Multiagent Systems
and Swarms

Sean Luke

Department of Computer Science
George Mason University

Washington, DC

Teeni
FANESIENY
F e o »
- e am gean ttes +» &
- " - ¥ en oy -
T, tev ety w, % "
S an'e v, Ny &,
“""' " . » |
an 4 N ‘\‘. 4
&“' LN Tl 4 -
T
LS LA " D X A
L
v ory

‘§'
-

P

ey & -~

a sea wl s
ne %

-
atadans,r s
' ‘\‘s\‘vb
-k
P \l’ 4

e
-
-
L

CAE 3
B Ty e ...2..

4

4

> o
'r-’.'

,
vy & & &
s d‘o';q- o

-
4 .

[
.“‘




Distributed Task Allocation

- M outstanding Tasks, perhaps with various levels of urgency or value.
Tasks belong to task classes.

« A swarm of N heterogeneous Agents each of whom can do tasks from
some task classes better (or faster) than other task classes

« We want to assign tasks to agents to maximize task success and speed

« One approach: centralized task assigner (combinatorial
optimization)

« Another approach: distributed task assignment (each agent gets a
say in which tasks it will work on)




« MURDOCH (Gerkey et al)

Distributed Task Allocation: an Auction

« An auctioneer posts tasks and awards tasks to winning bids.
- Each agent has preferences, and bids on tasks according to them.
« If an agent wins a bid, he owns the task. It is exclusive to him.

+ Agents are responsible for performing tasks they own.

- Why would an agent bid? He doesn't get any value from a task.

« This model makes some strange assumptions:
The agents are altruistic and have good estimates of their abilities (!)
The agents have an infinite money supply
What happens if an agent can't complete his task?




Bounty Hunting

A bail bondsman posts tasks associated with bounties.
A task's bounty rises as long as the task is unfinished.

- An agent can commit to a task. When he commits (1) he can only work
on that task until it is completed by him or by someone else (2) if he
completes the task he receives the bounty that was posted at the time
he had committed (3) his commit is broadcasted to the other agents.

* More than one agent can commit to the same task.

 Only the first agent who completes a task wins the bounty.

- Variation: an agent may abandon a task to which he
has committed.




Bounty Hunting and Exclusivity

+ Unlike auctions, bounty hunting is not exclusive. Multiple bounty
hunters can compete for the same task. This is inefficient.

« Agents do not know beforehand which tasks classes they are good at.

- Goal: agents adapt to determine which task classes are worth
attempting. This effectively divides the space of task classes into
regions, one per agent, make the problem efficient.

« Model: the board contains at most one outstanding
task of classi. When it is completed, a new task of
class i appears soon thereafter.




Simple Method

- A task of task class / has a current bounty b;. é |

« For each task class / an agent maintains a probability of completion
P; and an expected time to completion T;.

« When an agent wishes to work on a new task, with € probability he will
pick a random task. Else he will pick the task: bi

argmax —P;
i € Available Tasks I

* If an agent completes a task: T; <
- If an agent does not complete the task:

« In all cases: (why?) Vi:P; <




Complex Method

completion P; 4 (if agent a has also committed to the task) and an
expected time to completion 7;.

« When an agent wishes to work on a new task, with € probability he will

pick a random task. Else he will pick the task:
b
argmax - [ ] P,

i € Available Tasks “1 g4 presently committed to i

- If an agent completes a task: T < (1 — “)Ti + at
Va presently committed toi: P;, < (1 —B)Pi,+

* If an agent does not complete the task:
(agent a* completed it instead)

Pi,a* < (1 — ;B)Pi,a*

* In all cases: (why?) Vi,a: Pi,a < (1 — ’)’)Pi,a T




Variations

- The environment may change. How do we cause agents to explore
new possibilities?

