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ESERCIZIO 1. Verificare che l’equazione

cosh(x1− x2 + x3)− ex3 + x2
3 + x2

1 − x2
2 = 0

definisce implicitamente in un intorno di (1, 1,0) una funzione x3 = g(x1, x2). Scrivere il piano tangente e la retta
normale alla superficie del grafico della funzione g nel punto considerato.

ESERCIZIO 2. Sia F(x1, x2, x3) = ex3 + x2
1 x2

2x3− ex1x2 + x4
1 − x4

2 .
i. Dimostrare che l’equazione F(x1, x2, x3) = 0 determina una funzione implicita x3 = g(x1, x2) definita per (x,y) in un
intorno dell’origine,
ii. determinare il valore di g(0,0),
iii. riconoscere che l’origine è un punto stazionario per la g,
iv. riconoscere la natura di tale punto.

ESERCIZIO 3. Assegnato il seguente vincolo

S =
{

(x1, x2, x3) :
[
x2

1 + x2
2 + x2

3
]2

= 4x2
3

}
⊆�

3

i. si provi che S è chiuso e limitato,
ii. si trovino tutti i punti critici, vincolati su S, della funzione f(x) = f(x1, x2, x3) = x3,
iii. si scriva il polinomio di Taylor del secondo ordine della funzione implicitamente definita daS intorno ai punti critici
trovati in ii.

ESERCIZIO 4. Si consideri la superficie

x(u,w) =
(
u− 1

3 u3 + uw2,−w + 1
3 w3− u2w,u2−w2

)
con (u,w) ∈ K = B(O,2). Si verifichi che
i. (x,K) è una superficie regolare,
ii. ∂1x(u,w) è sempre ortogonale a ∂2x(u,w),
iii. Éxi(u,w) = 0 per i = 1,2,3.
Infine si scriva il versore normale alla superficie.

ESERCIZIO 5. Data la funzione
x(u1,u2) = (u2 cos(u1),u2 sin(u1),u1) con u = (u1,u2) ∈ K = [0,2π]2

si verifichi che
i. (x,K) è una superficie regolare,
ii. ∂1x(u1,u2) è sempre ortogonale a ∂2x(u1,u2).
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Infine si calcoli la lunghezza della curva sulla superficie prodotta dalla composizione della parametrizzazione della
superficie con la curva contenuta in K di equazioni {φ(s) = (s,u0,2) : s ∈ [0,2π]} e {ψ(s) = (u0,1, s) : s ∈ [0,2π]}.

ESERCIZIO 6. Data l’applicazione

x(u) = (u1,u2, au1 + bu2) con u ∈ K = [0,π]2

si provi che
i. (x,K) è una superficie regolare,
ii. Im(x) è un piano affine in �

3.
Infine si calcoli la lunghezza della curva sulla superficie prodotta dalla composizione della parametrizzazione della
superficie con la curva contenuta in K di equazioni {φ(s) = (s, s) : s ∈ [0,π]}.

ESERCIZIO 7. Data la curva φ(t) = (acos(t),bsin(t)), con t ∈ [0,2π] ed a,b> 0, la cui immagine è contenuta in �
2,

si provi che la curva è regolare e che divide il piano in due aperti connessi, uno limitato e uno non limitato.

ESERCIZIO 8. Date le seguenti coppie di funzioni e domini
y(u,w) = (cos(w), sin(w),u) (u,w) ∈ K = [0,2π]× [−1, 1]

z(u,w) = (u,w,u2w2) (u,w) ∈ K = [0, 1]2

r(u,w) = (cos(u), sin(u)cos(w), sin(w)sin(u)) (u,w) ∈ K = [0,π]2

s(u,w) = (wcos(u),wsin(u),w) (u,w) ∈ [0,2π]2

dove a,b ∈ (0,+∞), si risponda alle seguenti questioni
i. si verifichi che si tratta di superfici regolari,
ii. si scriva esplicitamente il versore normale n(u,w),
iii. si calcolino i coefficienti della prima forma quadratica fondamentale.

SVOLGIMENTI

ESERCIZIO 1. Verificare che l’equazione

cosh(x1− x2 + x3)− ex3 + x2
3 + x2

1 − x2
2 = 0

definisce implicitamente in un intorno di (1, 1,0) una funzione x3 = g(x1, x2). Scrivere il piano tangente e la retta
normale alla superficie del grafico della funzione g nel punto considerato.

DISCUSSIONE. Cominciamo verificando che a = (1, 1,0) appartiene la luogo delle soluzioni dell’equazione,
infatti vale

cosh(a1− a2 + a3)− ea3 + a2
3 + a2

1 − a2
2 = cosh(1− 1 + 0)− e0 + 02 + 12− 12 = 0

ricordando che cosh(s) = [es + e−s]/2. Ponendo G(x1, x2, x3) = cosh(x1−x2 + x3)−ex3 + x2
3 + x2

1 −x2
2 e osservando

che G ∈ C∞(�3) e che
∂3G(x) = sinh(x1− x2 + x3)− ex3 + 2x3 da cui ∂3G(a) = sinh(1− 1 + 0)− e0 + 2 ·0 =−1 , 0

il teorema della funzione implicita di Dini garantisce l’esistenza di una funzione regolare g : B((1, 1),δ)−→� tale
che

g(1, 1) = 0
G(x1, x2, x3) = 0 per (x1, x2, x3) ∈ B(a,δ) se e solo se x3 = g(x1, x2)

