereo 
matching for each pixel. 

 Using the stereo matching result to refine the depth. 

 Regularization 

 Average using adjacent depth 

 Remove outliers and spurious estimations: visually appealing 
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LSD-SLAM: video 
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DSO 
Direct Sparse Odometry 

[Engel, Koltun, Cremers, Arxiv’16] 

 

https://arxiv.org/pdf/1607.02565v2
https://arxiv.org/pdf/1607.02565v2
https://arxiv.org/pdf/1607.02565v2
https://arxiv.org/pdf/1607.02565v2
https://arxiv.org/pdf/1607.02565v2
https://arxiv.org/pdf/1607.02565v2
https://arxiv.org/pdf/1607.02565v2
https://arxiv.org/pdf/1607.02565v2
https://arxiv.org/pdf/1607.02565v2
https://arxiv.org/pdf/1607.02565v2
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DSO: Tracking frontend 

 Direct Image Alignment 

 

 

• Using points of large gradients 
• Incorporate photometric correction: robust to exposure time change 

• Using exposure time ti tj to compensate exposure time change 
• Using affine transformation if no exposure time is known 
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DSO: Optimization backend 
 
 Sliding window estimator 

 Not full bundle adjustment 

 Only keep a fixed length window (e.g., 3 keyframes) of past frames 

 Instead of simply dropping the states out of the window, marginalizing the 
states:  

Advantage: 
• Help improve accuracy 
• Still able to operate in real-time  



74 

DSO: Video 
 



Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch 

SVO 

Fast, Semi-Direct Visual Odometry  
[Forster, Pizzoli, Scaramuzza, ICRA’14, TRO’16] 

http://rpg.ifi.uzh.ch/docs/TRO16_Forster-SVO.pdf
http://rpg.ifi.uzh.ch/docs/TRO16_Forster-SVO.pdf
http://rpg.ifi.uzh.ch/docs/TRO16_Forster-SVO.pdf
http://rpg.ifi.uzh.ch/docs/TRO16_Forster-SVO.pdf
http://rpg.ifi.uzh.ch/docs/TRO16_Forster-SVO.pdf
http://rpg.ifi.uzh.ch/docs/TRO16_Forster-SVO.pdf
http://rpg.ifi.uzh.ch/docs/TRO16_Forster-SVO.pdf


SVO: overview 

Mapping 

• Probabilistic depth estimation 

Direct (minimizes photometric error) 

• Corners and edgelets 

• Frame-to-frame motion 
estimation 

• Frame-to-Keyframe pose refinement 

Edgelet                          Corner      

Extensions 

• Omni-cameras 
• Multi-camera systems 
• IMU pre-integration 
• Dense → REMODE 

Feature-based (minimizes photometric error) 
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SVO: Semi-Direct Visual Odometry [ICRA’14] 

Direct 

Feature-based 

• Frame-to-frame motion 
estimation 

• Frame-to-Keyframe pose 
refinement 
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SVO: Semi-Direct Visual Odometry [ICRA’14] 

Direct 

Feature-based 

• Frame-to-frame motion 
estimation 

• Frame-to-Kreyframe pose 
refinement 

Mapping 

 Feature extraction only  for 
every keyframe 

 Probabilistic depth estimation 
of 3D points 
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Probabilistic Depth Estimation in SVO 

Measurement Likelihood models outliers: 

• 2-Dimensional distribution: Depth 𝒅 and inliner ratio 𝝆 

• Mixture of Gaussian + Uniform 

• Inverse depth 

Depth-Filter: 

• Depth-filter for every new feature 

• Recursive Bayesian depth estimation  

• Epipolar search using ZMSSD 
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(2) 

(1) 

 Based on the model by (Vogiatzis &Hernandez, 2011) but with 
inverse depth 

 

 

 

 The posterior in (1) can be approximated by 

 

Probabilistic Depth Estimation in SVO 

𝜌 𝜌 𝜌 𝜌 

𝑑 𝑑 𝑑 𝑑 

    Modeling the posterior as a dense 2D histogram is very expensive! 