« SimpleR, ComplexR €=0.1 ¥=0
« SimpleP, ComplexP e=0 ¥=0.001
« Simple Complex e=0 ¥=0 [only rely on bounty]

« Other Approaches
« Exclusive  Agent has exclusive control after he commits

- Bounty "Auction" All agents that wish to work on a new task are
greedily paired with the task for which they have the highest (bj / Tj)

- Greedy Agents know the true E(Tj), and commit to the task with
the highest (bj / E(Tj))

- Random Agents commit to random tasks.
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Figure 1: Experiment 1, Static Environment (Selected Results),
200,000 timesteps. Lower values are better.

Equivalence
Classes Method Y € Mean
+ Random - - 6139.72
+ ComplexR 0 0.1 3739.18
+ SimpleR 0 0.1 3641.62
+ ComplexP  0.001 O 3476.67
+ SimpleP 0.001 0 3475.81
+ + Complex 0 0 3434.75
+ + Simple 0 0 3408.04
+ + Auction - - 3407.77
+ + Exclusive - - 3403.4
+ Greedy - - 3372.64

Table 1:

time=200,000. Lower mean values are better.

Experiment 1 results, Static Environment, at

Equivalence

Classes show statistically insignificant differences between

methods.
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Figure 2: Experiment 2, Dynamic Agents (Selected Results),
200,000 timesteps. Lower values are better. Complex peaks
exceed 9500, 10500, and 11500 respectively.

Equivalence

Classes Method Y € Mean
+ Random - - 11255.4
+ ComplexR 0 0.1 6904.13
+ + SimpleR 0 0.1 6808.35
+ + SimpleP 0.001 0 6572.01
+ + ComplexP  0.001 0 6495.58
+ + Simple 0 0 6437.8
+ + Exclusive - - 6412.1
+ + Complex 0 0 6383.45
+ Auction - - 6326.7
+ Greedy - - 6289.88

Table 2: Experiment 2 results, Dynamic Agents, at

time=200,000. Lower values are better. Equivalence Classes
show statistically insignificant differences between methods.
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Figure 3: Experiment 3, Dynamic Tasks (Selected Results),
200,000 timesteps. Lower values are better.

Equivalence
Classes Method Y € Mean
+ Random - - 6035.74
+ Complex 0 0 4150.56
+ Simple 0 0 4086.08
+ ComplexR 0 0.1 3934.94
+ SimpleR 0 0.1 3928.61
+ Auction - - 3591.57
+ SimpleP 0.001 O 3578.96
+ Exclusive - - 3529.17
+ ComplexP 0.001 O 3509.76
+ Greedy - - 3394.73
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Figure 4: Experiment 4, Unreliable Collaborators (Selected Re-
sults), 200,000 timesteps. Lower values are better. Exclusive is
omitted as its results are very similar to Auction.

Equivalence
Classes  Method Y € Mean
+ Exclusive - - 765240
+ Auction - - 733431
+ ComplexP 0.001 0 5625.17

Table 4: Experiment 4 results, Unreliable Collaborators, at
time=200,000. Lower values are better. Equivalence Classes
show statistically insignificant differences between methods.




Abandoning Tasks

- If an agent abandons a task, then returns to it, he must start all over again.

- If an agent completes a task, the bounty he receives is the current bounty
when he finishes it (not when he completes it). Otherwise agents will
continually abandon tasks if they turn out to be too hard!

- The bounty bj increases according to a rate R;

* At any time step, an agent chooses the task:

b, + R;T; b;
i 1 ‘P; = argmax — P; + R;P;
Ti j EQ(t) Ti

argmax
i Q)

* [There are more details]

* Results: abandoning tasks works very well in highly dynamic environments.




Agent-Based Modeling and Simulation

- Lots of agents (thousands? millions? 27?) interacting in complex ways with
nontrivial dynamics.

