
Numero di Ossidazione

Il numero di ossidazione, o stato di ossidazione, di un atomo in un composto, è la CARICA FORMALE che l'atomo ha se gli elettroni dei legami a cui partecipa vengono tutti attribuiti all'atomo più elettronegativo.

VALENZA: numero di legami stabiliti da un atomo con gli altri atomi della molecola

Ordine di Priorità

- 1) Il n° di ox. può essere positivo, nullo, negativo, intero o frazionario
- 2) La somma algebrica dei n° di ox. di tutti gli atomi facente parte di una molecola neutra è sempre = 0
- 3) La somma algebrica dei n° di ox. di tutti gli atomi facente parte di uno ione è uquale alla sua carica
- 4) Il n° di ox. di un atomo neutro è = 0 Es Hg n.o. = 0
- 5) Il n° ox. di atomi uguali uniti a formare da soli una molecola $\grave{e} = 0$ Es O_2 , Cl_2 , N_2 , S_8 ecc... n.o. = 0

1. Il numero di ossidazione di tutti gli elementi è zero, sia in forma monoatomica, K, NA, Ag o stato metallico, sia in forma poliatomica S_8 , P_4 , O_2 , H_2 .

$$H_2$$
 n° ox. $H = 0$ Valenza = 1

2. Nel caso degli ioni monoatomici, il numero di ossidazione ha un significato fisico e coincide con la carica elettrica dell'atomo.

- 3. Nei composti covalenti il numero di coordinazione è solo una grandezza convenzionale
- 6) Il n.o. di ogni ione monoatomico è uguale alla sua carica

1° gruppo Li⁺, Na⁺, K⁺, Rb⁺,
$$Cs^+$$
 n.o. = +1
2° gruppo Be²⁺, Mg^{2+} , Ca^{2+} , Sr^{2+} n.o. = +2
3° gruppo Al³⁺, Sc^{3+} , Y^{3+} n.o. = +3

Eccezione:
$$F_2$$
 n.o. = 0
Esempi: HF_1, F_2O_1, CF_4 n.o.(F) = -1

8) Il n.o. dell'idrogeno è sempre =
$$+1$$

Eccezione:
$$H_2$$
 n.o. = 0

Idruri metallici: NaH , CaH_2 n.o. = -1

Esempi: H_2O ; NH_3 ; H_2SO_4 n.o. = +1

$$Cl O_2$$
 Biossido di cloro n.o. $(O) = -2$

10) Tutti gli altri elementi possono avere diversi numeri di ossidazione a seconda dei composti che formano.

Esempio: Determinare il n.o. dello zolfo nelle seguenti specie

Esempio: Ione ammonio
$$NH_4^+$$
 $\times + 4 = 1$ n.o. $(N) = x = -3$
Ammoniaca NH_3 $\times + 3 = 0$ n.o. $(N) = x = -3$

$$NH_3 + H_2O \longrightarrow NH_4^+ + OH^-$$
 Reazione Acido - Base

Relazione tra il numero di ossidazione di un elemento e la sua collocazione nel sistema periodico

1) gli elementi del gruppo IA, IIA, IIIA presentano un solo n.o.

Eccezione: H n.o. = -1 negli idruri Tallio n. o. = +1,+3

2) Nei gruppi IVA, VA, VIA, VIIA, i diversi n.o. di un dato elemento differiscono in generale tra loro di almeno 2 unità

Esempio S n.o. = +2, +4, +6

Eccezione : N n.o. = $+1,+2,\pm3,+4,+5$

3) Tali elementi presentano in genere un n.o. negativo ottenuto dalla differenza tra il nº del gruppo 8

4) Il massimo n.o. di un elemento coincide in genere con il gruppo a cui l'elemento appartiene

Eccezione gruppo IB:
$$Cu \text{ n.o = +2 ,+1}$$

 $Ag \text{ n.o. = +1, +2}$
 $Au \text{ n.o. = +3,+1}$

I stati di ossidazione sono strettamente correlati alla configurazione elettronica esterna dell'elemento e riflettono la perdita o l'acquisto di elettroni per raggiungere la configurazione completa. (Guscio pieno) ns²np⁶ nd^{10}