Inoltre è possibile provare che valgono le seguenti identità

∂1g(x1, x2) =− ∂1G(x1, x2, g(x1, x2))
∂3G(x1, x2, g(x1, x2)) e ∂2g(x1, x2) =−∂2G(x1, x2, g(x1, x2))

∂3G(x1, x2, g(x1, x2))
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e poiché vale che
∂1G(x) = sinh(x1− x2 + x3) + 2x1 e ∂2G(x) =−sinh(x1− x2 + x3)− 2x2

otteniamo

∂1g(1, 1) =− ∂1G(a)
∂3G(a) = 2 e ∂2g(1, 1) =−∂2G(a)

∂3G(a) =−2

da cui possiamo ricavare immediatamente l’equazione del piano tangente al grafico di g in a
x3 = g(1, 1) +∇g(1, 1) · ((x1, x2)− (1, 1)) = 2(x1− 1)− 2(x2− 1) = 2x1− 2x2

Il piano tangente può essere pensato come una superficie di livello di equazione {f(x1, x2, x3) = 2x1−2x2−x3 =
0}, in questo caso∇f(1, 1,0) = (2,−2,−1) e la retta normale ha equazione parametrica

x(t) =∇f(1, 1,0)t + (1, 1,0) = (2t + 1,−2t + 1,−t) t ∈�

o equazione cartesiana
{x1 + 2x3− 1 = 0,x2− 2x3− 1 = 0}

queste ultime espressioni concludono lo svolgimento dell’esercizio.

ESERCIZIO 2. Sia F(x1, x2, x3) = ex3 + x2
1 x2

2x3− ex1x2 + x4
1 − x4

2 .
i. Dimostrare che l’equazione F(x1, x2, x3) = 0 determina una funzione implicita x3 = g(x1, x2) definita per (x,y) in un
intorno dell’origine,
ii. determinare il valore di g(0,0),
iii. riconoscere che l’origine è un punto stazionario per la g,
iv. riconoscere la natura di tale punto.

DISCUSSIONE. i. Applichiamo il teorema delle funzioni implicite alla funzione F nel punto (0,0,x∗3) con x∗3 tale
che F(0,0,x∗3) = 0. Essendo F ∈ C∞(�3)⊆ C1(�3) e anche

∂3F(x1, x2, x3) = x2
1 x2

2 + ex
3 ∂3F(0,0,x∗3) = ex∗3 , 0

sono verificate le ipotesi del teorema: quindi esiste un’unica funzione g(x1, x2) definita in un intorno Bε = {
√

x2
1 + x2

2 <

ε} dell’origine (0,0) a valori in (x∗3− r,x∗3 + r), con r> 0, tale che
F(x1, x2, g(x1, x2)) = 0 per ogni (x1, x2) ∈ Bε

ii. Si ha g(0,0) = x∗3. Il valore x∗3 è determinato dall’equazione

F(0,0,x∗3) = 0 ovvero ex∗3 − 1 = 0
da cui x∗3 = 0.
ii. Dato che F ∈ C∞(�3) allora g ∈ C∞(Bε). Derivando parzialmente rispetto a x1 e x2 la relazione F(x1, x2, g(x1, x2)) =
0, usando la formula di derivazione delle funzioni composte, troviamo rispettivamente

∂1F(x1, x2, g(x1, x2)) + ∂3F(x1, x2, g(x1, x2))∂1g(x1, x2) = 0 da cui ∂1g(x1, x2) =− ∂1F(x1, x2, g(x1, x2))
∂3F(x1, x2, g(x1, x2))

∂2F(x1, x2, g(x1, x2)) + ∂3F(x1, x2, g(x1, x2))∂2g(x1, x2) = 0 cioè ∂2g(x1, x2) =−∂2F(x1, x2, g(x1, x2))
∂3F(x1, x2, g(x1, x2))

E poiché

∂1F(x1, x2, x3) = 4x3
1 + 2x1x2

2x3− x2ex1x2 ∂2F(x1, x2, x3) = 2x2
1 x2x3− x1ex1x2 −4x3

2
si trova ∂1F(0,0,0) = ∂2F(0,0,0) = 0 da cui∇g(0,0) = (0,0), quindi il punto (0,0) è stazionario per la funzione
g.
iv. Per studiare la natura del punto critico non ci resta che calcolare le derivate seconde di g. Dalle identità

∂11F(x1, x2, g(x1, x2)) = ∂1
(
∂1F(x1, x2, g(x1, x2)) + ∂3F(x1, x2, g(x1, x2))∂1g(x1, x2)) = 0

∂22F(x1, x2, g(x1, x2)) = ∂2
(
∂2F(x1, x2, g(x1, x2)) + ∂3F(x1, x2, g(x1, x2))∂2g(x1, x2)) = 0

∂12F(x1, x2, g(x1, x2)) = ∂2
(
∂1F(x1, x2, g(x1, x2)) + ∂3F(x1, x2, g(x1, x2))∂1g(x1, x2)) = 0
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ricaviamo le seguenti relazioni

∂11F + 2∂13F∂1g + ∂33F|∂1g|2 + ∂3F∂11g = 0

∂22F + 2∂23F∂2g + ∂33F|∂2g|2 + ∂3F∂22g = 0
∂12F + ∂13F∂2g + ∂23F∂1g + ∂33F∂1g∂2g + ∂3F∂12g = 0