« Popular in:

* Population biology

 Artificial Life

- Computational Social Science and Economics

« Swarm Robotics




Agent-based Modeling and Simulation

- Earliest swarm and complexity simulations: cellular automata, dynamical
models, graphics

* First agent-based model toolkit SWARM

- Many later agent-based model toolkits, notably Repast, StarLogo/NetLogo,
Ascape, MASON

- MASON is a Java-based, Open Source, high-performance non-distributed
simulation toolkit for swarms of agents. 2D, 3D. Discrete, real-valued
environments, social networks, GIS facilities. Can run with or without
visualization, and can serialize and migrate simulations across platforms.




With Liviu Panait [AAMAS 2004, Alife 2004]
Pheromone-based Swarm Foraging

Motivation

Robot coordination in environments where direct communication is
Impossible. Pheromones, breadcrumbs, etc. are an indirect
communication method.

Starting point: Swarm Foraging
Use pheromone communication to
establish and optimize a trail from
a nest to a food source and back.

Almost all literature uses one pheromone.
(Biologically feasible, but bad algorithms)

We use multiple pheromones and
a rigorous formulation.




Pheromone-based Swarm Foraging

Ants use pheromones to build up gradients to follow for different tasks.

An ant does different actions, follows different pheromones, and updates
still other pheromones depending on its current state.

States Follow Pheromone
Looking for Food Food
Looking for Nest Nest

Wandering Wander
Exploring [INone]
Model. Decisions about where to go are s |s |¢

which pheromones to update are a function
of the ant's current state s and immediate
neighboring states s'. s | g |¢g




Action Behavior

- If there are no neighbors (!) panic
- Else if Exploring for a while, go to a random neighbor

- Else if Looking for food
If you found food, get the food, Rrood(S) = 1, state = Looking for nest
Else if for all neighbors s', Utood(S') < Utood(S),
or there is no single neighbor s' with the highest Usood(s')
Go to neighbor s' with highest Uwander(s')
Else go to neighbor s' with highest Ufood(s')

- Else if Looking for nest
If you found nest, deposit food, Rnest(s) = 1, state = Looking for food
Else if for all neighbors s', Unest(S') < Unest(S),
or there is no single neighbor s' with the highest Unest(s')
Go to neighbor s' with highest Uwander(s')
Else go to neighbor s' with highest Unest(s')




Update Behavior

unest(s) < max (unest (S)/ Ryest + 7y max uﬂest(sl)>

s’ eneighbors(s)

ufood (S) < max <Uf00d (S)/ Rj"ood T max ufood(sl)>

s’ eneighbors(s)

uwander(c) — uwander(c) —1

 This is just a version of Value lteration. But this is O(n), whereas Value
lteration and Q-Learning are O(n?). Why?

* Hint: P(s|s', a) = P(s'[s, a™) (= 1 in this problem domain)




Pheromone-based Swarm Foraging




With Brian Hrolenok [AAMAS 2010]
Moving Towards Real Robots: Beacons

- Beacons form nodes in a sparse planar graph

%

- Beacons hold: : -ﬂ? ¢
Pheromones ¢
Locks
Whatever you want!

- Beacons can be:
Deployed
Retrieved
Moved (Optimized)




More Realistic Foraging: Two Pheromones,
Deployable/Movable/Removable Sensor Motes

Nest (&= o - Deploy motes to build the graph
e |
4 &  Develop the two-pheromone gradient
/ ~ v/ . Moye .and remove motes to create an
¢/ optimized path.
\\// (7_2
Nest v Nest v
— &
& | > e~
e = e
/ e : > / e
f\ p/ \ T\ e \¢




Moving Towards Real Robots: Beacons




With Raven Russell, Kevin Andrea, and Bob Simon [AAMAS 2015]
Physical Robots with Sensor Mote Beacons

Beacons

Cans with barcodes and sensor motes.
Robots also have sensor motes to
communicate with nearby beacons.

Tmote Sky
Sensor Mote

Large increase in complexity
Agents hit, crowd out, and
occlude one another

Noise, robot and beacon failure




Total Pellets Gathered

Physical Robots with Sensor Mote Beacons

Physical Robots Simulation Validation
Total “Food” Foraged
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Physical Robots with Sensor Mote Beacons

Graceful Degradation
(Experimental Results)

Beacon Occlusion

Wholesale Beacon Removal
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Beacon Reliability
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Beyond Foraging: Ant Geometry!

