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As a final function of various epigenetic mechanisms, chromatin regulation is a transcription control
process that especially demonstrates active interaction with genetic elements. Thus, chromatin structure
has become a principal focus in recent genomics researches that strive to characterize regulatory
functions of DNA variants related to diseases or other traits. Although researchers have been focusing
on DNA methylation when studying monozygotic (MZ) twins, a great model in epigenetics research,
interactions between genetics and epigenetics in chromatin level are expected to be an imperative
research trend in the future. In this review, we discuss how the genome, epigenome, and transcriptome
of MZ twins can be studied in an integrative manner from this perspective.
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1. Identical twins, the same but different

Epigenetics often refers to mechanisms that affect gene expres-
sion and cellular phenotype through changes that do not alter the
DNA sequence. Although pure instances of heritable epigenetic
change are rare, the term typically encompasses changes in gene
expression at the molecular level in response to environmental
cues, even if these changes are ultimately underpinned by DNA
sequence. For example, variations in the level of DNA methylation
have been observed following exposure certain chemicals [1], but
these changes are likely due to protective systems encoded in
the DNA. Here, we refer to such modifications and the mechanisms
that read and write them as epigenetic. The semantics of the word
itself reflect a general problem in disentangling cause and effect of
these modifications. Studying monozygotic (MZ) twins, which are
by definition genetically identical, has long been a gold standard
for separating the epigenetic from genetic. We focus here on how
MZ twins can also be used for integrating epigenetics with
genetics.

As alluded to above, much of what we call epigenetic is actually
dependent on genetic variation, especially in noncoding regions,
which can alter transcriptional processes via epigenetic mecha-
nisms, such as DNA methylation, chromatin remodeling, and small
RNA regulation. In cases such as this, studying the epigenetic
mechanism can facilitate our understanding of the genetic
mechanisms that affect specific phenotypes. At the forefront of this
type of work are large-scale studies integrating genomics and
epigenomics, a trend that has not yet been widely implemented
in MZ twin research, but which offers great promise for moving
towards a holistic view of phenotypic diversity.

Another case in which epigenetics, and particularly epigenetics
in MZ twins, can inform us about genetics is somatic changes to
DNA. Somatic mutations arise throughout the life of the organism,
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and therefore can be pursued with the MZ twin model. Thus,
transcriptional regulation, which is achieved in large part through
epigenetics, can be affected both by genetic variation, or polymor-
phisms, but also by acquired genetic changes, or somatic muta-
tions. As the former will be identical in MZ twins while the latter
may diverge, this model offers unique opportunities for under-
standing how these two classes of mutation impact epigenetic
processes.

Yet another level of variation exists in the form of external stim-
uli, responses to which depend on the interaction between genetic
factors and epigenetic mechanisms. For example, although twins
who share a certain genetic factor may not show differences when
exposed to particular environmental stimuli, twins who share
other genetic factors may exhibit discrepancy in their responses
to the same stimuli, despite identical genetic makeup. In this man-
ner, genetic factors may contribute to differential disease suscepti-
bility between identical twins.

It is this last observation that is the most compelling: the dis-
cordance between MZ twins. Such instances, which we review
here, offer a window into the workings of genetics and epigenetics.
We discuss twin-based, new approaches to disentangle the affects
of nature and nurture and dissect the complex interplay between
genetics and epigenetics at a molecular level. MZ twin models,
when coupled with recently emerging research methodologies,
tools, and resources in genomics and epigenomics, may open up
new research avenues at the interface between genetics and
epigenetics.

2. Integration of genome, epigenome, and transcriptome at the
chromatin level

One of the most important discoveries in genetics in the recent
years is that a majority of DNA variations associated with
particular traits reside in genomic regions that are outside of
protein-coding regions in what was once referred to as junk
DNA. Now it is widely accepted that these noncoding regions con-
tain genetic instructions that control the expression of specific
genes. Noncoding regions account for >95% of the human genome,
and therefore many trait-associated DNA variants may alter regu-
latory elements affecting transcriptional processes rather than the
sequence of the protein itself. These observations have now been
systematically catalogued by ENCODE, the Encyclopedia Of DNA
Elements [2–6]. As of 2012, it was reported that the vast majority
(>80%) of the human genome participates in regulatory function
[5], although there has been some debate about claim [7]. It is
notable that most of the supporting ENCODE data were based on
chromatin accessibility.