Dato che ∂1g(0,0) = ∂2g(0,0) = 0 si trova

∂22g(0,0) =−∂11F(0,0,0)
∂3F(0,0,0) ∂12g(0,0) =−∂12F(0,0,0)

∂3F(0,0,0) ∂22g(0,0) =−∂22F(0,0,0)
∂3F(0,0,0)

e, con alcuni calcoli, ricaviamo che
∂11F(x1, x2, x3) = 12x2

1 − x2
2ex1x2y + 2x2

2x3 ∂11F(0,0,0) = 0
∂12F(x1, x2, x3) = 4x1x2x3− x1x2ex1x2 − ex1x2 ∂12F(0,0,0) =−1
∂22F(x1, x2, x3) =−ex1x2 x2

1 − 12x2
2 + 2x2

1 x3 ∂22F(0,0,0) = 0
da cui si ottiene

∂11g(0,0) = ∂22g(0,0) = 0 ∂12g(0,0) = 1
Il determinante della matrice hessiana vale det[Hg(0,0)] =−1< 0, per il test di Sylvester Hg(0,0) è indefinita
e, dal test dell’hessiano, segue che (0,0) è un punto di sella per g.

ESERCIZIO 3. Assegnato il seguente vincolo

S =
{

(x1, x2, x3) :
[
x2

1 + x2
2 + x2

3
]2

= 4x2
3

}
⊆�

3

i. si provi che S è chiuso e limitato,
ii. si trovino tutti i punti critici, vincolati su S, della funzione f(x) = f(x1, x2, x3) = x3,
iii. si scriva il polinomio di Taylor del secondo ordine della funzione implicitamente definita daS intorno ai punti critici
trovati in ii.

DISCUSSIONE. i. L’insieme in questione è definito come

S =
{

H(x) =
[
x2

1 + x2
2 + x2

3
]2
−4x2

3 = 0
}

essendo la funzione H ∈ C∞(�3)⊆ C0(�3) il nostro vincolo risulta chiuso, perché controimmagine di un chiuso
in �. La limitatezza dell’oggetto segue dall’osservazione che la disuguaglianza

x4
3 ≤

[
x2

1 + x2
2 + x2

3
]2

= 4x2
3 implica |x3| ≤ 2

da cui possiamo ricavare

(x2
1 + x2

2)2 ≤ (x2
1 + x2

2 + x2
3)2 ≤ 4x2

3 ≤ 16
Le precedenti disuguaglianze implicano la limitatezza del vincolo, visto che abbiamo provato che

S⊆ B(O,2)× [−2,2]⊆�
2×�

quindi possiamo concludere che il nostro insieme è chiuso e limitato.
ii. La funzione f(x1, x2, x3) = x3 ha gradiente costante (e non nullo) in tutto lo spazio (esattamente∇f(x) = e3 in
tutto �

3), quindi la funzione non ha punti critici liberi, il teorema di Weierstrass garantisce l’esistenza (almeno)
del massimo e del minimo assoluto di f sul vincolo, per cui ricorriamo al metodo dei moltiplicatori di Lagrange.
Prima di tutto notiamo che vale

∇H(x) = (
∂1H(x),∂2H(x),∂3H(x)) = 4

(
(x2

1 + x2
2 + x2

3)x1, (x2
1 + x2

2 + x2
3)x2, (x2

1 + x2
2 + x2

3− 2)x3
)

Si noti che tale vettore può avere tutte le componenti nulle in alcuni punti di S, cioè la superficie ha punti
singolari, in cui non sembra possibile applicare il teorema delle funzioni implicite.
I punti critici vincolati di f su S sono punti in cui il vettore ∇H(x) è paralello al vettore ∇f(x) = e3, quindi sono
punti le cui coordinate, per qualche c ∈�, sono soluzioni del seguente sistema(

(x2
1 + x2

2 + x2
3)x1, (x2

1 + x2
2 + x2

3)x2, (x2
1 + x2

2 + x2
3− 2)x3

)
= (0,0,c) x ∈ S
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È subito evidente che x1 = x2 = 0, quindi abbiamo

(x2
3− 2)x3 = c e x4

3 = 4x2
3

quindi i punti critici vincolati sono solo i punti A(0,0,2) e B(0,0,−2) (oltre ad O, del quale non è possibile
studiare la natura tramite il teorema di Dini).
iii. Nella precedente discussione abbiamo, di fatto, verificato che

∂3H(A),∂3H(A)> 0

quindi intorno a tutti e due i punti possiamo utilizzare il teorema delle funzioni implicite per affermare che
esistono 2 funzioni φA(x1, x2) e φB(x1, x2) tali che

H(x1, x2,φA(x1, x2)) = H(x1, x2,φB(x1, x2)) = 0 per ogni (x1, x2) ∈ B(O,δ)⊆�
2

con φA(O) = 2 e φB(0,0) =−2. Nel resto dello svolgimento prendiamo in esame solo la funzione φA.
Per scrivere il polinomio di Taylor del secondo ordine della funzione φA(x1, x2) abbiamo bisogno del gradiente
e della matrice hessiana di H. Avendo già calcolato∇H(x1, x2, x3) abbiamo che