- Swarm Robot Building Construction

- Lay out the survey lines
defining your building
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« Compass-Straightedge Geometry (Euclid)
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Compass / Straightedge Geometry (Euclid




Next Steps (and What They Require)

- Ad-Hoc Networks of Motes
Enables: planners distributing tasks
throughout whole swarm,
Enables: agents reporting events globally
Constraint:tasks/events must be rare (scaling)
Requires: rapidly, dynamically reconfigurable
network topologies

- Motes as Local Broadcast Beacons
Enables: accurate shapes, fast drawing :
Requires: distance and bearing to motes A

(RSSI is terrible) ;

- Sensor Motes’ use of Sensors
Enables: sensor “foveation” (sensors provide low-resolution data,
robots move to interest areas for more accurate sensing)




Multiagent Learning from Demonstration

One or more robots (or software agents) learn a task after being given sample
data by a human trainer. The trainer iteratively updates the sample data to
provide corrections or suggestions.

Goal
Train complex, stateful behaviors from a very small number of samples in real
time on simulated agents or robots.

Single-Agent Training Difficulty: The Curse of Dimensionality

Multi-Agent Training Difficulty: The Multiagent Inverse Problem

Our Technique: HiTAB




With Vittorio Ziparo and Keith Sullivan [AAMAS/ALA 2010, Humanoids 2010]
Multiagent Learning from Demonstration

Single-Agent Training Difficulty: The Curse of Dimensionality

Solution: Behavioral Decomposition
Manually compose complex behaviors into simpler behaviors. Learn the
simpler behaviors, then learn more complex compositions of them, etc.
Hierarchical Finite-State Automata (HFA) as Moore Machines
Each Behavior is mapped to a unique State
Recursive Behaviors may themselves be other automata

Transitions from State to State based on environment Features

Parameterizable “Go to X” rather than “Go to the Ball




Multiagent Learning from Demonstration

For each state s, we learn the transition function 7(s,f)
for edges leaving s.

Gather Data. When the user transitions to a new state/behavior, log:
[ old behavior, current feature vector, new behavior |

GoTo (A)
Build T(s,f) = s’ for each state s X(%)>0.7

Z(A) <0.2
T~ -~
) 0.3=X(A)=0.7

Gather all samples [s, f, s’ ] starting with s
Reduce tojustf = s’

This is just a classification task

Delete all unused states, add to library




RoboCup 2012
Win over Osaka University
Robot #5 (“Johnny 5”) uses
17 HFAs trained with HITAB

Resource Foraging

Robot trained to gather D
resources and deposit them
at a home base.

| 7
Various corner cases ¥
complicate matters.

[




With Keith Sullivan [IJCAI 2013]
Unlearning: Removing Bad Samples

Situation: Training
When the agent performs its learned behavior incorrectly, the trainer
corrects the behavior.

Problem
How do we use the corrective information to update the model?

Complication
We have a very small number of samples. (Samples are precious).

In typical machine learning (with many samples), we’d just add the
corrective samples to our sample set and re-learn the model.

In unlearning, we use the corrective samples to detect and remove
noisy sample data.




Unlearning: Removing Bad Samples

Given:

S Original sample set (with some possibly noisy samples)
M Original learned model from S

C Set of corrective samples which M is misclassifying

We produce:

S’ Revised sample set (identifying/removing some noisy samples)
M’ Revised learned model from §’
Approach

|dentify the samples B € S which caused M to misclassify C
Determine which samples in N € B are likely to be noise
Remove N from S, producing §’

Rebuild M' from S'