Chromatin structure regulates access to the DNA for a wide
spectrum of DNA binding proteins to regulate transcription, DNA
repair, recombination, and replication [8]. As such, the profiling
of open chromatin and histone modifications has been used to
identify the genomic locations of various regulatory regions
including promoters, enhancers, insulators, silencers, etc. [9–12].
Specific combinations of histone modifications can dictate the
increase of decrease of gene expression by modulating the chro-
matin accessibility of transcription factors (TFs). Chromatin
immunoprecipitation followed by genome sequencing (ChIP-seq)
has been widely used to profile histone modifications that mark
active, inactive, or poised promoters or enhancers [13]. Chromatin
accessibility itself can be directly measured via next-generation
sequencing by taking advantage of the fact that accessible chro-
matin is hypersensitive to digestion by DNase I. Similarly, the
DNA binding sites of TFs can be extensively profiled based on the
distribution of sequencing tags derived from DNase I hypersensi-
tive sites (DHSs) [14,15]. The FAIRE-seq (formaldehyde-assisted
isolation of regulatory elements) assay has also been used to
capture accessible chromatin regions in the genome [10,16–20].

Given the well-established biological mechanisms and a large
volume of relevant data, chromatin structure and the histone mod-
ifications that modulate it have been a focal point in studies aimed
at a broader understanding of gene regulatory mechanisms. The
strength of the connection between chromatin and genetic varia-
tion was demonstrated in 2010 when it was shown that linked
chromatin accessibility patterns and underlying genetic polymor-
phisms constitute heritable features [21]. Association mapping of
DHSs was used to understand the genetic basis of chromatin
regulation for transcription control [22]. A similar attempt was
made based on the genetic linkage of FAIRE signals [20].
Importantly, disease-associated regulatory variations identified
through genome-wide association studies (GWASs) are concen-
trated in regulatory DNA marked by DHSs [23]. This study also
identified distant gene targets for hundreds of variant-containing
DHSs that may explain phenotype associations. Histone modifica-
tions also have implications for the interpretation of mechanisms
for disease-associated regulatory variations. Disease variants
frequently coincide with enhancer elements marked with particu-
lar histone modifications specific to a relevant cell type [24].
Large clusters of enhancers called super-enhancers were identified
in a number of human cell and tissue types based on histone
modification profiles, and it was found that disease-associated
variation is especially enriched in the super-enhancers of
disease-relevant cell types [25].

These findings spurred the development of a genetic and epige-
netic fine-mapping method to identify causal variants in linkage
disequilibrium with tag SNPs detected in GWASs [26]. In the con-
text of autoimmune diseases, the predicted causal variants tend to
occur near binding sites for critical regulators of immune function,
but only 10–20% directly alter recognizable transcription factor
binding motifs. In other words, we cannot label trait-associated
genetic variants as causative factors simply because they are
located in a region of accessible chromatin. Causality can be tested
by examining whether chromatin accessibility mechanistically
changes as DNA sequence changes. At heterozygous sites, the ratio
of the reads from each allele is supposed to be close to 1:1 when
sequencing a diploid genome. But if a particular variant changes
the chromatin structure, the allele ratio generated from DHS/FAIRE
sequencing or histone modification ChIP-seq deviates from 1:1
[27] (Fig. 1). A computational model was recently developed to
detect this deviation [28].

