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Distributed Task Allocation

• M outstanding Tasks, perhaps with various levels of urgency or value.  
Tasks belong to task classes.

• A swarm of N heterogeneous Agents each of whom can do tasks from 
some task classes better (or faster) than other task classes

• We want to assign tasks to agents to maximize task success and speed

• One approach: centralized task assigner  (combinatorial 
optimization)

• Another approach: distributed task assignment (each agent gets a 
say in which tasks it will work on)



Distributed Task Allocation: an Auction

• An auctioneer posts tasks and awards tasks to winning bids. 

• Each agent has preferences, and bids on tasks according to them.

• If an agent wins a bid, he owns the task.  It is exclusive to him.

• Agents are responsible for performing tasks they own.

• Why would an agent bid?  He doesn't get any value from a task.

• This model makes some strange assumptions:
 The agents are altruistic and have good estimates of their abilities (!)
 The agents have an infinite money supply
 What happens if an agent can't complete his task?

• MURDOCH (Gerkey et al)



Bounty Hunting

• A bail bondsman posts tasks associated with bounties.

• A task's bounty rises as long as the task is unfinished.

• An agent can commit to a task.  When he commits (1) he can only work 
on that task until it is completed by him or by someone else (2) if he 
completes the task he receives the bounty that was posted at the time 
he had committed (3) his commit is broadcasted to the other agents.

• More than one agent can commit to the same task.

• Only the first agent who completes a task wins the bounty.

• Variation: an agent may abandon a task to which he
has committed.



Bounty Hunting and Exclusivity

• Unlike auctions, bounty hunting is not exclusive.  Multiple bounty 
hunters can compete for the same task.   This is inefficient.

• Agents do not know beforehand which tasks classes they are good at.

• Goal: agents adapt to determine which task classes are worth 
attempting.  This effectively divides the space of task classes into 
regions, one per agent, make the problem efficient.

• Model: the board contains at most one outstanding 
task of class i.  When it is completed, a new task of
class i appears soon thereafter.



Simple Method

• A task of task class i has a current bounty bi.

• For each task class i an agent maintains a probability of completion 
Pi and an expected time to completion Ti.  

• When an agent wishes to work on a new task, with ε probability he will 
pick a random task.  Else he will pick the task:

• If an agent completes a task:

• If an agent does not complete the task:

• In all cases:   (why?)

argmax

i 2 Available Tasks

bi
Ti

Pi

Ti  (1� a)Ti + at
Pi  (1� b)Pi + b

Pi  (1� b)Pi

8i : Pi  (1� g)Pi + g



Complex Method

• For each task of class i an agent maintains a probability of 
completion Pi,a (if agent a has also committed to the task) and an 
expected time to completion Ti.  

• When an agent wishes to work on a new task, with ε probability he will 
pick a random task.  Else he will pick the task:

• If an agent completes a task:

• If an agent does not complete the task:
(agent a* completed it instead)

• In all cases:   (why?)

argmax

i 2 Available Tasks

bi
Ti

’
a presently committed to i

Pi,a

Ti  (1� a)Ti + at
8a presently committed to i : Pi,a  (1� b)Pi,a + b

Pi,a⇤  (1� b)Pi,a⇤

8i, a : Pi,a  (1� g)Pi,a + g



Variations

• The environment may change.  How do we cause agents to explore 
new possibilities?
• SimpleR, ComplexR   ε = 0.1 ɣ=0
• SimpleP, ComplexP   ε = 0  ɣ=0.001
• Simple Complex    ε = 0  ɣ=0 [only rely on bounty]

• Other Approaches
• Exclusive		 Agent has exclusive control after he commits
• Bounty "Auction"	 All agents that wish to work on a new task are 

greedily paired with the task for which they have the highest (bi / Ti)

• Greedy	  Agents know the true E(Ti), and commit to the task with 
the highest (bi / E(Ti))

• Random	 Agents commit to random tasks.
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Figure 1: Experiment 1, Static Environment (Selected Results),
200,000 timesteps. Lower values are better.