(3) 

𝜌 𝜌 𝜌 

𝑑 𝑑 𝑑 𝑑 

𝜌 

The parametric model                             describes the pixel depth at time k. 
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SVO: Video 
 

https://youtu.be/hR8uq1RTUfA  

https://youtu.be/hR8uq1RTUfA
https://youtu.be/hR8uq1RTUfA


SVO for Autonomous Drone Navigation 

RMS error: 5 mm, height: 1.5 m – Down-looking camera 

Faessler, Fontana, Forster, Mueggler, Pizzoli, Scaramuzza, Autonomous, Vision-based Flight and Live Dense 3D 

Mapping with a Quadrotor Micro Aerial Vehicle, Journal of Field Robotics, 2015. 

Speed: 4 m/s, height: 1.5 m – Down-looking camera 

Video 

https://www.youtube.com/watch?v

=4X6Voft4Z_0  

 

Video: https://youtu.be/fXy4P3nvxHQ  

https://www.youtube.com/watch?v=4X6Voft4Z_0
https://www.youtube.com/watch?v=4X6Voft4Z_0
https://www.youtube.com/watch?v=4X6Voft4Z_0
https://youtu.be/fXy4P3nvxHQ
https://youtu.be/fXy4P3nvxHQ


83 

SVO on 4 fisheye Cameras from AUDI dataset 

[Forster, et al., «SVO: Semi Direct Visual Odometry for Monocular and Multi-Camera Systems», TRO’16] 

 

Video: https://www.youtube.com/watch?v=gr00Bf0AP1k  

 

 

https://www.youtube.com/watch?v=gr00Bf0AP1k
https://www.youtube.com/watch?v=gr00Bf0AP1k
https://www.youtube.com/watch?v=gr00Bf0AP1k
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Processing Times of SVO 

[Forster, et al., «SVO: Semi Direct Visual Odometry for Monocular and Multi-Camera Systems», TRO’16] 
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Processing Times of SVO 

Laptop (Intel i7, 2.8 GHz)       

Embedded ARM Cortex-A9, 1.7 GHz 

400 frames per second 

Up to 70 frames per second 

 Open Source available at: github.com/uzh-rpg/rpg_svo   

 Works with and without ROS  

 Closed-Source professional edition (SVO 2.0): available for companies 

 

Source Code 
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Summary: Feature-based vs. direct 

1. Feature extraction 

2. Feature matching 

3. RANSAC + P3P 

4. Reprojection error 
     minimization  

𝑇𝑘,𝑘−1 = argmin
𝑇

 𝒖′𝑖 − 𝜋 𝒑𝑖  2

𝑖

 

Direct approaches (LSD, DSO, SVO) 

1. Minimize photometric error 

𝑇𝑘,𝑘−1 =  argmin
𝑇

 𝐼𝑘 𝒖′𝑖 − 𝐼𝑘−1(𝒖𝑖)
2

𝑖  

 Large frame-to-frame motions 

 Slow (20-30 Hz) due to costly feature 
extraction and matching 

 Not robust to high-frequency and 
repetive texture 

 Outliers 

 Every pixel in the image can be 
exploited (precision, robustness) 

 Increasing camera frame-rate  reduces 
computational cost per frame 

 Limited to small frame-to-frame 
motion 

 

 

Feature-based (ORB-SLAM, part of SVO/DSO) 



Comparison among SVO, DSO, ORB-SLAM, 
LSD-SLAM [Forster, TRO’16] 
 
 See next two slides 

 For a thorough evaluation please refer to [Forster, TRO’16] paper, 

where all these algorithms are evaluated in terms of accuracy 

against ground truth and timing on several datasets: EUROC, TUM-

RGB-D, ICL-NUIM 

[Forster, et al., «SVO: Semi Direct Visual Odometry for Monocular and Multi-Camera Systems», TRO’16] 

 

http://rpg.ifi.uzh.ch/docs/TRO16_Forster-SVO.pdf
http://rpg.ifi.uzh.ch/docs/TRO16_Forster-SVO.pdf
http://rpg.ifi.uzh.ch/docs/TRO16_Forster-SVO.pdf


