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ABSTRACT Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of
investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of
Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery
of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute
in leading ways. This review article summarizes the large body of yeast studies in this field.
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MOLECULAR biologists today take it for granted that
chromatin structure plays critical roles in regulating

transcription. However, there was a time, �25 years ago,
when most molecular biologists who studied gene expres-
sion were skeptical of any important role for chromatin
structure. Back then, the primary evidence that chromatin
might be important for gene expression came from studies
showing that actively transcribed genes were more nuclease
sensitive than untranscribed genes. Other studies suggested
that histone acetylation might affect transcription. However,
it was not possible to determine the causal relationship be-
tween these chromatin differences and transcription. At the
same time, most investigators in the field of eukaryotic tran-
scriptional regulation were focused on the exciting analysis
of DNA-binding proteins, general transcription factors, and
promoter regulatory elements. In general, the idea of a reg-
ulatory role for chromatin structure generated a low level of
enthusiasm. Nucleosomes were viewed as a way to package
DNA to fit into the nucleus, but were otherwise seen by most
as static, uninteresting structures.

Over the next 10–12 years, this view changed dramati-
cally with the demonstration that chromatin structure plays

widespread, dynamic, and essential roles in the control of
transcription. This change in perspective came from two
broad areas of investigation. First, as the biochemistry of
transcription advanced, there were improved in vitro systems
to analyze the ability of factors to function on chromatin
templates. These studies made it clear that, in vitro, nucleo-
somes are a barrier for both transcription initiation and elon-
gation. Second, the power of yeast genetics came into play,
leading to remarkable insights into the roles of chromatin
structure in transcriptional control in vivo and showing that
histones play a role in transcription in vivo and in identifying
factors that control transcription by controlling chromatin
structure and histone modifications. These advances, com-
bined with new methods, notably chromatin immunoprecip-
itation and genome-wide approaches, have accelerated the
rate at which we have come to understand the complex ways
in which chromatin controls transcription.

This review covers how yeast studies have contributed to
these dramatic advances in our understanding of eukaryotic
transcription and chromatin structure. We review studies
done primarily in Saccharomyces cerevisiae, covering re-
search from the mid-1980s through 2010. Given the strong
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conservation throughout eukaryotes, we also mention stud-
ies of larger eukaryotes where appropriate. In addition to
the information reviewed in this article, please see three
related chapters on silencing and heterochromatin in S.
cerevisiae and Schizosaccharomyces pombe, on transcription
initiation, and on transcription elongation (Hahn and Young
2011; Buratowski, S., planned YeastBook chapter; Smith, J.,
planned YeastBook chapter). Yeast studies of chromatin and
transcription have been a powerful force in shaping our
current understanding and in framing the questions for on-
going investigations.

How Yeast Has Led the Way: An Overview

The discoveries in yeast that led to understanding that
chromatin structure controls transcription came from two
general areas: directed studies of S. cerevisiae histone genes
and selections and screens to find transcriptional regulatory
mutants.

S. cerevisiae histone genes

In S. cerevisiae, two genes encode each of the four core
histones, organized into four divergently transcribed gene
pairs, the two encoding histones H2A and H2B, and the
two encoding histones H3 and H4 (Hereford et al. 1979;
Smith and Andresson 1983). This low copy number stands
in contrast to Drosophila with �100 copies (Lifton et al.
1978) and mice and humans with .50 copies (Marzluff
et al. 2002). The low copy number in yeast greatly facilitated
the analysis of histone function in vivo. For example, the
initial demonstration that a histone (in this case H2B) is
essential for viability came from the simple experiment of
constructing two yeast strains—one with a mutation in
HTB1 and the other with a mutation in HTB2—crossing
the two strains, and demonstrating that the double mutants
were inviable (Rykowski et al. 1981).

S. cerevisiae also has three other types of histones, encoded
by single-copy genes. Histone H1, encoded by HHO1, appears
to play a limited role in chromatin structure and gene expres-
sion (Patterton et al. 1998; Levy et al. 2008; Schafer et al.
2008; Yu et al. 2009). An essential centromere-specific vari-
ant of histone H3, Cse4 (Meluh et al. 1998), plays an essential
role in centromere function that will be described in Biggins,
planned YeastBook chapter. Finally, an H2A variant, H2A.Z,
encoded by HTZ1 will be discussed below.

Altering histone levels changes transcription in vivo

Studies of altered levels of histone gene expression and of
histone mutants provided some of the first evidence that
chromatin structure is important for transcription in vivo. In
one study, suppressors of the deleterious effect of Ty or Ty
LTR insertion mutations in promoter regions were identified
as mutations in HTA1-HTB1, one of the two loci encoding
histones H2A and H2B (Clark-Adams et al. 1988; Fassler and
Winston 1988). These mutations were shown to suppress
the phenotype of the insertion mutations by altering tran-
scription. In another study, yeast cells were depleted of

histone H4 by use of the glucose-repressible GAL1 promoter
(Han and Grunstein 1988). Upon H4 depletion, the PHO5
promoter became activated under normally repressing con-
ditions. Both studies fit well with biochemical studies in
mammalian systems that supported the idea that nucleo-
somes repress transcription and that activators or general
transcription factors help to overcome this repression (e.g.,
see Williamson and Felsenfeld 1978; Wasylyk and Chambon
1979; Knezetic and Luse 1986; Matsui 1987; Workman and
Roeder 1987; Workman et al. 1991).

Given that modest changes in histone levels can have
widespread effects on transcription (Norris and Osley 1987;
Clark-Adams et al. 1988; Singh et al. 2010), it is not surpris-
ing that yeast histone levels are carefully regulated in vivo.
Histone genes are transcribed in a cell-cycle-specific fashion,
and this regulation is dependent upon several regulators,
including Hir and Hpc proteins (Osley and Lycan 1987; Xu
et al. 1992), Spt10 and Spt21 (Dollard et al. 1994), Yta7
(Gradolatto et al. 2008; Fillingham et al. 2009), Trf4/Trf5
(Reis and Campbell 2007), Asf1 (Fillingham et al. 2009),
Rtt106 (Fillingham et al. 2009), and Swi4 (Eriksson et al.
2011). Interestingly, many of these factors (Hir, Hpc, Asf1,
Rtt106) also function as histone chaperones, described in
the section on histone chaperones, strongly suggesting that
histone gene transcription is regulated by free histone levels.
There are also post-transcriptional mechanisms that control
histone levels in yeast, including dosage compensation
(Moran et al. 1990), gene amplification (Libuda and Win-
ston 2006), and protein stability (Gunjan and Verreault
2003; Singh et al. 2009; Morillo-Huesca et al. 2010b).

Histone mutants have revealed new facets about
transcription and chromatin structure

Many classes of histone gene mutants have been isolated,
resulting in a detailed genetic analysis of histone function
in vivo. This type of analysis led to the influential discovery
that the histone H4 N-terminal tail is required for transcrip-
tional silencing (Kayne et al. 1988; Johnson et al. 1990, 1992;
Megee et al. 1990; Park and Szostak 1990; Park et al. 2002).
Other studies addressed specific issues regarding histone func-
tion, such as functional interactions with the chromatin-
remodeling complex Swi/Snf (Prelich and Winston 1993;
Hirschhorn et al. 1995; Kruger et al. 1995; Recht and Osley
1999; Duina and Winston 2004; He et al. 2008), histone–
histone interactions (Santisteban et al. 1997; Glowczewski
et al. 2000), and the requirements for N-terminal lysines
(Zhang et al. 1998). Genome-wide expression analysis of his-
tone mutants has provided broader understanding of the im-
pact of specific histone mutants (e.g., see Wyrick et al. 1999;
Sabet et al. 2004; Dion et al. 2005; Parra et al. 2006; Parra and
Wyrick 2007; Nag et al. 2010). Recently, large-scale studies
have systematically constructed and analyzed hundreds of
mutations in histone genes, providing a comprehensive data
set of the histone residues that are required for normal
transcription in vivo (Matsubara et al. 2007; Dai et al.
2008; Nakanishi et al. 2008; Seol et al. 2008; Kawano
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et al. 2011). A convenient resource for information on
histones and histone mutants is the Histone Systematic Mu-
tation Database (http://baderzone.net/v2/histonedb.html)
(Huang et al. 2009).

Mutant hunts identified the major classes of factors that
control chromatin structure

Several mutant hunts in S. cerevisiae resulted in the identifi-
cation of factors centrally involved in chromatin-mediated
transcription. While the involvement of many of these factors
in the regulation of chromatin structure was not initially un-
derstood, the genetic studies in yeast established that these
factors play critical roles in transcription in vivo. Their sub-
sequent analysis in yeast and larger eukaryotes established

the gene products as playing fundamental and conserved
roles in chromatin-mediated transcription. Some of the key
mutant hunts leading to the identification of histones and
chromatin regulators are summarized in Table 1, with more
information about the gene products provided throughout
this review article. These mutant studies laid the foundation
for our current understanding that chromatin is controlled
throughout eukaryotes by a myriad of factors that control
nucleosome stability, dynamics, and histone modifications.

Analysis of chromatin structure: studies of PHO5 and
other genes

Fundamental concepts concerning nucleosomes and tran-
scription came from pioneering studies of a small set of genes

Table 1 Mutant hunts that identified key factors in chromatin-mediated transcription in S. cerevisiae

Mutant hunt Phenotype Genes identified Protein function

spta Suppression of Ty and LTR insertion
mutations

SPT6/SSN20/CRE2 Histone chaperone

SPT16/CDC68b Histone chaperone, part of FACT
HTA1/SPT11, HTB1/SPT12 Histones H2A, H2B
SPT4, SPT5 Elongation factors; components of DSIF
SPT10/CRE1, SPT21 Regulators of histone gene transcription

adac Resistance to high levels of Gal4-VP16 GCN5/ADA4/AAS104d Histone acetyltransferase; part of the
SAGA coactivator complex

NGG1/ADA2,e ADA3 Required for Gcn5 activity within SAGA
cref Expression of ADH2 in the presence of

glucose
SPT10/CRE1 Regulator of histone gene transcription

SPT6/CRE2/SSN20 Histone chaperone
swig Inability to switch mating type due to

reduced HO transcription
SWI1/SWI2/SWI3 Part of the Swi/Snf chromatin-remodeling

complex
snfh Inability to transcribe SUC2; sucrose

nonfermenter
SNF2/SNF5/SNF6 Part of the Swi/Snf chromatin-remodeling

complex
sini Suppression of swi mutations SPT2/SIN1 Transcription elongation factor

HHT1/BUR5/SIN2 Histone H3
SIN3/RPD1 Cofactor for Rpd3

ssnj Suppression of snf mutations CYC8/SSN6/CRT8k Global repressor; recruits HDACs
SPT6/CRE2/SSN20 Histone chaperone

burl Suppression of SUC2 UAS deletion HHT1/BUR5/SIN2 Histone H3
hir/hpcm Loss of cell-cycle control of histone

gene transcription
HIR1, HIR2, HIR3, HPC2 Nucleosome assembly, transcriptional

regulation
rpdn Suppression of trk1D SIN3/RPD1 Cofactor for Rpd3

RPD3 Histone deacetylase
rtto Reduces Ty transposition RTT106 Histone chaperone

RTT109 H3 K56 HAT

Mutant hunts that identified factors included in this chapter are listed. Several other notable yeast mutant hunts have identified key factors in transcription (e.g., Nonet and
Young 1989; Pinto et al. 1992). For each mutant hunt, we have usually cited only the publication that isolated the first mutants. The factors listed are grouped by function.
Often, more factors than those listed were identified in the cited mutant hunts.
a Winston et al. (1984, 1987); Clark-Adams et al. (1988); Fassler and Winston (1988); Natsoulis et al. (1991).
b Spt16 was also identified as Cdc68 in a screen for start mutants (Prendergast et al. 1990; Rowley et al. 1991).
c Berger et al. (1992); Marcus et al. (1994).
d Gcn5 was initially identified as Aas104 (Penn et al. 1983) and later renamed GCN5 when new nomenclature was implemented for genes involved in general amino acid
control. Gcn5 was initially suggested to be a coactivater in a subsequent study (Georgakopoulos and Thireos 1992) and then later shown to be a HAT (Brownell et al. 1996).

e Ada2 was also identified as Ngg1 (Brandl et al. 1993).
f Denis (1984); Denis et al. (1994).
g Stern et al. (1984); Breeden and Nasmyth (1987).
h (Carlson et al. (1981); Neigeborn and Carlson (1984).
i Sternberg et al. (1987).
j Carlson et al. (1984); Neigeborn et al. (1986).
k SSN6 was initially identified as CYC8 (Rothstein and Sherman 1980), and it was also identified as CRT8 (Zhou and Elledge 1992).
l Prelich and Winston (1993).
m Osley and Lycan (1987); Xu et al. (1992).
n Vidal and Gaber (1991); Vidal et al. (1991).
o Scholes et al. (2001).

354 O. J. Rando and F. Winston

http://baderzone.net/v2/histonedb.html


in yeast. In particular, nuclease studies of the PHO5 and
GAL1–10 genes (reviewed in Lohr 1997 and described below)
established the principle that nucleosomes are found over
promoters when the genes are repressed, blocking access of
transcription factors to their binding sites, and that nucleo-
somes are altered or removed upon transcriptional induction.
Subsequent studies with PHO5 helped to establish the causal
relationship between chromatin structure and transcription as
well as many other aspects of chromatin-mediated transcrip-
tion initiation. These studies are summarized below.

PHO5 and other phosphate-regulated genes are transcrip-
tionally repressed in high phosphate and induced in low
phosphate, depending upon the activators Pho2 and Pho4.
Pioneering work on PHO5, by Hörz and colleagues, provided
several insights into the interplay between nucleosomes and
transcription factors. Their studies showed that positioned
nucleosomes cover the repressed PHO5 promoter, including
one of the two Pho4-binding sites and the core promoter
elements (Almer and Hörz 1986), and that these nucleo-
somes were disrupted upon gene activation in a Pho2/
Pho4-dependent fashion (Figure 1) (Almer et al. 1986;
Fascher et al. 1990). This disruption, initially measured by
nuclease sensitivity, is known to result from complete evic-
tion of the histones (Boeger et al. 2003; Reinke and Hörz
2003; Boeger et al. 2004; Korber et al. 2004). Additional
studies have characterized the nucleosome loss in detail,
providing evidence that it occurs to variable degrees within
a population of induced cells, spreading from the site of
Pho4 binding (Jessen et al. 2006). This and other studies
suggest that variability in promoter nucleosome loss might
contribute to cell-to-cell variability in PHO5 transcription
(Raser and O’Shea 2004; Jessen et al. 2006; Boeger et al.
2008). Analysis of PHO5 has helped to establish the concept
that a large number of chromatin regulatory factors are re-

quired to function, often in redundant fashion, in transcrip-
tional activation, as PHO5 regulation requires many factors
described later in this review, including multiple histone-
modifying enzymes (NuA4, Gcn5, and Rtt109 (Gregory
et al. 1998; Barbaric et al. 2001, 2007; Nourani et al.
2004; Williams et al. 2008), nucleosome-remodeling com-
plexes (Swi/Snf and Ino80) (Gregory et al. 1998; Barbaric
et al. 2001, 2007), and histone chaperones (Asf1 and Spt6)
(Adkins et al. 2004; Adkins and Tyler 2006; Korber et al.
2006).