Equivalence
Classes Method g e Mean

+ Random - - 6139.72
+ ComplexR 0 0.1 3739.18

+ SimpleR 0 0.1 3641.62
+ ComplexP 0.001 0 3476.67
+ SimpleP 0.001 0 3475.81

+ + Complex 0 0 3434.75
+ + Simple 0 0 3408.04
+ + Auction - - 3407.77
+ + Exclusive - - 3403.4
+ Greedy - - 3372.64

Table 1: Experiment 1 results, Static Environment, at
time=200,000. Lower mean values are better. Equivalence
Classes show statistically insignificant differences between
methods.

Imagine a scenario where a single agent is given the same task
i over and over again. His only choice, then, is when to commit
to the task. The longer he waits, the higher the bounty he receives
on task completion. Let bi,0 be the bounty for task i when it is first
offered. Suppose the task takes mi > 0 time to complete, and the
bounty rises at a rate of ri � 0 per timestep. If the agent waited for
n > 0 time to begin the task, it would take n+mi time to finish it
for a bounty of bi,0 +nri, yielding a bounty per timestep of bi,0+nri

n+mi
.

If he had started the task immediately, his bounty would be bi,0,
for a bounty per timestep of bi,0

mi
. Thus we want bi,0+nri

n+mi
 bi,0

mi
to

discourage procrastination. Rearranging, we get ri 
bi,0
mi

.
We have chosen to adopt this conservative rule. In our experi-

ments, the maximum expected task length was approximately 100,
and so the initial bounty on all task classes was set to 100 and
increased at a rate of 1.

First Experiment: A Static Environment
The first experiment verified that the discussed methods could

learn to adapt to the best task choices per-agent. Results are shown
in Table 1, and selected results in Figure 1.

Results. The results made very clear that all techniques will con-
verge to values near to our Greedy reference. We note an initial
spike in bounty as the techniques spend time learning their best
options.

Greedy
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ComplexR
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Figure 2: Experiment 2, Dynamic Agents (Selected Results),
200,000 timesteps. Lower values are better. Complex peaks
exceed 9500, 10500, and 11500 respectively.

Equivalence
Classes Method g e Mean

+ Random - - 11255.4
+ ComplexR 0 0.1 6904.13

+ + SimpleR 0 0.1 6808.35
+ + SimpleP 0.001 0 6572.01

+ + ComplexP 0.001 0 6495.58
+ + Simple 0 0 6437.8
+ + Exclusive - - 6412.1
+ + Complex 0 0 6383.45
+ Auction - - 6326.7
+ Greedy - - 6289.88

Table 2: Experiment 2 results, Dynamic Agents, at
time=200,000. Lower values are better. Equivalence Classes
show statistically insignificant differences between methods.

The best five methods were (in order but with statistically in-
significant differences) Greedy, Exclusive, Auction, Simple, and
Complex. While Auction and Exclusive outperformed our methods,
the difference was statistically insignificant. We note that Simple
(and to a lesser extent Complex) performed this well despite having
no explicit exploration strategy. We also note here that SimpleR and
ComplexR — which use a 10% random task exploration strategy —
did poorly. This will be a continuing theme.

Second Experiment: Dynamic Agents
In the real world, agents are prone to failure. We tested each

method’s ability to adapt to a situation where agents were periodi-
cally removed from the game, then later reinstated. In this experi-
ment, agent 1 was removed every 30,000 timesteps, and agent 2 was
removed every 60,000 timesteps. Agents were reinserted 20,000
timesteps after removal. Ideally while agents were gone, teammates
would adapt to cover for them.

Results. We discovered that all the methods would adapt quickly,
as illustrated in Figure 2. The Complex method converged to the
Greedy performance regardless of the number of agents in the game.
This is verified in Table 2, which reflects the final timestep 200,000,
when two agents were missing from the game.