Accuracy (EUROC Dataset) [Forster, TRO’16] 

[Forster, et al., «SVO: Semi Direct Visual Odometry for Monocular and Multi-Camera Systems», TRO’16] 

 

http://rpg.ifi.uzh.ch/docs/TRO16_Forster-SVO.pdf
http://rpg.ifi.uzh.ch/docs/TRO16_Forster-SVO.pdf
http://rpg.ifi.uzh.ch/docs/TRO16_Forster-SVO.pdf


Timing (EUROC Dataset) [Forster, TRO’16] 

[Forster, et al., «SVO: Semi Direct Visual Odometry for Monocular and Multi-Camera Systems», TRO’16] 

 

http://rpg.ifi.uzh.ch/docs/TRO16_Forster-SVO.pdf
http://rpg.ifi.uzh.ch/docs/TRO16_Forster-SVO.pdf
http://rpg.ifi.uzh.ch/docs/TRO16_Forster-SVO.pdf
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SVO [Forster et al. 2014, TRO’16] 
100-200 features   x   4x4 patch  
~ 2,000 pixels 
 

Review of Direct Image Alignment 

DTAM [Newcombe et al. ‘11] 
300’000+ pixels 

LSD  [Engel et al. 2014] 
~10’000 pixels 

Dense  Semi-Dense  Sparse 

𝑇𝑘,𝑘−1 =  argmin
𝑇

 𝐼𝑘 𝒖′𝑖 − 𝐼𝑘−1(𝒖𝑖) 𝜎
2

𝑖

 

It minimizes the per-pixel intensity difference 

Irani & Anandan, “All About Direct Methods,” Vision Algorithms: Theory and Practice, Springer, 2000 
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 Goal: study the magnitude of the perturbation for which image-to-model alignment is 
capable to converge as a function of the distance to the reference image 

 The performance in this experiment is a measure of robustness: successful pose 
estimation from large initial perturbations shows that the algorithm is capable of dealing 
with rapid camera motions 

 1000 Blender simulations 

 Alignment considered converged when the estimated relative pose is closer than 0.1 
meters from ground-truth 

 Result: difference between semi-dense image alignment and dense image alignment is 
marginal. This is because pixels that exhibit no intensity gradient are not informative for 
the optimization (their Jacobians are zero).  

◦ Using all pixels becomes only useful when considering motion blur and image defocus 

Distance between frames 

C
o

n
ve

rg
e

n
ce

 [
%

] 100 
 
 
 
 
    0 

 

30% 

overlap 

[Forster, et al., «SVO: Semi Direct Visual Odometry for Monocular and Multi-Camera Systems», TRO’16] 

 

http://rpg.ifi.uzh.ch/docs/TRO16_Forster-SVO.pdf
http://rpg.ifi.uzh.ch/docs/TRO16_Forster-SVO.pdf
http://rpg.ifi.uzh.ch/docs/TRO16_Forster-SVO.pdf
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Summary: keyframe and filter-based method 

 Why the parallel structure in all these algorithms? 

 Mapping is often expensive 

- Local BA 

- Loop detection and graph optimization  

- Depth filter per feature 

 Using the best map available for real-time tracking [1] 

 Why not filter-based method? 

 Keyframe-based: more accuracy per unit computing time [2] 

 Still useful in visual-inertial fusion 

- MSCKF 

- ROVIO 

 

 

[1] Klein, Georg, and David Murray. "Parallel tracking and mapping for small AR workspaces. 
[2] Strasdat, Hauke, José MM Montiel, and Andrew J. Davison. "Visual SLAM: why filter?."  
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Error Propagation 
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Ck 

Ck+1 

Tk,k-1 

Tk+1,k 

Ck-1 
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Ck 

Ck+1 

Tk 

Tk+1 

Ck-1 

 The uncertainty of the camera pose 𝐶𝑘 is a combination of the  
uncertainty at 𝐶𝑘−1 (black-solid ellipse) and the uncertainty of the  
transformation 𝑇𝑘 (gray dashed ellipse) 