Around the same time as the early PHO5 studies, studies
of the GAL1–10 genes provided additional support for the
concept that transcriptional activation correlated with dis-
ruption of nucleosomes. The yeast GAL genes are repressed
in glucose and highly induced in galactose, which is depen-
dent upon the activator Gal4. In contrast to PHO5, the re-
gion to which Gal4 binds in the GAL1–10 locus—four sites
spanning �135 bp—was originally believed to be nucleo-
some free (Lohr 1984, 1993; Fedor et al. 1988; Fedor and
Kornberg 1989; Cavalli and Thoma 1993). A recent study,
however, showed that this region instead contains an un-
usual nucleosome, associated with the RSC (remodels the
structure of chromatin) chromatin-remodeling complex,
which protects a shorter fragment than canonical nucleo-
somes (Floer et al. 2010). The GAL1–10 locus also has ca-
nonical nucleosomes positioned over the TATA region and
+1 of transcription, and these nucleosomes are disrupted
upon GAL gene activation, as shown by nuclease sensitivity
studies (Lohr and Lopez 1995) and in vivo footprinting anal-
ysis (Selleck and Majors 1987; Axelrod et al. 1993).

Studies of PHO5 have gone well beyond a correlation
between chromatin and transcription, and provided early
evidence that nucleosomes actually regulate transcription.
For example, histone depletion activates PHO5 even in
repressing conditions (Han et al. 1988), whereas hypersta-
bilizing a PHO5 promoter nucleosome blocks PHO5 induc-
tion (Straka and Horz 1991). In addition, PHO5 promoter
chromatin was shown to be disrupted upon phosphate star-
vation even in the absence of transcription by using a PHO5
TATA mutant (Fascher et al. 1993). Together, these studies
suggest that chromatin changes precede, and are required
for, changes in transcription at PHO5.

A key demonstration of the role for nucleosomes in signal
processing by promoters came with the demonstration that
the affinity of exposed Pho4-binding sites determines the
severity of phosphate starvation required to activate expres-
sion of PHO5, while the affinities of all Pho4-binding sites at
a promoter (both exposed and nucleosome occluded) deter-
mines the extent to which the gene can be activated (Lam
et al. 2008). Thus, even cryptic nucleosome-occluded bind-
ing sites can contribute to the regulation of the downstream
gene. Comparative studies of PHO5 with the PHO8 and
PHO84 genes, also regulated by Pho2 and Pho4, revealed
striking differences, showing that the level of nuclear
Pho4, its binding site occupancy, and the thermodynamic
stability of promoter nucleosomes determine the extent to

Figure 1 Regulation of the PHO5 gene. Shown are diagrams of PHO5
when repressed (top) and induced (bottom). In the repressed state (high
phosphate), four nucleosomes (24 to 21, shown in light blue) span the
PHO5 regulatory region, including nucleosome 22, which blocks one of
the Pho4-bindings sites (red line). Several factors, shown on the left and
described in the text, are required for PHO5 induction, which results in
loss of nucleosomes over the PHO5 regulatory region, the binding of
Pho4, and activation of transcription. The dotted lines around nucleo-
somes 24 and 21 indicate a more variable degree of loss. Upon addition
of phosphate, the nucleosomes reassemble in the PHO5 regulatory region
in an Spt6-dependent fashion, resulting in transcriptional repression.
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which chromatin-remodeling activities are required for tran-
scription at the different promoters (Gregory et al. 1999;
Munsterkotter et al. 2000; Dhasarathy and Kladde 2005;
Hertel et al. 2005; Lam et al. 2008; Wippo et al. 2009). Thus,
several aspects of promoter sequence and chromatin archi-
tecture control the cofactor requirements and induction
dynamics of transcriptional control.

These conclusions fit well with other studies that
addressed the issue of promoter accessibility and the re-
quirement of chromatin-remodeling factors. For example, at
the RNR3 gene, disrupting the nucleosome over the TATA
element by insertion of a dA:dT tract bypassed the require-
ment for the Swi/Snf chromatin-remodeling complex for
activation (Zhang and Reese 2007). Another example came
from a genome-wide study of glucose-induced transcrip-
tional reprogramming, which also concluded that transcrip-
tion factor accessibility, rather than chromatin remodeling,
determined the degree of transcriptional changes (Zawadzki
et al. 2009).

Studies of several other yeast genes have also contributed
to our understanding of how chromatin structure affects
transcriptional control. These genes include SUC2 (Hirschhorn
et al. 1992; Matallana et al. 1992; Gavin and Simpson 1997),
HIS3 (Iyer and Struhl 1995), CHA1 (Moreira and Holmberg
1998; Sabet et al. 2003), RNR3 (Li and Reese 2001; Sharma
et al. 2003; Zhang and Reese 2004, 2007; Tomar et al. 2009),
HIS4 (Arndt and Fink 1986; Devlin et al. 1991; Yu and Morse
1999; Yarragudi et al. 2004), and HSP82 (Gross et al. 1993;
Zhao et al. 2005). Another useful system, established by Simp-
son and co-workers, used an autonomous plasmid with well-
positioned nucleosomes to study the effects of transcription
factors and regulatory sequences on nucleosome position (e.g.,
see Thoma et al. 1984; Roth et al. 1990; Morse et al. 1992).
Overall, intensive study of a set of key inducible genes in yeast
has established the groundwork for understanding how nucle-
osomes affect transcriptional regulation.

Analysis of Chromatin Structure: Genome-Wide
Studies of Nucleosome Positioning in Regulatory
Regions and Coding Regions

Since 2004, genome-wide approaches have been brought to
bear on yeast chromatin: nucleosome occupancy has been
studied using low-resolution DNAmicroarrays (Bernstein et al.
2004; Lee et al. 2004), high-resolution tiling oligonucleotide
microarrays (Yuan et al. 2005; Lee et al. 2007b; Whitehouse
et al. 2007; Zawadzki et al. 2009), and, most recently, �4-bp
resolution high-throughput sequencing (Albert et al. 2007;
Mavrich et al. 2008a; Shivaswamy et al. 2008; Field et al.
2009; Kaplan et al. 2009; Eaton et al. 2010; Tirosh et al.
2010a,b; Tsankov et al. 2010; Kent et al. 2011). In general,
yeast genes can be broken into two broad classes: “growth”
genes such as those encoding ribosomal proteins and “stress”
genes such as genes encoding many cell-wall proteins. These
two types of genes are packaged into distinctive chromatin
structures (Figure 2) and will be treated separately.

Growth genes

Growth genes, also known as “housekeeping” genes, refer to
genes whose expression is highest during rapid growth and
that are often downregulated during stress responses. These
genes encode many of the basic functions involved in rapid
biomass production, such as ribosomal proteins, rRNA-pro-
cessing enzymes, and glycolytic enzymes. The transcrip-
tional machinery responsible for regulation of growth
genes differs in broad ways from that involved in stress
genes on the basis of the mechanism involved in TBP re-
cruitment to promoters (Lee et al. 2000; Basehoar et al.
2004; Huisinga and Pugh 2004). In general, growth genes
are regulated by TFIID rather than by SAGA, lack TATA
boxes, exhibit little noise in expression levels, and are not
affected by deletion of most chromatin regulatory genes
(Basehoar et al. 2004; Newman et al. 2006).

Growth genes are typically characterized by a strongly
nucleosome-depleted region (often called the nucleosome-
free region, or NFR, but see below) found upstream of the
coding region and surrounded by two well-positioned
nucleosomes (Figure 2A). The NFR is the site of the majority
of functional transcription factor-binding sites. These results
partially explain a long-standing dilemma in the transcrip-
tion field: most transcription factors, which bind short (4–10
bp, typically) sequence motifs, bind only a small fraction of
their motifs in the genome. It had long been suggested that
nucleosomal occlusion of a subset of sequence motifs pre-
vents transcription factor binding to the majority of their
potential binding sites. Indeed, a significant subset of se-
quence motifs bound by purified Leu3 in vitro that are not
bound in vivo are covered by nucleosomes in vivo (Liu et al.
2006). Along with the discovery that the majority of bound
sequence motifs for a given transcription factor are located
in the NFR, these results support a general role for nucleo-
some positioning in transcription factor site occupancy.

Figure 2 Chromatin structure over growth genes and stress genes. (A)
Growth genes generally have a nucleosome-free region (red) that does
not contains a TATA box, flanked by a 21 (turquoise) and +1 (blue)
nucleosome. The +1 nucleosome contains Htz1 and the 21 nucleosome
sometimes does. The downstream nucleosomes (yellow) are less well
positioned. (B) Stress genes generally contain a TATA box, and the 21
and +1 nucleosome positions are less well defined, as indicated in the
diagram.
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The location of the transcriptional start site (TSS) for the
majority of budding yeast genes is found �12–13 nucleotides
inside the border of the +1 nucleosome. The reason for this
surprisingly stereotyped location is not currently understood.
Do nucleosomes set the TSS location, or does the preinitiation
complex set the +1 nucleosome location? Furthermore, we
do not currently understand whether the location of the TSS
inside a nucleosome creates a special need for cellular factors
to enable access of transcriptional machinery to the TSS.
However, it is known that the location of the TSS in different
species is quite variable and located upstream of the +1 nu-
cleosome in organisms such as Drosophila melanogaster, Cae-
norhabditis elegans, Candida albicans, and Homo sapiens
(Tirosh et al. 2007; Mavrich et al. 2008a; Schones et al.
2008; Valouev et al. 2008; Tsankov et al. 2010), indicating
that this architecture is not essential for eukaryotic transcrip-
tional control.

Downstream of the well-positioned +1 nucleosome,
nucleosomes become increasingly “fuzzy,” meaning that the
position of the nucleosome varies from cell to cell. This be-
havior is consistent with the “statistical positioning”model for
nucleosome positioning described below. In general, nucleo-
some positioning over coding regions does not correlate par-
ticularly well with transcription rate except at highly
transcribed genes, which exhibit relatively low nucleosome
occupancy with fuzzier nucleosomes and shorter linker
lengths.

Stress genes

In contrast to growth genes, stress genes are transcribed at
low levels in rich media, but are induced under many
different stress conditions (Gasch et al. 2000). Stress genes
are typically regulated by the SAGA complex (rather than
TFIID), have TATA boxes, are characterized by noisy or
“bursty,” expression, and are regulated by a wide range of
chromatin-remodeling factors (Lee et al. 2000; Basehoar
et al. 2004; Huisinga and Pugh 2004; Newman et al.
2006). In contrast to the wide, deep NFR exhibited by most
growth genes, the minority class of TATA-containing stress
genes exhibits more variable promoter architecture (Figure
2B). This is true across different genes (i.e., various stress-
responsive genes that exhibit a range of promoter packaging
states) and also appears to be true across individual cells,
since these promoters often are associated with delocalized
nucleosomes (Ioshikhes et al. 2006; Albert et al. 2007; Field
et al. 2008; Tirosh and Barkai 2008; Choi and Kim 2009;
Weiner et al. 2010). Importantly, transcription factor-bind-
ing sites at TATA-containing promoters are likely to be oc-
cluded by nucleosomes, although rapid exchange of
nucleosomes at some of these promoters (see below) allows
binding sites to be accessed during transient time windows.
This competition between nucleosomes and transcription
factors might be expected to contribute to cell-to-cell vari-
ability (noise) in expression of downstream genes (Boeger
et al. 2008; Tirosh and Barkai 2008). Furthermore, signal-
induced nucleosome eviction, as seen at the PHO5 promoter,

can expose nucleosome-occluded transcription factor (TF)
motifs that are not being exposed by steady-state histone
dynamics in noninduced conditions.

Correlation Between Transcription and
Chromatin Structure

Within the two broad types of chromatin packaging de-
scribed above, changes in transcription of genes are corre-
lated with changes in chromatin structure (Schwabish and
Struhl 2004; Field et al. 2008; Shivaswamy et al. 2008;
Jiang and Pugh 2009; Zawadzki et al. 2009; Radman-Livaja
and Rando 2010; Weiner et al. 2010). In general, at higher
transcription rates, one observes decreased occupancy
(“eviction”) of the 21 nucleosome, increased NFR width
and depth, and closer internucleosomal spacing over coding
regions. At very high transcription rates, nucleosome occu-
pancy decreases over coding regions, and coding region
nucleosomes become increasingly delocalized. This is seen
by comparing highly transcribed genes to poorly transcribed
genes within one growth condition, but has also been ob-
served when genes are activated and repressed in response
to changes in the environment [see above for single-gene
examples and Shivaswamy et al. (2008) and Zawadzki et al.
(2009) for whole-genome examples].

Many of these changes in chromatin structure are likely
caused by chromatin-modulating factors (see below)
recruited by transcription factors or by RNA polymerase II
(RNAPII), but it is also known that RNAPII passage itself can
affect nucleosomes. For example, inactivation of RNAPII
activity using the rpb1-1 conditional mutant causes an in-
crease in occupancy of the 21 nucleosomes (Weiner et al.
2010). More interestingly, there is in vitro evidence that
many RNA polymerases can transcribe through nucleosomal
DNA without evicting histones by displacing the histones
“backward” (Studitsky et al. 1994, 1997; Kulaeva et al.
2007, 2009, 2010; Hodges et al. 2009). This in vitro obser-
vation is consistent with the tighter nucleosome spacing ob-
served over very highly transcribed coding regions and with
the observation that eliminating RNAPII activity results in
nucleosomes shifting forward into coding regions (Weiner
et al. 2010). Importantly, even after eliminating RNAPII,
many of the features (such as the gross differences in pro-
moter nucleosome depletion) of growth and stress genes are
preserved, indicating that the distinctive chromatin packag-
ing of these genes is not simply a consequence of transcrip-
tion levels during active growth.

Cis-Determinants of Nucleosome Positioning

The remarkably uniform and conserved nucleosomal orga-
nization of growth gene promoters begs the question: what
determines nucleosome positions throughout the genome?
Are nucleosome positions primarily “encoded” in the DNA
sequence (cis-factors), or are they a consequence of the reg-
ulatory activity of chromatin remodelers, transcription fac-
tors, and the transcription machinery (trans-factors)?
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As befits a general packaging factor, the histone octamer
has little sequence preference in the classical sense of having
a binding motif. However, the constraint of having to wrap
DNA tightly around a small octamer of proteins means that
the energy required to bend a given genomic sequence can
influence the binding affinity of the histone octamer (Kunkel
and Martinson 1981; Drew and Travers 1985; Iyer and Struhl
1995; Thastrom et al. 1999; Sekinger et al. 2005; Segal and
Widom 2009). Since structural properties of DNA, such as
local bendability, depend on DNA sequence, one might expect
that DNA sequence will at least partially contribute to nucle-
osome positioning. The structure of poly(dA/dT) sequences
differs from the canonical double helix (Nelson et al. 1987)
and is somewhat resistant to the distortions necessary for
wrapping around nucleosomes. Conversely, sequences with
AA/TT/TA dinucleotides spaced at 10-bp intervals are intrin-
sically bendable [or create narrow minor grooves that favor
association with arginines on the histone proteins (Rohs et al.
2009)] and thus bind the octamer with higher affinity than
random sequence (Trifonov 1980; Anselmi et al. 1999; Thas-
trom et al. 1999). Computational studies have shown that
poly(dA:dT) sequences are enriched in NFRs, whereas AA/
TT/TA dinucleotide periodicity is enriched at the location of
the +1 nucleosome in vivo, suggesting that sequence prefer-
ences might contribute substantially to in vivo nucleosome
positioning.