We note in Figure 2 that Complex and ComplexR (shown Figure 2)
had very high temporary peaks of poor performance compared to
other methods whenever an agent would disappear: they had a larger
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Figure 3: Experiment 3, Dynamic Tasks (Selected Results),
200,000 timesteps. Lower values are better.

Equivalence
Classes Method g e Mean

+ Random - - 6035.74
+ Complex 0 0 4150.56
+ Simple 0 0 4086.08

+ ComplexR 0 0.1 3934.94
+ SimpleR 0 0.1 3928.61

+ Auction - - 3591.57
+ SimpleP 0.001 0 3578.96
+ Exclusive - - 3529.17
+ ComplexP 0.001 0 3509.76

+ Greedy - - 3394.73

Table 3: Experiment 3 results, Dynamic Tasks, at time=200,000.
Lower values are better. Equivalence Classes show statistically
insignificant differences between methods.

state table and would be expected to take longer to adapt. The 10%
random task exploration strategy once again did poorly compared
to other methods. Note that Auction outperformed SimpleP and
SimpleR, but not Complex.

Third Experiment: Dynamic Tasks
If the distribution of tasks suddenly changes, we want the bounty

system to recover. To test this, we occasionally rotated the corners
among the four agents: that is, agent 1’s corner would become
agent 2’s corner, whose old corner would now belong to agent 3,
and so on. We did this every 25,000 timesteps, with a second rotation
performed every 50,000 timesteps (a worst case scenario for task
distribution, as the closest balls became the furthest and vice versa).

Results. This experiment, as shown in Figure 3 and Table 3, shows
the weakness of relying solely on bounty for exploration: the Sim-
ple and Complex methods performed poorly. Following them were
the remaining random exploration methods (SimpleR, and Com-
plexR). Finally, the best adaptive methods were SimpleP, Auction,
ComplexP, and Exclusive. We note that, SimpleP and ComplexP, per-
formed just as well as the Exclusive and Auction methods. Unfortu-
nately, no adaptive method could consistently converge to Greedy’s
performance.
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Figure 4: Experiment 4, Unreliable Collaborators (Selected Re-
sults), 200,000 timesteps. Lower values are better. Exclusive is
omitted as its results are very similar to Auction.

Equivalence
Classes Method g e Mean

+ Exclusive - - 7652.40
+ Auction - - 7334.31

+ ComplexP 0.001 0 5625.17

Table 4: Experiment 4 results, Unreliable Collaborators, at
time=200,000. Lower values are better. Equivalence Classes
show statistically insignificant differences between methods.

We also note that after several iterations of rotations, the agents
were unable to converge to the same (lower) value. This is because
the rate of rotating was too fast for the adaptive methods to catch up
and so the total bounty would gradually pile up. This was especially
true for the Auction strategy. In the first few iterations Auctions
started out better than ComplexP, but by the last iteration, they were
equivalent.

Fourth Experiment: Unreliable Collaborators
The purpose of Experiments 4 and 5 is to show when exclusivity

can fail. In the previous experiments exclusivity was favorable,
since non-exclusive approaches potentially wasted time on tasks
another agent was completing. However, in these next experiments
we show there are situations where non-exclusivity is desirable.

Suppose a system has agents which do not perform nearly as well
as other agents. In this experiment, there were 2 agents, placed
in the top left corner of the grid world, who moved 10x slower
than other agents, and 4 agents, placed in the corners (like normal),
who moved at a normal speed. We chose to test ComplexP as our
main bounty mechanism, and compared it to our two auction-like
algorithms (Auction and Exclusive).

Results. The results are shown in Table 4 and illustrated in Fig-
ure 4. ComplexP was clearly the best in this test. The obvious
underlying reason was that agents at normal speed would win a
race to a ball (a task) against a slow, unreliable collaborator. The
auction-like methods simply had no way to prevent the unreliable
collaborator from holding things up. Also, ComplexP was naturally
suited to this task due to the added information it learned about the
other agents in the environment.