 

 𝐶𝑘 = 𝑓(𝐶𝑘−1, 𝑇𝑘) 

 

 The combined covariance ∑𝑘is  

 

 

 

 

 

 

 The camera-pose uncertainty is always increasing when concatenating  
transformations. Thus, it is important to keep the uncertainties of the  
individual transformations small 
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Commercial Applications of SVO 



Application: Autonomous Inspection of Bridges and Power Masts 

Project with Parrot: Autonomous vision-based navigation 

Albris drone 
Video: https://youtu.be/mYKrR8pihAQ  

https://youtu.be/mYKrR8pihAQ
https://youtu.be/mYKrR8pihAQ


Dacuda VR solutions 

 Fully immersive virtual reality with 6-DoF for VR and AR content (running on 
iPhone): https://www.youtube.com/watch?v=k0MLs5mqRNo  

 Powered by SVO 

Dacuda 

https://www.youtube.com/watch?v=k0MLs5mqRNo
https://www.youtube.com/watch?v=k0MLs5mqRNo


3DAround iPhone App 
Dacuda 



Zurich-Eye – www.zurich-eye.com  

Vision-based Localization and Mapping Solutions for Mobile Robots  

Started in Sep. 2015, became Facebook-Oculus R&D Zurich in Sep. 2016 

http://www.zurich-eye.com/
http://www.zurich-eye.com/
http://www.zurich-eye.com/


Event-based Vision 



Open Problems and Challenges in Agile Robotics 

Current flight maneuvers achieved with onboard cameras are still to slow 

compared with those attainable by birds or FPV pilots 

FPV-Drone race 

https://www.youtube.com/watch?v=u6s5144AYO8
https://www.youtube.com/watch?v=u6s5144AYO8
https://www.youtube.com/watch?v=u6s5144AYO8


 At the current state, the agility of a robot is limited by the latency and 

temporal discretization of its sensing pipeline. 

 

 Currently, the average robot-vision algorithms have latencies of 50-200 ms. 

This puts a hard bound on the agility of the platform. 

 

 

 

 

 

 

 

 Can we create a low-latency, low-discretization perception pipeline? 

- Yes, if we combine cameras with event-based sensors 

 

 

time 

frame next frame 

command command 

latency 

computation 

temporal discretization 

To go faster, we need faster sensors! 

[Censi & Scaramuzza, «Low Latency, Event-based Visual Odometry», ICRA’14] 

 



Human Vision System 

 130 million photoreceptors  

 But only 2 million axons! 



Dynamic Vision Sensor (DVS) 

 Event-based camera developed by Tobi Delbruck’s group (ETH & UZH). 

 Temporal resolution: 1 μs 

 High dynamic range: 120 dB 

 Low power: 20 mW 

 Cost: 2,500 EUR 

[Lichtsteiner, Posch, Delbruck. A 128x128 120 dB 15µs Latency Asynchronous Temporal Contrast 

Vision Sensor. 2008]  

Image of the solar eclipse (March’15) captured by  

a DVS (courtesy of IniLabs) 

http://dx.doi.org/10.1109/JSSC.2007.914337


       

 By contrast, a DVS outputs asynchronous events at microsecond resolution. 

An event is generated each time a single pixel detects an intensity changes value  

time 

events stream 

event: 

 A traditional camera outputs frames at fixed time intervals: 

Lichtsteiner, Posch, Delbruck. A 128x128 120 dB 15µs Latency Asynchronous Temporal 

Contrast Vision Sensor. 2008 

time 

frame next frame 

Camera vs DVS 

𝑡, 𝑥, 𝑦 , 𝑠𝑖𝑔𝑛
𝑑𝐼(𝑥, 𝑦)

𝑑𝑡
 

sign (+1 or -1) 

http://dx.doi.org/10.1109/JSSC.2007.914337


 Video with DVS explanation 

Camera vs Dynamic Vision Sensor 

Video: http://youtu.be/LauQ6LWTkxM               

http://youtu.be/LauQ6LWTkxM
http://youtu.be/LauQ6LWTkxM
http://youtu.be/LauQ6LWTkxM


