Esercizi di CALCOLO e BIOSTATISTICA (Vettori e matrici)

ESERCIZIO 1. Dati i vettori $\mathbf{v_1} = (3,3), \mathbf{v_2} = (-1,1/2) \text{ e } \mathbf{v_3} = (0,2)$

- a) per quale valore di c > 0 il vettore cv_1 ha modulo uguale a quello di v_2 ?
- b) Trovare il vettore combinazione lineare $\mathbf{w} = -\mathbf{v_1} k\mathbf{v_2} + 2k\mathbf{v_3}$ con $k \in \mathbf{R}$, e dire, motivando la risposta, se esistono valori di k per i quali \mathbf{w} é perpendicolare a $\mathbf{v_1}$.
- c) Trovare, se esistono, i valori di k per i quali il vettore $\mathbf{v_1} k\mathbf{v_2}$ ha la stessa direzione del vettore $2\mathbf{v_3}$.

ESERCIZIO 2. Scrivere l'equazione della retta che passa per il punto $P_0 = (1, 2)$ ed è perpendicolare al vettore v = (1, 2). Dopo aver trovato le coordinate del punto I di intersezione della retta con l'asse y, scrivere le coordinate del punto estremo del vettore w che è applicato in I, ha la stessa direzione della retta, lo stesso modulo di v e appartiene al primo quadrante.

ESERCIZIO 3. Dati il vettore v = (1, 2) e la matrice A nella forma:

$$A = \left(\begin{array}{cc} k & -1\\ 1 & -4k \end{array}\right)$$

Scrivere esplicitamente il prodotto $A \cdot w = v$, con w = (x, y). Esistono valori di k per i quali il problema **non** si puó risolvere? (Motivare la risposta)

Trovare almeno un vettore w perpendicolare a v ed avente modulo 1.

ESERCIZIO 4. Calcolare il determinante delle matrici seguenti

$$A = \left(\begin{array}{cc} 3 & -2 \\ -1 & 1 \end{array}\right) \quad B = \left(\begin{array}{cc} 3 & -2 \\ -1/3 & 2/9 \end{array}\right) \quad C = \left(\begin{array}{cc} 3 & -2 \\ -1 & 2 \end{array}\right) \quad D = \left(\begin{array}{cc} -6 & 0 \\ 0 & 1 \end{array}\right).$$

Nel caso in cui il determinante dovesse essere zero, individuare quali vettori colonna hanno la stessa direzione.

Trovare la matrice $A^* = A \times B$ e verificare che, se v = (2, -1), si ha $A^* \times v = A \times (B \times v)$. Infine, dopo aver verificato che $A \times B \neq B \times A$ provare che $A^* \times v \neq B \times (A \times v)$.

ESERCIZIO 5. Dato il sistema di equazioni lineari

$$\begin{cases} -x/2 - y = 1\\ x + 2y = 2 \end{cases}$$

dire per quale matrice A dei coefficienti, per quale vettore w, termine noto, il sistema si scrive nella forma $A \cdot v = w$, dove v = (x, y) é il vettore incognito.

Senza risolvere il sistema, si puó dire, **motivando la risposta**, se ammette una, nessuna o infinite soluzioni? Verificare la risposta risolvendo il sistema.

ESERCIZIO 6. Una popolazione P di animali viene divisa in "giovani" G e "adulti" A e, per studiarne quantitativamente l'evoluzione, si rappresenta la popolazione come il vettore P = (G, A). Quando si inizia lo studio, si ha $P_0 = (50, 50)$, poi si osserva sperimentalmente che dopo il tempo T risulta $P_T = (G_T, A_T) = (35, 45)$.

Si ripete l'esperimento nelle stesse condizioni e se inizialmente é $P_0 = (60, 200)$, dopo il tempo T risulta $P_T = (140, 54)$. Scrivere in forma di percentuali gli elementi della matrice E per la quale risulta $E \cdot P_0 = P_T$ (E é la matrice di sviluppo della popolazione).

Spiegare a parole sia il significato concreto dell'operazione $E \cdot P_0 = P_T$, sia quello dei valori degli elementi della matrice E.

ESERCIZIO 7. Dopo aver scritto nella forma $A \cdot v = w$ il sistema

$$\begin{cases} -kx/3 + y = 1\\ -x + 3ky = 3 \end{cases}$$

dire, motivando la risposta, se esistono valori di k per i quali il sistema non ha soluzioni oppure ha infinite soluzioni.

ESERCIZIO 8. Un osso di un animale attuale e' schematizzabile con il vettore v = (1, 4/5). In un reperto paleontologico lo stesso osso e' schematizzabile con il vettore V = (3/2, 2/3). Se A rappresenta la matrice di trasformazione dalla forma v in V, quale matrice A^{-1} rappresenta la trasformazione inversa dalla forma V in v?

ESERCIZIO 9. Sono assegnati i vettori del piano $\mathbf{u}=(2,6), \mathbf{v}=(1,a), \mathbf{w}=(2b,b),$ dove a,b sono parametri reali.

- i) Trovare (se esistono) a e b tali che $\mathbf{w} + 3\mathbf{v} = a\mathbf{u}$.
- ii) Dato il vettore $\mathbf{v}=(1,a)$ e il punto P di coordinate $(1,\frac{1}{a})$, scrivere l'equazione della retta ortogonale a \mathbf{v} e passante per il punto P.
- iii) Dati i vettori $\mathbf{u} = (2,6)$ e $\mathbf{v} = (1,a)$ trovare (se esiste) un valore di a tale che il vettore $\mathbf{u}/2 + \mathbf{v}$ sia parallelo a $\mathbf{w} = (4,8)$.

ESERCIZIO 10. Dati i vettori $\mathbf{u} = (4, -3)$ e $\mathbf{v} = (5, 12)$ trovare il coseno dell'angolo compreso tra i due vettori.