∇φA(x1, x2) = (
∂1φA(x1, x2),∂2φA(x1, x2)) =−

(
∂1H(x1, x2,φA(x1, x2))
∂2H(x1, x2,φA(x1, x2)) , ∂3H(x1, x2,φA(x1, x3))

∂2H(x1, x2,φA(x1, x2))

)
e sostituendo i valori ∇φA(0,0) = (0,0), quindi O è un punto critico della funzione φA. Per determinarne la
natura proviamo a scrivere la matrice hessiana, ricordando che l’hessiano è una matrice simmetrica (H è un
polinomio, quindi di classe C∞) e svolgendo qualche ”agile” conto abbiamo

∇H(x) =
(
4x3

1 + 4x1x2
2 + 4x1x2

3,4x2
1 x2 + 4x3

2 + 4x2x2
3,4x2

1 x3 + 4x2
2x3 + 4x3

3−8x3
)

∂11H(x) = 12x2
1 + 4x2

2 + 4x2
3 ∂12H(x) = ∂21H(x) = 8x1x2 ∂13H(x) = ∂31H(x) = 8x1x3

∂22H(x) = 4x2
1 + 12x2

2 + 4x2
3 ∂23H(x) = 8x2x3 ∂33H(x) = 4

(
x2

1 + x2
2 + 3x2

3− 2
)

A questo punto dello svolgimento facciamo ricorso alla teoria, precisamente al teorema di derivazione delle
funzioni composte, che ci permette di scrivere

∂11φA(x1, x2) =−
[

(∂11H + ∂13H∂1φA)∂3H− ∂1H[∂31H(x) + ∂33H∂1φA)
[∂3H]2

]
(x1, x2,φA(x1, x2))

=−
[

(∂11H∂3H− ∂13H∂1H)∂3H− ∂1H[∂31H(x)∂3H− ∂33H∂1H)
[∂3H]3

]
(x1, x2,φA(x1, x2))

=−
[
∂11H[∂3H]2− (∂13H + ∂31H)∂1H∂3H + ∂33H[∂1H]2

[∂3H]3

]
(x1, x2φA(x1, x2))

∂12φA(x1, x2) =−
[
∂12H[∂3H]2− ∂13H∂2H∂3H− ∂23H∂1H∂3H + ∂33H∂1H∂2H

[∂3H]3

]
(x1, x2φA(x1, x2))

∂22φA(x1, x2) =−
[
∂22H[∂3H]2− 2∂23H∂2H∂3H + ∂33H[∂2H]2

[∂3H]3

]
(x1, x2φA(x1, x2))

Ricordando lo sviluppo di Taylor (al secondo ordine) per funzioni in due variabili e le formule scritte sopra,
troviamo

φA(x1, x2) = φA(0,0) +∇φA(0,0) · (x1, x2) + 1
2
[
∂11φA(0,0)x2

1 + 2∂12φA(0,0)x1x2 + ∂22φA(0,0)x2
2
]

+ o(x2
1 + x2

2)

= φA(0,0)− 1
2

[
∂11H(0,0,φA(0,0))
∂3H(0,0,φA(0,0)) x2

1 + ∂22H(0,0,φA(0,0))
∂3H(0,0,φA(0,0)) x2

2

]
+ o(x2

1 + x2
2)

= 2− 1
2
[
x2

1 + x2
2
]

+ o(x2
1 + x2

2)

e otteniamo che (0,0) è un punto di massimo (locale) per la funzione φA. Concludiamo con una rappresenta-
zione grafica del vincolo S
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sottolineando il fatto che il punto di contatto tra le due sfere è O, ed è un punto singolare perché non è possibile
descrivere il vincolo come un grafico in ogni intorno del punto...

ESERCIZIO 4. Si consideri la superficie

x(u,w) =
(
u− 1

3 u3 + uw2,−w + 1
3 w3− u2w,u2−w2

)
con (u,w) ∈ K = B(O,2). Si verifichi se
i. (x,K) è una superficie regolare,
ii. ∂1x(u,w) è sempre ortogonale a ∂2x(u,w),
iii. Éxi(u,w) = 0 per i = 1,2,3.
Infine si scriva il versore normale alla superficie.

DISCUSSIONE. i. iniziamo osservando che K è la chiusura di una palla, che è un aperto connesso e che le fun-
zioni xj(u,w) sono di classe C∞ essendo polinomi. Cosa possiamo dire riguardo all’iniettivtà dell’applicazione?
Dovremmo studiare il sistema

x(u1,w1) = x(u2,w2) cioè(
u1−

1
3 u3

1 + u1w2
1 ,−w1 + 1

3 w3
1 − u2

1 w1,u2
1 −w2

1

)
=
(
u2−

1
3 u3

2 + u2w2
2,−w2 + 1

3 w3
2− u2

2w2,u2
2−w2

2

)
ed è evidente che non sia facile da analizzare, proviamo a ridiscutere questa uguaglianza utilizzando le variabili
polari nel piano (u,w), cioè (u,w) = r(cos(θ), sin(θ)), da cui otteniamo

x(r1,θ1) = x(r2,θ2) cioè
r1 cos(θ1)

(
1− 1

3 r2
1 cos2(θ1) + r2

1 sin2(θ1)
)

= r2 cos(θ2)
(
1− 1

3 r2
2 cos2(θ2) + r2

2 sin2(θ2)
)