Per alcuni elementi sembra particolarmente favorita la configurazione ns²

TI
$$6s^26p^1 \longrightarrow TI +$$

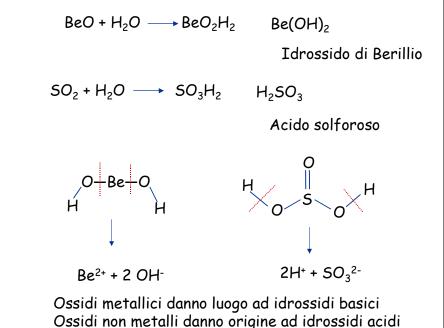
Sn; Pb $ns^2np^2 \longrightarrow n.o. = +2$; +4
P, As, Sb $ns^2np^3 \longrightarrow n.o. = +3, +5$

Nomenclatura

(regole stabilite dalla commissione IUPAC)

Ossidi

Sono composti binari formati da un elemento con l'ossigeno


 $^{+3}_{Al_2O_3}$ ⁺¹Na₂O MgO

Ossido di sodio Ossido di magnesio Ossido di alluminio

+2 -2 Ossido di ferro II Notazione FeO $Fe_2O_3^{-2}$ Triossido di diferro Ossido di ferro III di Stock In passato: FeO ossido ferroso ossido ferrico Fe_2O_3

Anidride ipobromosa Br₂O Anidride bromosa ⁺⁵Br₂O₅ Anidride bromica Anidride perbromica

CO Anidride carboniosa (mono)ossido di carbonio CO₂ Anidride carbonica Biossido di carbonio Fluoruro di ossigeno

IDROSSIDI

Composti di carattere ionico formati dal catione di un metallo e da ioni OH-

> **RbOH** Tdrossido di rubidio Zn(OH)₂ Idrossido di zinco

Fe(OH)2 Idrossido di ferro(II) Idrossido ferroso Fe(OH)3 Idrossido di ferro(III) Idrossido di ferrico

NaOH $\stackrel{\text{H}_2\text{O}}{\longrightarrow}$ Na+ + OH- solubile

 $Mg(NO_3)_{2(aq)} + 2 KOH_{(aq)} \longrightarrow Mg(OH)_{2(s)} + 2 KNO_{3(aq)}$ insolubile

$AI(OH)_3 + 3 H_3O^+ \longrightarrow AI^{3+} + 6 H_2O$ Idrossido anfotero

 $H_3AIO_3 + 3 OH^- \rightarrow AIO_3^- + 3 H_2O$

PEROSSIDI

Composti in cui il gruppo elettronegativo è formato da due atomi di ossigeno uniti dal legame - O -O -

 $\overset{1}{\text{Li}}_{2}\overset{1}{O_{2}}$ Perossido di litio

n.o.(O) = -1

Li H₂O₂ Perossido di idrogeno (o Acqua Ossigenata)

Q-O BaO2 Perossido di bario

SUPEROSSIDI

Composti ionici che contengono lo ione O_2

+1 -1 NaO₂ Superossido di sodio $n.o.(O) = -\frac{1}{2}$

IDRURI

Composti binari dell'idrogeno con gli elementi che hanno una minore elettronegatività, ossia con i metalli e con il boro e n.o. (H) = -1l'alluminio.

Alcuni idruri sono composti ionici:

+1 -1 NaH Tdruro di sodio

+2 -1 BaH₂ Idruro di bario

Altri sono covalenti:

Idruro di alluminio

Idruro di boro

Idruro di stagno (IV)

Acidi di anioni monoator

Gli atomi di idrogeno sono legati ad elementi abbastanza o molto elettronegativi n.o(H) = +1

Formula generale: HX Acido ~idrico

Acido fluoridrico HF HBr Acido bromidrico

Acido cloridrico ΗI Acido iodidrico HCl H2S Acido solfidrico

Sono composti fortemente polari che si dissociano in acqua

 $HX \xrightarrow{H_2O} H^+ + X^-$

Alcuni acidi hanno desinenza ~idrico anche se non sono strettamente monoatomici

+1 -1/3 Acido azotidrico +1+2-3 HCN Acido cianidrico

Sali con anioni monoatomici

Sali corrispondenti agli acidi suddetti in cui lo ione idrogeno è sostituito dal catione di un metallo