Identifying B requires algorithms customized for your model
C4.5, K-NN, SVMs




Unlearning: Removing Bad Samples

Iris
Glass
Wine

Iris
Glass
Wine

Iris
Glass
Wine

Iris
Glass
Wine

Iris
Glass
Wine

Noise = 1/5 Noise = 1/20 Noise = 1/100
Dataset U+C U+C+E Metric Non-Metric U+C U+C+E Metric Non-Metric U+C U+C+E Metric Non-Metric
1-NN
0.9553 0.9131 0.9307 0.9255 0.9553 0.8002 0.8901 0.8601 0.9553 0.7519 0.9461 0.8490
0.6921 0.6707 0.6810 0.6822 0.6921 0.6441 0.6816 0.6705 0.6921 0.5653 0.6887 0.6421
0.9533 0.9370 0.9464 0.9442 0.9533 0.7998 0.9506 0.8722 0.9533 0.7566 0.9520 0.8488
3-NN
0.9537 0.9409 0.9468 0.9492 0.9537 0.8887 0.9361 0.9295 0.9537 0.8539 0.9370 0.9331
0.7008 0.6734 0.6895 0.6980 0.7008 0.6615 0.6927 0.6971 0.7008 0.6193 0.6866 0.6828
0.9615 0.9524 0.9607 0.9594 0.9615 0.8895 0.9511 0.9472 0.9615 0.8548 0.9462 0.9408
Decision Tree (Unpruned)
0.9459 0.8705 0.8915 0.8877 0.9459 0.8029 0.8497 0.8535 0.9459 0.8014 0.8765 0.8616
0.6701 0.6379 0.6577 0.6572 0.6701 0.6355 0.6544 0.6514 0.6701 0.6306 0.6591 0.6492
0.9332 0.8321 0.8638 0.8636 0.9332 0.7375 0.8103 0.7956 0.9332 0.7206 0.8365 0.8079
Decision Tree (Pruned)
0.9427 0.9135 0.9213 0.9226 0.9427 0.8761 0.9081 0.9094 0.9427 0.8799 0.9250 0.9213
0.6711 0.6330 0.6520 0.6529 0.6711 0.6274 0.6460 0.6426 0.6711 0.6301 0.6501 0.6496
0.9340 0.8591 0.8811 0.8846 0.9340 0.8185 0.8749 0.8715 0.9340 0.8093 0.8892 0.8844
Support Vector Machine
0.9102 0.3886 0.4280 0.9070 0.9102 0.7389 0.8649 0.8705 0.9102 0.7374 0.8695 0.8668
0.3346 0.3311 0.3163 0.3393 0.3346 0.3329 0.3313 0.3284 0.3346 0.3249 0.3259 0.3350
0.9329 0.3906 0.3991 0.9350 0.9329 0.6400 0.8828 0.8861 0.9329 0.6544 0.8834 0.8867




With Keith Sullivan, Bill Squires, Ermo Wei, Drew Wicke, Dave Freelan, and Vittorio Ziparo
[AAMAS 2012, IJCAI 2013, RoboCup 2012, 2014, AAMAS/ARMS 2015]

Multiagent Training

Goal
Train complex, stateful behaviors from a very small number of samples in
real time in arbitrarily large swarms of agents.

Difficulties
1. Curse of dimensionality. [like single-agent]

2. The Multiagent Inverse Problem.

Techniques for Multiagent Training are nearly always optimizers.
Multiagent Reinforcement Learning, Stochastic Optimization

Optimization requires far too many samples to be used online.




Multiagent Training

Solution: Swarm Decomposition

Manually break the joint multiagent behaviors into simpler behaviors for
smaller sub-swarms. Train the simpler behaviors on small swarms,
then train composed behaviors on larger swarms.

“Regular” (real) agents are leaf nodes.

“Controller” agents are nonlegf nodes.

HITAB Just e rogular agents.
3 3




Simple Multi-Agent Example
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Multiagent Training //8\\
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Multiagent Training




Multiagent Training

Box Collecting
Boxes require 5, 25, or 125
agents to retrieve

We’ve trained up to 625 agents
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