A trio of recent reports [29–31] demonstrated that allele-
specific TF binding, which occurs mainly through TF motif disrup-
tion by DNA variants, underlies the allelic imbalance in chromatin
accessibility. This illustrates how genetics drives epigenetics [32]:
DNA variants influence the epigenetic layer of transcriptional reg-
ulation by altering the sequence-specific activity of TFs. Remark-
ably, all three studies found that many of the DNA variants that
led to allelic imbalance in TF binding sites were not associated with
gene expression variation. This may reflect presence of non-
consequential regulatory variations or mechanisms that compen-
sate for the consequences of functional variations. In any case, this
highlights the need to directly examine RNA expression. RNA-seq
also can be used to interrogate allelic effects when RNA reads over-
lap a site that provides a heterozygote call. Allele-specific expres-
sion (ASE) refers to a phenomenon whereby transcriptional
activity at the different alleles of a gene in a diploid genome can dif-
fer considerably [27] (Fig. 1). Genome-wide ASE was investigated
in human, mice and cell lines [33–40]. ASE can be used to identify
causal variants associated with diseases and more importantly, to
further characterize them particularly in terms of the function of
target genes [40,41].
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Fig. 1. Schematic showing allelic imbalance and allele-specific expression (ASE). The activity of the regulatory element (RE) is estimated based on the number of histone
modification ChIP-seq reads. The expression level of the target gene controlled by the RE is measured in the number of RNA-seq reads. The deviation of the allelic ratio from
1:1 at a heterozygous site infers that the RE activity and gene expression level are different at two chromosomes. Allelic imbalance in RE proves its functionality such as
disease-related variant affecting TF binding. The target gene that a RE affects can be predicted by analyzing phased genotypes. In the example above, the C allele at the RE
facilitates activator binding with increased activation histone marks, leading to an amplified ASE of RNA that harbors the A allele from the same chromosome.
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3. Linking genomic, epigenomic, transcriptomic, and
phenotypic variations using MZ twins

The previous section described how genomic and epigenomic
approaches are recently being employed to investigate the connec-
tions between variations in DNA, chromatin, RNA, and phenotype.
MZ twins can shed new lights on these multi-layer interactions
among variations at different levels. Especially, the twins discor-
dant for a particular trait despite identical genetic makeup can
offer a unique perspective.

A bottleneck when describing the usefulness of MZ twins in this
aspect is the scarcity of genome-wide twin chromatin studies. A
majority of twin studies examined DNA methylation, which is
thought of as a primary epigenetic mechanism that could explain
non-genetic discordance between MZ twins [42–47]. Although
DNA methylation does function as an intermediary of genetic
factors associated with particular traits or phenotypes [48], the
cis effect of the underlying DNA sequences on DNA methylation
is not as distinct as on chromatin structure. Only those mutations
that arise at CpG sites can affect DNA methylation. Moreover,
compared to a point mutation that disrupts sequence-specific
binding sites, a methylation change at a single CpG site may exert
weaker effects on chromatin structure and transcription activity.
Furthermore, chromatin structure is central to epigenetic regula-
tion because its modulation is typically the sum of various signals,
including DNA methylation [49–53]. Hence, chromatin studies in
twins can be as valuable as DNA methylation studies.

A genome-wide discordance in chromatin accessibility between
MZ twins was recently shown for the first time based on in-depth
FAIRE-seq for 36 pairs of MZ twins discordant for a particular trait
[54]. However, allelic imbalance in FAIRE-seq and its associated
ASE were not investigated in this work. In another study, twin sam-
ples were used in H3K4me3 ChIP-seq, but only for a technical pur-
pose [55]. RNA-seq was used to understand the phenotypic
discordance of MZ twins [56,57], and one of these studies also
examined genome-wide H3K4me3 and DHS profiles to character-
ize the chromatin environment of differential gene expression
[56]. However, the contribution of genetic factors was not investi-
gated in these studies. According to a study of ASE [58], the extent
of ASE is highly similar between MZ twin siblings compared to
among unrelated individuals. This implies that ASE is strongly
dependent on genetic factors, most likely residing in associated
regulatory elements, the functionality of which can be examined
based on allelic imbalance in DHS/FAIRE/ChIP sequences. There-
fore, many more studies examining genetic variations in regulatory
regions together with those in transcripts are needed in twin
research.