−r1 sin(θ1)
(
1− 1

3 r2
1 sin2(θ1) + r2

1 cos2(θ1)
)

=−r2 sin(θ2)
(
1− 1

3 r2
2 sin2(θ2) + r2

2 cos2(θ2)
)

r2
1
(
cos2(θ1)− sin2(θ1)

)
= r2

2
(
cos2(θ2)− sin2(θ2)

)
il precedente sistema può essere rielaborato nel seguente modo

r1 cos(θ1)−
1
3 r3

1 cos(3θ1) = r2 cos(θ2)− 1
3 r3

2 cos(3θ2)

−r1 sin(θ1)−
1
3 r3

1 sin(3θ1) =−r2 sin(θ2)− 1
3 r3

2 sin(3θ2)
r2
1 cos(2θ1) = r2

2 cos(2θ2)
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Poiché, per k = 1,2, vale che

x2
1 (rk,θk) + x2

1 (rk,θk) = r2
k cos2(θk)− 2

3 r4
k cos(θk)cos(3θk) + 1

9 r6
k cos2(3θk) + r2

k sin2(θk)

+ 2
3 r4

k sin(θk) sin(3θk) + 1
9 r6

k sin2(3θk)

= r2
k + 1

9 r6
k −

2
3 r4

k
[cos(θk)cos(3θk)− sin(θk) sin(3θk)]

= r2
k + 1

9 r6
k −

2
3 r4

k cos(4θk) = r2
k

1 +
r2
k
3

2

−
4
3 r4

k cos2(2θk)

e il sistema diventa
r2
1 cos(2θ1) = r2

2 cos(2θ2)

r2
1

1 +
r2
1
3

2

−
4
3
[
r2
1 cos(2θ1)

]2
= r2

2

1 +
r2
2
3

2

−
4
3
[
r2
2 cos(2θ2)

]2

che ci permette di affermare cher1 +
r3
1
3

2

=
r2 +

r3
2
3

2

da cui ricaviamo r1 = r2

visto che r ≥ 0 e la funzione s 7−→ (s + s3/3) è monotona strattemente crescente e quindi iniettiva. Allora
abbiamo mostrato che due punti hanno la stessa immagine tramite l’applicazione x se e soltanto se cos(2θ1) =
cos(2θ2), che fornisce le alternative

o θ1 = θ2 o θ1 = π− θ2 o θ1 = π + θ2 o θ1 = 2π− θ2

le varie possibilità provano che x, in generale, non è iniettiva: è possibile rendere l’applicazione iniettiva solo
cambiando opportunamente K in modo da escludere le alternative precedenti (per esempio prendendo K ⊆
{u,w≥ 0}. Proseguiamo in ogni caso la discussione delle richieste dell’esercizio calcolando i vettori tangenti

∂1x(u,w) =
(
1− u2 + w2,−2uw,2u

)
e ∂2x(u,w) =

(
2uw,−1 + w2− u2,−2w

)
e ricaviamo il loro prodotto vettoriale

∂1x(u,w)∧ ∂2x(u,w) =
(
2u(1 + u2 + w2),2w(1 + u2 + w2), (u2 + w2)2− 1

)
da cui possiamo ottenere il versore normale (rispondendo cos̀ı alla domanda), infatti vale che

n(u,w) = ∂1x(u,w)∧ ∂2x(u,w)
∥∂1x(u,w)∧ ∂2x(u,w)∥2

=

(
2u(1 + u2 + w2),2w(1 + u2 + w2), (u2 + w2)2− 1

)
(
(u2 + w2) + 1

)2

=
(

2u
(1 + u2 + w2)

, 2w
(1 + u2 + w2)

, (u2 + w2)2− 1
(1 + u2 + w2)2

)
ii. Eseguiamo la richiesta del testo per ottenere che

∂1x(u,w) · ∂2x(u,w) =
(
1− u2 + w2,−2uw,2u

)
·
(
2uw,−1 + w2− u2,−2w

)
= 2uw− 2u3w + 2uw3 + 2uw− 2uw3 + 2u3w−4uw = 0

come speravamo.
iii. Per concludere dobbiamo calcolare l’operatore di Laplace (anche detto laplaciano), rispetto alle variabili u e
w, delle tre componenti dell’applicazione x

Éx1(u,w) = ∂11

[
u− 1

3 u3 + uw2
]

+ ∂22

[
u− 1

3 u3 + uw2
]

= 2u− 2u = 0

Éx2(u,w) = ∂11

[
−w + 1

3 w3− u2w
]

+ ∂22

[
−w + 1

3 w3− u2w
]

=−2w + 2w = 0

Éx3(u,w) = ∂11
[
u2−w2] + ∂22

[
u2−w2] = 2 + (−2) = 0

dunque le tre componenti dell’applicazione x sono funzioni armoniche.
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ESERCIZIO 5. Data la funzione

x(u1,u2) = (u2 cos(u1),u2 sin(u1),u1) con u = (u1,u2) ∈ K = [0,2π]2

si verifichi che
i. (x,K) è una superficie regolare,
ii. ∂1x(u1,u2) è sempre ortogonale a ∂2x(u1,u2).
Infine si calcoli la lunghezza della curva sulla superficie prodotta dalla composizione della parametrizzazione della
superficie con la curva contenuta in K di equazioni {φ(s) = (s,u0,2) : s ∈ [0,2π]} e {ψ(s) = (u0,1, s) : s ∈ [0,2π]}.