An influential demonstration of the role for sequence in
dictating chromatin structure was the finding that in vitro
reconstitution of the HIS3 promoter into chromatin (using
just histones, DNA, and buffer) recapitulates some aspects of
that promoter’s in vivo chromatin structure, most notably
the promoter’s NFR (Sekinger et al. 2005). Nuclease acces-
sibility at the HIS3 promoter in vivo increased with increas-
ing length of poly(dA:dT) elements at the promoter and
furthermore was correlated with increased transcription of
the HIS3 gene (Iyer and Struhl 1995). Conversely, in vitro
reconstitution of the PHO5 promoter into chromatin does
not recapitulate the in vivo state unless yeast whole-cell
extract is included, showing that only a fraction of the ge-
nome “programs” aspects of its chromatin architecture via
intrinsic sequence determinants (Korber et al. 2004). Re-
cently, intrinsic nucleosome affinity of yeast genomic DNA
has been analyzed genome-wide via in vitro reconstitutions
(Kaplan et al. 2009; Zhang et al. 2009). These studies find
a significant role for antinucleosomal sequences [such as
long poly(dA:dT) elements)] in creating a region of nucle-
osome depletion at promoters, indicating that promoter nu-
cleosome depletion is indeed “programmed” by sequence to
some extent. Other AT-rich sequences are also nucleosome
depleted, and in fact GC% alone explains the majority of the
behavior of the in vitro reconstitution experiments (Tillo and
Hughes 2009).

While the genome clearly encodes intrinsic antinucleo-
somal sequences, the reconstitution experiments provide
little support for a role of intrinsically bendable “pronucleo-
somal” sequences in nucleosome positioning. TSS-aligned

averages of chromatin profiles in vivo reveal a strongly po-
sitioned +1 nucleosome downstream of the NFR (Yuan et al.
2005; Mavrich et al. 2008a,b; Kaplan et al. 2009), whereas
the corresponding in vitro average demonstrates a strong
NFR but no positioned +1 nucleosome (Kaplan et al.
2009; Zhang et al. 2009). Thus, while there is some statis-
tical enrichment of intrinsically bendable DNA that corre-
lates with in vivo nucleosome positions, this appears to
play little role in the gross translational positioning of nucle-
osomes. Instead, it has been suggested (Mavrich et al.
2008a; Jiang and Pugh 2009) that the dinucleotide period-
icity detected in various computational studies contributes
to rotational positioning of nucleosomes and that, instead of
sequence, trans-factors such as the preinitiation complex or
RNA polymerase play the major role in positioning the cen-
ter of the nucleosome to within �5 bp. The direction of
intrinsic curvature would then dictate the precise (1 bp)
nucleosomal position and corresponding major groove helix
exposure.

Altogether, we conclude that nucleosome exclusion by
poly(dA:dT) sequences at promoters acts as a major force in
shaping the chromatin landscape in yeast. Importantly,
many types of genes have open accessible promoters despite
relative depletion of these sequences, and these genes (e.g.,
proteasome genes) appear to have promoter packaging that
depends more strongly on trans-factors such as ATP-dependent
chromatin remodelers (see below) and/or the abundant
transcription factors known as general regulatory factors
(GFRs). The regulatory difference between promoters with
intrinsic and trans-regulated nucleosome depletion is cur-
rently unknown.

Cis-Determinants of Nucleosome Positioning:
Statistical Positioning

A number of hypotheses have been advanced to account for
the mediocre correspondence between intrinsic sequence
preferences for the histone octamer and in vivo nucleosome
positioning. While it is clear that trans-acting proteins are
major determinants of in vivo nucleosome positioning, an-
other likely contributor to the surprising order observed in
budding-yeast nucleosome positions is “statistical position-
ing”(Kornberg 1981; Kornberg and Stryer 1988). According
to this idea, even over sequences without strong nucleosome
positioning behavior, nucleosomes could display uniform po-
sitioning from cell to cell if packaged into relatively short
delimited stretches. One analogy for this behavior is a can of
tennis balls: a single tennis ball in a can may occupy a mul-
titude of positions, but when three balls are placed in the
can, they occupy well-defined positions due to space
constraints.

A great deal of genomic mapping data is consistent with
predictions of the statistical positioning hypothesis. Specif-
ically, delocalized or “fuzzy” nucleosomes are enriched distal
to 59 gene ends (Yuan et al. 2005), and nucleosome fuzzi-
ness increased with increasing distance into the gene body

358 O. J. Rando and F. Winston

http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005728
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005728
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005728
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000000297


(Mavrich et al. 2008a), as expected if 59 gene ends played
the role of boundaries. Furthermore, the extent of nucleo-
some positioning displays a nucleosome-length periodicity.
In other words, a tennis ball can that is three or four balls
long has well-positioned balls, but a can that is 3.5 balls long
displays what appears to be a superposition of different
packaging states (Vaillant et al. 2010). Interestingly, genes
with uniform “crystalline” packaging states tend to be
expressed more consistently (i.e., with less noise) than genes
with multiple packaging states, suggesting that variability in
packaging can affect cellular heterogeneity.

One question that remains concerning statistical posi-
tioning is, what sets the boundaries of packaging units?
Kornberg and Stryer initially proposed that transcription
factors would be the barriers (Kornberg 1981; Kornberg and
Stryer 1988). Yuan et al. (2005) instead suggested that the
antinucleosomal poly(dA:dT)s found at so many promoters
would behave as barriers, whereas Mavrich et al. (2008a)
suggested that the +1 nucleosome is the barrier. Evidence
for each of these exists, and they are not mutually exclusive.
Recently, modeling of statistical positioning via a “Tonks
gas” formalism suggested that positioning in coding regions
was consistent with the +1 nucleosome providing the bar-
rier, whereas the decay of positioning upstream of genes was
more consistent with promoter poly(dA:dT)s forming the
barrier to upstream packaging (Möbius and Gerland 2010).

Evolution of Chromatin Packaging

Recent studies in yeast suggest a broad role for chromatin
organization in regulatory evolution. In now-classic studies
from Brem and Kruglyak, segregants from crosses between
two yeast strains (BY and RM) that differ in expression of
thousands of genes were used to link individual gene
expression levels to either sequence differences at the gene
in question (in cis) or to distant loci (in trans). The majority
of gene expression differences were associated with trans-
acting loci (Brem et al. 2002), and later studies showed that
most of these regulators of gene expression were chromatin-
remodeling enzymes (Brem et al. 2002; Lee et al. 2006).
Conversely, many transcriptional differences between S. cer-
evisiae and Saccharomyces paradoxus are due to linked cis-
polymorphisms, and these polymorphisms are predicted to
affect nucleosome occupancy (Tirosh and Barkai 2008;
Tirosh et al. 2009, 2010a). These results point toward a ma-
jor role for changes in chromatin structure in the evolution
of gene regulation.

The overall extent to which poly(dA:dT) elements are
utilized in an organism’s genome has varied over evolution.
Most fungi examined to date exhibit widespread nucleo-
some-depleted poly(dA:dT) stretches throughout the ge-
nome, but the genomes of Debaryomyces hansenii and S.
pombe have many fewer long poly(dA:dT) stretches and
consequently have shorter NFRs (Lantermann et al. 2010;
Tsankov et al. 2010). Poly(dA:dT) appears to play a role in
promoter chromatin architecture in C. elegans (Valouev et al.

2008), but, conversely, promoters in D. melanogaster and in
mammals are typically GC-rich and are predicted to form
stable nucleosomes (Tillo et al. 2010). Beyond global
changes in AT% at promoters, individual poly(dA:dT)
sequences exhibit relatively rapid length changes over evo-
lutionary time (Vinces et al. 2009), resulting in poly(dA:dT)
expansion/contraction playing a major role in changing
gene expression levels across species. Poly(dA:dT) gain
and loss often occurs coherently at specific types of genes,
and this gain/loss is generally associated with the expected
changes in promoter packaging; i.e., genes that gain/lose
Poly(dA:dT) stretches in a given species become more/less
nucleosome-depleted, respectively (Tirosh et al. 2007,
2010a; Field et al. 2009; Vinces et al. 2009; Tsankov et al.
2010). This can often be observed occurring in a coherent
fashion in large groups of genes that are linked to the spe-
cific physiology of the organism in question. For example,
some fungal species (such as C. albicans) rely primarily on
respiration for energy production, whereas other species (S.
cerevisiae) will preferentially ferment carbon sources before
switching to respiration. In species that primarily respire,
the mitochondrial ribosomal (mRP) genes are coregulated
with growth genes such as the cytosolic ribosomal proteins,
whereas for respirofermentative species, the mRP genes are
instead coregulated with stress genes (Ihmels et al. 2005).
This change in regulatory strategy is accompanied by a se-
quence-programmed change in chromatin architecture with
enrichment of AT-rich sequences upstream of the mRP genes
specifically in respiratory species, resulting in wide and deep
NFRs in these species (Ihmels et al. 2005; Field et al. 2009;
Tsankov et al. 2010). Gain and loss of poly(dA:dT) stretches
occur at more localized points in the Ascomycota phylogeny
as well, as, for example, in Yarrowia lipolytica, whose ge-
nome carries many more introns than most fungal genomes
and programs splicing genes as growth genes via poly(dA:
dT) enrichment (Tsankov et al. 2010).

Trans-Determinants of Nucleosome Positioning:
General Regulatory Factors

A large number of protein complexes play roles in nucleo-
some positioning and occupancy, most of which will be
discussed below. The key role for trans-acting factors as a gen-
eral class can be appreciated in a recent study showing that
ATP-dependent reconstitution of the yeast genome into nucle-
osomes using yeast extracts resulted in successful establish-
ment not only of NFRs, but also of +1 nucleosomes and of
average nucleosome spacing (Zhang et al. 2011).

Here, we briefly cover the abundant sequence-specific
DNA-binding proteins known as GRFs, since these are the
trans-factors most simply considered in conjunction with cis-
determinants of the chromatin state. Early studies identified
the GRFs Abf1 and Rap1 as important in the chromatin
structure of the HIS4 promoter (Arndt and Fink 1986; Devlin
et al. 1991; Yu and Morse 1999; Yarragudi et al. 2004),
More recently, analysis of genome-wide in vivo nucleosome
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maps revealed that, in addition to poly(dA:dT), other sequence
motifs are associated with nucleosome depletion in vivo, and
these correspond to the DNA-binding sites for GRFs such as
Abf1, Reb1, and Rap1 (Lee et al. 2007b; Yarragudi et al.
(2007); Badis et al. 2008; Kaplan et al. 2009; Tsankov et al.
2010). These sequences are not nucleosome-depleted in
in vitro nucleosome reconstitutions (Kaplan et al. 2009), and
this fact has allowed automated determination of GRFs in mul-
tiple species by identification of short sequence motifs that are
highly nucleosome-depleted in vivo but not in vitro (Tsankov
et al. 2010).

Three types of experiment show that GRFs play a causal
role in establishing a subset of NFRs, and sometimes in
a combinatorial fashion. First, a pioneering experiment from
the Madhani laboratory showed that insertion of a short
poly(A) stretch adjacent to a Reb1-binding site was suffi-
cient to establish an NFR in a heterologous location (Raisner
et al. 2005). Second, genetic inactivation of GRF function
using temperature-sensitive alleles showed that loss of Abf1,
Reb1, and Rap1 (Badis et al. 2008; Hartley and Madhani
2009; Ganapathi et al. 2011) lead to increased nucleosome
occupancy over the relevant sequence motif in vivo. Third,
a recent study clearly demonstrated that the NFR at the
CLN2 promoter is determined by redundant GRF-binding
sites as loss of multiple binding sites for different GRFs
was required to abolish the NFR (Bai et al. 2011). This study
also suggested that many NFRs in yeast involve multiple
GRFs (Bai et al. 2011). The mechanism of GRF action in
nucleosome eviction is currently unclear. These GRFs are
highly abundant factors with strong DNA-binding activity,
so they could evict nucleosomes simply via competition with
dynamic histone proteins. Alternatively, it has been sug-
gested (Hartley and Madhani 2009) that GRFs might recruit
the RSC chromatin remodeling complex (see below), result-
ing in nucleosome eviction. Questions remain as to the bi-
ological rationale behind establishment of an NFR via
intrinsic sequence determinants vs. establishment of NFRs
by GRFs. A hint is provided by the observation that certain
types of genes, such as proteasome genes, exhibit GRF-
driven open promoters in many species without strong en-
richment of poly(dA:dT) (Tsankov et al. 2010). Unlike other
genes with open promoters that are repressed under stress
conditions, proteasome genes are upregulated during stress
responses (Gasch et al. 2000), suggesting that perhaps
global control of poly(dA:dT) access during stress is circum-
vented at GRF-regulated promoters.

Histone Variant H2A.Z

H2A.Z is a histone variant that is widespread throughout
eukaryotic chromatin. Several studies have suggested that
H2A.Z controls transcription, DNA repair, genome stability,
and the control of antisense transcription (for recent
reviews, see Zlatanova and Thakar 2008; Marques et al.
2010). H2A.Z is highly conserved among eukaryotes
(�90% amino acid identity), and it has �60% amino acid

identity with H2A. While it is not essential for viability in S.
cerevisiae (gene name HTZ1) (Santisteban et al. 2000) or in
S. pombe (gene name pht1+) (Carr et al. 1994), it is essential
in several other organisms. Many studies have examined
nucleosome structure and function when H2A.Z replaces
H2A, but we still lack a clear understanding of precisely
how this substitution affects nucleosome stability and
interactions.

Location of H2A.Z

Several genome-wide studies have shown that H2A.Z is
present in approximately two-thirds of S. cerevisiae genes,
where it is localized to the first nucleosome downstream of
the NFR (the “+1” nucleosome) in the vast majority of those
genes and at the upstream (“21”) nucleosome in a smaller
subset of genes (Guillemette et al. 2005; Li et al. 2005;
Raisner et al. 2005; Zhang et al. 2005; Millar et al. 2006;
Albert et al. 2007). H2A.Z is not found at very poorly tran-
scribed genes such as subtelomeric genes and at very highly
transcribed genes. Furthermore, H2A.Z is not limited to pro-
moter regions because some H2A.Z-containing nucleosomes
are found in the bodies of genes as well. Although H2A.Z is
localized to the nucleosomes adjacent to the NFR, it is not
required for NFR formation (Li et al. 2005; Hartley and
Madhani 2009; Tirosh et al. 2010b).