 Video with DVS explanation 

Camera vs Dynamic Vision Sensor 

Video: http://youtu.be/LauQ6LWTkxM               

http://youtu.be/LauQ6LWTkxM
http://youtu.be/LauQ6LWTkxM
http://youtu.be/LauQ6LWTkxM


V =  log 𝐼(𝑡) 

DVS Operating Principle [Lichtsteiner, ISCAS’09] 

Events are generated any time a single pixel sees a change in brightness larger than 𝐶 

𝑂𝑁 

𝑂𝐹𝐹 𝑂𝐹𝐹 𝑂𝐹𝐹 

𝑂𝑁 𝑂𝑁 𝑂𝑁 

𝑂𝐹𝐹 𝑂𝐹𝐹 𝑂𝐹𝐹 

[Lichtsteiner, Posch, Delbruck. A 128x128 120 dB 15µs Latency Asynchronous Temporal Contrast 

Vision Sensor. 2008]  

[Cook et al., IJCNN’11] [Kim et al., BMVC’15] 

The intensity signal at the event time can be reconstructed by integration of ±𝐶 

 

∆log 𝐼 ≥ 𝐶 

http://dx.doi.org/10.1109/JSSC.2007.914337


Pose Tracking and Intensity Reconstruction from a DVS 



Dynamic Vision Sensor (DVS) 

Advantages 

• low-latency (~1 micro-second) 

• high-dynamic range (120 dB instead 60 dB) 

• Very low bandwidth (only intensity changes are transmitted): ~200Kb/s 

• Low storage capacity, processing time, and power 

 

Disadvantages 

• Require totally new vision algorithms 

• No intensity information (only binary intensity changes) 

Lichtsteiner, Posch, Delbruck. A 128x128 120 dB 15µs Latency Asynchronous Temporal Contrast Vision Sensor. 2008 

http://dx.doi.org/10.1109/JSSC.2007.914337


Generative Model [Censi & Scaramuzza, ICRA’14] 

The generative model tells us that the probability that an event is generated depends on the 
scalar product between the gradient 𝛻𝐼 and the apparent motion 𝐮 ∆𝑡 

P(e)∝ 𝛻𝐼, 𝐮 ∆𝑡  

P 

C 

O 

u 

v 

p Zc 

X

c Y

c 

𝛻𝐼 

𝐮  

Generative event model: 𝛻 ∆log 𝐼 , 𝐮 ∆𝑡 = 𝐶 

[Event-based Camera Pose Tracking using a Generative Event Model, Arxiv] 
[Censi & Scaramuzza, Low Latency, Event-based Visual Odometry, ICRA’14] 

http://rpg.ifi.uzh.ch/docs/Arxiv16_Gallego.pdf
http://rpg.ifi.uzh.ch/docs/Arxiv16_Gallego.pdf
http://rpg.ifi.uzh.ch/docs/Arxiv16_Gallego.pdf
http://rpg.ifi.uzh.ch/docs/Arxiv16_Gallego.pdf


Event-based 6DoF Pose Estimation Results 

[Event-based Camera Pose Tracking using a Generative Event Model, Arxiv] 
[Censi & Scaramuzza, Low Latency, Event-based Visual Odometry, ICRA’14] 

Video: https://youtu.be/iZZ77F-hwzs  

http://rpg.ifi.uzh.ch/docs/Arxiv16_Gallego.pdf
http://rpg.ifi.uzh.ch/docs/Arxiv16_Gallego.pdf
http://rpg.ifi.uzh.ch/docs/Arxiv16_Gallego.pdf
http://rpg.ifi.uzh.ch/docs/Arxiv16_Gallego.pdf
https://youtu.be/iZZ77F-hwzs
https://youtu.be/iZZ77F-hwzs
https://youtu.be/iZZ77F-hwzs
https://youtu.be/iZZ77F-hwzs


