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ESERCIzIO 1. Verificare che lequazione

cosh(x; — X +x3) — €3 +x§ +x12 — x% =0

definisce implicitamente in un intorno di (1,1,0) una funzione x3 = g(xq,x;). Scrivere il piano tangente e la retta
normale alla superficie del grafico della funzione g nel punto considerato.

ESERCIZIO 2. Sia F(xq,X%7,X3) = €*3 + X12X%X3 — X2 4 xf - xg.

i. Dimostrare che lequazione F(xq,%3,X3) = O determina una funzione implicita x3 = g(xy,x,) definita per (x,y) in un
intorno dellorigine,

ii. determinare il valore di g(0, 0),

iii. riconoscere che lorigine é un punto stazionario per la g,

iv. riconoscere la natura di tale punto.

ESERCIZIO 3. Assegnato il seguente vincolo
2
S= {(X1,X2,X3) : [x12 +x% +x§] = 4x§} CR3

i. si provi che S é chiuso e limitato,

ii.. si trovino tutti i punti critici, vincolati su S, della funzione f(x) = f(xq,%3,X3) = X3,

iii. si scriva il polinomio di Taylor del secondo ordine della funzione implicitamente definita da S intorno ai punti critici
trovati in ii.

ESERCIZIO 4. Si consideri la superficie

1 1
x(u,w) ={u— §u3 ruw?, —w+ §w3 —ulw,u? —w?

con (u,w) € K=B(0,2). Si verifichi che

i. (x,K) & una superficie regolare,

ii. 91x(u, w) & sempre ortogonale a 9;x(u,w),

iii. Axj(u,w) = O peri=1,2,3.

Infine si scriva il versore normale alla superficie.

ESERCIZIO 5. Data la funzione
x(uy,u5) = (up cos(uy), u; sin(uq), uq) conu=(uj,up) € K=[O, 2m]?

si verifichi che
i. (x,K) é una superficie regolare,
ii. 91x(uq,u;) & sempre ortogonale a 9,x(uy, u;).
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Infine si calcoli la lunghezza della curva sulla superficie prodotta dalla composizione della parametrizzazione della
superficie con la curva contenuta in K di equazioni {¢(s) = (s,up 2) : s € [0,27]} e {(s) = (ug1,5) : s € [0,27]}.

ESERcCIzIO 6. Data lapplicazione
x(u) = (uy,u,auq + bu,) conu € K=[0,7]?

si provi che

i. (x,K) & una superficie regolare,

ii. Im(x) é un piano affine in R3.

Infine si calcoli la lunghezza della curva sulla superficie prodotta dalla composizione della parametrizzazione della
superficie con la curva contenuta in K di equazioni {¢(s) = (s,s) : s € [0, 7]}.

ESERCIZIO 7. Data la curva ¢(t) = (acos(t),bsin(t)), cont € [0,27] ed a,b > O, la cui immagine é contenuta in RZ,
si provi che la curva é regolare e che divide il piano in due aperti connessi, uno limitato e uno non limitato.

Esercizio 8. Date le seguenti coppie di funzioni e domini
y(u,w) = (cos(w), sin(w),u) (u,w) € K=[0,27] x [-1,1]
z(u,w) = (u,w,uw?) (u,w) € K=[0,1]
r(u,w) = (cos(u), sin(u) cos(w), sin(w) sin(u)) (uw) eK= [0,7r]2
s(u,w) = (wcos(u),wsin(u),w)  (u,w) € [0,27]?

dove a,b € (0, +00), si risponda alle seguenti questioni

i. si verifichi che si tratta di superfici regolari,

ii.. si scriva esplicitamente il versore normale n(u, w),

iii. si calcolino i coefficienti della prima forma quadratica fondamentale.

SVOLGIMENTI

Esercizio 1. Verificare che lequazione

cosh(x; — o +x3) —€*3 +x§ +x12 — x% =0

definisce implicitamente in un intorno di (1,1,0) una funzione x3 = g(xq,x;). Scrivere il piano tangente e la retta
normale alla superficie del grafico della funzione g nel punto considerato.

DiscussioNE. Cominciamo verificando che a = (1,1,0) appartiene la luogo delle soluzioni dellequazione,
infatti vale

cosh(a; —a, +az) — e® +a§ +a12 —a% =cosh(1—-1+0) —e%+0%2+12-12-0
ricordando che cosh(s) = [e® + e™%]/2. Ponendo G(x4,%3,X3) = cosh(x; — X, +x3) — X3 + x% + x12 - x% e osservando

che G € C°(R3) e che
93G(x) =sinh(x; — Xy +X3) — €% +2x3  dacui  85G(a)=sinh(1—1+0)—e®+2-0=-120
il teorema della funzione implicita di Dini garantisce lesistenza di una funzione regolare g : B((1,1),5) — R tale
che
g(1,1)=0
G(x1,%2,x3) =0 per (xq1,%2,x3) € B(a,d) se e solo se X3 = g(xq,%7)
Inoltre & possibile provare che valgono le seguenti identita
01G(x1,%2,8(x1,X7))