Abandoning Tasks

• If an agent abandons a task, then returns to it, he must start all over again.

• If an agent completes a task, the bounty he receives is the current bounty 
when he finishes it  (not when he completes it).  Otherwise agents will 
continually abandon tasks if they turn out to be too hard!

• The bounty bi increases according to a rate Ri

• At any time step, an agent chooses the task:

• [There are more details]

• Results: abandoning tasks works very well in highly dynamic environments.

argmax

i 2Q(t)

bi + RiTi
Ti

Pi = argmax

i 2Q(t)

bi
Ti

Pi + RiPi



Agent-Based Modeling and Simulation

• Lots of agents (thousands?  millions?  2?) interacting in complex ways with 
nontrivial dynamics.

• Popular in:

• Population biology

• Artificial Life

• Computational Social Science and Economics

• Swarm Robotics



Agent-based Modeling and Simulation

• Earliest swarm and complexity simulations: cellular automata, dynamical 
models, graphics

• First agent-based model toolkit SWARM

• Many later agent-based model toolkits, notably Repast, StarLogo/NetLogo, 
Ascape, MASON

• MASON is a Java-based, Open Source, high-performance non-distributed 
simulation toolkit for swarms of agents.  2D, 3D.  Discrete, real-valued 
environments, social networks, GIS facilities.  Can run with or without 
visualization, and can serialize and migrate simulations across platforms.



With Liviu Panait [AAMAS 2004, Alife 2004]

Pheromone-based Swarm Foraging

Motivation
Robot coordination in environments where direct communication is 
impossible. Pheromones, breadcrumbs, etc. are an indirect 
communication method.

Starting point: Swarm Foraging
Use pheromone communication to
establish and optimize a trail from 
a nest to a food source and back.  

Almost all literature uses one pheromone.
(Biologically feasible, but bad algorithms)

We use multiple pheromones and
a rigorous formulation.



Pheromone-based Swarm Foraging

Ants use pheromones to build up gradients to follow for different tasks.  
An ant does different actions, follows different pheromones, and updates 
still other pheromones depending on its current state.

States    Follow Pheromone
Looking for Food  Food
Looking for Nest  Nest
Wandering   Wander
Exploring    [None]

Model.  Decisions about where to go are
which pheromones to update are a function 
of the ant's current state s and immediate
neighboring states s'.

sʹ sʹ sʹ

sʹ s sʹ

sʹ sʹ sʹ

s

sʹ

sʹsʹ

sʹ sʹ



Action Behavior

• If there are no neighbors (!) panic

• Else if Exploring for a while, go to a random neighbor

• Else if Looking for food
  If you found food, get the food, Rfood(s) = 1, state = Looking for nest
  Else if for all neighbors s', Ufood(s') < Ufood(s), 
  or there is no single neighbor s' with the highest Ufood(s')
   Go to neighbor s' with highest Uwander(s')
 Else go to neighbor s' with highest Ufood(s')

• Else if Looking for nest
 If you found nest, deposit food, Rnest(s) = 1, state = Looking for food
 Else if for all neighbors s', Unest(s') < Unest(s), 
  or there is no single neighbor s' with the highest Unest(s')
   Go to neighbor s' with highest Uwander(s')
 Else go to neighbor s' with highest Unest(s')



Update Behavior

U

nest

(s) max

✓
U

nest

(s), R

nest

+ g max

s

02neighbors(s)

U

nest

(s0)

◆

U

food

(s) max

✓
U

food

(s), R

food

+ g max

s

02neighbors(s)

U

food

(s0)

◆

Uwander(c) Uwander(c)� 1

• This is just a version of Value Iteration.  But this is O(n), whereas Value 
Iteration and Q-Learning are O(n2).  	 	 Why?