How is H2A.Z targeted to promoter nucleosomes? Part of
the answer emerged when three labs showed that incorpora-
tion occurs via the SWR1 complex, named after its catalytic
subunit, Swr1 (Krogan et al. 2003a; Kobor et al. 2004;
Mizuguchi et al. 2004). Swr1 contains an ATPase/helicase
domain conserved with that found in Swi/Snf chromatin-
remodeling complexes (described below). The SWR1 complex
contains �12 proteins, including H2A.Z, and it catalyzes the
exchange of histone H2A-H2B dimers with H2A.Z-H2B dimers
in an ATP-dependent fashion (Luk et al. 2010). Other key
members of the complex include Swc2, which specifically rec-
ognizes the carboxy-terminal tail of H2A.Z, and Bdf1, which,
via its two bromodomains, binds to acetylated histones H3
and H4, helping to target H2A.Z to acetylated promoters.
Mutations in the acetylase-encoding genes GCN5 or ESA1, or
of the lysines that are acetylated in H3 and H4, all reduce the
level of H2A.Z in promoter nucleosomes (Zhang et al. 2005;
Millar et al. 2006; Altaf et al. 2010), supporting the idea that
acetylation of these histones helps to target H2A.Z to pro-
moter nucleosomes. Conversely, the Ino80 complex carrying
the Snf2 homolog Ino80 appears to carry out the reverse re-
action, exchanging H2A.Z-H2B dimers for H2A-H2B dimers
(Papamichos-Chronakis et al. 2011).

Roles for H2A.Z in transcription

Given its widespread location in most promoters, one might
anticipate that H2A.Z plays important roles in transcription.
However, our understanding of the function of H2A.Z in
transcription is still quite cloudy. H2A.Z has been proposed
to play a role in the recruitment of the coactivators Swi/Snf,
Mediator, and SAGA and of the general transcription factor
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TATA-binding protein (Wan et al. 2009; Marques et al. 2010).
While some studies have suggested roles in activation, most
genome-wide studies have shown an inverse correlation be-
tween H2A.Z levels and transcriptional levels, which has been
interpreted to suggest that H2A.Z helps to poise promoters
for activation (Li et al. 2005; Zhang et al. 2005; Zanton and
Pugh 2006). Interestingly, in contrast to levels of H2A.Z, ge-
nome-wide studies suggest that acetylation of H2A.Z is pref-
erentially associated with highly transcribed genes (Babiarz
et al. 2006; Keogh et al. 2006; Millar et al. 2006). A recent
study showed that H2A.Z is required for events at the pro-
moter that impact the modification and elongation of RNAPII
(Santisteban et al. 2011).

Gene expression analysis of htz1D mutants reveals minor
effects of HTZ1 on steady-state transcript levels, with the
major effect being loss of heterochromatin boundary func-
tion (Meneghini et al. 2003). However, htz1D mutants have
pleiotropic phenotypes: they grow poorly and are tempera-
ture sensitive (Santisteban et al. 2000), have membrane and
ER defects (Lockshon et al. 2007; Copic et al. 2009), and
show synthetic sickness/lethality with a very wide range of
other chromatin-related mutants (Collins et al. 2007). Two
recent studies have cast doubts on whether the effects ob-
served in htz1D mutants in S. cerevisiae are caused by loss of
H2A.Z or by the “frustrated” activity of the Swr1 complex in
the absence of H2A.Z (Halley et al. 2010; Morillo-Huesca
et al. 2010a). In these studies, mutations that impair Swr1
activity suppress many of the pleiotropic phenotypes caused
by an htz1D. While some studies have suggested a role for
H2A.Z in transcriptional memory (Brickner et al. 2007; Light
et al. 2010), other studies dispute this conclusion (Halley
et al. 2010; Kundu and Peterson 2010). Taken together, the
current picture of H2A.Z is murky. Perhaps the most com-
pelling result on H2A.Z function to date comes from S.
pombe, where loss of H2A.Z leads to increased levels of
antisense RNA at genes oriented convergently (Zofall et al.
2009), leading to the suggestion that this 59-constrained
histone variant serves to “inform” the cell when the 39 end
of a transcript comes from inappropriate antisense transcrip-
tion. It will be interesting to see whether similar results hold
in budding yeast. We anticipate that future studies will help
disentangle the role of H2A.Z in transcription, genome sta-
bility, and other processes.

Chromatin-Remodeling Factors

Chromatin-remodeling factors are multi-protein complexes
that use the energy of ATP hydrolysis to mobilize nucleo-
somes, resulting in lateral sliding (Lomvardas and Thanos
2001; Fazzio and Tsukiyama 2003) or removal from DNA
(Boeger et al. 2004; Cairns 2005), among other activities.
Eukaryotic cells contain four families of chromatin-remodel-
ing complexes: Swi/Snf, Iswi, Chd, and Ino80 [see Clapier
and Cairns (2009) for an excellent review]. In mammals,
chromatin-remodeling complexes can function in tissue-spe-
cific ways to control development, and mutations that im-

pair these complexes have been implicated in oncogenesis.
In this section, we focus on some of the yeast chromatin-
remodeling factors that play extensive roles in gene regula-
tion: the closely related factors Swi/Snf and RSC and the Isw
family (Isw1 and Isw2). The Swr1 complex was discussed
above, and more information about the related Ino80 com-
plex can be found in two excellent reviews (Conaway and
Conaway 2009; Morrison and Shen 2009).

While it appears that ATP-dependent remodelers share
a common basic mechanism—disrupting histone–DNA inter-
actions—the different classes of complexes have very differ-
ent effects on nucleosome position, stability, and composition.
Swi/Snf and RSC appear to destabilize nucleosomes; the Isw
family predominantly functions to slide nucleosomes later-
ally; and others, including Swr1 and Ino80, appear to affect
H2A/H2B dimer exchange (Clapier and Cairns 2009). While
this review does not focus on the mechanism of nucleosome
remodeling, readers are referred to two seminal studies of
RSC remodeling (Saha et al. 2002, 2005), as well as several
other important mechanistic studies of RSC (Lorch et al.
1998, 2006, 2010; Zhang et al. 2006; Fischer et al. 2007;
Leschziner et al. 2007) and other complexes (see Clapier
and Cairns 2009 and references cited therein) that have pro-
vided significant insight into this topic.

Identification of the Swi/Snf and RSC complexes

The S. cerevisiae Swi/Snf complex was the first chromatin-
remodeling complex discovered; subsequent identification
of conserved complexes from other organisms established
the universal nature of this type of activity throughout eukar-
yotes. The Swi/Snf complex and the related RSC complex are
highly homologous to one another: both complexes are large
�10- to 12-subunit complexes; both have several homologous
subunits such as the ATPase subunit Snf2/Sth1; and both
share two components, Arp7 and Arp9. Despite their similar-
ities, RSC is�10-fold more abundant, and RSC is essential for
viability whereas Swi/Snf is not.

The identification of Swi/Snf originated from two un-
related genetic screens for regulatory mutants. The swi
mutants were identified in a screen for mutants unable to
transcribe HO, a gene required for mating-type switching
(Stern et al. 1984). Three of the genes identified, SWI1,
SWI2, and SWI3, shared a set of pleiotropic phenotypes that
suggested that they control the expression of several genes.
The snf mutants were found in a screen for mutants unable
to express the SUC2 gene, which encodes invertase, required
for utilization of sucrose as a carbon source (Neigeborn and
Carlson 1984). Similar to the swi screen, mutations in three
genes, SNF2, SNF5, and SNF6, caused a shared set of pleio-
tropic phenotypes.

Several steps led to the elucidation that the SWI and SNF
genes encode members of a multi-protein complex. In one set
of studies, fusions of Snf2 or Snf5 to the LexA DNA-binding
domain were shown to activate transcription, but only when
the other SWI/SNF genes were wild type (Laurent et al. 1991;
Laurent and Carlson 1992). In other studies, SWI and SNF
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genes were shown to be required for transcriptional activation
at several different genes, leading to the idea that the putative
Swi/Snf complex assists gene-specific activators (Peterson and
Herskowitz 1992; Laurent et al. 1993a). Sequence analysis
and biochemistry demonstrated that the Swi2/Snf2 protein
is an ATPase (Laurent et al. 1992, 1993b). Subsequently, the
Swi/Snf complex was purified from yeast and shown to con-
tain the five gene products encoded by the SNF2/SWI2, SNF5,
SNF6, SWI1, and SWI3 genes, as well as other proteins (Cairns
et al. 1994; Peterson et al. 1994). Contemporaneously, the
mammalian Swi/Snf complex was also identified (Kwon
et al. 1994).

In contrast to Swi/Snf, RSC was discovered by bio-
chemical approaches. STH1, the gene encoding the RSC
Swi2/Snf2-like ATPase, was identified by sequence similar-
ity to SNF2 (Laurent et al. 1992; Tsuchiya et al. 1992). Once
the S. cerevisiae genome sequence was completed, homologs
of other SWI/SNF genes were identified. Sth1 and these
other homologs copurified in a complex that, like Swi/Snf,
has ATP-dependent chromatin-remodeling activity (Cairns
et al. 1996). Many of the genes encoding RSC components
are essential for viability. In S. pombe, RSC is also essential
for viability, although its composition differs substantially
from that in S. cerevisiae (Monahan et al. 2008). S. pombe
RSC has recently been shown to play a role in heterochro-
matin structure (Garcia et al. 2010).

Swi/Snf complexes have chromatin-remodeling activity

Genetic analysis first suggested that Swi/Snf might alleviate
transcriptional repression caused by nucleosomes. First, it
was shown that suppressors of snf2/swi2 mutations included
mutations in HTA1-HTB1, encoding histones H2A-H2B, and
in SPT6, encoding a histone chaperone (Neigeborn et al.
1986, 1987; Clark-Adams and Winston 1987; Hirschhorn
et al. 1992). This genetic relationship between Swi/Snf
and chromatin was fortified by other results that showed that
suppressors of swi1, swi2, and swi3 mutations were in his-
tone H3- and H4-encoding genes (Prelich and Winston 1993;
Kruger et al. 1995). Thus, genetics suggested that the tran-
scriptional activation defects caused by loss of Swi/Snf could
be bypassed by reducing or altering nucleosome function.

The genetic results led to the model that Swi/Snf serves to
overcome transcriptional repression by nucleosomes by
altering histone–DNA interactions. This model was tested
by an examination of the SUC2 regulatory region, which
showed that SUC2 chromatin structure is more MNase sensi-
tive in wild-type strains than in snf2 and snf5 mutants
(Hirschhorn et al. 1992; Matallana et al. 1992), consistent
with the idea that Swi/Snf functions to remove nucleosomes.
To address the cause/effect relationship of chromatin struc-
ture with transcription, MNase sensitivity was assayed in
wild-type and snf5 mutants when the SUC2 TATA box was
mutant, abolishing SUC2 transcription. The same MNase dif-
ferences were seen as with a wild-type TATA, suggesting that
Swi/Snf causes transcriptional changes, rather than the other
way around (Hirschhorn et al. 1992).

The model that Swi/Snf directly alters chromatin struc-
ture was tested biochemically, using both yeast (Cote et al.
1994) and mammalian Swi/Snf complexes (Imbalzano et al.
1994; Kwon et al. 1994; Wang et al. 1996). These studies
demonstrated that purified Swi/Snf alters nucleosome struc-
ture in an ATP-dependent fashion to help activators bind to
their sites and to make the nucleosomal DNA more accessi-
ble to nuclease digestion. Thus, mutants defective for ex-
pression of two genes, SUC2 and HO, led to the discovery
of chromatin-remodeling complexes. Once biochemical
assays were established, it became straightforward to test
other purified complexes, such as RSC, which have been
shown to have a similar activity (Cairns et al. 1996).

Regulation of transcription by Swi/Snf

The extent of transcriptional control by Swi/Snf was in-
vestigated by genome-wide transcriptional studies (Holstege
et al. 1998; Sudarsanam et al. 2000). Under the growth
conditions tested, Swi/Snf was shown to control the mRNA
levels of 2–5% of all yeast genes. Affected genes do not fall
into particular functional categories, although these data led
to the discovery that Swi/Snf function is important for tran-
scription during M phase (Krebs et al. 2000). More recently,
analysis of the heat-shock response showed that Swi/Snf
directly regulates both ribosomal protein genes and genes
under the control of heat-shock factor (Shivaswamy and Iyer
2008). These microarray studies likely underestimate the
extent to which Swi/Snf controls transcription, as few con-
ditions were tested. Other studies have shown important
roles for Swi/Snf in the regulation of glucose-repressed
genes (Neigeborn and Carlson 1984) and genes induced
during amino acid starvation (Natarajan et al. 1999), con-
ditions not tested by microarrays. Expression studies under
less optimal growth conditions will likely reveal other facets
of Swi/Snf regulation.

In many cases, Swi/Snf functions in combination with
other transcriptional regulators, with each contributing to
expression. An early clue that Swi/Snf can function in
a combinatorial or redundant fashion with other factors
came from the discovery that swi/snfmutations cause lethal-
ity when combined with mutations in genes encoding mem-
bers of the SAGA coactivator complex (Roberts and Winston
1997). For example, when snf2D is combined with gcn5D
(GCN5 encodes the histone acetyltransferase within SAGA),
the double mutants are either inviable (Pollard and Peterson
1997) or extremely sick (Roberts and Winston 1997). There
is strong evidence that both Swi/Snf chromatin-remodeling
activity and Gcn5 histone-modifying activity function at an
overlapping set of genes, including SUC2 (Sudarsanam et al.
1999), HO (Cosma et al. 1999; Mitra et al. 2006), PHO5
(Barbaric et al. 2007), GAL1 (Biggar and Crabtree 1999),
and Gcn4-activated genes (Govind et al. 2005). Other com-
binations also function together, such as Swi/Snf and Asf1
(Gkikopoulos et al. 2009).

Several studies have examined Swi/Snf recruitment and
function at promoters. Recruitment likely occurs by direct
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interaction with transcriptional activators (Yudkovsky et al.
1999). As several different activators can recruit Swi/Snf,
the nature of the activator–Swi/Snf interaction is of interest;
studies have shown that two or three Swi/Snf subunits can
participate in recruitment (Neely et al. 2002; Prochasson
et al. 2003; Ferreira et al. 2009). Once at a promoter, the
association of Swi/Snf is stabilized by the Snf2 bromodo-
main (Hassan et al. 2001, 2002), which binds acetylated
histone tails (Dhalluin et al. 1999); this represents an exam-
ple of cooperation between Gcn5 histone acetylation and
Swi/Snf and is consistent with reports that Swi/Snf associ-
ation is Gcn5 dependent (Govind et al. 2005; Mitra et al.
2006). Although Swi/Snf acts at 59 regulatory regions to
remodel or evict nucleosomes, it also appears to have
a role in elongation in both yeast (Schwabish and Struhl
2007) and mammalian cells (Sullivan et al. 2001; Corey
et al. 2003).

In vitro studies showed that Swi/Snf catalyzes a stable
change in nucleosome structure that persists in the absence
of Swi/Snf (Owen-Hughes et al. 1996; Cote et al. 1998).
However, in vivo studies using snf2 and snf5 temperature-
sensitive mutants suggested a continuous need for Swi/Snf
(Biggar and Crabtree 1999; Sudarsanam et al. 1999). This
continuous requirement may be in part from a requirement
for Swi/Snf for transcription elongation.