81g(x1,x2) T 83G(X|,X2,8(X1,X2)) € azg(XI’XZ) )

~ 8,Glx1, %2, 8(x1,%2))
03G(xq,%2,8(x1,%2))
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e poiché vale che
91G(x) = sinh(x] — X5 +X3) + 2x e 07G(x) = —sinh(x; — X +X3) — 2%

otteniamo

. 0,G(a) _ 0,Gl@)
518(1,1)-—836(a) =2 e Ogll)= 55Ga)

da cui possiamo ricavare immediatamente lequazione del piano tangente al grafico digin a
x3=g(1,1)+Vg(1,1) - ((x1,%x2) — (1,1) =2(xg — 1) — 2(xy — 1) = 2% — 2%,

Il piano tangente pud essere pensato come una superficie di livello di equazione {f(xy,x;,X3) = 2x1 — 2x3 — X3 =
0}, in questo caso Vf(1,1,0) = (2,—2,—1) e la retta normale ha equazione parametrica

x(t) = V(1,1,0)t+ (1,1,0) = (2t +1, -2t +1,—t) teR
0 equazione cartesiana
{X1+2x3 —1=0,xy —2x3 —1=0}

queste ultime espressioni concludono lo svolgimento dellesercizio. n

ESercIziO 2. Sia F(xq,%7,x3) = €%3 + X12X%X3 —eXiX2 4 xf - xg.

i. Dimostrare che lequazione F(xq,%3,x3) = O determina una funzione implicita x3 = g(xy,x;) definita per (x,y) in un
intorno dellorigine,

ii. determinare il valore di g(0O, O),

iii. riconoscere che lorigine é un punto stazionario perla g,

iv. riconoscere la natura di tale punto.

DiscussIONE. i. Applichiamo il teorema delle funzioniimplicite alla funzione F nel punto (0, 0,x3) con x; tale
che F(0,0,x§) = 0. Essendo F € C*°(R3) C C'(R3) e anche

B3F(xq,%9,%3) = xfx% +e3 93F(0,0,x3) = 320

sono verificate le ipotesi del teorema: quindi esiste un'unica funzione g(x1, x,) definitain unintorno B¢ = { x12 + x% <

e} dellorigine (0O, 0) a valori in (x§ - r,x§ +r), conr > O, tale che
F(x1,%2,8(x1,%2)) =0 per ogni (x1,%7) € Be

ii. Siha g(0,0) = X;- Il valore xg & determinato dallequazione
F(0,0,x3)=0 ovvero 3 -1=0

dacuix; =0.

ii. Dato che F € C*°(RR3) allora g € C®°(B¢). Derivando parzialmente rispetto a x; e x, la relazione F(xy, X, g(x1,%;)) =
0, usando la formula di derivazione delle funzioni composte, troviamo rispettivamente

_ 61 F(X1,X2, g(X1,X2))
O3F(xq,%2,8(x1,%7))
B, F(xq,%2,8(x1,%32))
O3F(xq,X32,8(x1,%3))

81F(X1,X2,g(X1,X2)) + 83 F(x1,x2,g(x1,x2))81g(x1,x2) =0 da cui 81g(X1,X2) =

OyF(x1,%2,8(X1,X7)) + O3F (X1, X2, 8(X1,X2)) D28 (%1, x2) =0 cioé  Byg(x1,%7) = —

E poiché

A B7F(x4,%,%3) = 2X12X2X3 — X2 — 4x%

OyF(x1,%7,x3) = 4x$’ + 2X1X%X3 —Xp€
si trova ;F(0, 0,0) = 5,F(0,0,0) = 0 da cui Vg(0, 0) = (0, 0), quindiil punto (O, O) & stazionario per la funzione
g
iv. Per studiare la natura del punto critico non ci resta che calcolare le derivate seconde di g. Dalle identita

OnF(x1,%2,8(x1,%2)) = 81 (81F (x1, X7, 8(x1, 7)) + B3F (x1, X2, 8(x1,%2)) 018 (X1, %7)) = O

022F(x1,%2,8(x1,%2)) = 87 (8,F (x4, X2, 8(x1, X2)) + B3F (x1, X2, 8(x1,%2))8,8(x1,%2)) = O

O F(x1,%2,8(x1,%2)) = 8 (O1F (xq,X2,8(X1,X2)) + O3F (X1, X2, 8(X1,%2)) D18 (%1, %)) = O
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ricaviamo le seguenti relazioni