Chromatin architecture research is playing an instrumental part
in explaining regulatory roles of noncoding variants discovered in
GWASs [23–26]. Finding functional variants and the corresponding
affected chromatin site(s) and target gene(s) is made possible
through allelic imbalance and ASE (Fig. 1). If a chromatin region
affected by a causal variant that is associated with a particular dis-
ease shows a significant difference between discordant MZ twins,
the chromatin site can be thought of as a causal locus that affects
the phenotype of the twin siblings. This analysis is important
because simply identifying distinct chromatin regions in bulk can-
not differentiate cause and effect. The expected results of this type
of analysis are illustrated in Fig. 2. GWAS fine mapping can be per-
formed by identifying imbalanced variants in DHS/FAIRE/ChIP
sequencing that are in linkage disequilibrium with reporter SNPs.
Associated ASE can also be identified from RNA-seq data. If the
identified chromatin regions and transcripts exhibit disparity in
MZ twins discordant for the same disease associated with the
GWAS variants, they can be regarded as causal molecular events
underlying non-genetic phenotypic discordance of the twins.
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To test this idea, we performed a case study (unpublished work)
based on RNA-seq and histone modification (H3K4me1, H3K4me3,
H3K27me3, and H3K27ac) ChIP-seq data in lymphoblastoid cell
lines (LCLs) from 24 different human subjects [29–31]. We first
identified imbalanced variants, that is, heterozygous variants
whose allelic ratio was >15% and <85% from >8 sequence reads,
and the binomial P value <0.05 [27,41], from the RNA-seq and
ChIP-seq data separately. On the other hand, we collected 45,473
single nucleotide polymorphisms (SNPs) that were in linkage dise-
quilibrium with 1097 GWAS SNPs associated with autoimmune
disease at r2 >0.8 [59]. These SNPs were overlapped with the
imbalanced ChIP-seq variants we identified above. For the samples
whose phased genotype data were not available, we used the phas-
ing information from the 1000 Genomes Project [60] to identify the
matched, imbalanced RNA-seq variants in the same phase (|r|
> 0.8) [61]. For the samples whose phased genotype data were
available, we leveraged long-range chromatin interactions pre-
dicted in LCLs [62] to phase-match the disease-associated SNPs
in distal transcriptional enhancers with the RNA-seq ASE genes.
Finally, we identified 94 pairs between the GWAS-associated
imbalanced ChIP-seq variants and the imbalanced RNA-seq vari-
ants being in the relationship whereby the alleles increasing the
active histone marks (H3K4me1, H3K4me3, and H3K27ac) were
in the same phase with the more abundant RNA-seq alleles, and
the variants increasing the repressive histone mark (H3K27me3)
were associated with the less expressed RNA-seq alleles.

These 94 pairs overlapped 290 open chromatin loci whose
FAIRE-based accessibility was >2-fold different between twin sib-
lings across 36 pairs of the MZ twins that were discordant for
immunological traits, mostly involving allergic symptoms [54]. In
one of these cases, RNA-seq alleles from the ALCAM (activated
leukocyte cell adhesion molecule) gene was associated with
ChIP-seq alleles from a H3K27ac peak. The activating H3K27ac
allele, G, was in the same phase with the activated RNA allele,
T. Chromatin accessibility at the H3K27ac locus was significantly
different between five pairs of discordant twin siblings. The
H3K27ac variant was in linkage disequilibrium with a tag SNP
identified from a GWAS as a risk locus for an immune disease.
The allelic imbalance pattern indicates that H3K27ac activity is
potentially associated with the disease trait. This locus acts as a
distal enhancer to an immune-related gene, and more RNA is
expressed from the chromosome that has a higher enhancer
activity. In five out of 36 immunologically discordant twin pairs,
the enhancer locus shows differential chromatin accessibility.
Therefore, the differential expression of the relevant gene between
the twin siblings may be regarded as a causal molecular event that
drives phenotypic discordance between them. Without such
additional evidence from genetic studies, most of epigenetic or
gene expression differences should be viewed as secondary conse-
quences of disease onset and progression. This illustrates how cau-
sal epigenetic variation between MZ twins can be inferred by
leveraging trait-associated genetic variants.
4. Understanding regulatory roles of somatic mutations using
MZ twins