Desinenza dell'anione ~uro - il nome del catione non varia

CaBr₂ Calcio Bromuro

 \dot{C}^{1-1} Ioduro di rame (I) Rame ioduro

 CuI_2 Ioduro di rame (II) Rame diioduro

 K_2C_2 Potassio carburo

 Li_2S_2 Litio disolfuro H_2S_2

Vecchia convenzione: Sn(CN)₂ Cianuro stannoso

 $Sn(CN)_4$ Cianuro stannico

Composti ionici: in acqua si dissociano

$$NaN_3 \xrightarrow{H_2O} Na^+ + N_3^-$$

Molecole di tipo covalente:

S₂Cl₂ Dicloruro di dizolfo

N₂S₅ Pentasolfuro di diazoto

ICl₃ Tricloruro di iodio

Ordine nella sequenza degli elementi non metallici:

As, P, N, H, S, I, Br, Cl, O, F

Acidi poliatomici ossigenati e loro sali

Formula generale: H_nX_mO_p

Vengono adoperati prefissi e suffissi per indicare il n. o. dell'atomo centrale

Esempio acidi ossigenati del Bromo. $n.o.(Br) = \pm 1, +3, +5, +7$

n.o. Formula nome Formula del sale nome

+1 HBrO Ac. ipobromoso NaBrO Sodio ipobromito

+3 $\overset{+1}{\mathsf{HBr}}\overset{+3}{\mathsf{O}_2}$ Ac. bromoso NaBrO_2 Sodio bromito

+5 $\overset{+1}{\text{HBr}}\overset{+5}{O_3}\overset{-2}{\text{Ac. bromico}}$ NaBrO₃ Sodio bromato

+7 $\overset{\dot{}}{H}\overset{\dot{}}{B}\overset{\dot{}}{r}\overset{\dot{}}{O}^2_4$ Ac. perbromico NaBr O_4 Sodio perbromato

Esempio: acidi ossigenati dello zolfo. n.o. = +2, +4, +6

n.o. Formula nome Formula del sale nome

+2 H_2SO_2 Ac. iposolforoso Na_2SO_2 Sodio iposolfito

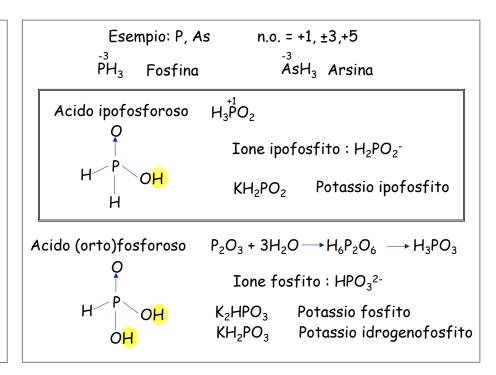
+4 H₂SO₃ Ac. solforoso Na₂SO₃ Sodio solfito

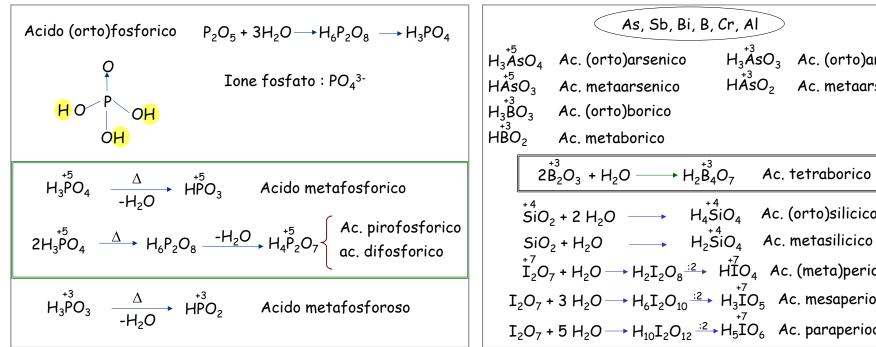
+6 H₂SO₄ Ac. solforico Na₂SO₄ Sodio solfato

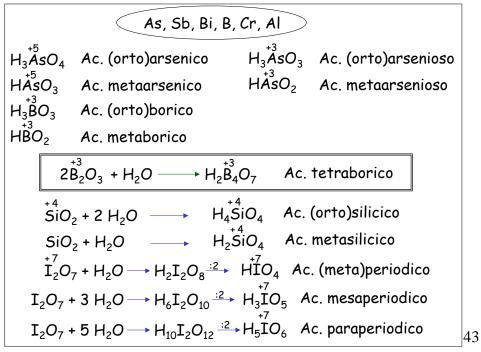
Per gli elementi dei gruppi VIIA e VIIB il prefisso "per~" è adoperato per il massimo stato di ossidazione