Robustness to Illumination Changes and High-speed Motion 

BMVC’16 : EMVS: Event-based Multi-View Stereo, Best Industry Paper Award 

Video: https://www.youtube.com/watch?v=EUX3Tfx0KKE  

http://rpg.ifi.uzh.ch/docs/BMVC16_Rebecq.pdf
http://rpg.ifi.uzh.ch/docs/BMVC16_Rebecq.pdf
http://rpg.ifi.uzh.ch/docs/BMVC16_Rebecq.pdf
http://rpg.ifi.uzh.ch/docs/BMVC16_Rebecq.pdf
http://rpg.ifi.uzh.ch/docs/BMVC16_Rebecq.pdf
http://rpg.ifi.uzh.ch/docs/BMVC16_Rebecq.pdf
https://www.youtube.com/watch?v=EUX3Tfx0KKE
https://www.youtube.com/watch?v=EUX3Tfx0KKE


Possible future sensing architecture 

[Censi & Scaramuzza, Low Latency, Event-based Visual Odometry, ICRA’14] 
 



DAVIS: Dynamic and Active-pixel Vision Sensor [Brandli’14] 

DVS events 
time 

CMOS frames 

 Brandli, Berner, Yang, Liu, Delbruck, "A 240× 180 130 dB 3 µs Latency Global Shutter Spatiotemporal Vision 
Sensor." IEEE Journal of Solid-State Circuits, 2014. 

Combines an event camera with a frame-based camera in the same pixel array! 
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Event-based Feature Tracking [IROS’16] 

 Extract Harris corners on images 

 Track corners using event-based Iterative Closest Points (ICP) 

 

 

 

 

 

 

 
 

IROS’16 : Low-Latency Visual Odometry using Event-based Feature Tracks, Best application paper award finalist 
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Event-based, Sparse Visual Odometry [IROS’16] 

Video: https://youtu.be/RDu5eldW8i8   

IROS’16 : Event-based Feature Tracking for Low-latency Visual Odometry, Best application paper award finalist 

https://youtu.be/RDu5eldW8i8
https://youtu.be/RDu5eldW8i8


Conclusions 

 VO & SLAM theory well established 

 Biggest challenges today are reliability and robustness 

 HDR scenes 

 High-speed motion 

 Low-texture scenes 

 Which VO/SLAM is best? 

 Depends on the task and how you measure the performance! 

- E.g., VR/AR/MR vs Robotics 

 99% of SLAM algorithms are passive: need active SLAM! 

 Event cameras open enormous possibilities! Standard cameras have been studied 
for 50 years! 

 Ideal for high speed motion estimation and robustness to HDR illumination 
changes 
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VO (i.e., no loop closing) 
 Modified PTAM: (feature-based, mono): http://wiki.ros.org/ethzasl_ptam  

 LIBVISO2 (feature-based, mono and stereo): http://www.cvlibs.net/software/libviso  

 SVO (semi-direct, mono, stereo, multi-cameras): https://github.com/uzh-rpg/rpg_svo  

 DSO (direct sparse odometry): https://github.com/JakobEngel/dso  

 

VIO 
 ROVIO (tightly coupled EKF): https://github.com/ethz-asl/rovio 

 OKVIS (non-linear optimization): https://github.com/ethz-asl/okvis  

 SVO + GTSAM  (Forster et al. RSS’15) (optimization based, pre-integrated IMU): 
https://bitbucket.org/gtborg/gtsam  

 Instructions here: http://arxiv.org/pdf/1512.02363  

 

VSLAM 
 ORB-SLAM (feature based, mono and stereo): https://github.com/raulmur/ORB_SLAM  