Somatic DNA changes, which can occur at twinning or during
later developmental stages, can trigger genetic differences in MZ
twins, in some cases causing discordance for disease susceptibility
[55,56]. When considering changes in DNA regardless their heri-
tability, MZ twins offer an opportunity to observe the effects of
somatic mutations in an organism. It has been shown that somatic
mutations significantly affect discordance of chromatin accessibil-
ity in twins and that the levels of chromatin discordance vary
according to density and location of mutations inside the accessi-
ble chromatin region [54]. Furthermore, somatic mutations that
disrupt TF binding sites particularly increase chromatin discor-
dance, and most importantly, chromatin discordance between
twins leads to differential gene expression [54].

Along with these findings, examples that illustrate allelic imbal-
ance due to somatic mutation were also found [54]. However,
unlike polymorphisms, somatic mutations can occur in later stages
of organ development or cell differentiation, and, in this case, only
a small proportion of cells exhibit the mutations. This phenomenon
is called somatic mosaicism [57–59]. Somatic mosaicism can only
be found by high-depth sequencing. It needs to be further exam-
ined whether the observed allelic imbalance due to somatic muta-
tions [54] is a consequence of variation in chromatin accessibility
or simply that of somatic mosaicism.

Another study [63] genotyped 66 healthy MZ twins at >500,000
polymorphic sites and tested a selected subset of candidate muta-
tions for somatic mosaicism by targeted high-depth sequencing.
Based on allelic ratios at the mutation sites in heterozygous twins,
the authors concluded that there is little evidence of mosaicism
and that these mutations most likely occurred at the twinning,
during early embryonic development, or in somatic stem cells or
progenitor cells. This work provides evidence that early somatic
mutations do occur and can cause differences in genomes between
otherwise identical twins. Somatic mutations arising in progenitor



Fig. 3. Illustration of a possible mechanism by which shared genotypes at TF binding sites create chromatin discordance. Twin pair 1 inherited the red genotype that has a
high affinity for the relevant TF, whereas twin pair 2 inherited the blue genotype, which hinders TF binding. Environmental differences cause differential histone
modifications (red marks) between siblings. This epigenetic variation is manifested by differential TF binding in twin pair 1 (chromatin accessibility signals in green on top)
but masked by low TF binding in twin pair 2 (chromatin accessibility signals in red on top).

54 K. Kim et al. /Methods 102 (2016) 50–56
cells are especially important because the associated chromatin
states can be continuously transmitted to daughter cells in a sim-
ilar manner as chromatin status altered by genetic polymorphism
is maintained in offspring [21]. Further studies are needed to
assess the degree of DNA changes in MZ twins due to environmen-
tal or stochastic differences and whether these DNA changes result
in discordant phenotypes through gene expression altered by
epigenetic variations at the chromatin level.

Unlike those of polymorphisms, regulatory roles of non-coding
somatic DNA changes have not been studied extensively. MZ twins
provide an excellent model not only to study the general properties
of naturally occurring somatic mutations in living organisms but
also to understand the functional effects of a majority of those
changes arising in non-coding regions. In the same manner with
polymorphisms, chromatin structural changes can be used as a
barometer to infer the functionality or causality of these acquired
DNA changes.
5. The interplay between genetic and environmental factors
induces MZ twin discordance

MZ twins provide a unique opportunity to detect various types
of gene-environment interactions, in which different genotypes
respond differently to the same environment. The concept of ‘‘vari-
ability genes” as opposed to ‘‘level genes” was introduced based on
the observation that intrapair variance for cholesterol levels, not
the levels themselves, in MZ pairs who were blood group NN
was significantly higher than in MZ pairs who were blood group
MM or MN [64]. Level genes affect the mean expression of a trait
(e.g., cholesterol level) and are the usual target of association stud-
ies. By contrast, variability genes may have no effect on the mean
expression level but affect the variance of expression. In a follow-
up study that examined the Kidd blood group locus in 142 MZ twin
pairs, the co-twin difference in total cholesterol was lower in MZ
pairs who were heterozygous for the locus or homozygous for
the Jk(b) allele than in those who were homozygous for the Jk(a)
allele [65]. In another study [66], the cholesteryl ester transfer pro-
tein locus was identified as the functional variability gene with
respect to total and LDL cholesterol variability. These findings indi-
cate that variability genes act by influencing phenotypic sensitivity
to particular environmental stimuli. In the above example, the
reduction of serum cholesterol in response to a low fat diet was
greatest in those who were blood group NN and least in MN
heterozygotes [67]. This explains the intrapair variance for choles-
terol in MZ twins of blood group NN [64]. In agriculture, much of
the increase in crop yields can be attributed to selection for genes
able to respond to increased fertilizer doses rather than genes with
higher yields in the average environment.