Esempio: Mn n.o.= +6, +7

H₂MnO₄ acido manganico HMnO₄ acido permanganico


$$HClO_4 + H_2O \longrightarrow H_3O^+ + ClO_4^-$$


$$H_2 \stackrel{+4}{S}O_3 \qquad NaHSO_3 \qquad Sodio idrogenosolfito$$


$$H_3PO_4 \qquad \begin{cases} KH_2PO_4 & \text{Potassio diidrogenofosfato} \\ K_2HPO_4 & \text{Potassio idrogenofosfato} \\ K_3PO_4 & \text{Potassio fosfato} \end{cases}$$

$$CO_2 + H_2O \longrightarrow H_2CO_3$$

Alcuni metalli, in particolare quelli del V e IV gruppo, formano degli acidi corrispondenti all'addizione di una quantità variabile di molecole d'acqua all'ossido

TIOACIDI

Un tioacido si ha quando un atomo di Ossigeno è sostituito da un atomo di Zolfo. Se sono sostituiti più atomi di ossigeno si usano i prefissi ditio, tritio,...

Quando si sostituisce in un acido ossigenato, un gruppo $OH^{\text{-}}$ con un $\text{\it Cl}^{\text{-}}$ o $F^{\text{-}}$

Se si sostituiscono all'acido solforico i due gruppi OH^- con 2 Cl^-

$$O$$
 SO_2Cl_2
 $Cloruro di solforile$
 Cl

Se si sostituiscono all'acido solforoso i due gruppi OH^- con 2 $Cl^ H_2SO_3$ $SOCl_2$ Cloruro di tionile

Perossidiacidi

Se in un acido ossigenato si sostituisce un atomo di O con un gruppo -O-O-, l'acido verrà chiamato perossido.

$$H_2 \overset{+6}{\text{S}} O_4$$
 $H_2 \overset{+6}{\text{S}} O_5$ Acido perossosolforico $H_2 \overset{+6}{\text{S}}_2 O_7$ $H_2 \overset{+6}{\text{S}}_2 O_8$ Acido perossodisolforico

n.o.di 2 atomi di 0 = -1,

ACIDI TIONICI

Formula generale: H₂S_nO₆

Acido ditionico
$$H_2S_2O_6$$
 n.o.(S) = 2 + 2 x + 6 (-2)
 $x = \frac{12 - 2}{2} = +5$

Acido tritionico
$$H_2S_3O_6$$
 n.o.(S) = 2 + 3 x + 6 (-2)
 $x = \frac{12 - 2}{3} = \frac{+10}{3}$

Acido tetrationico
$$H_2S_4O_6$$
 n.o.(S) = 2 + 4 x + 6 (-2)

Sono formati da una parte metallica, o più elettropositiva ed una parte non metallica o più elettronegativa.

 $Fe(NO_3)_2$ ferro(II) nitrato nitrato ferroso $Fe(NO_3)_3$ ferro(III) nitrato nitrato ferrico

Sale acido: quando non vengono salificati tutti gli idrogeni

 Na_2CO_3 Sodio carbonato

NaHCO₃ Sodio idrogenocarbonato Bicarbonato di sodio

BiO+ Ione Bismutile $(Bi^{3+}O^{2-})^{1+}$

BiOF Fluoruro di bismutile

In questi ioni una parte della carica positiva dello ione, sia esso metallico sia no, viene saturata dall'ossigeno, il quale avendo n.o. = -2, annulla 2 cariche positive dello ione. Si adopera il sufisso ~ile per designare tali ioni.

 NO^+ Ione nitrosile $(N^{3+}O^{2-})^{+1}$

 NO_2^+ Ione nitrile $(N^{5+}O_2^{2-})^+$

NOCI Cloruro di nitrosile

Sali basici:

Sono sali che contengono oltre all'anione noto ancora uno o più gruppi OH-

 $Pb(OH)_2 + HCIO_2$ $Pb(OH)CIO_2$ Cloritobasico di piombo(II) idrossiclorito di piombo(II)

Pb(OH)₂(ClO₂)₂ Cloritobibasico di piombo(IV) diidrossiclorito di piombo(IV)

Sali doppi: sono sali che contengono due cationi

NaKCO₃ Carbonato doppio di sodio e potassio