OF + 2013FOyg + B33F|O1g|? + O3FAg = O

823F +20y3F0,g + 833F|0,g|” + O3F 038 = O

B1yF + Oy3F B, + Oy3FOyg + O33FByg0yg + B3FOpg = O
Dato che 8;g(0,0) = 8,g(0,0) = O si trova

_ oyF(0,0,0) _ 0;2F(0,0,0) _ 0,2F(0,0,0)
0728(0,0) = — 2;F(0.0,0) 01,8(0,0) = — 2;F(0,0,0) 07,28(0,0) = — 25F(0,0.0)
e, con alcuni calcoli, ricaviamo che
811F(X1,X2,X3) = 12X12 — X%eX1X2y + 2X%X3 611F(O, 0, 0) =0
812F(X1 X2, X3) 4X1X2X3 — X1X2€X1X2 —eX1X2 812F(0,0, O) =—
Oy7F(x1,%2,X3) = *EX1X2X1 12X + 2X1 X3 8,7F(0,0,0)=0

da cui si ottiene
611g(0, O) = azzg(0,0) =0 612g(0,0) =1

Il determinante della matrice hessiana vale det[Hg(O,0)] = —1 < O, per il test di Sylvester Hg(O, O) & indefinita
e, dal test dell’hessiano, segue che (O, O) € un punto di sella per g. ]

ESErcizIO 3. Assegnato il seguente vincolo
2
S= {(X1,X2,X3) : [x12 +x% +x§] = 4x§} CR3

i.. si provi che S é chiuso e limitato,

ii.. si trovino tutti i punti critici, vincolati su S, della funzione f(x) = f(xq,%3,X3) = X3,

iii. si scriva il polinomio di Taylor del secondo ordine della funzione implicitamente definita da S intorno ai punti critici
trovatiin ii.

DISCUSSIONE. i. Linsieme in questione € definito come

S = {H(X) = [X12+X% +X§]2 —4X§ = O}

essendo la funzione H € C*°(IR3) C CO(R3) il nostro vincolo risulta chiuso, perché controimmagine di un chiuso
in R. La limitatezza delloggetto segue dallosservazione che la disuguaglianza

x3 < [x1 +X%) +x3] 4x3 implica Ix3] <2

da cui possiamo ricavare
(x1 +x2)2 (x12 +X) +x3)2 < 4x3 <16

Le precedenti disuguaglianze implicano la limitatezza del vincolo, visto che abbiamo provato che
S CB(0,2) x[-2.21C R x R

quindi possiamo concludere che il nostro insieme é chiuso e limitato.

ii. La funzione f(xq,x5,X3) = X3 ha gradiente costante (e non nullo) in tutto lo spazio (esattamente Vf(x) = e3 in
tutto R3), quindi la funzione non ha punti critici liberi, il teorema di Weierstrass garantisce lesistenza (almeno)
del massimo e del minimo assoluto di f sul vincolo, per cui ricorriamo al metodo dei moltiplicatori di Lagrange.
Prima di tutto notiamo che vale

VH(x) = (81H(x), 5, H(x),03H(x)) = 4((x12 + x% + x3)x1 (x1 + x% + x%)xz (x12 +x% + x3 2)X3)
Si noti che tale vettore puo avere tutte le componenti nulle in alcuni punti di S, cioé la superficie ha punti
singolari, in cui non sembra possibile applicare il teorema delle funzioni implicite.

| punti critici vincolati di f su S sono punti in cui il vettore VH(x) € paralello al vettore Vf(x) = e3, quindi sono
punti le cui coordinate, per qualche c € R, sono soluzioni del seguente sistema

((x12+x%+x3)x1 (x1 +x2+x3)x2 (x1 +x2+x3 2)X3)= (0,0,0) Xes
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E subito evidente che x; = x5 = 0, quindi abbiamo
(xg —2)x3=cC e xg = 4x§

quindi i punti critici vincolati sono solo i punti A(O,0,2) e B(0,0,—2) (oltre ad O, del quale non € possibile
studiare la natura tramite il teorema di Dini).
iii. Nella precedente discussione abbiamo, di fatto, verificato che

63H(A),63H(A) >0

quindi intorno a tutti e due i punti possiamo utilizzare il teorema delle funzioni implicite per affermare che
esistono 2 funzioni ¢ (xq,%;) € ¢g(xy,%;) tali che

H (X1, X2, da (X1, X)) = H (X1, X2, 9 (X1, %2)) = O per ogni (x1,x;) € B(O,6) C R?

con Pa(O) = 2 e pg(0,0) = —2. Nel resto dello svolgimento prendiamo in esame solo la funzione ¢,.
Per scrivere il polinomio di Taylor del secondo ordine della funzione ¢a (x;,x;) abbiamo bisogno del gradiente
e della matrice hessiana di H. Avendo gia calcolato VH(x;,x7,x3) abbiamo che