RSC plays broad roles in gene expression and
chromatin structure

In contrast to Swi/Snf, RSC is involved in transcriptional
regulation of genes transcribed by both RNA polymerases II
and III. Several cases have shown the involvement of RSC in
particular classes of RNAPII-dependent transcription (e.g.,
see Moreira and Holmberg 1999; Bungard et al. 2004;
Taneda and Kikuchi 2004; Govind et al. 2005; Mas et al.
2009; Erkina et al. 2010). Genome-wide studies show that
RSC binds at hundreds of RNAPII promoters, many of which
carry a specific sequence motif for the Rsc3 and Rsc30 DNA-
binding subunits of RSC (Angus-Hill et al. 2001; Damelin
et al. 2002; Ng et al. 2002b; Badis et al. 2008). It is not yet
clear if recruitment to Rsc3/30 sequence motifs is the sole
mechanism for recruitment of RSC to RNAPII promoters. At
many promoters, RSC is required to maintain NFRs, which
gain nucleosome occupancy upon RSC loss (Badis et al.
2008; Parnell et al. 2008; Hartley and Madhani 2009).
RSC appears to have other effects on promoter chromatin
as well; as mentioned earlier, RSC is required to maintain
a particular chromatin structure over the GAL1–10 regula-
tory region that features a partially unwound nucleosome
(Floer et al. 2010). RSC also controls transcription elonga-
tion, with its recruitment stimulated by histone acetylation
(Carey et al. 2006; Ginsburg et al. 2009; Mas et al. 2009).
Finally, RSC also binds at several hundred RNAPIII-depen-
dent genes (Damelin et al. 2002; Ng et al. 2002b), and loss
of RSC function in conditional sth1 degron mutants results
in increased nucleosome occupancy and decreased tran-
scription at RNAPIII genes (Parnell et al. 2008).

Bromodomains in Swi/Snf and RSC

Subunits of Swi/Snf and RSC, like many other chromatin-
related proteins, carry bromodomains, which bind acetylated
lysines (Haynes et al. 1992; Dhalluin et al. 1999; Zeng and
Zhou 2002). In Swi/Snf, there is a bromodomain in Snf2,
while RSC has bromodomains in Sth1, Rsc1, Rsc2, and
Rsc4. The Snf2 bromodomain stabilizes interactions with
acetylated lysines in histone H3 in vitro, and that loss of this
domain has a modest effect on Swi/Snf function in vivo (Has-
san et al. 2001). These results led to the notion that histone
acetylation sets the stage for stable recruitment of Swi/Snf.

In RSC, bromodomain roles are more complex as Rsc1,
Rsc2, and Rsc4 each have two bromodomains. Rsc1 and
Rsc2 are mutually exclusive members of RSC, defining dis-
tinct forms of the complex (Cairns et al. 1999). Loss of either
component allows viability, but rsc1D rsc2D double mutants
are inviable. Mutational analysis showed that the second
domain in either Rsc1 or Rsc2 is required for function. In
contrast, BD#1 is required only in Rsc2 and only for a small
subset of functions. As the bromodomains are not required
for assembly of RSC, they are likely required for a subse-
quent activity, most likely binding to acetylated chromatin.
At present it is unclear whether the bromodomains are re-
quired in combination with Rsc3/30 DNA binding to associ-
ate over NFRs (Badis et al. 2008; Hartley and Madhani
2009) or for some other type of interaction with chromatin.

In Rsc4, each bromodomain is required for function, as
deletion of either one causes inviability (Kasten et al. 2004).
Biochemical experiments showed that one of the bromodo-
mains recognizes H3K14ac, but, surprisingly, the other bro-
modomain binds to an acetylated lysine on Rsc4 itself
(Vandemark et al. 2007). Intramolecular binding of the bro-
modomain to acetylated Rsc4 inhibits binding of the other
bromodomain to H3K14ac. Since Gcn5 acetylates both Rsc4
and H3K14, Gcn5 has both activating and repressing roles in
the association of RSC with chromatin. The precise role of Rsc4
acetylation is not known, and there are only modest pheno-
types when this modification is abolished (Vandemark et al.
2007). However, loss of Rsc4 acetylation does cause lethality
when combined with mutations that abolish acetylation of
histone H3 (Choi et al. 2008). We anticipate future studies
will help decipher the importance of this form of regulation
in RSC function, and we anticipate that many more nonhis-
tone-binding partners for bromodomains await identification.

Actin-related proteins in Swi/Snf and RSC

Biochemical analysis of Swi/Snf complexes, as well as some
of the other classes of chromatin-remodeling complexes
(such as histone-modifying complexes), has shown that they
contain either actin or actin-related proteins (Arps) (for a re-
view see Chen and Shen 2007). The actin-related proteins
are structurally similar to actin with modest conservation
and �20% amino acid identity. In S. cerevisiae, Swi/Snf
and RSC share the actin-related proteins Arp7 and Arp9
(Cairns et al. 1998; Peterson et al. 1998). Both proteins
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are important for function as deletion of either ARP7 or
ARP9 causes lethality in one genetic background (S288C)
and extremely poor growth in another (W303) (Cairns
et al. 1998). The viability in the W303 background, along
with the isolation of temperature-sensitive mutations in
ARP7 and ARP9, has permitted phenotypic analysis, reveal-
ing defects in transcription. Interestingly, directed mutations
predicted to impair ATP hydrolysis by Arp7 and Arp9 do not
cause mutant phenotypes, suggesting that this activity is not
important for their function (Cairns et al. 1998).

The isolation of suppressors of arp7 and arp9 mutations
led to important insights into Arp7 and Arp9 function within
Swi/Snf and RSC. First, a previously unknown domain, the
HSA (helicases-SANT-associated) domain, was identified as
a conserved domain in SNF2-like proteins and was shown
to be required for assembly of Arp7 and Arp9 into RSC
(Szerlong et al. 2008). Second, suppressors of arp7 and arp9
temperature-sensitive mutants were identified in two
domains of STH1, called the post-HSA domain (adjacent
to the HSA domain), and protrusion 1 (located in the cata-
lytic ATPase domain). The HSA domain, the post-HSA do-
main, and the protrusion 1 region are all required for full
ATPase activity of RSC, although activity is only down two-
fold in mutants that impair these domains (Szerlong et al.
2008). Taken together, these results suggest that the Arp7/9
module plays a role in regulation of the ATPase activity of
Sth1. Consistent with this finding, Snf2 can be purified as
a stable complex with Arp7 and Arp9 in swi3D mutants, and
this complex has many of the activities of the complete Swi/
Snf complex (Yang et al. 2007).

Among different chromatin-remodeling complexes, Arps
play different roles. For example, in RSC, the Arps are not
strongly required for ATPase activity in vitro; however, in
Ino80, both Arp5 and Arp8 have crucial roles as either an
arp5D or arp8D mutation abolishes the activity of Ino80 and
an arp8D mutation causes loss of Arp4 and actin from the
Ino80 complex (Shen et al. 2003). Analysis of the Arps in S.
pombe Swi/Snf and RSC revealed several differences from S.
cerevisiae (Monahan et al. 2008). First, there is no Arp7 in
S. pombe; instead, S. pombe RSC and Swi/Snf contain Arp42
(a member of the Arp4 group) and Arp9. Second, deletion of
ARP42, ARP9, or both does not cause a growth defect in rich
medium. This striking difference between S. cerevisiae and S.
pombe indicates that much remains to be learned about the
roles of Arps in chromatin-remodeling complexes.

Isw-family remodelers

In contrast to the histone eviction function largely exhibited
by Swi/Snf and Swr family remodeling complexes, Isw ATP-
dependent remodelers “slide” histones along the DNA with-
out evicting them, resulting in different consequences. For
example, Isw2 is a chromatin remodeler whose major regu-
latory role is as a repressor. At some genes, such as RNR3,
Isw2 contributes to repression in a redundant fashion
(Zhang and Reese 2004). At the POT1 promoter, Isw2 func-
tions to move a nucleosome from its thermodynamically

preferred sequence-directed site in the POT1 coding region,
70 bp 59, to a less-favored site toward the NFR, where it
represses transcription by occluding the promoter region
(Whitehouse and Tsukiyama 2006). Subsequent whole-
genome mapping of Isw2 showed that it associates with tRNA
genes as well as with �20% of RNA Pol II genes (White-
house et al. 2007). Comparison of genome-wide nucleosome
positioning maps between wild-type and isw2Δ mutant cells
revealed that �35% of Isw2-bound targets (�400 genes)
are subject to detectable Isw2-mediated chromatin remod-
eling. The +1 nucleosomes are shifted up to 70 bp (15 bp
average) away from the NFR region in mutant cells, suggest-
ing that in wild-type cells Isw2 inhibits transcription by
positioning nucleosomes over the TSS and the NFR. Isw2-
mediated cpin isw2Δ cells. This often occurrs at genes
oriented tandemly (as opposed to convergently), suggesting
a potential role for this repositioning in antisense transcrip-
tional control. Indeed, surprisingly, Isw2-mediated reposi-
tioning of nucleosomes turns out to repress antisense
noncoding transcription by positioning nucleosomes over
cryptic transcription start sites in these intergenic regions
(Whitehouse et al. 2007).

Isw1 also acts to move nucleosomes laterally although
less is known about the biology of Isw1 and isw1D mutants,
which have only mild phenotypes (Tsukiyama et al. 1999).
Isw1 partners with several alternative subunits—Ioc2, Ioc3,
or Ioc4—to form a variety of complexes (Vary et al. 2003;
Mellor and Morillon 2004). Genome-wide mapping of
nucleosomes in isw1D yeast identified a widespread role
for Isw1 in nucleosome positioning over coding regions. In
an isw1D mutant, nucleosomes throughout coding regions
shift from 39 to 59, indicating that Isw1 plays a role in shifting
nucleosomes forward (Tirosh et al. 2010b). Isw1-remodeled
genes share no particular annotations, but tend to be enriched
for H3K79me3, suggesting that Isw1 might be recruited or
regulated by this modification. Functionally, the chromatin
perturbations associated with loss of Isw1 are uncorrelated
with changes in mRNA abundance in the mutant, but are
enriched at genes previously shown to contain “cryptic” inter-
nal promoters (Li et al. 2007b; Cheung et al. 2008). Further-
more, isw1D mutants exhibit derepression of the canonical
FLO8 internal promoter (Kaplan et al. 2003), suggesting that
a major role for Isw1 in vivo is to maintain repressive chroma-
tin over coding regions to repress cryptic promoters.

Histone Modifications and Transcription Initiation

In addition to chromatin-remodeling activities, post-trans-
lational modifications of histones, particularly acetylation,
play widespread roles in transcription initiation throughout
eukaryotes. (Table 2 summarizes current knowledge about
the different histone modifications found in yeast.) Histone
acetylation has long been suspected of playing a role in
transcriptional regulation (Allfrey et al. 1964), and once S.
cerevisiae became a model system for studying histones, the
quest was on to identify the enzymes that acetylate and
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deacetylate them. However, the first HAT identified in yeast,
Hat1, did not show any detectable role in transcription
(Travis et al. 1984; Kleff et al. 1995; Parthun et al. 1996).
Subsequently, however, several yeast HATs, histone deacety-
lases (HDACs), and other histone modification enzymes that
play roles in transcription have been discovered (for reviews
see Millar and Grunstein 2006; Li et al. 2007a; Smith and
Shilatifard 2010).

Two breakthroughs opened the floodgates to studying
histone acetylation in transcription initiation. First, Gcn5,
a previously identified factor known to play a role in tran-
scriptional activation (Penn et al. 1983; Berger et al. 1990;
Georgakopoulos et al. 1995), was shown to be a HAT (Brow-
nell et al. 1996). This was the first demonstration that loss of
a HAT caused transcriptional changes, and it was soon fol-
lowed by the identification of its mammalian counterparts,
PCAF and Gcn5, in addition to other mammalian HATs. The
fact that gcn5 mutants have particular regulatory defects
originally suggested that Gcn5 HAT activity might be tar-
geted to specific promoters, although the current interpre-
tation is that Gcn5 has widespread or even universal activity,
but only a subset of promoters require acetylation for nor-
mal expression. Second, Rpd3, another previously identified
transcription factor associated primarily with repression
(Vidal and Gaber 1991), was shown to be an HDAC (Taun-
ton et al. 1996). Together, these results established that
histone acetylation plays a role in transcriptional activation
in vivo.

The next big step was the identification of S. cerevisiae
protein complexes that contain HAT activities. In a landmark
paper, Grant et al. (1997) purified yeast nuclear protein
complexes that contained HAT activity and identified four
complexes, two of which contain Gcn5. Gcn5-containing
complexes were also identified at the same time by indepen-
dent studies (Pollard and Peterson 1997; Saleh et al. 1997).
The largest and best characterized of the Gcn5-containing
complexes is named SAGA (Spt-Ada-Gcn5-Acetyltransfer-
ase), a multiprotein, multifunctional complex that plays ex-
tensive roles in transcription initiation and elongation
throughout eukaryotes (reviewed in Koutelou et al. 2010).
SAGA acetylates histones H3 and H2B in a Gcn5-dependent
fashion (Grant et al. 1997). It is now known that Gcn5 is
present in at least two other SAGA-related complexes in vivo
(Grant et al. 1997; Pray-Grant et al. 2002; Sterner et al.
2002; Wu and Winston 2002). In S. cerevisiae, Gcn5 controls
mRNA levels of a large number of genes, albeit only a subset
of those controlled by SAGA (Lee et al. 2000); in addition,
ChIP-chip analysis showed that SAGA is localized to all ac-
tive promoters at a level that correlates with their activity
(Robert et al. 2004). Interestingly, Gcn5 also represses tran-
scription of certain genes in both budding and fission yeast
(Ricci et al. 2002; Helmlinger et al. 2008).

In addition to Gcn5, several other HATs have been iden-
tified in S. cerevisiae. There are three MYST-class HATs
(named after the consensus sequence MYST), Sas2, Sas3,
and Esa1, the last of which is the only S. cerevisiae HAT that

is essential for viability (Reifsnyder et al. 1996; Smith et al.
1998; Clarke et al. 1999). Two of these HATs were found in
the original identification of HAT complexes: NuA3, contain-
ing Sas3, and NuA4, containing Esa1 (Grant et al. 1997;
Allard et al. 1999). The third MYST member, Sas2, which,
along with Sas3, was initially identified by defects in tran-
scriptional silencing (Reifsnyder et al. 1996), plays a role in
counteracting silencing in yeast (Kimura et al. 2002; Suka
et al. 2002). Another HAT, Rtt109, is discussed in a later
section on the histone chaperone Asf1.