DISCUSSIONE. i. verificare che (x,K) è una superficie regolare significa controllare che K sia la chiusura di un
aperto connesso (il che è vero, visto che K è un rettangolo chiuso), osservare se x sia di classe C1 e iniettiva
in int(K) e controllare il rango della matrice jacobiana di x. Controlliamo l’iniettività dell’applicazione studiando
cosa possiamo dire di due punti che hanno la stessa immagine

x(u1,u2) = x(w1,w2) significa (u2 cos(u1),u2 sin(u1),u1
) = (w2 cos(w1),w2 sin(w1),w1

)
La terza componente dei vettori ci dà immediatamente l’informazione che u1 = w1, da cui segue che, se u1 =
w1 , 0, u2 = w2 visto che le funzioni trigonometriche producono lo stesso output. Si noti che u1 = w1 = 0
descrive punti sul bordo di K, quindi due punti hanno la stessa immagine solo se sono lo stesso punto e questo
significa che x è iniettiva.
A questo punto possiamo osservare che

∂1x(u) = (−u2 sin(u1),u2 cos(u1), 1) ∂2x(u) = (cos(u1), sin(u1),0)
[∂1x∧ ∂2x](u) = (−sin(u1), cos(u1),−u2)

e il fatto che ∥∂1x∧ ∂2x∥2 = 1 + u2
2 per ogni (u1,u2) ∈ K conclude la verifica.

ii. L’ortogonalità richiesta consiste nella seguente semplice verifica

∂1x(u) · ∂2x(u) = (−u2 sin(u1),u2 cos(u1), 1) · (cos(u1), sin(u1),0) =−u2 sin(u1)cos(u1) + u2 sin(u1)cos(u1) = 0

Per calcolare la lunghezza delle curve ricorriamo alla caratterizzazione tramite integrale del modulo del vettore
tangente. Poiché

d
ds x(φ(s)) = (−u0,2 sin(s),u0,2 cos(s), 1)

abbiamo che

L(φ) =
∫ π

0

∥∥∥∥∥ d
ds x(φ(s))

∥∥∥∥∥ds =
∫ π

0

[
u2

0,2 sin2(s) + u2
0,2 cos2(s) + 1

]1/2
ds =

∫ π
0

√
u2

0,2 + 1ds = π[u2
0,2 + 1]1/2

e analogamente

L(ψ) =
∫ π

0

∥∥∥∥∥ d
ds x(ψ(s))

∥∥∥∥∥2
ds =

∫ π
0

∥∥∥(cos(u0,1), sin(u0,1),0)
∥∥∥2 ds = π

Come era da aspettarsi le due curve hanno lunghezze differenti, pur essendo prodotte da curve di ugual lun-
ghezza nel piano delle variabili u, questo perché la superficie curva differentemente le linee con u1 o u2 co-
stante.

ESERCIZIO 6. Data l’applicazione

φ(u) = (u1,u2, au1 + bu2) con u ∈ K = [0,π]2

si provi che
i. (φ,K) è una superficie regolare,
ii. Im(φ) è un(a porzione di) piano affine in �

3.
Infine si calcoli la lunghezza della curva sulla superficie prodotta dalla composizione della parametrizzazione della
superficie con la curva contenuta in K di equazioni {u(s) = (s, s) : s ∈ [0,π]}.
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DISCUSSIONE. i. K è un quadrato, chiusura dell’aperto connesso (0,π)2, mentre la prametrizzazione φ è iniet-
tiva (lo è considerando le sue prime due componenti) e di classe C∞, essendo descritta tramite funzioni
polinomiali, quindi dobbiamo verificare la condizione di indipendenza lineare dei suoi vettori tangenti

∂1φ(u) = (1,0,a) ∂2φ(u) = (0, 1,b) da cui [∂1φ∧ ∂2φ](u) = (−a,−b, 1) , 0
quindi possiamo concludere che (φ.K) è una superficie regolare per ogni valore dei parametri reali a e b.
ii. Im(φ) è una porzione di un piano. Questa affermazione è suggerita dal fatto che i vettori tangenti sono
indipendenti dal punto della superficie che si consideri, in ogni caso osserviamo che O ∈ Im(φ), e che Im(φ)⊆
{λ(1,0,a)+µ(0, 1,b) : (λ,µ) ∈�

2} quindi la nostra superficie è una parte del piano (sottospazio vettoriale di �3)
generato dai vettori ∂1φ e ∂2φ.
iii. La cura (regolare) che si ottiene componendo le due parametrizzazioni ha equazioni

x(s) := φ(u(s)) = (s, s,as + bs) con s ∈ [0,π] e vale x′(s) = (1, 1, a + b)
da cui ricaviamo che

L =
∫ π

0
∥x′(s)∥ds =

∫ π
0

√
2 + (a + b)2ds = π

√
2 + (a + b)2

ricordando la caratterizzazione della lunghezza di una curva.

ESERCIZIO 7. Data la curva φ(t) = (acos(t),bsin(t)), con t ∈ [0,2π] ed a,b> 0, la cui immagine è contenuta in �
2,

si provi che la curva è regolare e che divide il piano in due aperti connessi, uno limitato e uno non limitato.