O1H(x1,x2, Pa(x1,%7)) 53H(X11X2,¢>A(X1'X3)))
Oy H(x1, X2, A (X1, X2)) " BaH(Xq, X2, P (X1,X7))
e sostituendo i valori V¢ (0,0) = (0,0), quindi O € un punto critico della funzione ¢,. Per determinarne la

natura proviamo a scrivere la matrice hessiana, ricordando che 'hessiano & una matrice simmetrica (H € un
polinomio, quindi di classe C*°) e svolgendo qualche "agile” conto abbiamo

Valx1,%2) = (810 (x1,%2), O2Pa (X1, %7)) = —

VH(x) = (4x13 + 4x1x% + 4x1x§,4x12x2 + 4x§ + 4X2X§,4X12X3 + 4X%X3 + 4x§ - 8X3)
OH(X) =12x2 + 4x3+4x3  OpH(X) = OyH(X) = 8xx  B3H(X) = B31H(X) = 8xyx3
Oy H(X) = 4x12 + 12x% + 4x§ By3H(x) = 8x,x3 O33H(x) = 4 (x12 + x% + 3x§ - 2)

A questo punto dello svolgimento facciamo ricorso alla teoria, precisamente al teorema di derivazione delle
funzioni composte, che ci permette di scrivere

[ (ByyH + B13HOypa) O3 H — BH[O3H(x) + B33HO Pp)
B xp.xg) = — | (O S3HO@a)O3H = OHIO3 33HO A

](X11X21¢A(X1-X2))

I [65H]?
[ (8yHA3H — 813HBH)A3H — 8yH[831H(x)83H — A33HAH
_ | (6nH3H — 813H8H)33 613[ 31H(x)83H — 833HEH) (X1, X, (X1, X))
| [63H]
[ 9 H[A3H]? — (843H + H31H)3HA3H + B33 H[&H]?
_ | nHIG3H]” — (B13H + B3 )31 3H + 833H[GH] (X1, Xp B (X1,%5))
I [O3H]
[ 8y, H[B3H]? — 813H8,HAsH — 8,3 HBHA3H + H33HAHA, H
Al xg) = — | 2 LOsHI — B30, HOs e R (RN
| [63H]
[ 85, H[B3H]? — 28,3HB,HA3H + B33H[B, H]?

0p2PA(x1,%2) = — ](X11X2¢A(X1:X2))

[5sHI3

Ricordando lo sviluppo di Taylor (al secondo ordine) per funzioni in due variabili e le formule scritte sopra,
troviamo

a1 %Xa) = B0, 0) + VA(0,0) - (x1 xg) + l B Pa(0,0)x? + 28, A (0, 0)xyx; + Oyy $a(0, 0)x3 ] + o(x? + x3)
O1H(0,0,$A(0,0)) 5 8,2H(0,0,$4(0,0)) , ] +0(x2 + x2

=¢A(o,0)—1[ 2d)

2 63H<o,o,¢>A<o,o»X 3H(0,0,$(0,0)) 2

=1-5 [x1 +x2]+o(x1 +x2)

e otteniamo che (0O, 0) & un punto di massimo (locale) per la funzione ¢p. Concludiamo con una rappresenta-
zione grafica del vincolo $



sottolineando il fatto che il punto di contatto tra le due sfere & O, ed & un punto singolare perché non € possibile
descrivere il vincolo come un grafico in ogni intorno del punto... ]

ESERCIZIO 4. Si consideri la superficie

1 1
x(u,w) ={u— §u3 ruw?, —w+ §w3 —ulw,u? — w2

con (u,w) € K=B(0,?2). Si verifichi se

i. (x,K) é una superficie regolare,

ii. O1x(u, w) & sempre ortogonale a 9;x(u,w),

iii. Ax;(u,w) = O peri=1,2,3.

Infine si scriva il versore normale alla superficie.

DISCUSSIONE. . iniziamo osservando che K € la chiusura di una palla, che & un aperto connesso e che le fun-
zioni x;(u, w) sono di classe C* essendo polinomi. Cosa possiamo dire riguardo all'iniettivta dellapplicazione?
Dovremmo studiare il sistema

x(uq, wq) = x(up, w5) cioé

1 1 1 1
(u1 Lt ugwowy e oy —wf)= (u2 Ly ¢ dwd g 2 _wg)

ed é evidente che non sia facile da analizzare, proviamo a ridiscutere questa uguaglianza utilizzando le variabili
polari nel piano (u,w), cioé (u,w) = r(cos(6), sin(6)), da cui otteniamo

x(ry,01) = x(rp,67) cioé

r cos(91)(1 - %r1 cos?(6y) +r? sm2(91)) =1 cos(@z)( 3r2 cos?(6,) + 2 sin2(92))