NuA4, which contains Esa1, has been extensively charac-
terized (Allard et al. 1999; see Doyon and Cote 2004 for
a review). In contrast to Gcn5, Esa1 acetylates H4, H2A,
and H2A.Z. Interestingly, NuA4 shares subunits with three
other complexes: Tra1, also in SAGA/SLIK; Arp4, also in
Swi/Snf, RSC, and SWR1; and Yaf9, Swc4, and Act1, also

Table 2 Histone modifications in S. cerevisiae

Histone Residue Modification Modification enzymes

H2A K5 Ac Esa1, Rpd3
K8 Ac Esa1, Hat1, Rpd3
S122 P
T126 P
K126 Sumo
S129 P Mec1, Tel1, Pph3

H2AZ K3 Ac Esa1
K8 Ac Esa1
K10 Ac Esa1
K14 Ac Esa1

H2B K6/K7 Sumo
S10 P Ste20
K11 Ac Esa1, Rpd3
K16 Ac Gcn5, Esa1, Rpd3, Hda1
K123 Ub Rad6, Ubp8

H3 R2 Me
K4 Me, Ac Set1, Jhd2, Rtt109, Gcn5
K9 Ac Gcn5, Rpd3, Hos2, Hda1
S10 P Snf1
K14 Ac Gcn5, Rpd3, Hos2, Hda1
K18 Ac Gcn5, Rpd3, Hos2, Hda1
K23 Ac Gcn5, Rpd3, Hos2, Hda1
K36 Me Set2, Rph1, Jhd1
K42 Me
K56 Ac Rtt109, Hst3, Hst4
K79 Me Dot1

H4 S1 P CK2
R3 Me
K5 Ac Esa1, Rpd3, Hos2
K8 Ac Esa1, Rpd3, Hos2
K12 Ac Esa1, Rpd3, Hos2
K16 Ac Esa1, Sas2, Sir2, Hos2, Hst1
K20 Ac Esa1, Sas2, Sir2, Hos2, Hst1
K31 Me

Most of the information for this table came from Krebs (2007). Information for Htz1
came from Babiarz et al. (2006), Keogh et al. (2006), and Millar et al. (2006),
information for sumoylation came from Nathan et al. (2006), and information for
H3K42 methylation came from Hyland et al. (2011).
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in SWR1. NuA4 is involved in a multitude of activities in the
nucleus, including transcription, double-strand break repair,
silencing, and the cell cycle, and many of these activities
correlate with Esa1 activity [see Decker et al. (2008) and
references cited therein]. With respect to transcription,
NuA4 function has been studied at several single genes such
as PHO5, where it associates with the regulatory region un-
der repressing conditions but plays an essential role in acti-
vation during phosphate starvation (Nourani et al. 2004).
More globally, microarray analysis showed that the major
class of NuA4-regulated genes during exponential growth
is composed of those encoding ribosomal proteins (Reid
et al. 2000). ChIP-chip analysis showed that NuA4 is local-
ized to all active promoters at a level that correlates with
their activity (Robert et al. 2004), indicating that NuA4 plays
a fairly general role in transcriptional regulation. A smaller
complex, Piccolo NuA4, that contains only three NuA4 com-
ponents, including Esa1, has been identified and is believed
to play a role in global histone acetylation (Boudreault
et al. 2003).

One underappreciated aspect of histone-modifying enzyme
biology is that many of these enzymes modify nonhistone
substrates. For example, Gcn5 not only acetylates histones,
but regulates RSC by acetylation of Rsc4 (Vandemark et al.
2007; Choi et al. 2008) and was recently shown to acetylate
Swi/Snf as well (Kim et al. 2010). A proteome-wide screen for
targets of the NuA4 HAT complex identified many nonhistone
proteins and showed that one of them, Pck1, requires acety-
lation to have full enzymatic activity (Lin et al. 2009). In
mammalian cells, the Gcn5 ortholog, PCAF, acetylates p53,
and this modification is important for p53 function (Liu et al.
1999; Barlev et al. 2001). Similar results are observed for the
histone methylases (below). Thus, it will be important in the
future to separate the results of histone and nonhistone mod-
ification to understand the phenotypes of modifying enzyme
mutants and to understand the logic underlying the suite of
substrates affected by each enzyme.

In addition to HATs, several HDACs control transcription
initiation, generally by conferring repression (for reviews
see Millar and Grunstein 2006; Krebs 2007). HDACs play
broad roles in transcription (Robyr et al. 2002) and are often
recruited by the global repressor complex Cyc8/Tup1 (Davie
et al. 2003). Studies at several genes suggest that a balance
of acetylation and deacetylation activities plays a key role in
normal regulation (e.g., see Krebs et al. 1999). At some
genes, HDACs play positive roles in transcription initiation
(e.g., Sharma et al. 2007), although in one case this effect is
likely indirect due to negative regulation of a noncoding
RNA (Bumgarner et al. 2009).

Histone Modifications During
Transcription Elongation

In S. cerevisiae, a series of histone modifications occurs over
transcribed regions (for recent reviews see Fuchs et al. 2009;

Smith and Shilatifard 2010). These modifications constitute
a subset of those identified in S. pombe and in larger eukar-
yotes. In this section, we will focus on the set of modifica-
tions that have been studied most extensively, including
acetylation, ubiquitylation, and methylation, all associated
with active transcription.

SAGA and NuA4 acetylate nucleosomes
during transcription

Several studies have shown that both SAGA- and NuA4-
dependent histone modifications occur across coding regions
during transcription elongation. Chromatin immunoprecipi-
tation studies show that both SAGA (Govind et al. 2007;
Wyce et al. 2007) and NuA4 (Ginsburg et al. 2009) are asso-
ciated across coding regions. One study demonstrated that
SAGA stimulates levels of H3 acetylation, RNAPII levels,
mRNA levels, and nucleosome eviction at GAL1 (Govind
et al. 2007). Another study showed that SAGA controls the
level of H2B ubiquitylation; the SAGA subunit Ubp8 is an H2B
deubiquitylase and is required for the recruitment of the C-
terminal repeat domain (CTD) kinase Ctk1 to allow proper
elongation (Wyce et al. 2007). Consistent with these results,
H2B ubiquitylation helps to reassemble nucleosomes in the
wake of RNAPII in an Spt16-dependent fashion (Fleming
et al. 2008). In contrast to SAGA, NuA4 stimulates H4 acet-
ylation and is required for normal elongation by RNAPII
(Ginsburg et al. 2009), at least in part because it is required
for the recruitment of RSC and subsequent nucleosome evic-
tion (Ginsburg et al. 2009). This result fits well with in vitro
analysis of NuA4–RSC interactions (Carey et al. 2006), which
showed that RSC recruitment in vitro is dependent upon his-
tone acetylation, likely due to the binding of a Rsc4 bromo-
domain to acetylated histones (Kasten et al. 2004; Carey
et al. 2006).

Current evidence suggests that SAGA and NuA4 act in
a partially redundant fashion to promote transcription
elongation. Analysis of gcn5D esa1 double mutants showed
a significant defect in elongation in vivo (Ginsburg et al.
2009), while analysis of single mutants showed less of an
effect (Govind et al. 2005; Ginsburg et al. 2009).

Histone methylation during transcription

In contrast to histone acetylation, the roles for histone lysine
methylation in transcriptional control are relatively poorly
understood. Trimethylation of H3K4 (H3K4me3) occurs
over the 59 nucleosomes of actively transcribed genes, with
di- and mono-methylation (H3K4me2 and H3K4me) occur-
ring more extensively across coding regions (Bernstein et al.
2002; Santos-Rosa et al. 2002; Ng et al. 2003b; Liu et al.
2005; Pokholok et al. 2005). H3K4 methylation is depen-
dent upon the methyltransferase Set1 and its associated
COMPASS complex (Miller et al. 2001; Roguev et al.
2001; Nagy et al. 2002), but it is also dependent upon sev-
eral other cellular factors (for reviews see Shilatifard 2008;
Fuchs et al. 2009). Ubiquitylation of histone H2B is required
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to recruit COMPASS to actively transcribed genes (Dover
et al. 2002; Sun and Allis 2002), as this modification is re-
quired for stable association of the COMPASS component
Cps35 within the complex (Lee et al. 2007a). Furthermore,
H2B ubiquitylation and, hence, H3K4 methylation, is depen-
dent upon the PAF complex and, specifically, the PAF1 com-
ponent Rtf1 (Ng et al. 2003a; Wood et al. 2003; Warner
et al. 2007). The kinase Bur1 is required specifically for
H3K4 trimethylation (Laribee et al. 2005), as well as for
other histone modifications (Wood et al. 2005; Chu et al.
2006, 2007; Zhou et al. 2009). A large variety of histone-
binding proteins, including those with PHD fingers (Shi et al.
2007), are regulated by H3K4 methylation, and readers are
directed to recent reviews (Eissenberg and Shilatifard 2010;
Smith and Shilatifard 2010) for complete lists. For example,
binding of H3K4me3 by the ING homolog Yng1, in the NuA3
complex, affects H3 acetylation by the NuA3 complex, pro-
viding one of many examples of histone modification “cross
talk.” In another example, H3K4me2 has been shown in one
study to recruit the Set3 histone deacetylases complex to
YEF3 to regulate acetylation levels across coding regions
(Kim and Buratowski 2009), although another study
showed that Set3 could be recruited to ARG1 independently
of H3K4 methylation (Govind et al. 2010).

Surprisingly, despite the many factors involved in the
regulation of H3K4, and the universal occurrence of
H3K4me3 at the 59 ends of transcribed genes, the fact
remains that in a set1 mutant, where no H3K4me occurs,
there are relatively few significant changes in transcription
(Venkatasubrahmanyam et al. 2007). Indeed, while H3K4
methylation is associated with actively transcribed genes, in
some cases it can be repressive (Carvin and Kladde 2004). A
hint regarding the biological role for H3K4 methylation in
transcriptional control comes from the above-noted role for
another 59-directed mark, H2A.Z, in control of antisense tran-
scription (Zofall et al. 2009). Both repression of Ty1 by an
unstable antisense RNA (Berretta et al. 2008) and repression
of PHO84 by an antisense transcript (Camblong et al. 2009)
have been suggested to operate in trans, and in both systems
repression requires Set1. We anticipate that future studies
may reveal a general role for the “active mark” H3K4me3
in enabling repression of transcription by antisense tran-
scripts. In any case, the universal occurrence and complex
regulation of H3K4me3, coupled with the subtle effects of
SET1 deletion on transcription, make this system one of the
most interesting mysteries in chromatin biology today.

A clearer role has been established for H3K36 methyla-
tion, which requires the methyltransferase Set2 (Strahl et al.
2002; Schaft et al. 2003). Similar to H3K4 trimethylation,
H3K36 trimethylation is found over actively transcribed
genes, but H3K36me3 occurs over the middle and 39 ends
of transcribed genes due to recruitment of Set2 by the elon-
gating form of RNAPII (Krogan et al. 2003b; Xiao et al. 2003;
Pokholok et al. 2005; Rao et al. 2005). Interestingly, Set2
activity also requires specific interactions with histones H3,
H4, and H2B (Du et al. 2008; Du and Briggs 2010).

H3K36me3 is not required for elongation, but rather is re-
quired to activate the histone deacetylase complex Rpd3S
along transcribed chromatin, in turn leading to deacetyla-
tion of actively transcribed templates (Carrozza et al. 2005;
Joshi and Struhl 2005; Keogh et al. 2005; Pokholok et al.
2005; Drouin et al. 2010; Govind et al. 2010). set2 mutants
are fully viable and grow well; however, the level of histone
acetylation is higher than normal across transcribed regions.
The major consequence of this change is the occurrence of
transcription initiation at a large number of “cryptic” pro-
moters that occur within coding regions (Carrozza et al.
2005; Joshi and Struhl 2005), which were first identified
in spt6 and spt16 mutants (described below). As expected,
mutations in genes encoding Rpd3S components also result
in activation of a subset of cryptic promoters.

These results provide a canonical example for the mech-
anism behind the “context dependence” of histone modifica-
tions: H3K36me3 is a universal modification in the sense that
it is deposited over all transcribed regions, yet its loss affects
only a small number of genes that happen to have coding
regions that include “cryptic” promoter-like sequences. Thus,
H3K36me3 is perhaps the clearest case in which the seeming
paradox of global deposition with localized effects has been
explained in detail. We hope that future studies will shed
equal illumination on examples like H3K4me3 and HTZ1,
among others.

Less clear is the role of H3K79 methylation. The methyl-
transferase required for this modification, Dot1 (Feng et al.
2002; Ng et al. 2002a; van Leeuwen et al. 2002), was initially
identified as affecting transcriptional silencing at telomeres
(Singer et al. 1998). Similar to H3K4 methylation, K3K79
methylation is dependent upon H2B ubiquitylation (Briggs
et al. 2002; Wood et al. 2003). Also as with H3K4 and
H3K36 trimethylation, H3K79 methylation is essentially uni-
versal, occurring throughout coding regions, although unlike
K4 and K36 methylation, K79 methylation levels exhibit very
little correlation with transcription levels. The silencing defect
of dot1 mutants is believed to arise from the fact that H3K79
methylation blocks the binding of Sir proteins; loss of H3K79
methylation leads to promiscuous binding of the Sir complex
throughout the genome, titrating the Sir complex away from
normally silent regions (van Leeuwen et al. 2002). It seems
unlikely that this is the only function of H3K79 methylation in
transcriptional control, but our current understanding of this
modification is limited.

Histone Dynamics

Much of the above discussion treats chromatin structure as
essentially static in the absence of transcriptional perturba-
tions, but this could not be further from the truth. Nucleo-
somes move laterally and/or are evicted in response to
environmental perturbations, and even at “steady state” can
be replaced multiple times in a given cell cycle. In this section
we discuss histone dynamics, starting with a discussion of
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dynamic responses to the environment and ending with
steady-state dynamics in an unchanging environment.

Histone eviction and replacement during changes
in transcription

Nucleosomes are commonly evicted from the promoters of
genes during transcriptional activation. Furthermore, they
are also sometimes evicted from coding regions during high
levels of transcription. As described earlier, the classic
paradigm for the removal of nucleosomes from promoters
is the PHO5 promoter, where four nucleosomes are removed
from the promoter upon phosphate starvation and subse-
quent Pho4 binding (Almer et al. 1986; Boeger et al.
2003; Reinke and Horz 2003; Boeger et al. 2004; Korber
et al. 2004). Similar behavior is seen at many other pro-
moters already mentioned, including GAL1–10 (Selleck
and Majors 1987; Axelrod et al. 1993; Lohr and Lopez
1995), HSP82 (Gross et al. 1993; Zhao et al. 2005), and
ARG1 (Govind et al. 2010). Genome-wide studies have
shown this to occur at a number of stress-activated genes,
most commonly those containing TATA boxes (Lee et al.
2004; Shivaswamy et al. 2008; Zawadzki et al. 2009). Con-
versely, upon repression of PHO5, nucleosomes are rapidly
reassembled onto the promoter (Adkins and Tyler 2006).
Similarly, in most cases where nucleosomes are evicted dur-
ing transcription elongation, they are efficiently reassembled
in the wake of elongating RNAPII. What factors are respon-
sible for nucleosome eviction and reassembly?