• Hint: P(s|s', a) = P(s'|s, a-1)	 	 	 	 (= 1 in this problem domain)



Pheromone-based Swarm Foraging



With Brian Hrolenok [AAMAS 2010]

Moving Towards Real Robots: Beacons

• Beacons form nodes in a sparse planar graph

• Beacons hold:
Pheromones
Locks
Whatever you want!

• Beacons can be:
Deployed
Retrieved
Moved (Optimized)



• Deploy motes to build the graph

• Develop the two-pheromone gradient

• Move and remove motes to create an 
optimized path.

More Realistic Foraging:  Two Pheromones, 
Deployable/Movable/Removable Sensor Motes 

Nest

Food

Nest

Food

Nest

Food



Moving Towards Real Robots: Beacons



Beacons
Cans with barcodes and sensor motes.
Robots also have sensor motes to 
communicate with nearby beacons.

Large increase in complexity
Agents hit, crowd out, and 
occlude one another

Noise, robot and beacon failure

With Raven Russell, Kevin Andrea, and Bob Simon [AAMAS 2015]

Physical Robots with Sensor Mote Beacons

Tmote Sky
Sensor Mote



Physical Robots        Simulation Validation
Total “Food” Foraged

Physical Robots with Sensor Mote Beacons
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Graceful Degradation
(Experimental Results)

Physical Robots with Sensor Mote Beacons
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• Swarm Robot Building Construction

• Lay out the survey lines 
defining your building

• Compass-Straightedge Geometry (Euclid)

Beyond Foraging: Ant Geometry!

B

A
A

B
B

A

A B

A



Compass / Straightedge Geometry (Euclid)



Next Steps (and What They Require)

• Ad-Hoc Networks of Motes
 Enables: planners distributing tasks 
    throughout whole swarm,
 Enables: agents reporting events globally
 Constraint:tasks/events must be rare (scaling)
 Requires: rapidly, dynamically reconfigurable
     network topologies

• Motes as Local Broadcast Beacons
 Enables: accurate shapes, fast drawing
 Requires: distance and bearing to motes 
    (RSSI is terrible)

• Sensor Motes’ use of Sensors
 Enables: sensor “foveation” (sensors provide low-resolution data,
    robots move to interest areas for more accurate sensing) 



Multiagent Learning from Demonstration

One or more robots (or software agents) learn a task after being given sample 
data by a human trainer.  The trainer iteratively updates the sample data to 
provide corrections or suggestions.

Goal
Train complex, stateful behaviors from a very small number of samples in real 
time on simulated agents or robots.

Single-Agent Training Difficulty: The Curse of Dimensionality

Multi-Agent Training Difficulty: The Multiagent Inverse Problem

Our Technique: HiTAB



With Vittorio Ziparo and Keith Sullivan [AAMAS/ALA 2010, Humanoids 2010]

Multiagent Learning from Demonstration

Single-Agent Training Difficulty: The Curse of Dimensionality

Solution: Behavioral Decomposition
Manually compose complex behaviors into simpler behaviors.  Learn the 
simpler behaviors, then learn more complex compositions of them, etc.

Hierarchical Finite-State Automata (HFA) as Moore Machines

Each Behavior is mapped to a unique State

Recursive	 	 Behaviors may themselves be other automata

Transitions from State to State based on environment Features

Parameterizable  “Go to X” rather than “Go to the Ball



Multiagent Learning from Demonstration

For each state s, we learn the transition function T(s,f) 
for edges leaving s.