—rqsin(6,) 1—; 125|n (91)+r cosz(91) = —rzsin(ez)(1— %r%sinz(ez)w%cosz(ez))
r12 (cosz(91) —sin (91)) = r% (cos (67) — sin2(92))

il precedente sistema pué essere rielaborato nel seguente modo

ricos(6y) — §r1 cos(36;) =r, cos(6,) — =

fr1 sin(6q) — —r1 sin(364) = —ry sin(67) —

cos(36,)

UJ
w| —\Nw

r sm(392)
cos (261) = r5 cos(26,)
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Poiché, perk =1,2, vale che

2 1
x12(rk, ) + x12(rk, 6,) = ra cosz(ek) — §rﬁ cos(6y) cos(36,) + §rf cosz(36k) + rlf sinz(Gk)

2 4 . , 1¢ .
+ §r‘k‘ sin(6y) sin(36;) + §r§ S|n2(36k)

1 2
= rE + §rf — §r‘k‘ [cos(6)) cos(36y) — sin(6y) sin(36;)]

212
1 2 f 4
= rl% + §rf — §r¢ cos(46,) = rﬁ [1 + gk] — §r§1 cosZ(ZOk)

e il sistema diventa
r12 cos(26y) = r% cos(26,)

212 212
r 4 2 r 4 2
r12 [1 + % ~3 [r12 cos(291)] = r% [1 + 32] ~3 [r% cos(202)]
che ci permette di affermare che
P [ 81 o
meg| =2ty da cui ricaviamo rn=ry

visto che r > O e la funzione s — (s + s3/3) & monotona strattemente crescente e quindi iniettiva. Allora
abbiamo mostrato che due punti hanno la stessa immagine tramite lapplicazione x se e soltanto se cos(26;) =
cos(26,), che fornisce le alternative

o 91=92 o 91=7['—92 o 91=7I'+92 (0] 61=27I'—92

le varie possibilita provano che x, in generale, non € iniettiva: € possibile rendere lapplicazione iniettiva solo
cambiando opportunamente K in modo da escludere le alternative precedenti (per esempio prendendo K C
{u,w > O}. Proseguiamo in ogni caso la discussione delle richieste dellesercizio calcolando i vettori tangenti

Ox(u,w) = (1—u2+w2,—2uw,2u) e 9% (u,w) =(2uw,—1+w2 —Uz,—ZW)
e ricaviamo il loro prodotto vettoriale
Ox(u,w) A Byx(u,w) = (2u(1 +u? +w?), 2w(1+u? +w?), (U2 + w?)? — 1)
da cui possiamo ottenere il versore normale (rispondendo cosi alla domanda), infatti vale che

Arx(u, w) A 8yx(u, w) (2u(1 ru?+w?2), 2w(1+u2 +w?), (U2 +w?)2 — 1)

W) = 5w A B Wil (2 +w)+1)’
( 2u 2w (u2+w2)2—1)
\(1ruZ+w2) (1eu2+w2)” (1402 +w2)2

ii. Eseguiamo la richiesta del testo per ottenere che
Ox(u,w) - Byx(u,w) = (1 —ul+ w2, —2uw,2u) . (2uw, ew? - u2, —2w)
= 2uw — 203w + 2uw + 2uw — 2uw3 + 203w — 4uw =0

come speravamo.
iii. Per concludere dobbiamo calcolare loperatore di Laplace (anche detto laplaciano), rispetto alle variabili u e
w, delle tre componenti dellapplicazione x

1 1
Axq(u,w) = Oy [u - §u3 +uw2] +0py [u — §u3 +uw2] =2u—2u=0

1 1
Ax;(u,w) = Oy [—w+ §w3 - uzw] +097 [—w+ §w3 - uzw] =—2w+2w=0

Ax3(u,w) = Oy [u2 — w2] + 099 [u2 - w2] =2+(-2)=0

dunque le tre componenti dellapplicazione x sono funzioni armoniche. n



ESERCIZIO 5. Data la funzione
x(uy,u5) = (up cos(uy), u; sin(uq), uq) conu=(uj,uy) K= [0,27r]2

si verifichi che

i. (x,K) & una superficie regolare,

ii. O1x(uq,u;) & sempre ortogonale a 9,x(uy, u;).

Infine si calcoli la lunghezza della curva sulla superficie prodotta dalla composizione della parametrizzazione della
superficie con la curva contenuta in K di equazioni {¢(s) = (s,up 2) : s € [0,27]} e {)(s) = (ug1,s) : s € [0,27]}.