Steady-state histone dynamics

Even in the absence of environmental perturbation, nucle-
osomes are not static entities. In bulk, it has long been
known that histones are among the most stably bound
proteins in the cell. In mammals, fluorescence recovery after
photobleaching studies show that most DNA-associated
proteins exchange with the free pool of protein with half-
lives on the order of seconds, but histones have a recovery
time on the order of 30+ min (Kimura and Cook 2001).
However, pioneering work in Drosophila showed that spe-
cific histone isoforms are exchanged within a cell cycle. The
H3 isoform H3.3 is replaced throughout the cell cycle
(Ahmad and Henikoff 2002), whereas the H3.1 isoform is
incorporated into DNA only during replication.

In yeast, which does not have separate H3.1 and H3.3
isoforms (yeast H3 most closely resembles H3.3), discerning
replication-independent histone dynamics (“turnover”) has been
more difficult. Nonetheless, by using pulse-chase approaches,
several investigators have been able to follow the incorporation
of new histone molecules in cells prevented from going through
genomic replication. Briefly, an epitope-tagged histone (H3 in
several studies, H2B in one) is driven by an inducible promoter
(Schermer et al. 2005). Yeast are arrested in the cell cycle to
prevent replication, then HA-H3 (for example) is induced, and
at varying times after induction HA-H3mapping is carried out to
identify loci undergoing exchange with the free histone pool
(Dion et al. 2007; Jamai et al. 2007; Rufiange et al. 2007).

These studies provide multiple insights into steady-state
dynamic behavior of histone molecules. First, H3 turnover is
rapid over promoters and other intergenic regions (such as
replication origins), but very slow (less than one exchange
per cell cycle) over most coding regions, despite ongoing
transcription. Second, H3 turnover over coding regions can
occur, but only at very high transcription rates (see below).
Third, whereas H3 replacement is quite heterogeneous over
the genome, H2B replacement was observed to be rapid at
both promoters and coding regions, with the only “cold”
genomic loci observed in a small-scale study being the het-
erochromatic subtelomeric regions (Jamai et al. 2007).

Histone dynamics: mechanism

What is the mechanistic basis for histone dynamics? First, it
is worth noting that there are likely a large number of
mechanisms at play in nucleosome eviction, with different
mechanisms acting at different genomic loci. Conversely, it is
likely that fewer nucleosome deposition activities exist and
that they act more globally to fill in gaps in chromatin
structure left after eviction events.

At promoters, nucleosomes are evicted by two major
classes of factor: the ATP-dependent remodelers such as
Swi/Snf and RSC, described above (and which will not be
further treated here), and transcription factors. Regarding the
latter, while nucleosomes typically prevent transcription
factor association with their binding sites, under certain
circumstances, transcription factors alone can disrupt a nucle-
osome (Workman and Kingston 1992). Mechanistically, it has
been observed that DNA located near the entry/exit points on
the octamer surface transiently unwraps from the octamer
(Anderson and Widom 2000, 2001; Anderson et al. 2002;
Poirier et al. 2008), and thus transcription factors that bind
to sites located in these regions can trap the partially open
nucleosome state. Interestingly, promoters with more tran-
scription factor binding sites tend to exhibit more rapid H3/
H4 replacement than do promoters with fewer transcription
factor binding sites (Dion et al. 2007; Field et al. 2008), con-
sistent with a transcription factor–nucleosome competition
model.

Over coding regions, RNAPII is the most likely candidate
for nucleosome eviction. However, as detailed above,
in vitro, RNAPII is capable of transiting a nucleosome with-
out dissociating the octamer from DNA (Kulaeva et al. 2009,
2010), and, in vivo, most coding regions exhibit little H3/H4
turnover (Dion et al. 2007). Interestingly, histone replace-
ment over coding regions is more rapid at stress genes than
at growth genes after correcting for RNAPII abundance
(Dion et al. 2007; Jamai et al. 2007; Rufiange et al. 2007),
which may be related to the fact that transcription occurs at
stress genes in “bursts” rather than via evenly spaced poly-
merases. Furthermore, in vitro, it has been shown that after
one round of transcription the original nucleosome loses an
H2A/H2B dimer, and running a second polymerase into this
hexameric nucleosome results in complete histone removal
(Kulaeva et al. 2007, 2009, 2010; Jin et al. 2010).
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Together, these results support a model in which RNA
polymerase passage through chromatin leaves behind a num-
ber of “damaged” hexameric nucleosomes, with nucleosome
dynamics then depending on the subsequent race between
hexamer repair and a second polymerase. At highly tran-
scribed, or “bursty,” genes, the rapid occurrence of a second
polymerase causes H3/H4 eviction. In support of this model,
Strubin and colleagues observed that mutants in the puta-
tive H2A/H2B chaperone Spt16 exhibit increased H3/H4
eviction over genes, suggesting that Spt16 plays a key role
in repairing hexameric nucleosomes that have lost an H2A/
H2B (Jamai et al. 2009). Other evidence, however, suggests
that Spt16 functions on whole nucleosomes rather than just
H2A/H2B (Xin et al. 2009). Similarly, the histone chaperone
Vps75 biochemically resembles the H2A chaperone Nap1
and binds H2A/H2B in vitro, yet vps75D mutants exhibit
increased H3/H4 turnover (Kaplan et al. 2008; Selth et al.
2009), revealing yet another link between octamer integrity
and H3/H4 dynamics.

While there may be many different ways to evict a nucle-
osome, all share in common the fact that histone molecules
must be transferred to some type of acceptor—the histone
chaperones. In multiple studies, yeast lacking various histone
chaperones exhibit slowed H3/H4 turnover dynamics. This
has been observed globally for Asf1 (Rufiange et al. 2007;
Kaplan et al. 2008), Rtt106 (Imbeault et al. 2008), and the
CAF-1 and Hir complexes (Rosa et al. 2010), although spt16
mutants, as cited above, do show increased turnover (Jamai
et al. 2009). Similarly, in spt6 mutants there is slow histone
redeposition at PHO5 (Adkins and Tyler 2006), and nucleo-
somes are generally depleted from highly transcribed genes
(Ivanovska et al. 2011). It is important to note that steady-
state turnover studies report on both eviction and replacement
and thus do not distinguish between these two processes, but
mutants that preferentially affect histone incorporation over
eviction are expected to exhibit decreased nucleosome occu-
pancy (Fillingham et al. 2009; Ivanovska et al. 2011), while
the converse will be true of mutants that preferentially act in
histone eviction. Furthermore, in activation/repression para-
digms (e.g., PHO5 induction) the two processes can be disen-
tangled. Interestingly, it is often inferred from histone
occupancy studies that histone chaperone mutants affect the
kinetics of both processes to similar extents.

Histone dynamics: consequences

What is the biological role of histone replacement? Mutants
that affect histone chaperones typically have pleiotropic
phenotypic effects, as would be expected from factors that
play roles in global chromatin dynamics. One fairly common
feature of mutants that affect global histone dynamics is that
expression of the histone genes is altered. As noted above,
the HIR histone chaperone complex was originally isolated
as a regulator of the H3/H4 promoter. Thus, it is important
to be aware that the phenotypes described below may reflect
the effects of changing histone levels, rather than histone
dynamics per se.

Histone dynamics are intimately related to epigenetic
silencing. Heterochromatic genes are protected from rapid
histone turnover and, in fact, are the only tested loci that do
not exhibit H2A/H2B replacement (Jamai et al. 2007). Fur-
thermore, the boundary elements that constrain the spread-
ing of heterochromatin complexes (Valenzuela and
Kamakaka 2006) exhibit rapid histone replacement (Dion
et al. 2007), which has been speculated to play a mechanistic
role in boundary function. If a spreading chromatin state is
being constantly erased via turnover, then this will prevent
further spread. As might be expected from the above obser-
vations, mutants in many histone turnover factors, from
Rtt109 to Asf1, exhibit silencing defects.

Histone dynamics are also intimately related to suppres-
sion of retrotransposons, a fact highlighted by the identifica-
tion of numerous histone turnover factors such as Spt6,
Spt16, Rtt106, and Rtt109 in the SPT and RTT screens, as
described above. Finally, histone replacement plays a signifi-
cant role in the kinetics of gene induction/repression. As an
example, various mutants that delay nucleosome eviction
from the PHO5 promoter upon phosphate starvation, such
as asf1D or rtt109D, display delayed mRNA expression as well
(Adkins et al. 2004; Korber et al. 2006; Williams et al. 2008).

Histone Chaperones

Several factors, referred to as histone chaperones, that are
believed to play essential roles in the removal and replace-
ment of histones from promoters and transcribed regions
have been identified (for reviews see Williams and Tyler
2007; Eitoku et al. 2008; Park and Luger 2008; Das et al.
2010; Avvakumov et al. 2011). These factors interact with
nucleosomes in vitro; associate with chromatin in vivo; and
facilitate histone deposition, exchange, or eviction from chro-
matin. While most of these factors are conserved throughout
eukaryotes, they were originally found in yeast from mutant
hunts that initially had no obvious connection to chromatin.
Interestingly, many of these chaperones appear to play mul-
tiple roles in transcriptional control (Table 1) and, further-
more, most show genetic interactions with each other
(e.g., see Malone et al. 1991; Swanson and Winston 1992;
Kaufman et al. 1998; Sutton et al. 2001; Formosa et al. 2002;
Takahata et al. 2009). In this section, our understanding of
many of these chaperones will be summarized.

Asf1 and its roles as a histone chaperone in histone
acetylation and its interactions with the HIR and
CAF chaperones

One of the best-characterized chaperones is Asf1 (anti-silencing
factor), which plays a prominent role in transcription initi-
ation and elongation, as well as DNA replication and repair
(Eitoku et al. 2008). Asf1 was first identified in yeast in high-
copy-number screens for effects on silencing (Le et al. 1997;
Singer et al. 1998). Subsequently, it was identified in Dro-
sophila and mammalian cells and shown to be a histone
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chaperone (Tyler et al. 1999; Munakata et al. 2000). Asf1 is
associated with promoter regions in yeast (Schwabish and
Struhl 2006) and is required for the eviction of promoter
nucleosomes upon induction of the PHO5 gene (Adkins et al.
2004; Korber et al. 2006), but not for their reassembly upon
repression. MNase studies of an asf1D mutant suggest that
Asf1 is globally required for nucleosome eviction (Adkins
and Tyler 2004). Furthermore, Asf1 is also associated with
several coding regions in yeast where it was shown to be
required for the eviction of histone H3, but not H2B
(Schwabish and Struhl 2006).

Biochemical and structural studies of Asf1 have provided
a detailed understanding of its chaperone function. Bio-
chemical studies showed that Asf1 interacts with a region
of H3 that is required for H3–H3 interactions in an H3-H4
tetramer (Munakata et al. 2000; Mousson et al. 2005) and
binds to an H3-H4 heterodimer (English et al. 2005). This
finding was surprising, as it had been commonly believed
that the H3-H4 intermediate in nucleosome assembly and
disassembly was a tetramer (for a review see Akey and
Luger 2003), although more recent studies have provided
evidence for tetramer splitting in vivo (Xu et al. 2010; Katan-
Khaykovich and Struhl 2011). In the meantime, structural
studies showed that the amino-terminal 155 amino acids of
Asf1, which are sufficient for function in vivo, form an im-
munoglobulin-like structure and provide evidence for
regions that bind to histone H3 and to the histone chaperone
Hir1 (Daganzo et al. 2003; Mousson et al. 2005). The struc-
ture of this region bound to an H3-H4 heterodimer, com-
bined with genetic studies, revealed interactions between
Asf1 and the histones H3 and H4 that suggests that Asf1
might split the H3-H4 tetramer by binding to H3 and alter-
ing the conformation of the carboxy-terminus of H4 to sta-
bilize the Asf1–H3-H4 interaction (English et al. 2006).
Taken together, these studies have provided the most in-
depth view of the function of a histone chaperone.

Asf1 also forms a complex with Rtt109, a histone acetyl-
transferase for H3K56, and Asf1 is required for Rtt109-
catalyzed H3K56 acetylation (Recht et al. 2006; Schneider
et al. 2006; Collins et al. 2007; Driscoll et al. 2007; Han et al.
2007; Tsubota et al. 2007). This finding fits well with the
observation that regions of high H3/H4 turnover are
enriched for K56 acetylation, and asf1D mutants have
slower H3/H4 turnover (Rufiange et al. 2007; Kaplan
et al. 2008). At the PHO5 gene, H3K56 acetylation increases
upon induction (Williams et al. 2008), presumably by in-
creased exchange at the PHO5 promoter, as H3K56 acetyla-
tion occurs only on free histones and not on nucleosomes
(Tsubota et al. 2007). H3K56 is located near the entry/exit
points of DNA on the histone octamer, and K56-acetylated
nucleosomes have been suggested to be less stable than
unacetylated nucleosomes. Consistent with this idea,
H3K56 acetylation is required for nucleosome eviction and
induction at PHO5 (Williams et al. 2008). Furthermore, sev-
eral phenotypes of asf1D mutants—including slow growth,
slow PHO5 induction, and hydroxyurea sensitivity—are par-

tially suppressed in an H3K56Q mutant, which mimics the
acetylated state (Recht et al. 2006). Overall, these studies
show that H3K56 acetylation is a significant component of
the role of Asf1 in transcriptional control. Its role in tran-
scription elongation remains to be determined.

Asf1 has been genetically and biochemically tied to two
other chaperone complexes, HIR and CAF-1. The four mem-
bers of the HIR complex were initially identified by muta-
tions defective for transcription of histone genes (Osley and
Lycan 1987; Xu et al. 1992). The HIR complex functions in
several chromatin-related processes including chromatin as-
sembly (Sharp et al. 2001; Green et al. 2005; Prochasson
et al. 2005), kinetochore function (Sharp et al. 2002), and
transcription elongation (Formosa et al. 2002; Nourani et al.
2006). HIRA, the human homolog of yeast Hir1 and Hir2
(Hall et al. 2001), is also a histone chaperone (Ray-Gallet
et al. 2002), and Hira of S. pombe is required for both het-
erochromatin formation and repression of antisense tran-
scription (Blackwell et al. 2004; Anderson et al. 2009;
Yamane et al. 2011).

The CAF-1 complex was originally identified from Hela
cells as an activity that assembles nucleosomes onto
replicating DNA (Stillman 1986; Smith and Stillman
1989). In yeast, CAF-1 is also able to assemble nucleosomes
in vitro (Kaufman et al. 1997). Somewhat surprisingly, dele-
tions of any of the three yeast genes encoding CAF-1 sub-
units results in only mild phenotypes (Kaufman et al. 1997).
Genetic connections among Asf1, HIR, and CAF-1 emerged
from several studies in yeast that showed that these factors
cooperate in control of transcription, silencing, and kineto-
chore function (Kaufman et al. 1998; Sharp et al. 2001,
2002; Sutton et al. 2001). Furthermore, biochemical and
structural studies from S. cerevisiae, S. pombe, and mamma-
lian cells have provided strong evidence for physical inter-
actions between these complexes (Sutton et al. 2001; Mello
et al. 2002; Daganzo et al. 2003; Tagami et al. 2004; Tang
et al. 2006; Malay et al. 2008). Evidence from mammalian
cells (Tagami et al. 2004) and S. pombe (Malay et al. 2008)
suggests that Asf1 exists in independent complexes with
either the HIR or CAF-1 complex, as binding of either HIR
or CAF-1 to Asf1 is mutually exclusive (Malay et al. 2008).
Interestingly, CAF-1 also physically interacts with another
histone chaperone, Rtt106 (Huang et al. 2005, 2007). More
recent studies have shown that Rtt106 plays a general role
in both regulation of histone gene transcription (Fillingham
et al. 2009) and general transcription initiation (Imbeault
et al. 2008).