A previous study [54] attempted to identify variability genes
that increase chromatin discordance between twin siblings. To this
end, array-based genotyping was performed across the genomes of
36 pairs of MZ twins, searching for genetic polymorphisms that are
shared by twin siblings and increase co-twin differences in chro-
matin accessibility. This approach should identify cases in which
certain chromatin sites are more differentially accessible between
twin siblings who share a particular allele than between other sib-
lings with different alleles. Quantitative trait loci (QTL) mapping
was performed by associating the intra differences in FAIRE signals
with the genotypes shared by each twin pair. At an FDR of 0.01, a
total of 10,195 local (cis) associations were identified for 1325
chromatin loci. A possible mechanism by which the variability
genotypes may create chromatin discordance is illustrated in
Fig. 3. A twin pair (twin pair 1 on the left) shares the red genotype
that increases affinity for the relevant TF, while another twin pair
(twin pair 2 on the right) carries the blue genotype that decreases
affinity for the TF. Intrapair differences in chromatin states can be
caused by non-genetic factors that reflect different histories of
environmental exposure between twin siblings. In the illustration,
active histone modifications (red marks) are found more
frequently in one sibling than in the other. These epigenetic
differences will be manifested by differential TF binding in twin
pair 1 in the form of differential chromatin accessibility (green
signals on top) but are masked by genetically low TF binding to
the TFBS in twin pair 2 (red signals on top). In addition to his-
tone modifications, the activity of chromatin regulators or the
expression levels of TFs can serve as the epigenetic differences that
reflect different histories of environmental exposure between twin
siblings.

This illustrates that the previously proposed concept of a vari-
ability gene may be prevalent in the human genome, potentially
affecting various phenotypes beside cholesterol levels. Neverthe-
less, we are unsure of how much of the examined trait, in this case,
the chromatin accessibility, influences physiological phenotype
through transcription processes. In the previous section, we intro-
duced methods to predict causal chromatin differences that can
affect actual phenotype discordance by using DNA variants discov-
ered by GWAS fine-mapping. If these functional GWAS variants
exist at consistently discordant chromatin loci in multiple twin
pairs, like those that can be identified through our QTL mapping
approach, it will be a superb example of applying a twin model
to study disease mechanisms based on interactions between
genetics and environment. In particular, it will be a powerful
explanation for the missing heritability shown in GWASs.
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6. Concluding remarks

There have been multiple lines of research that study the phe-
notypic contribution of non-genetic factors such as the environ-
ment by using MZ twins. However, most of this research has
focused on DNA methylation. DNA methylation that occurs on
the parental strand is replicated in the daughter strand. Because
of the well-known mechanisms by which DNA methylation is
maintained during cell division, twin researchers have been focus-
ing on DNA methylation as the major epigenetic mechanism. How-
ever, recent studies reveal mechanisms by which chromatin
configuration including histone modifications can be transmitted
during cell division independently of DNA methylation [68]. More-
over, chromatin structure coupled with somatic changes to under-
lying DNA can be permanently inherited by daughter cells, in a
similar manner that genetic polymorphisms render chromatin
accessibility a heritable feature [21]. In addition, in this review,
we demonstrated that finding the mechanisms of actions of DNA
variants discovered in GWASs by leveraging multi-omics data is
applicable to MZ twin models. When applying this principle to
genome-wide, transcriptome-wide, and epigenome-wide associa-
tion studies using a large MZ twin cohort, a more systematic
research of gene-environmental interaction can be expected.
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