Gather Data.  When the user transitions to a new state/behavior, log:
[ old behavior, current feature vector, new behavior ]

Build T(s,f) ⇒ s’ for each state s
Gather all samples [s, f, s’ ] starting with s 
Reduce to just f ⇒ s’
This is just a classification task

Delete all unused states, add to library

Rotate 
Left

Rotate 
Right

Forward

X(A) < 0.3

0.3 ≤ X(A) ≤ 0.7  

AlwaysStart

0.3 ≤ X(A) ≤ 0.7  

X(A) > 0.7

X(A) < 0.3

GoTo (A)

Done

Z(A) < 0.2 X(A) > 0.7

Z(A) < 0.2Z(A) < 0.2



RoboCup 2012
Win over Osaka University
Robot #5 (“Johnny 5”) uses
17 HFAs trained with HiTAB

Resource Foraging
Robot trained to gather
resources and deposit them
at a home base.

Various corner cases
complicate matters.



With Keith Sullivan [IJCAI 2013]

Unlearning: Removing Bad Samples

Situation: Training
When the agent performs its learned behavior incorrectly, the trainer 
corrects the behavior.

Problem
How do we use the corrective information to update the model?

Complication
We have a very small number of samples.  (Samples are precious).

In typical machine learning (with many samples), we’d just add the 
corrective samples to our sample set and re-learn the model.

In unlearning, we use the corrective samples to detect and remove 
noisy sample data.



Unlearning: Removing Bad Samples

Given:
S  Original sample set (with some possibly noisy samples)
M  Original learned model from S
C  Set of corrective samples which M is misclassifying

We produce:
S’  Revised sample set (identifying/removing some noisy samples)
M’  Revised learned model from S’

Approach
Identify the samples B ⊆ S which caused M to misclassify C
Determine which samples in N ⊆ B are likely to be noise
Remove N from S, producing S’
Rebuild M' from S'

Identifying B requires algorithms customized for your model
C4.5,   K-NN,   SVMs 



Noise = 1 / 5 Noise = 1 / 20 Noise = 1 / 100

Dataset U+C U+C+E Metric Non-Metric U+C U+C+E Metric Non-Metric U+C U+C+E Metric Non-Metric
1-NN

Iris 0.9553 0.9131 0.9307 0.9255 0.9553 0.8002 0.8901 0.8601 0.9553 0.7519 0.9461 0.8490
Glass 0.6921 0.6707 0.6810 0.6822 0.6921 0.6441 0.6816 0.6705 0.6921 0.5653 0.6887 0.6421
Wine 0.9533 0.9370 0.9464 0.9442 0.9533 0.7998 0.9506 0.8722 0.9533 0.7566 0.9520 0.8488

3-NN
Iris 0.9537 0.9409 0.9468 0.9492 0.9537 0.8887 0.9361 0.9295 0.9537 0.8539 0.9370 0.9331

Glass 0.7008 0.6734 0.6895 0.6980 0.7008 0.6615 0.6927 0.6971 0.7008 0.6193 0.6866 0.6828
Wine 0.9615 0.9524 0.9607 0.9594 0.9615 0.8895 0.9511 0.9472 0.9615 0.8548 0.9462 0.9408

Decision Tree (Unpruned)
Iris 0.9459 0.8705 0.8915 0.8877 0.9459 0.8029 0.8497 0.8535 0.9459 0.8014 0.8765 0.8616

Glass 0.6701 0.6379 0.6577 0.6572 0.6701 0.6355 0.6544 0.6514 0.6701 0.6306 0.6591 0.6492
Wine 0.9332 0.8321 0.8638 0.8636 0.9332 0.7375 0.8103 0.7956 0.9332 0.7206 0.8365 0.8079

Decision Tree (Pruned)
Iris 0.9427 0.9135 0.9213 0.9226 0.9427 0.8761 0.9081 0.9094 0.9427 0.8799 0.9250 0.9213

Glass 0.6711 0.6330 0.6520 0.6529 0.6711 0.6274 0.6460 0.6426 0.6711 0.6301 0.6501 0.6496
Wine 0.9340 0.8591 0.8811 0.8846 0.9340 0.8185 0.8749 0.8715 0.9340 0.8093 0.8892 0.8844