DiscussIONE. . verificare che (x,K) € una superficie regolare significa controllare che K sia la chiusura di un
aperto connesso (il che & vero, visto che K € un rettangolo chiuso), osservare se x sia di classe C' e iniettiva
in int(K) e controllare il rango della matrice jacobiana di x. Controlliamo liniettivita dellapplicazione studiando
cosa possiamo dire di due punti che hanno la stessa immagine

x(uyq,up) = x(wyq, w5) significa (u cos(uq),u; sin(uy), uq) = (wy cos(wy), wo sin(wy), wy)

La terza componente dei vettori ci da immediatamente l'informazione che uy = wy, da cui segue che, se u; =
wy = 0, u; = wy visto che le funzioni trigonometriche producono lo stesso output. Si noti che u; = wy = O
descrive punti sul bordo di K, quindi due punti hanno la stessa immagine solo se sono lo stesso punto e questo
significa che x € iniettiva.

A questo punto possiamo osservare che

Ox(u) = (—u; sin(uq),u; cos(ug),1) Oy%(u) = (cos(uy),sin(uq), 0)

[O1x A Byx](u) = (—sin(uq), cos(uy), —u5)

eil fatto che || Bx A Byx||% = 1+ u% per ogni (uy,u;) € K conclude la verifica.
ii. Lortogonalita richiesta consiste nella seguente semplice verifica

Ox(u) - Bx(u) = (—uy sin(uq),u; cos(uy), 1) - (cos(uy),sin(uq), 0) = —u; sin(uy) cos(uq) + u; sin(uq) cos(ug) = O

Per calcolare la lunghezza delle curve ricorriamo alla caratterizzazione tramite integrale del modulo del vettore
tangente. Poiché

%x(qﬁ(s)) = (—ug 2 sin(s),ug 7 cos(s),1)

abbiamo che

d
Ex(d)(s))

s 12 s
ds = L [uév2 sinz(s) + u(z)’2 cosz(s) + 1] / ds = L Ué,z +1ds = 7r[uéy2 + 1]1/2

e analogamente

™ d
L= [ Gxwis

2 ds = Jo |[(cos(ug,). sin(ugy), 0)||, ds =

Come era da aspettarsi le due curve hanno lunghezze differenti, pur essendo prodotte da curve di ugual lun-
ghezza nel piano delle variabili u, questo perché la superficie curva differentemente le linee con u; o u; co-
stante. .

ESERrcIzIO 6. Data lapplicazione
@(u) = (ug,up,auq +buy) conucKs= [O,7r]2

si provi che

i. (¢, K) é una superficie regolare,

ii. Im(¢) é un(a porzione di) piano affine in R3,

Infine si calcoli la lunghezza della curva sulla superficie prodotta dalla composizione della parametrizzazione della
superficie con la curva contenuta in K di equazioni {u(s) = (s,s) : s € [0, 7]}.
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DISCUSSIONE. i. K & un quadrato, chiusura dellaperto connesso (0, )2, mentre la prametrizzazione ¢ & iniet-
tiva (lo € considerando le sue prime due componenti) e di classe C*°, essendo descritta tramite funzioni
polinomiali, quindi dobbiamo verificare la condizione di indipendenza lineare dei suoi vettori tangenti

O1¢(u)=(1,0,a) 9,0(u) = (0,1,b) da cui [O1¢ A Dy@l(u) = (—a,—b,1) = O

quindi possiamo concludere che (¢.K) € una superficie regolare per ogni valore dei parametri realia e b.
ii. Im(¢) € una porzione di un piano. Questa affermazione é suggerita dal fatto che i vettori tangenti sono
indipendenti dal punto della superficie che si consideri, in ogni caso osserviamo che O € Im(¢), e che Im(¢) C
{)\(1,0,2)+1(0,1,b) : (A, 1) € R?} quindi la nostra superficie & una parte del piano (sottospazio vettoriale di IR3)
generato dai vettori 0y¢ e 0y ¢.
iii. La cura (regolare) che si ottiene componendo le due parametrizzazioni ha equazioni

x(s) := ¢(u(s)) = (s,s,as +bs) consec[O,n] evale x'(s)=(1,1,a+b)

da cui ricaviamo che
vy s
L=J ||x’(s)||ds=f V2+(a+b)2ds = T2+ (a+b)?
0 0

ricordando la caratterizzazione della lunghezza di una curva. n

ESERCIzIO 7. Data la curva ¢(t) = (acos(t),bsin(t)), cont € [0,27] ed a,b > O, la cui immagine é contenuta in RZ,
si provi che la curva é regolare e che divide il piano in due aperti connessi, uno limitato e uno non limitato.