 LSD-SLAM (semi-dense, direct, mono): https://github.com/tum-vision/lsd_slam  

http://wiki.ros.org/ethzasl_ptam
http://wiki.ros.org/ethzasl_ptam
http://www.cvlibs.net/software/libviso
http://www.cvlibs.net/software/libviso
https://github.com/uzh-rpg/rpg_svo
https://github.com/uzh-rpg/rpg_svo
https://github.com/uzh-rpg/rpg_svo
https://github.com/uzh-rpg/rpg_svo
https://github.com/JakobEngel/dso
https://github.com/JakobEngel/dso
https://github.com/ethz-asl/rovio
https://github.com/ethz-asl/rovio
https://github.com/ethz-asl/rovio
https://github.com/ethz-asl/rovio
https://github.com/ethz-asl/rovio
https://github.com/ethz-asl/okvis
https://github.com/ethz-asl/okvis
https://github.com/ethz-asl/okvis
https://github.com/ethz-asl/okvis
https://bitbucket.org/gtborg/gtsam
http://arxiv.org/pdf/1512.02363
https://github.com/raulmur/ORB_SLAM
https://github.com/raulmur/ORB_SLAM
https://github.com/tum-vision/lsd_slam
https://github.com/tum-vision/lsd_slam
https://github.com/tum-vision/lsd_slam
https://github.com/tum-vision/lsd_slam
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 GTSAM: https://collab.cc.gatech.edu/borg/gtsam?destination=node%2F299  

 G2o: https://openslam.org/g2o.html  

 Google Ceres Solver: http://ceres-solver.org/  

https://collab.cc.gatech.edu/borg/gtsam?destination=node/299
https://openslam.org/g2o.html
https://openslam.org/g2o.html
http://ceres-solver.org/
http://ceres-solver.org/
http://ceres-solver.org/
http://ceres-solver.org/
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VO (i.e., no loop closing) 
 Modified PTAM (Weiss et al.,): (feature-based, mono): http://wiki.ros.org/ethzasl_ptam  

 SVO (Forster et al.) (semi-direct, mono, stereo, multi-cameras): https://github.com/uzh-
rpg/rpg_svo  

 

IMU-Vision fusion: 
 Multi-Sensor Fusion Package (MSF) (Weiss et al.) -  EKF, loosely-coupled: 

http://wiki.ros.org/ethzasl_sensor_fusion  

 SVO + GTSAM  (Forster et al. RSS’15) (optimization based, pre-integrated IMU): 
https://bitbucket.org/gtborg/gtsam  

 Instructions here: http://arxiv.org/pdf/1512.02363  

 OKVIS (non-linear optimization): https://github.com/ethz-asl/okvis  

 

http://wiki.ros.org/ethzasl_ptam
http://wiki.ros.org/ethzasl_ptam
https://github.com/uzh-rpg/rpg_svo
https://github.com/uzh-rpg/rpg_svo
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 Open source: 

 MAVMAP: https://github.com/mavmap/mavmap  

 Closed source: 

 Pix4D: https://pix4d.com/  

 

 

https://github.com/mavmap/mavmap
https://github.com/mavmap/mavmap
https://github.com/mavmap/mavmap
https://pix4d.com/
https://pix4d.com/
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 DBoW2: https://github.com/dorian3d/DBoW2  

 FABMAP: http://mrg.robots.ox.ac.uk/fabmap/ 

 

https://github.com/dorian3d/DBoW2
https://github.com/dorian3d/DBoW2
http://mrg.robots.ox.ac.uk/fabmap/
http://mrg.robots.ox.ac.uk/fabmap/


Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch 

VO Datasets 

 Malaga dataset: http://www.mrpt.org/malaga_dataset_2009  

 KITTI Dataset: http://www.cvlibs.net/datasets/kitti/  

 

VIO Datasets 

These datasets include ground-truth 6-DOF poses from Vicon and synchronized 
IMU and images: 

 EUROC MAV Dataset (forward-facing stereo): 
http://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets  

 RPG-UZH dataset (downward-facing monocular) 
http://rpg.ifi.uzh.ch/datasets/dalidation.bag  

 

More 

 Check out also this: 
http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm  

http://www.mrpt.org/malaga_dataset_2009
http://www.mrpt.org/malaga_dataset_2009
http://www.cvlibs.net/datasets/kitti/
http://www.cvlibs.net/datasets/kitti/
http://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
http://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
http://rpg.ifi.uzh.ch/datasets/dalidation.bag
http://rpg.ifi.uzh.ch/datasets/dalidation.bag
http://rpg.ifi.uzh.ch/datasets/dalidation.bag
http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm
http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm
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