Support Vector Machine
Iris 0.9102 0.3886 0.4280 0.9070 0.9102 0.7389 0.8649 0.8705 0.9102 0.7374 0.8695 0.8668

Glass 0.3346 0.3311 0.3163 0.3393 0.3346 0.3329 0.3313 0.3284 0.3346 0.3249 0.3259 0.3350
Wine 0.9329 0.3906 0.3991 0.9350 0.9329 0.6400 0.8828 0.8861 0.9329 0.6544 0.8834 0.8867

Table 1: Results for ⇧ = 100%. Bold numbers indicate statistically significant difference between the naive approach (U+C+E)
and unlearning, while underlined numbers indicate a statistically significant difference between metric and non-metric unlearning.
The column U+C represents a perfect dataset and serves as an upper bound on unlearn performance.

• Data Sparsity. While the Wine, Glass, and Iris data
sets are already fairly small (between 100 and 250 data
points), our learning from demonstration research tends
to use even smaller sets. Thus we experimented with
three data set sizes: the full (⇧ = 100%) data set, an ⇧ =
50% sized set, and a ⇧ = 25% sized set. For the last two,
the set was reduced by removing random data points.

We were curious as to how sensitive our algorithms are to
their parameters and so performed some informal parameter
tuning. In the non-metric unlearning algorithms, we varied
� from 0 to 1 in steps of 0.1, while in the metric unlearning
algorithm, we varied ⇤ over 0.5, 0.75, and 1.0 while ⇥ ranged
from 0 to 1 in steps of 0.1. Additionally, we varied µ from 0
to 5 in steps of 1. In general, ⇤ has little effect on classification
accuracy. However, for unpruned decision trees on the Wine
dataset, increasing ⇤ results in decreased accuracy. Addition-
ally, ⇥ appears to have minimal effect, but this is probably
due to the infrequency of the second hypersphere containing
a single point. In the non-metric algorithms, accuracy either
stays constant or increases as � increases from 0 to 1. For
K-NN, setting µ = 2 results in the best performance with no
statistically significant impact as µ increases to 5.

Based on these trends, for metric unlearning, we fixed
⇤ = 0.5 and ⇥ = 0.5 while for non-metric unlearning we set
� = 0.9. For K-Nearest Neighbor, we set µ = 2, and, as men-
tioned earlier, for Support Vector Machines we set ⌅ = 2.
Table 1 shows the results. For each algorithm and dataset, we
compared against simply adding a point (which we call the
“naive” approach) and running our unlearning algorithms. Bold

numbers indicate a statistically significant increases over the
naive approach, while underlined numbers indicate the statisti-
cally higher performance between the metric and non-metric
unlearning algorithms. All statistical tests were at the 95%
confidence level with the appropriate Bonferroni correction.

In general, the unlearning algorithms perform better than the
naive approach, with metric unlearning slightly outperforming
non-metric algorithms. However, in all cases, the unlearning
algorithms failed to completely remove the error points.

Next, we investigated how these trends hold up with smaller
datasets by changing the experimental procedure: at the start
of each iteration, we randomly shuffled the data and then used
the top ⇧%. Table 2 shows the results for ⇧ = 50% and Table
3 shows the results for ⇧ = 25%.

We see the same trends as before: unlearning performs
better than the naive approach, with metric unlearning per-
forming slightly better than non-metric unlearning. But as the
dataset shrinks, unlearning algorithms start to perform closer
to the naive approach due to the fewer available points and
associated information for our unlearning algorithms.

5 Conclusions
We presented two algorithms to correct errant classifiers as-
suming a paucity of examples. This paucity is common in
learning from demonstration environments. Our approaches
use two heuristics, similarity and strength in numbers, to po-
tentially remove noisy examples and protect correct examples
which have overgeneralized the space. Our algorithms per-
formed well compared to simply adding additional datapoints.

Unlearning: Removing Bad Samples
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Multiagent Training

Goal
Train complex, stateful behaviors from a very small number of samples in 
real time in arbitrarily large swarms of agents.