DiscussioNE. Verificare che lapplicazione definisce una curva regolare é relativamente semplice: le compo-
nenti della funzione vettoriale sono di classe C*°, inoltre vale
@' (t) = (—asin(t),bcos(t)) e ||d>’(t)|\§ = aZsin2(t) + b% cos(t) > min{a?,b?} > O per ogni t

Inoltre lapplicazione ¢ € iniettiva per t € (0,2m) e vale ¢(0) = ¢(27) = (1,0), quindi abbiamo a che fare con
una curva semplice e chiusa. Possiamo anche mostrare che il sostegno della curva € esattamente lellisse di
semiassi a e b con centro di simmetria in O, infatti le componenti di ¢ soddisfano la relazione

XZ XZ
—12 Y cosz(t) + sinz(t) =1 per ogni t
a? p?

eperognix € E= {x12/a2 + x%/b2 =1} C RZ si ha che esiste un unico tg tale che

X1 X .
(31 EZ) = (y1.y,) = (coslto).sin(ty))  conto € [0,2)
Quindi possiamo introdurre la funzione H € C*°(RR2) definita come

x2  x2
H(X)=H(X1,x2)=[a—12+b—§—1] tale che E={xe [RZ:H(x)=O}

A questo punto abbiamo che i due seguenti insiemi
A= {x cR?: H(x) < O} =H! ((—00,0)) e B:= {x cR2: H(x) > O} =H! ((0,+00))

sono aperti (in quanto controimmagine, tramite una funzione continua, di una semiretta aperta).
Linsieme A & connesso perché € un insieme convesso (si tratta della regione racchiusa dellellisse E), inoltre &
limitato visto che

x €A se e solo se <1 e poiché 0< < —=+—=<1

2 2
X X
a2
a2 p2

Pe
N[—= N
x
NN
x
NN

SDN | —‘><N

a‘ b

b
segue che A C B(O,r), per esempio, conr = (a+b).

Per quanto riguarda B é facile vedere che non é limitato, infatti i punti della successione {(k,0)} appatengono
definitivamente a B e la loro norma diverge. Per verificare che B € connesso € possibile ragionare come segue:
siano x,y € B e si consideri il percorso costituito dal segmento che unisce x al punto X = (a + b)x/||x||5, unito
allarco di circonferenza che unisce X a y = (a + b)y/||y||, per poi percorrere il segmento di estremi y ey, tale

percorso € contenuto in B e i punti x e y sono generici, questo prova che B & connesso. |
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Esercizio 8. Date le seguenti coppie di funzioni e domini

x(u,w) = (u,w,au + bw) (u,w) € K=B(O,1)
y(u,w) = (cos(w),sin(w),u) (u,w) e K=[0,27] x [-1,1]

Z(u,w) = (u,w,uzwz) (u,w) € K=[0O, 1]2

r(u, w) = (cos(u), sin(u) cos(w), sin(w) sin(u)) (uw) eK= [0,7r]2

s(u,w) = (wcos(u), wsin(u), w) (u,w) € [0,27]?

dove a,b € (0, +c0), si risponda alle seguenti questioni

i. si verifichi che si tratta di superfici regolari,

ii. si scriva esplicitamente il versore tangente n(u, w),

iii. si calcolino i coefficienti della prima forma quadratica fondamentale.

DIScUSSIONE. Lo svolgimento dellesercizio non sara particolarmente corto, quindi risponderemo alle tre
questioni affrontando le parametrizzazioni nell'ordine proposto dal testo.

Osserviamo subito che x € iniettiva, visto che le prime due componenti dell'immagine sono esattamente le
componenti dell'input, & anche facile sincerarsi che tali componenti sono funzioni C*°, in quanto polinomi,
quindi provare che (x, K) descrive una superficie regolare significa mostrare che il seguente prodotto vettoriale
non & mai nullo (almeno) in int(K)

Ox(u,w) =(1,0,a) 9y%(u,w) = (0,1,b)
Ox(u,w) A Oyx(u,w) = (—a,—b,1) = O
dunque x € una superficie regolare. Il versore normale indotto dalla parametrizzazione &

n(uw) = (O1x A Byx)(u, w) _ (—a,—b,1)
U oxABxllz  [a2+ b2+ ]2

mentre i coefficienti della prima forma quadratica fondamentale sono
E(u,w) = 0yx(u,w) - O1x(u,w) =1+ a? F(u,w) = O1x(u,w) - 9x(u,w) = ab
G(u,w) = 9px(u,w) - I x(u,w) =1+ b2

Riguardo a y osserviamo che

cos(wy) cos(w,)
y(uy, wq) = y(up, wy) significa sin(wy) [=| sin(wy)
Uy Uy

dalla terza equazione otteniamo che u; = u;, mentre la prima implica lalternativa o wy = w; o wy = 21 — wj.
Poiché la seconda equazione ci fornisce lalternativa o wy = wy 0 wy = m—w>, possiamo concludere che w; = w; e
questo significa che lapplicazione y produce la stessaimmagine solo se i puntiin partenza sono uguali, e questo
significa che y & iniettiva. Che le componenti di y siano funzioni di classe C* & evidente, per cui calcoliamo
subito il prodotto vettoriale dei vettori tangenti