DISCUSSIONE. Verificare che l’applicazione definisce una curva regolare è relativamente semplice: le compo-
nenti della funzione vettoriale sono di classe C∞, inoltre vale

φ′(t) = (−asin(t),bcos(t)) e ∥φ′(t)∥2
2 = a2 sin2(t) + b2 cos2(t)≥min{a2,b2}> 0 per ogni t

Inoltre l’applicazione φ è iniettiva per t ∈ (0,2π) e vale φ(0) = φ(2π) = (1,0), quindi abbiamo a che fare con
una curva semplice e chiusa. Possiamo anche mostrare che il sostegno della curva è esattamente l’ellisse di
semiassi a e b con centro di simmetria in O, infatti le componenti di φ soddisfano la relazione

x2
1

a2 +
x2

2
b2 = cos2(t) + sin2(t) = 1 per ogni t

e per ogni x ∈ E = {x2
1 /a2 + x2

2/b2 = 1} ⊆�
2 si ha che esiste un unico t0 tale che(x1

a , x2
b

)
= (y1, y2) = (cos(t0), sin(t0)) con t0 ∈ [0,2π)

Quindi possiamo introdurre la funzione H ∈ C∞(�2) definita come

H(x) = H(x1, x2) =
x2

1
a2 +

x2
2

b2 − 1
 tale che E =

{
x ∈�

2 : H(x) = 0
}

A questo punto abbiamo che i due seguenti insiemi

A :=
{
x ∈�

2 : H(x)< 0
}

= H−1 ((−∞,0)) e B :=
{
x ∈�

2 : H(x)> 0
}

= H−1 ((0,+∞))

sono aperti (in quanto controimmagine, tramite una funzione continua, di una semiretta aperta).
L’insieme A è connesso perché è un insieme convesso (si tratta della regione racchiusa dell’ellisse E), inoltre è
limitato visto che

x ∈ A se e solo se
x2

1
a2 +

x2
2

b2 < 1 e poiché 0≤
x2

1
a2 ,

x2
2

b2 ≤
x2

1
a2 +

x2
2

b2 < 1

segue che A⊆ B(O, r), per esempio, con r = (a + b).
Per quanto riguarda B è facile vedere che non è limitato, infatti i punti della successione {(k,0)} appatengono
definitivamente a B e la loro norma diverge. Per verificare che B è connesso è possibile ragionare come segue:
siano x,y ∈ B e si consideri il percorso costituito dal segmento che unisce x al punto x = (a + b)x/∥x∥2, unito
all’arco di circonferenza che unisce x a y = (a + b)y/∥y∥2 per poi percorrere il segmento di estremi y e y, tale
percorso è contenuto in B e i punti x e y sono generici, questo prova che B è connesso.
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ESERCIZIO 8. Date le seguenti coppie di funzioni e domini

x(u,w) = (u,w,au + bw) (u,w) ∈ K = B(O, 1)
y(u,w) = (cos(w), sin(w),u) (u,w) ∈ K = [0,2π]× [−1, 1]

z(u,w) = (u,w,u2w2) (u,w) ∈ K = [0, 1]2

r(u,w) = (cos(u), sin(u)cos(w), sin(w)sin(u)) (u,w) ∈ K = [0,π]2

s(u,w) = (wcos(u),wsin(u),w) (u,w) ∈ [0,2π]2

dove a,b ∈ (0,+∞), si risponda alle seguenti questioni
i. si verifichi che si tratta di superfici regolari,
ii. si scriva esplicitamente il versore tangente n(u,w),
iii. si calcolino i coefficienti della prima forma quadratica fondamentale.

DISCUSSIONE. Lo svolgimento dell’esercizio non sarà particolarmente corto, quindi risponderemo alle tre
questioni affrontando le parametrizzazioni nell’ordine proposto dal testo.
Osserviamo subito che x è iniettiva, visto che le prime due componenti dell’immagine sono esattamente le
componenti dell’input, è anche facile sincerarsi che tali componenti sono funzioni C∞, in quanto polinomi,
quindi provare che (x,K) descrive una superficie regolare significa mostrare che il seguente prodotto vettoriale
non è mai nullo (almeno) in int(K)

∂1x(u,w) = (1,0,a) ∂2x(u,w) = (0, 1,b)
∂1x(u,w)∧ ∂2x(u,w) = (−a,−b, 1) ,O

dunque x è una superficie regolare. Il versore normale indotto dalla parametrizzazione è

n(u,w) = (∂1x∧ ∂2x)(u,w)
∥∂1x∧ ∂2x∥2

= (−a,−b, 1)
[a2 + b2 + 1]1/2

mentre i coefficienti della prima forma quadratica fondamentale sono

E(u,w) = ∂1x(u,w) · ∂1x(u,w) = 1 + a2 F(u,w) = ∂1x(u,w) · ∂2x(u,w) = ab

G(u,w) = ∂2x(u,w) · ∂2x(u,w) = 1 + b2

Riguardo a y osserviamo che

y(u1,w1) = y(u2,w2) significa


cos(w1)
sin(w1)

u1

 =


cos(w2)
sin(w2)

u2


dalla terza equazione otteniamo che u1 = u2, mentre la prima implica l’alternativa o w1 = w2 o w1 = 2π −w2.
Poiché la seconda equazione ci fornisce l’alternativa o w1 = w2 o w1 = π−w2, possiamo concludere che w1 = w2 e
questo significa che l’applicazione y produce la stessa immagine solo se i punti in partenza sono uguali, e questo
significa che y è iniettiva. Che le componenti di y siano funzioni di classe C∞ è evidente, per cui calcoliamo
subito il prodotto vettoriale dei vettori tangenti