Spt6 and FACT: factors controlling transcriptional integrity

Spt6 and FACT are two conserved chaperones that interact
directly with nucleosomes to modulate transcription and
chromatin structure. We have grouped them here as spt6
and spt16 mutants share many mutant phenotypes (e.g.,
Malone et al. 1991; Kaplan et al. 2003; Mason and Struhl
2003; Cheung et al. 2008), although they do not associate
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with chromatin in an identical pattern across the genome
(Mayer et al. 2010).

Spt6 Spt6 was originally identified in S. cerevisiae by several
mutant hunts (Table 1). Spt6 is essential for viability in S.
cerevisiae (Clark-Adams and Winston 1987; Neigeborn et al.
1987) [athough not in C. albicans (Al-Rawi et al. 2010) or S.
pombe (Kiely et al. 2011)]. Spt6 also plays critical or essential
roles in mammalian cells (Yoh et al. 2007, 2008), zebrafish
(Keegan et al. 2002; Kok et al. 2007; Serluca 2008), Drosophila
(Formosa et al. 2002; Ardehali et al. 2009), and nematodes
(Nishiwaki et al. 1993). In addition to chromatin structure
and transcription, Spt6 functions in recombination (Malagon
and Aguilera 2001), mRNA surveillance and export (Andrulis
et al. 2002; Estruch et al. 2009), and histone modifications
(Carrozza et al. 2005; Chu et al. 2007; Youdell et al. 2008).
Thus, Spt6 appears to play roles in most chromatin-mediated
processes.

Spt6 forms a heterodimeric complex with another pro-
tein, Spn1/Iws1 (Fischbeck et al. 2002; Krogan et al.
2002; Lindstrom et al. 2003). This interaction, believed to
be dynamic and to govern the ability of Spt6 to interact with
nucleosomes (McDonald et al. 2010), is required for several
steps in transcription—from initiation (Zhang et al. 2008) to
histone modifications, RNA processing, and mRNA export
(Yoh et al. 2007, 2008). Structural analyses of Spn1 and
the Spn1–Spt6 complex have recently been described
(Diebold et al. 2010a; McDonald et al. 2010; Pujari et al.
2010). Although these two proteins appear to interact, they
do not have the same pattern of association across the yeast
genome (Mayer et al. 2010).

Spt6 is a large protein (1451 amino acids in S. cerevisiae)
with multiple domains that suggest interactions with DNA,
RNA, and several proteins in addition to Spn1 (Doherty et al.
1996; Johnson et al. 2008; Dengl et al. 2009; Close et al.
2011). Among its domains are tandem SH2 domains at its
carboxy-terminal end, the only SH2 domains in S. cerevisiae
(Maclennan and Shaw 1993; Dengl et al. 2009; Diebold
et al. 2010b; Sun et al. 2010; Close et al. 2011; Liu et al.
2011). The SH2 domains are required for Spt6 to interact
with the CTD of Rpb1 of RNAPII, for normal levels of Spt6
recruitment to chromatin in vivo, and for wild-type function
(Dengl et al. 2009; Diebold et al. 2010b; Mayer et al. 2010;
Sun et al. 2010; Close et al. 2011; Liu et al. 2011).

The control of chromatin structure by Spt6 is likely direct,
as in vitro studies have demonstrated direct interactions of
Spt6 with histones (Bortvin and Winston 1996; Winkler
et al. 2000) and nucleosomes (McDonald et al. 2010) and
that Spt6 can assemble nucleosomes in vitro (Bortvin and
Winston 1996). To bind nucleosomes, Spt6 requires the
HMG protein, Nhp6 (McDonald et al. 2010), similar to FACT
(see below). The region of Spt6 required for interaction with
nucleosomes is in the amino-terminal region and overlaps
with the region required for Spt6–Spn1 interactions (McDo-
nald et al. 2010). In vivo, Spt6 is required to maintain a nor-
mal level of nucleosomes across highly transcribed coding

regions (Kaplan et al. 2003; Ivanovska et al. 2011). The
Spt6–chromatin connection is also supported by genetic
interactions: spt6 mutations suppress the loss of the Swi/
Snf chromatin-remodeling complex (Neigeborn et al. 1986,
1987; Bortvin and Winston 1996), and spt6mutations them-
selves are suppressed by elevated levels of histone H3 (Bortvin
and Winston 1996). Spt6 also affects histone modification,
as it is required for normal levels of H3K36 di- and trime-
thylation (Carrozza et al. 2005; Chu et al. 2007; Youdell
et al. 2008), although the effects of Spt6 on histone mod-
ifications could be an indirect consequence of its effects on
chromatin structure (Youdell et al. 2008). Taken together,
these results suggest that direct Spt6–histone interactions
control chromatin structure in vivo.

The consequences of Spt6-dependent chromatin effects on
transcription are broad, varied, and to a large degree remain
to be understood. Genetic and biochemical studies have sug-
gested that Spt6 controls transcription initiation, elongation,
and 39 end formation. However, although Spt6 associates
with coding regions genome-wide (Mayer et al. 2010; Ivanov-
ska et al. 2011), there is little understanding of what makes
transcription of some genes Spt6 dependent and others not
(Ivanovska et al. 2011). With respect to initiation, spt6
mutants are defective for nucleosome reassembly or position-
ing over some promoter regions during transcriptional repres-
sion (Adkins and Tyler 2006; Jensen et al. 2008; Ivanovska
et al. 2011), and spt6 mutations suppress some promoter
insertions or deletions (Winston et al. 1984; Prelich and Win-
ston 1993). Elongation is also controlled by Spt6 on the basis
of both in vitro (Endoh et al. 2004) and in vivo (Ardehali et al.
2009) studies. A role in elongation is supported by the finding
that Spt6 interacts directly with the elongating form of RNA-
PII (Endoh et al. 2004; Yoh et al. 2007), that Spt6 facilitates
elongation on a chromatin-free template in vitro (Endoh et al.
2004), and that Spt6 localizes across coding regions in vivo,
with the level of Spt6 association corresponding to the level
of transcription (Andrulis et al. 2000; Kaplan et al. 2000,
2005; Krogan et al. 2002; Mayer et al. 2010; Ivanovska
et al. 2011).

One of the key roles for Spt6 during elongation is to re-
press cryptic promoters within coding regions (Kaplan et al.
2003; Cheung et al. 2008). In spt6 mutants, a genome-wide
assay revealed that cryptic initiation occurs at �1000 genes
(Cheung et al. 2008). This level of cryptic initiation is likely
an underestimate of the true level, as this study looked only
at coding strands, and the method of detection would have
found cryptic initiation only in genes transcribed at low lev-
els (Cheung et al. 2008; Lickwar et al. 2009). Cryptic initi-
ation has also been observed in several other mutants,
including spt16 and set2 (Kaplan et al. 2003; Mason and
Struhl 2003; Carrozza et al. 2005; Prather et al. 2005; Nourani
et al. 2006; Li et al. 2007b; Xiao et al. 2007; Cheung et al.
2008; Imbeault et al. 2008), with spt6 and spt16 mutants
having the strongest effects (Cheung et al. 2008).

There are clearly multiple mechanisms that normally
repress cryptic initiation in wild-type cells. One mechanism
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operates by maintaining a deacetylated state for nucleo-
somes across coding regions. As detailed above, this state is
dependent both on the elongating form of RNAPII and
H3K36 methylation for the recruitment and the activation of
the Rpd3S HDAC complex, which deacetylates histones
(Carrozza et al. 2005; Joshi and Struhl 2005; Keogh et al.
2005; Drouin et al. 2010; Govind et al. 2010). Impairing this
deacetylation results in cryptic promoters being more per-
missive for initiation (Govind et al. 2007, 2010; Ginsburg
et al. 2009). However, there may be other mechanisms for
repression of cryptic promoters, as many mutants that allow
cryptic initiation have normal levels of H3K36 methylation
(Cheung et al. 2008). In spt6 mutants, cryptic initiation may
be caused by multiple reasons in addition to loss of H3K36
methylation, including an inability to reassemble nucleo-
somes in the wake of elongating RNAPII (Kaplan et al.
2003) and defective recruitment of two factors, Spt2 and
Elf1, that each contribute to the repression of cryptic pro-
moters (Prather et al. 2005; Nourani et al. 2006).

FACT The S. cerevisiae FACT complex is composed of two
proteins, Spt16 and Pob3, that act, along with the HMG
protein Nhp6, as a histone chaperone during transcription
(Brewster et al. 2001; Formosa et al. 2001). The FACT com-
plex was also discovered in mammalian cells by a biochem-
ical assay for factors that allow transcription elongation
in vitro across a chromatin template (Orphanides et al.
1998). The purified mammalian FACT complex was shown
to contain two proteins, Spt16 and SSRP, a bipartite protein
that resembles both Pob3 and Nhp6 (Orphanides et al.
1999). Spt16 was initially identified in yeast by mutant
screens for cell division cycle mutations that arrest at G1
(Prendergast et al. 1990; Rowley et al. 1991), for genes that,
when overexpressed, cause an Spt2 phenotype (Malone
et al. 1991), and as an activator of the SWI4 gene (Lycan
et al. 1994). Pob3 was initially identified biochemically as
a protein that strongly interacts with DNA polymerase a,
a biochemical screen that also found Spt16 (Wittmeyer et al.
1999).

FACT functions in both transcription initiation and
elongation. The basis for the purification and characteriza-
tion of mammalian FACT, transcription in vitro along a chro-
matin template (Orphanides et al. 1998; Belotserkovskaya
et al. 2003), and in vivo studies in flies (Saunders et al.
2003) led to the idea that FACT is devoted to transcription
elongation. This view was reinforced by studies in yeast that
showed that Spt16 physically interacts with other elonga-
tion factors (Krogan et al. 2002; Squazzo et al. 2002; Simic
et al. 2003), that Spt16 is localized across coding regions
(Mason and Struhl 2003; Kim et al. 2004; Mayer et al.
2010), and that FACT has genetic interactions suggesting
a role in reassembling nucleosomes in the wake of RNAPII
elongation (Formosa et al. 2002). An additional study iden-
tified a histone H3 mutant that alters the pattern of Spt16
association across transcribed regions in an allele-specific
fashion, suggesting that a direct H3–Spt16 interaction is

important for its recruitment during elongation (Duina
et al. 2007). However, there is substantial evidence that
FACT also functions in initiation, as FACT regulates TBP,
TFIIB, and RNAPII binding over promoter regions (Mason
and Struhl 2003; Biswas et al. 2005; Ransom et al. 2009),
and spt16 mutations display genetic interactions with spt15
(TBP), toa2 (TFIIA), and spt3 (SAGA) mutations, all of
which affect initiation (Biswas et al. 2005). At the PHO5
promoter, FACT is required to remove H2A-H2B dimers un-
der derepressing conditions, presumably a step required
prior to Asf1-dependent removal of H3-H4 tetramers
(Adkins and Tyler 2004; Ransom et al. 2009). The most
direct evidence for FACT functioning in initiation comes
from studies of HO (Takahata et al. 2009). In this case,
during the process of HO induction, FACT becomes physi-
cally associated with a specific region of the HO regulatory
region, URS2, where it acts with Asf1 to promote nucleo-
some loss, a requirement for coactivator recruitment to this
region. This is the first and only demonstration to date of
FACT physical association with a regulatory region.

Several biochemical studies have addressed the mecha-
nism by which FACT functions as a histone chaperone.
These studies identified regions in both yeast and mamma-
lian FACT components that interact directly with multiple
histones and nucleosomes (Orphanides et al. 1999; Belotser-
kovskaya et al. 2003; Vandemark et al. 2006; Stuwe et al.
2008). One study suggests that there are redundant inter-
actions of different histones with both Spt16 and Pob3 that
contribute to nucleosome binding by FACT (Vandemark
et al. 2006). With respect to mechanism, in vitro binding
and transcription studies of mammalian FACT suggested
that FACT removes one H2A-H2B dimer during elongation
to facilitate the passage of RNAPII (Orphanides et al. 1999;
Belotserkovskaya et al. 2003). However, other studies dis-
agree with this model. One study, using DNaseI sensitivity as
an assay for nucleosome structure, suggested that FACT
decreases histone–DNA interactions in many locations
around the nucleosome (Rhoades et al. 2004). A more re-
cent study takes this analysis further, using restriction en-
zyme accessibility as an assay, and provides evidence that
FACT relaxes histone–DNA interactions in many places
around a nucleosome (Xin et al. 2009). In this study, H2A-
H2B dimer loss was a variable consequence of nucleosomal
reorganization by FACT and was not required for increased
accessibility to DNA in vitro, nor did it occur in vivo upon
transcriptional activation (Xin et al. 2009). From these
results, the authors propose that FACT reversibly destabil-
izes nucleosomes to facilitate the passage of RNAPII. Such
an activity can also account for the roles of FACT in initia-
tion and other chromatin-related processes, as well as for
the observations of the role of FACT in histone recycling
(Jamai et al. 2009) and free histone levels (Morillo-Huesca
et al. 2010b). Given the in vitro (Belotserkovskaya et al.
2003) and in vivo (Ransom et al. 2009) evidence that FACT
may promote H2A-H2B dimer removal under some condi-
tions, however, the consequences of FACT activity may be
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varied, influenced by the myriad of other chaperones that
exist and that may have gene- or sequence-specific roles.

Perspectives

Much of our understanding of how chromatin structure
controls transcription has come from pioneering studies in
yeast. We believe that yeast studies will continue in a leader-
ship role in helping to unravel the roles of histone modifica-
tions, histone exchange, chromatin-remodeling complexes,
and histone chaperones in the control of transcription. While
many genome-wide studies have already provided detailed
descriptive analysis, the future will provide new information,
as there will be more characterization of mutants and
different growth conditions by genome-wide approaches, as
well as comparative studies in other yeasts (e.g., Tsankov
et al. 2010).

One emerging field in which yeast will likely play a leading
role is in the elucidation of roles of noncoding RNAs
(ncRNAs) in regulating transcription and chromatin struc-
ture. Studies in both S. cerevisiae and S. pombe have already
identified regulatory roles for several ncRNAs that occur by
a diversity of mechanisms (for reviews see (Berretta and
Morillon 2009; Winston 2009). In some cases, ncRNAs control
chromatin structure (Hirota et al. 2008; Hainer et al. 2011;
Thebault et al. 2011) or histone modifications (Houseley
et al. 2008; Camblong et al. 2009; Pinskaya et al. 2009).
Other types of control will likely emerge from other recent
studies (e.g., Hongay et al. 2006; Bumgarner et al. 2009).
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