Oyy(u,w) = (0,0,1) 9,y(u,w) = (—sin(w), cos(w), 0)

Oy(u,w) A 99x(u,w) = (— cos(w), —sin(w), 0) = O

e possiamo concludere che (y, K) definisce una superficie regolare il cui versore normale &

(Bry A By)(u,w)  (— cos(w), —sin(w), 0) .
W) = = =(— ,— ,0
n(u, w) 150y 780yl [cos2(w) +sinZ(w)]72 (— cos(w), —sin(w), 0)

mentre i coefficienti della sua prima forma quadratica fondamentale sono

E(u,w) = 3yy(u,w) - Oyy(u,w) =1 F(u,w) = 81y(u,w) - B,y(u,w) =0
G(u,w) = B7y(u,w) - Fpy(u,w) =1
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L'applicazione z ha tutte le componenti polinomiali ed & iniettiva per lo stesso motivo per cui € iniettiva x,
inoltre abbiamo

Oz(u,w) = (1,0,2uw?) 9,z(u,w) = (0,1,2u?w)
Oz(u,w) A 9yx(u,w) = (—2uw2, —2u2w,1) =0
quindi (z,K) definisce una superficie regolare, il suo versore normale &
n(uw) = (—2uw?, —2u?w,1) ) (—2uw?, —2u2w,1)
[1+ 402wt + 4U4W2]1/2 [1+ 4u2w2(u2 . WZ)]VZ
i coefficienti della prima forma quadratica fondamentale della superficie sono
E(u,w) = H81Z(U,W)H% =1+ 4uw? F(u,w) = 1y(u,w) - 85y(u,w) = 43w3

Gu,w) = |8,y (u,w)||3 = 1+ 4utw?

Le componenti di r sono prodotti di funzioni C°*°, quindi la regolarita delle funzioni non € un problema, mostria-
mo (come sopra) liniettivita dellapplicazione provando che due punti che hanno la stessa immagine devono
essere lo stesso punto.

cos(uy) cos(uy)
r(uq, wy) = r(uy, wy) equivale a sin(uq) cos(wq) [=] sin(uy)cos(w;)
sin(uq) sin(wy) sin(u;) sin(w,)

Essendo la funzione cos strettamente decrescente in (O, ), segue subito che u; = u;, per mostrare che wy = w,
si ragiona come abbiamo fatto per la superficie y. Calcoliamo i vettori tangenti della parametrizzazione per
studiare il rango della matrice jacobiana dir

Oyr(u,w) = (— sin(u), cos(u) cos(w), cos(u) sin(w)) 9,1r(u,w) = (0, — sin(u) sin(w), sin(u) cos(w))
[Byr A Br(u, w) = (sin(u) cos(u), sin?(u) cos(w), sin?(u) sin(w)) = O

poiché (u,w) € int(K) = (O, )2 possiamo affermare che sin(u),sin(w) = O in int(K) e non & possibile che sin(w)
e cos(w) siano nulli contemporaneamente, quindi (r,K) definisce una superficie regolare. Calcoliamo il versore
normale all'immagine r(K)

) (sin(u) cos(u), sinZ(u) cos(w), sin(u) sin(w))
[sin?(u)]"2

ricordando che sin(u) > O per ogni u € (O, ). | coefficienti della prima forma quadratica fondamentale della
superficie r(K) si calcolano come nei casi precedenti

E(u,w) = H81r(u,w)||% =1 F(u,w) = 9yr(u,w) - 95r(u,w) =0
G(u,w) = [|85r(u,w)|3 = sin?(u)

Concludiamo studiando lapplicazione s. Notiamo subito che la funzione ha omponenti regolarissime ed é
iniettiva, visto che

wy cos(uq) w, cos(us)
s(uq, wy) = s(up,wy) e [ wqsin(uy) ]=[ w, sin(uy) ]

Wi W

n(u,w)

= (cos(u), sin(u) cos(w), sin(u) sin(w))

e subito otteniamo wy = wy, luguaglianza della variabile u segue (per ogni w = O) dallosservazione sulle funzioni
trigonometriche fatta nellanalisi di y. Riguardo ai vettori tangenti possiamo scrivere

Oyr(u,w) = w(—sin(u),cos(u), 0) O,r(u,w) = (cos(u), sin(u),1)

[O4r A O5r](u, w) = w(cos(u),sin(u),—1) = O
per w = O. Calcoliamo il versore normale alla superficie

n(u,w) = w(cos[(;‘l,;l]?/(zu),—1) = \%(cos(u),sin(u),—ﬂ

Terminiamo calcolando i coefficienti della prima forma quadratica fondamentale della superficie

E(u,w) = w2 F(u,w)=0 G(u,w) =2
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Queste superfici ritornerano in esercizi futuri...
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