Difficulties
1. Curse of dimensionality.  [like single-agent]

2. The Multiagent Inverse Problem.

 Techniques for Multiagent Training are nearly always optimizers.
 Multiagent Reinforcement Learning, Stochastic Optimization

	 Optimization requires far too many samples to be used online.
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Multiagent Training

Solution: Swarm Decomposition
Manually break the joint multiagent behaviors into simpler behaviors for 
smaller sub-swarms.  Train the simpler behaviors on small swarms,
then train composed behaviors on larger swarms.

“Regular” (real) agents are leaf nodes.

“Controller” agents are nonleaf nodes.
Controller agents are trained with
HiTAB just like regular agents
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Figure 3: Decomposed hierarchical finite-state automaton learned in the demonstration. See discussion in the
text on each subfigure. Most behaviors form a hierarchy within an individual robot, but CollectivePatrol and
CollectivePatrolAndDefer form a separate hierarchy within the team controlling agent. Though the transition
condition descriptions here are categorical sounding, most are in fact derived from continuous values: for
example, Left(Color) is trained based on X coordinates of the color blob in the field of view.

ward into simple, easily trained behaviors with small numbers
of features and states, simple (indeed often trivial) and easily
trained transition functions, and features and states which
may vary from behavior to behavior.

5. SIMULATION EXPERIMENTS
After conducting the robot demonstration above, we pro-

ceeded to conduct simulation experiments to quantify the
benefit of controller agents, particularly as the hierarchy grew
from a single controller to multiple levels of controllers. We
applied our multiagent homogeneous hierarchies to a simu-
lated box foraging problem: agents hunt for boxes, then pull
them to a known deposit location. The boxes are randomly
distributed throughout the environment, and after collection
at the deposit, the box disappears and a new box is placed
randomly in the environment. The environment consists
of various circular “boxes” of di�erent sizes, which likewise
require di�erent numbers of agents (5, 25, 125) to pull them.
We performed experiments involving swarms of indepen-

dent agents, groups of agents under a single layer of controllers
(called Level 1 controllers), and groups of agents under mul-
tiple layers of controllers (Level 1, Level 2, and so on). To
perform these experiments required training three kinds of
behaviors. First, we trained behaviors for each basic agent,
then we trained behaviors for Level 1 controllers (designed
to control basic agents), and finally we trained behaviors for
Level N�2 controllers (designed to control other controllers).

This set of behaviors was su⇥cient to scale to any number
of levels. We now describe the basic behaviors and features,
and trained decompositions.

Basic Agent Behavior Decomposition. We decomposed
and trained a basic agent’s behavior hierarchy as follows:

• Agents’ basic features wereDistanceTo(X), DirectionTo(X),
ICanSeeABox, IAmAttachedToABox, and Done. The first
two features were parameterizable to either visible boxes
or to the deposit location. The last feature was true when
the done flag had been raised. Boxes could only be seen if
they were within 10 units.

• Agents’ basic behaviors were Forward, RotateLeft, Rota-
teRight, GrabBox, ReleaseBox, ReleaseBoxAndFinish, and
Done. Both ReleaseBox and Done would raise the done
flag and (as normal) immediately transfer to the start
state. ReleaseBoxAndFinish would as well, except that it
would also raise a finished flag in the agent which could
be detected by controllers as a feature. Boxes could only
be grabbed if they were su⇥ciently close (5 units).

• Using Forward, RotateLeft, and RotateRight, we trained
Wander, which wandered randomly.

• Using Forward, RotateLeft, and RotateRight, plus the Dis-
tanceTo(X) and DirectionTo(X) features, we trained the
behavior Goto(X), which servoed to a given target.

Simple Multi-Agent Example
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Box Collecting
Boxes require 5, 25, or 125
agents to retrieve

We’ve trained up to 625 agents