∂1y(u,w) = (0,0, 1) ∂2y(u,w) = (−sin(w),cos(w),0)
∂1y(u,w)∧ ∂2x(u,w) = (−cos(w),−sin(w),0) ,O

e possiamo concludere che (y,K) definisce una superficie regolare il cui versore normale è

n(u,w) = (∂1y∧ ∂2y)(u,w)
∥∂1y∧ ∂2y∥2

= (−cos(w),−sin(w),0)
[cos2(w) + sin2(w)]1/2

= (−cos(w),−sin(w),0)

mentre i coefficienti della sua prima forma quadratica fondamentale sono

E(u,w) = ∂1y(u,w) · ∂1y(u,w) = 1 F(u,w) = ∂1y(u,w) · ∂2y(u,w) = 0
G(u,w) = ∂2y(u,w) · ∂2y(u,w) = 1
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L’applicazione z ha tutte le componenti polinomiali ed è iniettiva per lo stesso motivo per cui è iniettiva x,
inoltre abbiamo

∂1z(u,w) = (1,0,2uw2) ∂2z(u,w) = (0, 1,2u2w)

∂1z(u,w)∧ ∂2x(u,w) = (−2uw2,−2u2w,1) ,O

quindi (z,K) definisce una superficie regolare, il suo versore normale è

n(u,w) = (−2uw2,−2u2w,1)
[1 + 4u2w4 + 4u4w2]1/2 = (−2uw2,−2u2w,1)

[1 + 4u2w2(u2 + w2)]1/2

i coefficienti della prima forma quadratica fondamentale della superficie sono

E(u,w) = ∥∂1z(u,w)∥2
2 = 1 + 4u2w4 F(u,w) = ∂1y(u,w) · ∂2y(u,w) = 4u3w3

G(u,w) = ∥∂2y(u,w)∥2
2 = 1 + 4u4w2

Le componenti di r sono prodotti di funzioni C∞, quindi la regolarità delle funzioni non è un problema, mostria-
mo (come sopra) l’iniettività dell’applicazione provando che due punti che hanno la stessa immagine devono
essere lo stesso punto.

r(u1,w1) = r(u2,w2) equivale a


cos(u1)

sin(u1)cos(w1)
sin(u1) sin(w1)

 =


cos(u2)

sin(u2)cos(w2)
sin(u2) sin(w2)


Essendo la funzione cos strettamente decrescente in (0,π), segue subito che u1 = u2, per mostrare che w1 = w2
si ragiona come abbiamo fatto per la superficie y. Calcoliamo i vettori tangenti della parametrizzazione per
studiare il rango della matrice jacobiana di r

∂1r(u,w) = (−sin(u),cos(u)cos(w),cos(u)sin(w)) ∂2r(u,w) = (0,−sin(u)sin(w), sin(u)cos(w))

[∂1r∧ ∂2r](u,w) = (sin(u)cos(u), sin2(u)cos(w), sin2(u)sin(w)) ,O

poiché (u,w) ∈ int(K) = (0,π)2 possiamo affermare che sin(u), sin(w) , 0 in int(K) e non è possibile che sin(w)
e cos(w) siano nulli contemporaneamente, quindi (r,K) definisce una superficie regolare. Calcoliamo il versore
normale all’immagine r(K)

n(u,w) = (sin(u)cos(u), sin2(u)cos(w), sin2(u)sin(w))
[sin2(u)]1/2

= (cos(u), sin(u)cos(w), sin(u)sin(w))

ricordando che sin(u) > 0 per ogni u ∈ (0,π). I coefficienti della prima forma quadratica fondamentale della
superficie r(K) si calcolano come nei casi precedenti

E(u,w) = ∥∂1r(u,w)∥2
2 = 1 F(u,w) = ∂1r(u,w) · ∂2r(u,w) = 0

G(u,w) = ∥∂2r(u,w)∥2
2 = sin2(u)

Concludiamo studiando l’applicazione s. Notiamo subito che la funzione ha omponenti regolarissime ed è
iniettiva, visto che

s(u1,w1) = s(u2,w2) è


w1 cos(u1)
w1 sin(u1)

w1

 =


w2 cos(u2)
w2 sin(u2)

w2


e subito otteniamo w1 = w2, l’uguaglianza della variabile u segue (per ogni w , 0) dall’osservazione sulle funzioni
trigonometriche fatta nell’analisi di y. Riguardo ai vettori tangenti possiamo scrivere

∂1r(u,w) = w(−sin(u),cos(u),0) ∂2r(u,w) = (cos(u), sin(u), 1)
[∂1r∧ ∂2r](u,w) = w(cos(u), sin(u),−1) ,O

per w , 0. Calcoliamo il versore normale alla superficie

n(u,w) = w(cos(u), sin(u),−1)
[2w2]1/2 = 1√

2
(cos(u), sin(u),−1)

Terminiamo calcolando i coefficienti della prima forma quadratica fondamentale della superficie

E(u,w) = w2 F(u,w) = 0 G(u,w) = 2
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Queste superfici ritornerano in esercizi futuri...


